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Abstract. Gauss’s 2F1

(
1
2

1
2
1
| x
)
hypergeometric function gives periods of elliptic curves

in Legendre normal form. Certain truncations of this hypergeometric function give the Hasse
invariants for these curves. Here we study another form, which we call the Clausen form, and

we prove that certain truncations of 3F2

(
1
2

1
2

1
2

1 1
| x
)

and 2F1

(
1
4

3
4
1
| x
)
in Fp[x] are

related to the characteristic p Hasse invariants.

1. Introduction

We begin by recalling three types of hypergeometric functions which give invariants of the
Legendre normal form elliptic curves

(1.1) EL(λ) : y2 = x(x− 1)(x− λ), λ ∈ C \ {0, 1}.

If n is a nonnegative integer, then define (γ)n by

(γ)n :=

{
1 if n = 0,

γ(γ + 1)(γ + 2) · · · (γ + n− 1) if n ≥ 1.

The classical hypergeometric function in parameters α1, . . . , αh, β1, . . . , βj ∈ C is defined by

hF
cl
j

(
α1, α2, . . . αh

β1, . . . βj
| x
)

:=
∞∑
n=0

(α1)n(α2)n(α3)n · · · (αh)n
(β1)n(β2)n · · · (βj)n

· x
n

n!
.

By the theory of elliptic integrals, it is well known that Gauss’s hypergeometric function

2F
cl
1 (x) := 2F

cl
1

(
1
2

1
2
1
| x
)

gives the periods (for example, see page 184 of [7]) of the Le-

gendre normal form elliptic curves. In particular, if we denote the real period of EL(λ) by
ΩL(λ), then for 0 < λ < 1 we have

(1.2) ΩL(λ) = π · 2F
cl
1 (λ).

Truncated hypergeometric functions also give invariants for these curves. Throughout let p
be an odd prime. Recall that an elliptic curve in characteristic p is said to be supersingular if
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2 AHMAD EL-GUINDY AND KEN ONO

it has no p-torsion over Fp. We define the relevant truncated hypergeometric functions by

(1.3) 2F
tr
1 (x)p :=

p−1
2∑

n=0

(
(1

2
)n

n!

)2

xn,

and we define the characteristic p Hasse invariant for the Legendre normal form elliptic curves
by

(1.4) HL(x)p :=
∏
λ∈Fp

EL(λ) supersingular

(x− λ).

It turns out that HL(x)p is in Fp[x], and it satisfies (for example, see page 261 of [7])

(1.5) HL(x)p ≡ 2F
tr
1 (x)p (mod p).

There is a third kind of hypergeometric function, the finite field hypergeometric function.
These functions also give information about the Legendre normal form elliptic curves. We
first recall their definition which is due to J. Greene [4]. If q is a prime power and A and B

are two Dirichlet characters on Fq (extended so that A(0) = B(0) = 0), then let

(
A
B

)
be the

normalized Jacobi sum(
A
B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑
x∈Fp

A(x)B(1− x).

Here B is the complex conjugate of B. If A0, . . . , An, and B1, . . . , Bn are characters on Fq,
then the finite field hypergeometric function in these parameters is defined by

n+1F
ff
n

(
A0, A1, . . . An

B1, . . . Bn
| x
)
q

:=
q

q − 1

∑
χ

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
Anχ
Bnχ

)
χ(x).

Here
∑

χ denotes the sum over all characters χ of Fq.
It has been observed by many authors (see [6], [4], [8], [9], [11], and [13], to name a few) that

the Gaussian analog of a classical hypergeometric series with rational parameters is obtained
by replacing each 1

n
with a character χn of order n (and a

n
with χan). Let εq be the trivial

character on Fq and let φq be the character of order 2. Then the finite field analog of 2F
cl
1 (x)

is

2F
ff
1 (x)q :=

(
φq φq

εq
| x
)
q

.

More generally, we let

(1.6) n+1F
ff
n (x)q := n+1F

ff
n

(
φq, φq, . . . φq

εq, . . . εq
| x
)
q

.

