PARITY OF THE PARTITION FUNCTION

KEN ONO

Abstract

Although much is known about the partition function, little is known about its parity. For the polynomials $\mathfrak{D}(x):=\left(D x^{2}+1\right) / 24$, where $D \equiv 23(\bmod 24)$, we show that there are infinitely many m (resp. n) for which $p(\mathfrak{D}(m)$) is even (resp. $p(\mathfrak{D}(n))$ is odd) if there is at least one such m (resp. n). We bound the first m and n (if any) in terms of the class number $h(-D)$. For prime D we show that there are indeed infinitely many even values. To this end we construct new modular generating functions using generalized Borcherds products, and we employ Galois representations and locally nilpotent Hecke algebras.

1. Introduction and statement of results

A partition of a non-negative integer n is a non-increasing sequence of positive integers that sum to n. Ramanujan investigated $[43,44] p(n)$, the number of partitions of n, and he discovered congruences in certain very special arithmetic progressions such as:

$$
\begin{align*}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \tag{1.1}\\
p(11 n+6) & \equiv 0 \quad(\bmod 11) .
\end{align*}
$$

Ramanujan's congruences have inspired many works (for example, see $[2,3,4,5,6,7,8,9$, $15,19,20,24,26,28,31,32,39,51]$ to name a few). Atkin [6] and Watson [51] notably proved Ramanujan's conjectures concerning congruences mod powers of 5,7 and 11, while Andrews and Garvan unearthed [5] Dyson's [19] elusive crank, thereby providing a procedure for dividing the partitions into 5, 7, and 11 groups of equal size in (1.1).

In the 1960s, Atkin [7] surprisingly discovered further congruences. His work revealed some multiplicative properties which imply monstrous congruences such as:

$$
p(1977147619 n+815655) \equiv 0 \quad(\bmod 19)
$$

Ten years ago the author revisited Atkin's examples in the context of the Deligne-Serre theory of ℓ-adic Galois representations and Shimura's theory of half-integral weight modular forms [39]. Armed with these powerful tools, the author established, for primes $m \geq 5$, that there always are such congruences mod m. Subsequently, Ahlgren and the author [2, 3] extended this to include all moduli m coprime to 6 . Mahlburg [29] has recently explained the role of Dyson's crank within this framework.

Surprisingly, there do not seem to be any such congruences modulo 2 or 3 . In fact, the parity of $p(n)$ seems to be quite random, and it is widely believed that the partition function is "equally often" even and odd. More precisely, Parkin and Shanks [42] conjectured that

$$
\#\{n \leq X: p(n) \text { is even }\} \sim \frac{1}{2} X
$$

Although there have been many works (for example, see $[1,10,11,14,21,22,23,27,30,33$, $34,35,36,37,38,42,49]$, to name a few) on the parity of $p(n)$, we are very far from proving this conjecture. Indeed, the best published estimates do not even preclude the possibility that

$$
\lim _{X \rightarrow+\infty} \frac{\#\{n \leq X: p(n) \text { is even (resp. odd) }\}}{X^{\frac{1}{2}+\epsilon}}=0 .
$$

It is simple to identify one serious obstacle when it comes to parity. Virtually every result on congruences has relied on the reductions mod powers of m of the generating functions

$$
\begin{equation*}
F(m, k ; q):=\sum_{\substack{D \geq 0 \\ m^{k} D \equiv-1(\bmod 24)}} p\left(\frac{D m^{k}+1}{24}\right) q^{D} . \tag{1.2}
\end{equation*}
$$

Indeed, Ramanujan initiated this line of reasoning with his identities:

$$
\begin{aligned}
& F(5,1 ; q):=\sum_{n=0}^{\infty} p(5 n+4) q^{24 n+19}=5 q^{19} \prod_{n=1}^{\infty} \frac{\left(1-q^{120 n}\right)^{5}}{\left(1-q^{24 n}\right)^{6}} \\
& F(7,1 ; q):=\sum_{n=0}^{\infty} p(7 n+5) q^{24 n+17}=7 q^{17} \prod_{n=1}^{\infty} \frac{\left(1-q^{168 n}\right)^{3}}{\left(1-q^{24 n}\right)^{4}}+49 q^{41} \prod_{n=1}^{\infty} \frac{\left(1-q^{168 n}\right)^{7}}{\left(1-q^{24 n}\right)^{8}}
\end{aligned}
$$

which immediately imply the congruences mod 5 and 7 in (1.1). For primes $m \geq 5$, the $F(m, k ; q)$ are congruent modulo powers of m to half-integral weight cusp forms [2, 3, 39]. Unfortunately, $F(2, k ; q)$ is identically zero, and this fact has sabotaged attempts to include parity in the general framework.

