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Abstract. Gauss’s hypergeometric function gives a modular parame-
terization of period integrals of elliptic curves in Legendre normal form

E(λ) : y2 = x(x− 1)(x− λ).

We study a modular function which “measures” the variation of periods
for the isomorphic curves E(λ) and E

(
λ

λ−1

)
, and we show that it p-

adically “interpolates” the cusp form for the “congruent number” curve
E(2), the case where these pairs collapse to a single curve.

1. Introduction and statement of results

For λ ∈ C\{0, 1}, the Legendre normal form elliptic curve E(λ) is given

by

(1) E(λ) : y2 = x(x− 1)(x− λ).

It is well known (for example, see [4]) that E(λ) is isomorphic to the complex

torus C/Lλ, where Lλ = Zω1(λ) + Zω2(λ), and the periods ω1(λ) and ω2(λ)

are given by the integrals

ω1(λ) =

∫ 0

−∞

dx√
x(x− 1)(x− λ)

and ω2(λ) =

∫ ∞
1

dx√
x(x− 1)(x− λ)

.

These integrals can be expressed in terms of Gauss’s hypergeometric func-

tion

(2) 2F1(x) := 2F1

(
1
2
, 1

2
1

; x

)
=
∞∑
n=0

(1
2
)n(1

2
)n

(n!)2
xn,

where (a)n = a · (a + 1) · · · (a + n − 1). More precisely, for λ ∈ C \ {0, 1}
with |λ|, |λ− 1| < 1, we have

(3) ω1(λ) = iπ 2F1(1− λ) and ω2(λ) = π 2F1(λ).

The parameter λ is a “modular invariant”. To make this precise, for z in

H, the upper half of the complex plane, we define the lattice Λz := Z + Zz,
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and let ℘ be the Weierstrass elliptic function associated to Λz. The function

λ(z) defined by

(4) λ(z) :=
℘(1

2
)− ℘( z+1

2
)

℘( z
2
)− ℘( z+1

2
)

= 16q
1
2

∞∏
n=1

(
1 + qn

1 + qn−
1
2

)8

,

where q := e2πiz, is a modular function on Γ(2) that parameterizes the

Legendre normal family above. In particular, we have that C/Λz
∼= E(λ(z)).

Furthermore, for any lattice Λ = Zω1 + Zω2 with =(ω1

ω2
) > 0, we have that

C/Λ is isomorphic (over C) to E(λ) if and only if λ is in the orbit of λ
(
ω1

ω2

)
under the action of the modular quotient SL2(Z)/Γ(2) ∼= SL2(Z/2Z). This

quotient is isomorphic to S3, and the orbit of λ is{
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

In view of this structure, it is natural to study expressions like

(5) ω2(λ)− ω2

(
λ

λ− 1

)
which measures the difference between periods of the isomorphic elliptic

curves E(λ) and E
(

λ
λ−1

)
. Taking into account that λ(z) has level 2, it is

natural to consider the modular function

(6) L(z) :=
2F1(λ(z))− 2F1

(
λ(z)
λ(z)−1

)
2F1(λ(2z))− 2F1

(
λ(2z)
λ(2z)−1

) = q−1 + 2q3 − q7 − 2q11 + . . . .

It turns out that L(z) is a Hauptmodul for the genus zero congruence group

Γ0(16). Here we study the p-adic properties of the Fourier expansion of L(z)

using the the theory of harmonic Maass forms. To make good use of this

theory, we “normalize” L(z) to obtain a weight 2 modular form whose poles

are supported at the cusp infinity for a modular curve with positive genus.

The first case where this occurs is Γ0(32), where the space of weight 2 cusp

forms is generated by the unique normalized cusp form

(7) g(z) := q

∞∏
n=1

(1− q4n)2(1− q8n)2 = q − 2q5 − 3q9 + 6q13 + . . . .