M. Koike proved [9] that if p ≥ 5 is a prime for which EL(λ) has good reduction, and q is a
power of p then

(1.7) 2F
ff
1 (λ)q = −φq(−1)

q
· aL(λ; q),
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where aL(λ; q) is the trace of Frobenius at q for EL(λ).
We have now seen that the 2F

cl
1 (x), 2F

tr
1 (x)p and 2F

ff
1 (x)q hypergeometric functions encode

some of the most important invariants for the Legendre normal form elliptic curves. Loosely
speaking, we have that

(1.8) “π” · 2F
∗
1 (x) “ = ”


Periods if ∗ = cl,

Hasse invariants if ∗ = tr,

Traces of Frobenius if ∗ = ff.

Motivated by (1.7), the second author identified [11, 12] a second form, the Clausen form,
which is similarly related to finite field hypergeometric functions. These curves are given by

(1.9) EC(λ) : y2 = (x− 1)(x2 + λ).

If λ 6∈ {0,−1}, then EC(λ) is an elliptic curve with discriminant and j-invariant

∆(EC(λ)) = −64λ(λ+ 1)2 and j(EC(λ)) =
64(3λ− 1)3

λ(λ+ 1)2
.

If EC(λ) has good reduction at a prime p ≥ 5 and if q is a power of p, then the second author
proved1 (see Theorem 5 of [11]) the following analog of (1.7):

(1.10) q + q2φq(λ+ 1)−1 · 3F
ff
2

(
λ

λ+ 1

)
q

= aC(λ; q)2,

where aC(λ; q) is the trace of the Frobenius at q for EC(λ). It could be computed by the
formula

(1.11) aC(λ; q) = −
∑
b∈Fq

φq((b− 1)(b2 + λ)).

Remark. This result implies that the 3F
ff
2

(
λ
λ+1

)
q

is essentially the square of the character

sum which gives the trace of Frobenius on EC(λ). Greene and R. Evans [5] have obtained a
generalization of this phenomenon for further 3F

ff
2 hypergeometric functions.

Remark. A special case of (1.10), which can be viewed as a finite field analog of the Clausen
Theorem (see Theorem 2.1), was proved first by Greene and Stanton [6].

Motivated by (1.8) and (1.10), D. McCarthy studied the relationship between 3F
cl
2 (x) :=

3F
cl
2

(
1
2

1
2

1
2

1 1
| x
)

and the EC(λ), and he proved that this classical hypergeometric function

gives (see Theorem 2.1 of [10]) the square of real periods of these curves. Namely, if λ > 0,
then

(1.12) π2 · (λ+ 1)−
1
2 · 3F

cl
2

(
λ

λ+ 1

)
= ΩC(λ)2,

where ΩC(λ) is the real period of EC(λ).

1This result may be interpreted in terms of local zeta functions for a certain family of K3 surfaces [1].
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To obtain the full analogy with (1.8), we now show that the squares of Hasse invariants for
the Clausen curves are given by truncated hypergeometric functions. If p is an odd prime,
then define the truncated hypergeometric function in parameters α1, . . . , αh, β1, . . . , βj ∈ C by

hF
tr
j

(
α1, α2, . . . αh

β1, . . . βj
| x
)
p

:=

p−1
2∑

n=0

(α1)n(α2)n(α3)n · · · (αh)n
(β1)n(β2)n · · · (βj)n

· x
n

n!
.

Following our earlier convention, we let

(1.13) 3F
tr
2 (x)p := 3F

tr
2

(
1
2

1
2

1
2

1 1
| x
)
p

=

p−1
2∑

n=0

(
(1

2
)n

n!

)3

xn,

and we have the Hasse invariant

(1.14) HC(x)p :=
∏
λ∈Fp

EC(λ) supersingular

(x− λ) .

The following theorem, which nicely complements (1.10) and (1.12), completes the analogies
of (1.8) for the Clausen elliptic curves and gives

(1.15) “π2” · (λ+ 1)“− 1
2

” · 3F
∗
2

(
λ

λ+ 1

)
“ = ”


(Periods)2 if ∗ = cl,

(Hasse invariants)2 if ∗ = tr,

(Traces of Frobenius)2 if ∗ = ff.