We construct new generating functions using the generalized Borcherds products of the author and Bruinier [16]. If $1<D \equiv 23(\bmod 24)$ is square-free and $q:=e^{2 \pi i z}$, then we let

$$
\begin{equation*}
\widehat{F}(D ; z):=\sum_{\substack{m \geq 1 \\ \operatorname{gcd}(m, 6)=1}} p\left(\frac{D m^{2}+1}{24}\right) \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} q^{m n} \tag{1.3}
\end{equation*}
$$

Three remarks.
(i) The generating functions $F(m, k ; q)$ and $\widehat{F}(D ; z)$ are quite different. The series $F(m, k ; q)$ are power series over D, while the $\widehat{F}(D ; z)$ are power series in m and n. The roles of D and m are switched, and a new parameter n occurs in $\widehat{F}(D ; z)$.
(ii) Each partition number $p(n)$, apart from $p(0)=1$, appears in a single $\widehat{F}(D ; z)$ since $24 n-1=D m^{2}$ uniquely determines the square-free $1<D \equiv 23 \bmod 24$.
(iii) If we let $U(r)$ be Atkin's U-operator

$$
\left(\sum a(n) q^{n}\right) \mid U(r):=\sum a(r n) q^{n}
$$

then for $r=2$ and 3 we have

$$
\widehat{F}(D ; z)|U(2)=\widehat{F}(D ; z)| U(3)=\widehat{F}(D ; z)
$$

Throughout we assume that $D \equiv 23(\bmod 24)$ is a positive square-free integer. To accompany the modular generating functions $F(m, k ; q)$, we prove the following for $\widehat{F}(D ; z)$.

Theorem 1.1. We have that $\widehat{F}(D ; z)$ is congruent mod 2 to a weight 2 meromorphic modular form on $\Gamma_{0}(6)$ with integer coefficients whose poles are simple and are supported on discriminant - D Heegner points.

Using these modular forms, we obtain the following theorem on the parity of $p(n)$.
Theorem 1.2. If $h(-D)$ is the class number of $\mathbb{Q}(\sqrt{-D})$, then the following are true:
(1) There are infinitely many m coprime to 6 for which $p\left(\frac{D m^{2}+1}{24}\right)$ is even if there is at least one such m. Furthermore, the first one (if any) is bounded by

$$
(12 h(-D)+2) \prod_{p \mid D \text { prime }}(p+1)
$$

(2) There are infinitely many n coprime to 6 for which $p\left(\frac{D n^{2}+1}{24}\right)$ is odd if there is at least one such n. Furthermore, the first one (if any) is bounded by $12 h(-D)+2$.

We have been unable to preclude the possibility that $p\left(\frac{D m^{2}+1}{24}\right)$ is even (resp. odd) for every m coprime to 6 . Although these possibilities seem to be consistent with the theory of modular forms, we make the following conjecture.

Conjecture. There are infinitely many m (resp. n) coprime to 6 for which $p\left(\frac{D m^{2}+1}{24}\right)$ is even (resp. $p\left(\frac{D n^{2}+1}{24}\right)$ is odd).
Remark. We have confirmed this conjecture for all $D<25000$.
In the direction of this conjecture, we offer the following results.
Theorem 1.3. Suppose that D_{0} is a square-free integer which is coprime to 6 , and suppose that $\ell \nmid D_{0}$ is a prime which satisfies:
(1) We have that $D_{0} \ell \equiv 23(\bmod 24)$.
(2) We have that

$$
\frac{\ell}{12 h\left(-D_{0} \ell\right)+2}>\prod_{p \mid D_{0} \text { prime }}(p+1)
$$

Then there are infinitely many integers m coprime to 6 for which $p\left(\frac{D_{0} \ell m^{2}+1}{24}\right)$ is even.
For a fixed D_{0} in Theorem 1.3, the bound

$$
h\left(-D_{0} \ell\right) \ll\left(D_{0} \ell\right)^{\frac{1}{2}} \log \left(D_{0} \ell\right)
$$

implies that the conclusion of Theorem 1.3 holds for all but finitely many primes ℓ for which $D_{0} \ell \equiv 23(\bmod 24)$. For $D_{0}=1$ we have the following corollary.