Our normalization is

(8) F(z) =
∞∑

n=−1

C(n)qn := −g(z)L(2z) = −q−1+2q3+q7−2q11+5q15+. . . .

Remark. It turns out that F(z) satisfies the following identities:

F(z) =
1

2πi
· d
dz
L(z)− 4

g(z)

L(2z)
= L(z) 2F1

(
λ(4z)

λ(4z)− 1

)
· 2F1(λ(8z)).
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The cusp form g(z) plays a special role in the context of Legendre normal

form elliptic curves. Under the Shimura-Taniyama correspondence, g(z) is

the cusp form which gives the Hasse-Weil L-function for E(−1), the con-

gruent number elliptic curve

(9) E(−1) : y2 = x3 − x.

By the change of variable x 7→ x − 1, we have that E(−1) is isomorphic

to E(2). Since λ = λ
λ−1

when λ = 2, we see that g(z) is the cusp form

corresponding to the “fixed point” of (5).

We show that F(z) has some surprising p-adic properties which relate the

Hauptmodul L(z) to the cusp form g(z). These properties are formulated

using Atkin’s U -operator

(10)
∑

a(n)qn | U(m) :=
∑

a(mn)qn.

Theorem 1.1. If p ≡ 3 (mod 4) is a prime for which p - C(p), then as a

p-adic limit we have

g(z) = lim
w→∞

F(z)|U(p2w+1)

C(p2w+1)
.

Remark. The p-adic limit in Theorem 1.1 means that if we write g(z) =∑∞
n=1 ag(n)qn, then for all positive integers n the difference

C(np2w+1)

C(p2w+1)
− ag(n)

becomes uniformly divisible by arbitrarily large powers of p as w → +∞.

Remark. A short calculation in MAPLE shows that p - C(p) for every prime

p ≡ 3 (mod 4) less than 25,000. We speculate that there are no primes p ≡ 3

(mod 4) for which p | C(p).

Example. Here we illustrate the phenomenon in Theorem 1.1 for the primes

p = 3 and 7. For convenience, we let

(11) Fw(p; z) :=
F(z) | U(p2w+1)

C(p2w+1)
.

If p = 3, then we have

F0(3; z) = q + 5
2
q5 + 6q9 − 34q17 + · · · ≡ g(z) (mod 3)

F1(3; z) = q + 5
2
q5 − 519

2
q9 − 39

4
q13 − 1258q17 + · · · ≡ g(z) (mod 32)

F2(3; z) = q − 665
346
q5 + 26923476

173
q9 + · · · ≡ g(z) (mod 33)

F3(3; z) = q − 150604045
4487246

q5 − 340313285484369963465663
8974492

q9 + · · · ≡ g(z) (mod 34).
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If p = 7, then we have

F0(7; z) = q + 40q5 + 18q9 + 104q13 + 51q17 + · · · ≡ g(z) (mod 7)

F1(7; z) = q + 19167440
43

q5 − 93915
43

q9 + 215354309456
43

q13 + · · · ≡ g(z) (mod 72).

Theorem 1.1 arises naturally in the theory of harmonic Maass forms. The

proof depends on establishing a certain relationship between F and g. This

is achieved by viewing them as certain derivatives of the holomorphic and

non-holomorphic parts of a harmonic weak Maass form that we explicitly

construct as a Poincaré series. We then use recent work of Guerzhoy, Kent,

and the second author [3] that explains how to relate such derivatives of a

harmonic Maass form p-adically. (Cf. Section 2).

2. Proof of Theorem 1.1

Here we prove Theorem 1.1 after recalling crucial facts about harmonic

Maass forms.

2.1. Harmonic Maass forms and a certain Poincaré series. We begin

by recalling some basic facts about harmonic Maass forms (for example, see

Sections 7 and 8 of [7]). Suppose that k ≥ 2 is an even integer. The weight

k hyperbolic Laplacian is defined by

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

A harmonic weak Maass form of weight k on Γ0(N) is a smooth function

f : H→ C satisfying

(1) f is invariant under the usual |kγ slash operator for every γ ∈ Γ0(N).