Theorem 1.1. If p is an odd prime, then HC(x)p is in Fp[x], and it satisfies

p2
p · (x+ 1)

p−1
2 · 3F

tr
2

(
x

x+ 1

)
p

≡ HC(x)2
p (mod p),

where pp is the reciprocal product of binomial coefficients

pp :=
1( p−1

2

b p−1
4
c

)( p−1
2

2b p−1
4
c

) .
Remark. Since supersingular elliptic curves have models defined over Fp2 (for example, see

p. 269 of [7] or p. 137 of [14]), it follows that the irreducible factors of 3F
tr
2 (x)p in Fp[x] are

linear or quadratic.

The proof of Theorem 1.1 shows that

(1.16) HC(x)p ≡ pp · 2F
tr
1

(
1
4

3
4
1
| − x

)
p

(mod p),

which in turn implies that all of the roots of this truncated hypergeometric function are in
Fp2 and are simple. Furthermore, we note that McCarthy (see the proof of corollary 2.2 in
[10]) also obtained the classical analog of (1.16), namely

(1.17) ΩC(λ) = π · 2F
cl
1

(
1
4

3
4
1
| − λ

)
.
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It is natural to wonder if a similar relation holds for Gaussian hypergeometric function with
appropriate parameters. Indeed the following result is valid.

Proposition 1.2. Let p be an odd prime and λ ∈ Q\{0,−1} be such that ordp(λ(λ+1)) = 0.
If q is a power of p such that q ≡ 1 (mod 4) and χ4 is a character of order 4 defined on Fq,
then we have

(1.18) aC(λ; q) = −q · 2F
ff
1

(
χ4 χ3

4

εq
| − λ

)
q

.

Proof. Following the proof of Theorem 5 in [11] we see that if we define a function f(x) by

f(x) :=
q

q − 1

∑
χ

(
φqχ

2

χ

)(
φqχ

χ

)
χ
(x

4

)
,

then for ordp(µ) = 0 we have

(1.19) f

(
4

µ

)
=
φq(2)

q

∑
x∈Fp\{−µ2}

φq(x
3 − µ2x2 + µ3(4− µ)x− µ5(4− µ)).

Dividing the right side by φq(µ
6) = 1, setting λ := 4−µ

µ
, and applying (1.11) we get

f(λ+ 1) =
φq(2)

q
(−aC(q;λ)− φq(−2(λ+ 1)).

Following Greene and Evans [5], we set

F ∗(φq, εq;x) := f(x) +
φq(−x)

q
.

Thus

(1.20) F ∗(φq, εq;λ+ 1) = −φq(2)

q
aC(q;λ).

Since χ2
4 = φq, we deduce (using well-known properties of Jacobi sums) from Theorem 1.2

in [5] that

(1.21) F ∗(φq, εq;x) = φq(2)χ4(−1) 2F
ff
1

(
χ4 χ3

4

εq
| x
)
q

.

However, for x 6= 0, 1, Theorem 4.4(i) of [4] gives

(1.22) 2F
ff
1

(
χ4 χ3

4

εq
| x
)
q

= χ4(−1)2F
ff
1

(
χ4 χ3

4

εq
| 1− x

)
q

,

and the result follows by setting x = λ + 1 and noting that χ2
4(−1) = φq(−1) = 1 for q ≡ 1

(mod 4). �

Remark. Note that Theorem 1.5 of [5], together with (1.10) imply that

aC(λ; q)2 = q2 · 2F
ff
1

(
χ4 χ3

4

εq
| − λ

)2

q

.
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However, it seems one must go through an argument as in the proof above in order to obtain
the more precise formula (1.18) .

Remark. A formula similar to (1.18) was stated, without an explicit proof, in [9] for the family

EK(λ) : y2 = x3 + x2 +
λ

4
x.

Note that EK(λ) is the 1
2
-quadratic twist of EC(λ− 1).

It follows that we have the following analog of (1.8) and (1.15), where the last line is valid
only when an analog of “1

4
” exists; i.e. when q ≡ 1 (mod 4).