Corollary 1.4. If $\ell \equiv 23(\bmod 24)$ is prime, then there are infinitely many m coprime to 6 for which $p\left(\frac{\ell m^{2}+1}{24}\right)$ is even. Moreover, the first such m is bounded by $12 h(-\ell)+2$.

Remark. The proof of Corollary 1.4 implies that there is an

$$
m \leq 12(h(-\ell)+2) \ll \ell^{\frac{1}{2}} \log (\ell)
$$

for which $p\left(\frac{\ell m^{2}+1}{24}\right)$ is even. This then implies the following estimate:

$$
\#\{N \leq X: p(N) \text { is even }\} \gg X^{\frac{1}{2}} / \log (X)
$$

This paper is organized as follows. In $\S 2$ we consider the combinatorial properties of the generating function for $p(n)$, Ramanujan's mock theta functions, and a certain vector-valued harmonic Maass form. We then give generalized Borcherds products which arise from this harmonic Maass form, and we prove Theorem 1.1. In $\S 3$ we combine the local nilpotency of certain Hecke algebras with the Chebotarev Density Theorem, the properties of 2-adic Galois representations, and some combinatorial arguments to prove Theorem 1.2. We then conclude with the proof of Theorem 1.3 and Corollary 1.4 using bounds for class numbers.

Acknowledgements

The author thanks Claudia Alfes, Kathrin Bringmann, Jan Bruinier, Amanda Folsom, Evangelos Georgiadis, Pavel Guerzhoy, Karl Mahlburg, Sander Zwegers, and the referees for many helpful comments. The author thanks Sebastian Pöschke for sharing numerics from his forthcoming Master's Thesis.

2. Generalized Borcherds products and the New generating functions

Here we relate the generating functions $\widehat{F}(D ; z)$ to meromorphic modular forms produced from generalized Borcherds products, and we prove Theorem 1.1.
2.1. Combinatorial considerations. Euler is credited for observing that

$$
P(q):=\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=\frac{q^{1 / 24}}{\eta(z)}
$$

where $\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ is Dedekind's weight $1 / 2$ modular form. The generating functions $F(m, k ; q)$ arise naturally from this modularity.

A less well known identity for $P(q)$ leads to $\widehat{F}(D ; z)$. Although it is well known to specialists, we recall it to highlight the special combinatorial properties of certain harmonic Maass forms. As usual, represent a partition $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$ by a Ferrers diagram, a left justified array of dots consisting of k rows in which there are λ_{i} dots in the i th row. The Durfee square is the largest square of nodes in the upper left hand corner of the diagram. Its boundary divides a partition into a square and two partitions whose parts do not exceed the side length of the
square. For example, consider the partition $5+5+3+3+2+1$:

This partition decomposes as a square of size 9 , and the two partitions $2+2$, and $3+2+1$.
We have the following alternate identity for $P(q)$, which in turn provides a crucial congruence between $P(q)$ and Ramanujan's third order mock theta function

$$
\begin{equation*}
f(q):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}} \tag{2.1}
\end{equation*}
$$

Lemma 2.1. The following combinatorial identity is true:

$$
P(q):=\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=1+\sum_{m=1}^{\infty} \frac{q^{m^{2}}}{(1-q)^{2}\left(1-q^{2}\right)^{2} \cdots\left(1-q^{m}\right)^{2}} .
$$

In particular, we have that $P(q) \equiv f(q)(\bmod 2)$.
Proof. For every positive integer m, the q-series

$$
\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}=\sum_{n=0}^{\infty} a_{m}(n) q^{n}
$$

is the generating function for $a_{m}(n)$, the number of partitions of n whose summands do not exceed m. Therefore by the discussion above, the q-series

$$
\frac{q^{m^{2}}}{(1-q)^{2}\left(1-q^{2}\right)^{2} \cdots\left(1-q^{m}\right)^{2}}=\sum_{n=0}^{\infty} b_{m}(n) q^{n}
$$

is the generating function for $b_{m}(n)$, the number of partitions of n with a Durfee square of size m^{2}. The identity follows by summing in m, and the claimed congruence follows trivially.