(2) ∆kf = 0.

(3) There exists a polynomial

Pf =

nf∑
n=0

c+
f (−n)q−n ∈ C[q−1]

such that f(z) − Pf (z) = O(e−εy) as y → ∞ for some ε > 0. We

require similar growth conditions at all other cusps of Γ0(N)

The polynomial Pf , for a given cusp, is called the principal part of f at that

cusp. The vector space of all forms satisfying these conditions is denoted

by Hk(N). Note that if M !
k(N) denotes the space of weakly holomorphic

modular forms on Γ0(N) then M !
k(N) ⊂ Hk(N).

Any form f ∈ H2−k(N) has a natural decomposition as f = f+ + f−,

where f+ is holomorphic on H and f− is a smooth non-holomorphic function
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on H. Let D be the differential operator 1
2πi

d
dz

and let ξr := 2iyr ∂
∂z

. Then

we have that

(12) Dk−1(f) = Dk−1(f+) ∈M !
k(N) and ξ2−k(f) = ξ2−k(f

−) ∈ Sk(N),

where Sk(N) is the space of weight k cusp forms on Γ0(N). In particular,

there is a cusp form gf of weight k attached to any Maass form f of weight

2−k. Since ξ2−k(M
!
2−k(N)) = 0, it follows that many harmonic Maass forms

correspond to gf . In [2], Bruinier, Rhoades, and the second author narrow

down the correspondence by specifying certain additional restrictions on f .

Specifically, they define a harmonic weak Maass form f ∈ H2−k(N) to be

good for a normalized newform g ∈ Sk(N), whose coefficients lie in a number

field Fg, if the following conditions are satisfied:

(1) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(2) The principal parts of f at other cusps (if any) are constant.

(3) ξ2−k(f) = g
‖g‖2 , where ‖ · ‖ is the Petersson norm.

It is also shown in that paper that every newform has a corresponding good

Maass form.

Theorem 1.1 depends on the interplay between the newform g(z) in (7)

and a certain harmonic Maass form which is intimately related to the Haupt-

modul L(z). These forms are constructed using Poincaré series.

We first recall the definition of (holomorphic) Poincaré series. Let Γ0(N)∞

denote the stabilizer of ∞ in Γ0(N) and set e(z) := e2πiz. For integers m,

k > 2 and positive N , the classical holomorphic Poincaré series is defined

by

P (m, k,N ; z) :=
∑

γ∈Γ0(N)∞\Γ0(N)

e(tz)|kγ = qm +
∞∑
n=1

a(m, k,N ;n)qn.

We extend the definition to the case k = 2 using “Hecke’s trick”. For a pos-

itive integer m, we have that P (m, k,N ; z) ∈ Sk(N) and P (−m, k,N ; z) ∈
M !

k(N). The Poincaré series P (−m, k,N ; z) is holomorphic at all cusps ex-

cept ∞ where the principal part is q−m.

The coefficients of these functions are infinite sums of Kloosterman sums

multiplied with the In and Jn Bessel functions. The modulus c Kloosterman

sum Kc(a, b) is

Kc(a, b) :=
∑

v∈(Z/cZ)×

e

(
av + bv−1

c

)
.
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It is well known (for example, see [5] or Proposition 6.1 of [2]) that for

positive integers m we have

a(m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∞∑
c=1

KNc(m,n)

Nc
· Jk−1

(
4π
√
mn

Nc

)
,

and

a(−m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∞∑
c=1

KNc(−m,n)

Nc
· Ik−1

(
4π
√
mn

Nc

)
.

Furthermore, for positivem, the Petersson norm of the cusp form P (m, k,N ; z)

is given by

(13) ‖P (m, k,N ; z)‖2 =
(k − 2)!

(4πm)k−1
(1 + a(m, k,N ;m)).