(1.23) “π” · 2F
∗
1

(
“1

4
” “3

4
”

“1”
| − λ

)
“ = ”


Periods if ∗ = cl,

Hasse invariants if ∗ = tr,

Traces of Frobenius if ∗ = ff.

Remark. It is well-known that the Gauss sum G(χ) is the finite field analog of the gamma
function (see section 1.10 of [2] for instance). Since G(φq)

2 = φq(−1)q and Γ(1
2
)2 = π, we see

that φq(−1)q is indeed the Gaussian analog of π. On the other hand, the congruence for trun-
cated hypergeometric series is one between polynomials, rather than complex numbers. Hence
its main content is that the zeros of the truncated hypergeometric series are the supersingular
locus. The constant is merely present to make the truncated hypergeometric series monic. It
can’t really be given an interpretation as a truncated analog of the gamma function at the
parameter 1

2
since the corresponding constant in (1.8) is just “1”, which simply means that

the truncation in that case happens to be monic without the need for further normalization.

Remark. As noted in [10] and confirmed by (1.7) and (1.18), the Gaussian analog of the real
period is the negative of the trace of Frobenius.

Example. The set of supersingular Clausen curves for p = 23 is

{EC(5), EC(8), EC(11), EC(14), EC(17)} ,
and so it follows that

HC(x)23 :=
∏
λ∈F23

EC(λ) supersingular

(x− λ) = (x− 5)(x− 8)(x− 11)(x− 14)(x− 17).

One directly finds that p23 = 1
5082
≡ −1 (mod 23), and we have

(x+ 1)11 · 3F
tr
2

(
x

x+ 1

)
23

= 1 +
89

8
x+

28827

512
x2 + · · ·+ 185685617347012755

257
x11

≡ x10 + 5x9 + 19x8 + · · ·+ 9x2 + 14x+ 1 ≡ HC(x)2
23 (mod 23).

Also,

2F
tr
1

(
1
4

3
4
1
| − x

)
23

= 1− 3

16
x+

105

1024
x2 − 1155

16384
x3 +

225225

4194304
x4 − 2909907

67108864
x5

≡ 22x5 + 9x4 + 8x3 + 3x2 + 7x+ 1 ≡ −HC(x) (mod 23).
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2. Proof of Theorem 1.1

We refer to the elliptic curves EC(λ) as Clausen curves because they arise naturally in con-
nection with an identity of Clausen relating 2F

cl
1 and 3F

cl
2 classical hypergeometric functions.

First we recall this identity, along with other crucial observations.

2.1. Nuts and bolts. We begin by recalling the following identity of Clausen. Throughout
this section we view the classical hypergeometric series as a formal one.

Theorem 2.1. [Clausen] We have that

3F
cl
2

(
1
2

1
2

1
2

1 1
| x
)

= (1− x)−
1
2 · 2F

cl
1

(
1
4

3
4
1
| x

x− 1

)2

.

Proof. A theorem of Clausen (see p. 86 of [3]) implies that

3F
cl
2

(
2α 2β α + β

2α + 2β α + β + 1
2

| x
)

= 2F
cl
1

(
α β

α + β + 1
2

| x
)2

.

By the classical 2F
cl
1 transformation (see p. 10 of [3]), we have that

2F
cl
1

(
a b

c
| x
)

= (1− x)−a · 2F
cl
1

(
a c− b

c
| x

x− 1

)
.

The claim follows by letting α = β = 1
4
, and by then letting a = b = 1

4
and c = 1. �

This theorem implies a mod p version for truncated hypergeometric functions.

Corollary 2.2. If p is an odd prime, then

(x+ 1)
p−1
2 · 3F

tr
2

(
x

x+ 1

)
p

≡ 2F
tr
1

(
1
4

3
4
1
| − x

)2

p

(mod p).

Proof. After replacing x by x
x+1

in Theorem 2.1, use the fact that

(x+ 1)−
1
2 ≡ (x+ 1)

p−1
2 (mod p, xp).

�

To prove Theorem 1.1, we require the following description of 2F
tr
1

(
1
4

3
4
1
| − x

)
p

(mod p).

For the remainder of the paper, for an odd prime p, set mp := p−1
2

and m̂p := bmp

2
c.