Remark. It is also easy to see that $f(q) \equiv P(q)(\bmod 4)$.
2.2. A generalized Borcherds product. In their work on derivatives of modular L-functions, the author and Bruinier [16] produced generalized Borcherds Products arising from weight $1 / 2$ harmonic Maass forms. These products give generalizations of some of the automorphic infinite products obtained by Borcherds [12, 13]. The general result (see Theorems 6.1 and 6.2 of [16]) gives modular forms with twisted Heegner divisor whose infinite product expansions arise from harmonic Maass forms.

Ramanujan's mock theta functions, which are special examples of harmonic Maass forms of weight $1 / 2$ (for example, see $[40,52,53,54]$), can be used to construct such products. We recall one example which involves the third order mock theta functions $f(q)$ (see (2.1)) and

$$
\begin{equation*}
\omega(q):=\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}}{\left(q ; q^{2}\right)_{n+1}^{2}}=\frac{1}{(1-q)^{2}}+\frac{q^{4}}{(1-q)^{2}\left(1-q^{3}\right)^{2}}+\frac{q^{12}}{(1-q)^{2}\left(1-q^{3}\right)^{2}\left(1-q^{5}\right)^{2}}+\cdots \tag{2.2}
\end{equation*}
$$

It is important to note that $f(q)$ and $\omega(q)$ have integer coefficients.
For $0 \leq j \leq 11$ we define the functions

$$
H_{j}(z)=\sum_{n \geq n_{j}} C(j ; n) q^{n}
$$

by

$$
H_{j}(z):= \begin{cases}0 & \text { if } j=0,3,6,9, \tag{2.3}\\ q^{-1} f\left(q^{24}\right) & \text { if } j=1,7, \\ -q^{-1} f\left(q^{24}\right) & \text { if } j=5,11, \\ 2 q^{8}\left(-\omega\left(q^{12}\right)+\omega\left(-q^{12}\right)\right) & \text { if } j=2, \\ -2 q^{8}\left(\omega\left(q^{12}\right)+\omega\left(-q^{12}\right)\right) & \text { if } j=4, \\ 2 q^{8}\left(\omega\left(q^{12}\right)+\omega\left(-q^{12}\right)\right) & \text { if } j=8, \\ 2 q^{8}\left(\omega\left(q^{12}\right)-\omega\left(-q^{12}\right)\right) & \text { if } j=10 .\end{cases}
$$

For each D (recall that $1<D \equiv 23(\bmod 24)$ is square-free), we have the function

$$
\begin{equation*}
P_{D}(X):=\prod_{b \bmod D}(1-e(-b / D) X)^{\left(\frac{-D}{b}\right)} \tag{2.4}
\end{equation*}
$$

where $e(\alpha):=e^{2 \pi i \alpha}$ and $\left(\frac{-D}{b}\right)$ is the Kronecker character for the negative fundamental discriminant $-D$. We define the generalized Borcherds product $\Psi_{D}(z)$ by

$$
\begin{equation*}
\Psi_{D}(z):=\prod_{m=1}^{\infty} P_{D}\left(q^{m}\right)^{C\left(\bar{m} ; D m^{2}\right)} \tag{2.5}
\end{equation*}
$$

Here \bar{n} denotes the canonical residue class of n modulo 12 .
Theorem 2.2. [$\S 8.2$ of [16]] The function $\Psi_{D}(z)$ is a weight 0 meromorphic modular form on $\Gamma_{0}(6)$ with a discriminant $-D$ twisted Heegner divisor (see $\S 5$ of [16] for the explicit divisor).
2.3. Proof of Theorem 1.1. If we let $\Theta:=q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d z}$, then it is well known that $\Theta\left(\Psi_{D}(z)\right)$ is a weight 2 meromorphic modular form on $\Gamma_{0}(6)$. It follows that the logarithmic derivative $\frac{\Theta\left(\Psi_{D}(z)\right)}{\Psi_{D}(z)}$ is a meromorphic modular form on $\Gamma_{0}(6)$ whose poles are simple and are supported at the $\Gamma_{0}(6)$-Heegner points of discriminant $-D$.