These Poincaré series are related to the Maass-Poincaré series which we

now briefly recall. Let Mν,µ(z) be the usual Whittaker function given by

Mν,µ(z) = e−
z
2 zµ+ 1

2 1F1(µ− ν +
1

2
; 1 + 2µ; z),

where 1F1(a, b; z) =
∑∞

n=0
(a)n

(b)n

zn

n!
. For y > 0 set

M∗
−m,k(x+ iy) := e(−mx)(4πmy)−

k
2M− k

2
, 1−k

2
(4πmy).

Then, for k > 2 the Poincaré series

Q(−m, k,N ; z) :=
∑

γ∈Γ0(N)∞\Γ0(N)

M∗
−m,k(z)|kγ

is in H2−k(N) (for example, see [2]). This series converges normally for for

k > 2, and we can extend its definition to the case k = 2 using analytic

continuation to get a form in H0(N). These different Poincaré series are

connected via the differential operators D and ξ2−k as follows (see §6.2 of

[2]):

(14) Dk−1(Q(−m, k,N ; z)) = −mk−1P (−m, k,N ; z),

and

(15) ξ2−k(Q(−m, k,N ; z)) =
(4πm)k−1

(k − 2)!
· P (m, k,N ; z).

The following lemma relates F and g using these Poincaré series.

Lemma 2.1. The following are true:

(1) We have that

g(z) =
P (1, 2, 32; z)

(1 + a(1, 2, 32; 1))
and F(z) = −P (−1, 2, 32; z).

(2) We have that Q(−1, 2, 32; z) is good for g.

(3) We have that D(Q(−1, 2, 32; z)) = F(z).
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Proof. Since g and P (1, 2, 32; z) are both nonzero cusp forms in the one

dimensional space S2(32), the first equality follows easily. For the second

equality, note that F and −P (−1, 2, 32; z) have the same principal part at

∞ and no constant term, hence their difference must be in S2(32), hence a

multiple of g. Further, since K32c(−1, 1) = 0 for all c ≥ 1, we see that the

coefficient of q in both F and −P (−1, 2, 32; z) is zero, and it follows that

they must be equal. The proof of the “goodness” of Q follows at from the

properties of Q listed above and from (13) and (15). Claim (3) now follows

from (14). �

2.2. Proof of Theorem 1.1. Theorem 1.1 is a consequence of the following

theorem which was recently proved by Guerzhoy, Kent, and the second

author.

Theorem 2.2. [Theorem 1.2 (2) of [3]] Let g ∈ Sk(N) be a normalized CM

newform. Suppose that f ∈ H2−k(N) is good for g and set

F := Dk−1f =
∑

n�−∞

c(n)qn.

If p is an inert prime in the CM field of g such that pk−1 - c(p), and if

(16) lim
w→∞

p−w(k−1)F |U(p2w+1) 6= 0.

Then as a p-adic limit we have

g = lim
w→∞

F |U(p2w+1)

c(p2w+1)
.

We require a lemma regarding the existence of certain modular functions

with integral coefficients that are holomorphic away from the cusp infinity.

Lemma 2.3. Let Z((q)) denote the ring of Laurent series in q over Z.

(1) For each positive integer n 6≡ 1 (mod 4) there exists a modular func-

tion

φn = q−n +O(q) ∈M !
0(32) ∩ Z((q))

such that φn is holomorphic at all cusps except infinity.

(2) For each n ≥ 5 with n ≡ 1 (mod 4) there exists a modular function

φn = q−n + a−1q
−1 +O(q) ∈M !

0(32) ∩ Z((q))

such that φn is holomorphic at all cusps except infinity.

In both cases, the coefficients of φn(z) vanish for all indices not congruent

to −n (mod 4).
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Proof. This follows by induction. Specifically, let L(z) be as in 6 and set

φ2(z) := L(2z) = q−2 + 2q6 − q14 + . . .

φ3(z) := L(z)L(2z) = q−3 + 2q + q5 + 2q9 + . . . .