Lemma 2.3. If p is an odd prime then

2F
tr
1

(
1
4

3
4
1
| − x

)
p

≡
m̂p∑
b=0

(
mp

b

)(
mp

2b

)
xb (mod p).

Proof. It suffices to show, for 0 ≤ b ≤ mp, that(
mp

b

)(
mp

2b

)
≡ (−1)b

(
1
4

)
b

(
3
4

)
b

(b!)2
(mod p).

This clearly holds when b = 0.
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The proof now follows by induction. Begin by noticing the following identities:(
mp

b+ 1

)
=
mp − b
b+ 1

·
(
mp

b

)
,(

1

4

)
b+1

=
4b+ 1

4
·
(

1

4

)
b

,(
3

4

)
b+1

=
4b+ 3

4
·
(

3

4

)
b

.

Using these identities, it then suffices to show that

(mp − b)(mp − 2b− 1)(mp − 2b)

(b+ 1)(2b+ 2)(2b+ 1)
≡ −(4b+ 1)(4b+ 3)

16(b+ 1)2
(mod p).

This follows from the elementary congruence:

8(mp − b)(mp − (2b+ 1))(mp − 2b) ≡ (2mp − 2b)(2mp − (4b+ 2))(2mp − 4b)

≡ (−1− 2b)(−3− 4b)(−1− 4b) ≡ −(4b+ 1)(4b+ 3)(2b+ 1) (mod p).

Finally notice that
(
mp

2b

)
= 0 if b > m̂p. �

2.2. Proof of Theorem 1.1. It is well known (see Chapter V of [14]) that EC(λ) is supersin-
gular at a prime p ≥ 5 if and only if the coefficient of (xy)p−1 is zero modulo p in fλ(x, y)p−1,
where

(2.1) fλ(x, y) := y2 − (x− 1)(x2 + λ).

The following lemma gives a formula for that particular coefficient.

Lemma 2.4. If p is an odd prime, then the coefficient of (xy)p−1 modulo p in fλ(x, y)p−1 is

(−1)mp

m̂p∑
b=0

(
mp

b

)(
mp

2b

)
· λb.

Proof. Obviously, we have that

fλ(x, y)p−1 =

p−1∑
c=0

(
p− 1

c

)
(−1)c(x− 1)c(x2 + λ)cy2(p−1−c).

Now observe that (xy)p−1 occurs only in the middle of this sum, namely where c = mp, and
so it suffices to compute the coefficient of xp−1 in (x− 1)mp(x2 + λ)mp . Now notice that

(x− 1)mp(x2 + λ)mp =

mp∑
a=0

(
mp

a

)
(−1)mp−axa ·

mp∑
b=0

(
mp

b

)
x2mp−2bλb

=

3mp∑
n=0

 ∑
a+2mp−2b=n

(−1)mp−a
(
mp

a

)(
mp

b

)
λb

xn.
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One easily checks that the coefficient when n = p− 1 is

(−1)mp

mp∑
b=0

(
mp

b

)(
mp

2b

)
λb.

To complete the proof, notice that
(
p−1
mp

)
≡ (−1)mp (mod p), and that

(
mp

2b

)
= 0 whenever

b > m̂p. �

Proof of Theorem 1.1. By Corollary 2.2 and Lemma 2.3, we have that

(x+ 1)
p−1
2 · 3F

tr
2

(
x

x+ 1

)
p

≡ 2F
tr
1

(
1
4

3
4
1
| − x

)2

p

≡

 m̂p∑
b=0

(
mp

b

)(
mp

2b

)
xb

2

(mod p).

To complete the proof, it suffices to show that

0 6≡ HC(x)p ≡
1(

mp

m̂p

)(
mp

2m̂p

) ·
 m̂p∑

b=0

(
mp

b

)(
mp

2b

)
xb (mod p)

 .

By Lemma 2.4 and the preceding discussion, both polynomials have the same roots over Fp,
and so they agree up to a multiplicative constant. Since both polynomials are monic by
construction, they must be equal in Fp[x]. �

Remark. It follows from the proof above that HC(x) has degree m̂p.
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