A simple calculation using (2.4) shows that

$$
\frac{\Theta\left(P_{D}\left(q^{m}\right)\right)}{P_{D}\left(q^{m}\right)}=\sqrt{-D} m \sum_{n=1}^{\infty}\left(\frac{-D}{n}\right) q^{m n}
$$

Therefore, (2.5) implies that

$$
\begin{equation*}
\mathfrak{F}(D ; z):=\frac{1}{\sqrt{-D}} \cdot \frac{\Theta\left(\Psi_{D}(z)\right)}{\Psi_{D}(z)}=\sum_{m=1}^{\infty} m C\left(\bar{m} ; D m^{2}\right) \sum_{n=1}^{\infty}\left(\frac{-D}{n}\right) q^{m n} \tag{2.6}
\end{equation*}
$$

is a weight 2 meromorphic modular form on $\Gamma_{0}(6)$ with integer coefficients whose poles are simple and are supported at some $\Gamma_{0}(6)$-Heegner points of discriminant $-D$.

By (2.3), we find that

$$
H_{j}(z)=\sum_{n \geq n_{j}} C(j ; n) q^{n} \equiv \begin{cases}q^{-1} f\left(q^{24}\right)(\bmod 2) & \text { if } j=1,5,7,11 \\ 0 \quad(\bmod 2) & \text { otherwise }\end{cases}
$$

Using Lemma 2.1, the fact that $\left(\frac{-D}{n}\right)=0$ if $\operatorname{gcd}(n, D) \neq 1$, and (2.6), we find that

$$
\mathfrak{F}(D ; z) \equiv \sum_{\substack{m \geq 1 \\ \operatorname{gcd}(m, 6)=1}} p\left(\frac{D m^{2}+1}{24}\right) \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} q^{m n} \quad(\bmod 2) .
$$

This is $\widehat{F}(D ; z)(\bmod 2)$, and this completes the proof.

3. Modular forms mod 2 and the proof of Theorem 1.2

We give facts about locally nilpotent Hecke algebras, and we give results on the distribution of the odd coefficients of modular forms. We conclude with proofs of Theorems 1.2 and 1.3.
3.1. Local nilpotency of the Hecke algebra on modular forms mod 2. Serre suggested, and Tate proved (see page 115 of [45], page 251 of [46], and [50]) that the action of Hecke algebras on level 1 modular forms mod 2 is locally nilpotent. This means that if $f(z)$ is an integer weight holomorphic modular form on $\mathrm{SL}_{2}(\mathbb{Z})$ with integer coefficients, then there is a positive integer i with the property that

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{i}} \equiv 0 \quad(\bmod 2)
$$

for every collection of odd primes $p_{1}, p_{2}, \ldots, p_{i}$.
Recently, the author and Taguchi [41] listed further levels where this nilpotency holds. They used the fact that the phenomenon coincides with the non-existence of non-trivial mod 2 Galois representations which are unramified outside 2 and the primes dividing the level.

We make this precise here. For a subring \mathcal{O} of \mathbb{C}, we let $S_{k}(\Gamma ; \mathcal{O})$ be the \mathcal{O}-module of cusp forms of integer weight k with respect to Γ whose coefficients lie in \mathcal{O}. If $\Gamma=\Gamma_{0}(N)$ and $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$is a Dirichlet character, we denote by $S_{k}\left(\Gamma_{0}(N), \chi ; \mathcal{O}\right)$ the \mathcal{O}-module of cusp forms of weight k on $\Gamma_{0}(N)$ and Nebentypus character χ whose Fourier coefficients lie in \mathcal{O}. We suppress χ from the notation when it is the trivial character. Finally, if l is a prime of a number field L, then we let $\mathcal{O}_{L, l}$ be the localization of the integer ring \mathcal{O}_{L} at l.