Both φ2 and φ3 are modular functions of level 32 with integer coefficients.

It is clear one can inductively construct polynomials

Ψn(x, y) =
∑

tn(i, j)xiyj ∈ Z[x, y]

such that Ψn(φ2(z), φ3(z)) satisfies the conditions on the principal parts in

Lemma 2.3. For example

φ7(z) = φ3(7)φ2(z)2 − 2φ3(7) = q−7 + q + 8q5 + 2q9 + . . . .

Furthermore, if n is even (resp. n ≡ 3 (mod 4), resp. n ≡ 1 (mod 4))

then one sees that Ψn(x, y) = Ψn(x, 1) (i.e it is purely a polynomial in x)

(resp. Ψn(x, y) equals y multiplied by a polynomial in x2, resp. Ψn(x, y)

equals xy multiplied by a polynomial in x2). This remark establishes the

last assertion. �

This sequence of modular functions turns out to be closely related to F

as follows.

Corollary 2.4. If n ≥ 2 and φn(z) =
∑∞

l=−nAn(l)ql, then C(n) = −An(1).

Proof. Since C(n) = 0 whenever n 6≡ 3 (mod 4), then by part (3) of the

above lemma, the corollary follows trivially for such n. For n ≡ 3 (mod 4),

the meromorphic differential F(z)φn(z)dz is holomorphic everywhere except

at the cusp infinity. Recall that the sum of residues of a meromorphic differ-

ential is zero. Furthermore, the residue at ∞ of the differential h(z)dz (for

any weight 2 form h) is a multiple of the constant term in its q-expansion.

Since F(z) = DQ(−1, 2, 32; z) we see that F has no constant term at any

cusp, and hence Fφn vanishes at all cusps except ∞. It follows that the

residue at the cusp ∞ must be zero, and the result follows since the con-

stant term of the q-expansion of F(z)φn(z) is C(n) + An(1). �

Proof of Theorem 1.1. By Theorem 2.2, Lemma 2.1, and the fact that those

primes inert in Q(i), the CM field for g, are the primes p ≡ 3 (mod 4), it

suffices to prove equation (16) under the assumption that p - C(p).

Recall that the weight k m-th Hecke operator T (m) (see [6, 7]) acts on

M !
k(N) by

(17) f |T (m)(z) = f |U(p)(z) + pk−1f(pz).



GAUSS’S 2F1 AND THE CONGRUENT NUMBER ELLIPTIC CURVE 9

It is obvious from the definition that integrality of the coefficients is pre-

served for forms of positive weight. In particular, for

F = −q−1 + 2q3 + q7 − 2q11 + . . . ,

we get

F |2 T (p) = −pq−p + C(p)q +O(q2),

and F |2 T (p) is holomorphic at all cusps except ∞. For p ≡ 3 (mod 4)

Lemma 2.3 and Corollary 2.4 give that

(18) F |2 T (p)(z) = φ′p(z) =
∞∑

n=−p

aφ′p(n)qn =
∞∑

n=−p

nAp(n)qn.

From (17) we get

F|U(p) = φ′p(z)− pF(pz).

Acting by U(p2) gives

F|U(p3) = φ′p|U(p2)− pF(z)|U(p),

and it follows by induction that

(19) p−wF|U(p2w+1) =
w∑
l=1

p−lφ′p|U(p2l)− F|U(p).

If

lim
w→∞

p−wF|U(p2w+1) = 0,

then

F|U(p) =
∞∑
l=1

p−lφ′p|U(p2l).

(The convergence here is p-adic). Focusing on the coefficient of q gives

C(p) =
∞∑
l=1

p−laφ′p(p2l) =
∞∑
l=1

p−lp2l(Ap(p
2l)).

Hence

C(p) = p
∞∑
l=1

pl−1(Ap(p
2l)),

which contradicts the hypothesis that p - C(p). Thus hypothesis (16) is

satisfied thereby proving the theorem. �
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