Theorem 3.1. [Theorem 1.3 of [41]] Let a be a non-negative integer, and let N and k be positive integers. Suppose that $\chi:\left(\mathbb{Z} / 2^{a} N\right)^{\times} \rightarrow \mathbb{C}^{\times}$is a Dirichlet character with conductor $\mathfrak{f}(\chi)$, and suppose that L is a number field containing the coefficients of all the integer weight k newforms in the spaces $S_{k}\left(\Gamma_{0}(M), \chi\right)$, for every M with $M \mid 2^{a} N$ and $\mathfrak{f}(\chi) \mid M$. Let l be a
prime of L lying above 2 . If $N=1,3,5,15$ or 17 , then there is an integer $c \geq 0$ such that for every $f(z) \in S_{k}\left(\Gamma\left(2^{a} N\right), \chi ; \mathcal{O}_{L, l}\right)$ and every $t \geq 1$ we have

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{c+t}} \equiv 0 \quad\left(\bmod l^{t}\right)
$$

whenever $p_{1}, p_{2}, \ldots, p_{c+t}$ are odd primes not dividing N.
Remark. Theorem 3.1 is the first case of Theorem 1.3 of [41].
Remark. Theorem 3.1 applies to forms whose coefficients are in a subfield K of L. One replaces l by the prime l_{0} of K lying below l. If e is the ramification index of l / l_{0}, then

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{c+e t}} \equiv 0 \quad\left(\bmod l_{0}^{t}\right)
$$

Suppose that $f(z)$ is an integer weight modular form on $\Gamma_{0}(N)$ with integer coefficients. If $f(z) \not \equiv 0(\bmod 2)$, then we say that $f(z)$ has degree of nilpotency i if there are primes $p_{1}, p_{2}, \ldots, p_{i-1}$ not dividing $2 N$ for which

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{i-1}} \not \equiv 0 \quad(\bmod 2)
$$

and if for every set of primes $\ell_{1}, \ell_{2}, \ldots, \ell_{i}$ not dividing $2 N$ we have

$$
f(z)\left|T_{\ell_{1}}\right| T_{\ell_{2}}|\cdots| T_{\ell_{i}} \equiv 0 \quad(\bmod 2)
$$

Lemma 3.2. Suppose that $f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \in S_{k}\left(\Gamma_{0}(N) ; \mathbb{Z}\right)$ has degree of nilpotency $i>0$. Then the following are true:
(1) There are primes $p_{1}, p_{2}, \ldots, p_{i-1}$ not dividing $2 N$, and an integer n_{0} such that

$$
a\left(n_{0} M^{2} p_{1} p_{2} \cdots p_{i-1}\right) \equiv 1 \quad(\bmod 2)
$$

for every integer $M \geq 1$ that is coprime to $2 p_{1} p_{2} \cdots p_{i-1} N$.
(2) If $\ell_{1}, \ell_{2}, \ldots, \ell_{i}$ are primes not dividing $2 N$, then

$$
a\left(n \ell_{1} \ell_{2} \cdots \ell_{i}\right) \equiv 0 \quad(\bmod 2)
$$

for every n coprime to $\ell_{1}, \ell_{2}, \ldots, \ell_{i}$.
Proof. For brevity we prove (1). The proof of (2) is similar. By definition, there are primes $p_{1}, p_{2}, \ldots, p_{i-1}$ not dividing $2 N$ for which

$$
\begin{equation*}
f_{i-1}(z)=\sum_{n=1}^{\infty} b_{i-1}(n) q^{n}:=f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{i-1}} \not \equiv 0 \quad(\bmod 2) \tag{3.1}
\end{equation*}
$$

Suppose that $b_{i-1}\left(n_{0}\right)$ is odd. Without loss of generality, we may assume that n_{0} is coprime to $p_{1} p_{2} \cdots p_{i-1}$. This follows since the coefficients of cusp forms are dictated by the 2 -adic Galois representations associated to the weight k newforms with level dividing N (for example, see the proof of Theorem 3.3). More precisely, the Chebotarev Density Theorem implies that a positive proportion of the $(i-1)$-tuples of primes give the same $f_{i-1}(z)(\bmod 2)$ when replaced in (3.1), and so one clearly may choose tuples using primes which do not divide n_{0}.

By the definition of i, if $p \nmid 2 N$ is prime, then

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{i-1}} \mid T_{p} \equiv 0 \quad(\bmod 2)
$$

By the definition of the Hecke operators, this means that

$$
f_{i-1}(z) \mid T_{p} \equiv \sum_{n=1}^{\infty}\left(b_{i-1}(p n)+b_{i-1}(n / p)\right) q^{n} \equiv 0 \quad(\bmod 2)
$$

and so it follows that $b_{i-1}\left(n_{0} M^{2}\right) \equiv 1(\bmod 2)$ for every integer $M \geq 1$ coprime to $2 N$.
Define integers $b_{j}(n)$ by

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{1}(n) q^{n}:=f(z) \mid T_{p_{1}}, \\
& \sum_{n=1}^{\infty} b_{2}(n) q^{n}:=f(z)\left|T_{p_{1}}\right| T_{p_{2}}, \\
& \\
& \vdots \\
& \sum_{n=1}^{\infty} b_{i-1}(n) q^{n}:=f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{i-1}} .
\end{aligned}
$$

For every M coprime to $2 N p_{1} p_{2} \cdots p_{i-1}$, we then have

$$
1 \equiv b_{i-1}\left(n_{0} M^{2}\right) \equiv b_{i-2}\left(n_{0} M^{2} p_{i-1}\right) \equiv \cdots \equiv b_{1}\left(n_{0} M^{2} p_{2} p_{3} \cdots p_{i-1}\right) \quad(\bmod 2)
$$

The proof follows since $b_{1}\left(n_{0} M^{2} p_{2} p_{3} \cdots p_{i-1}\right) \equiv a\left(n_{0} M^{2} p_{1} p_{2} \cdots p_{i-1}\right)(\bmod 2)$.
3.2. Distribution of the "odd" coefficients of modular forms. The following theorem describes the distribution of the odd coefficients of integer weight modular forms.

Theorem 3.3. If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \in S_{k}\left(\Gamma_{0}(N) ; \mathbb{Z}\right)$, then the following are true:
(1) A positive proportion of the primes $p \equiv-1(\bmod 2 N)$ have the property that

$$
f(z) \mid T_{p} \equiv 0 \quad(\bmod 2)
$$

(2) Suppose that n_{0} is an integer coprime to N with the property that

$$
a\left(n_{0} p_{1} p_{2} \cdots p_{i-1}\right) \equiv 1 \quad(\bmod 2)
$$

where $p_{1}, p_{2}, \ldots, p_{i-1}$ are primes which do not divide $2 n_{0} N$. If M is an integer coprime to $2 N$ and $\operatorname{gcd}(r, M)=1$, then

$$
\#\left\{m \leq X: a\left(n_{0} m\right) \equiv 1 \quad(\bmod 2) \quad \text { and } m \equiv r \quad(\bmod M)\right\} \gg \frac{X}{\log X}(\log \log X)^{i-2}
$$

Proof. Claim (1) is a well known result due to Serre [46].
We now prove (2). By the theory of newforms, every $F \in S_{k}\left(\Gamma_{0}(N)\right)$ can be uniquely expressed as a linear combination

$$
F(z)=\sum_{j=1}^{s} \alpha_{j} A_{j}(z)+\sum_{j=1}^{t} \beta_{j} B_{j}\left(\delta_{j} z\right)
$$

where $A_{j}(z)$ and $B_{j}(z)$ are newforms of weight k and level a divisor of N, and where each δ_{j} is a divisor of N with $\delta_{j}>1$. Let

$$
\begin{equation*}
F^{\mathrm{new}}(z):=\sum_{j=1}^{s} \alpha_{j} A_{j}(z) \quad \text { and } \quad F^{\mathrm{old}}(z):=\sum_{j=1}^{t} \beta_{j} B_{j}\left(\delta_{j} z\right) \tag{3.2}
\end{equation*}
$$

be, respectively, the new part of F and the old part of F.
If $F(z):=\sum_{n=1}^{\infty} c(n) q^{n}$ is a newform, then the $c(n)$'s are algebraic integers which generate a finite extension of \mathbb{Q}, say K_{F}. If K is any finite extension of \mathbb{Q} containing K_{F}, and if $\mathcal{O}_{K, l_{0}}$ is the completion of the ring of integers of K at any finite place l_{0} with residue characteristic, say ℓ, then by the work of Deligne, Serre, and Shimura [17, 18, 47] there is a (not necessarily unique) continuous representation

$$
\rho_{F, l_{0}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}_{2}\left(\mathcal{O}_{K, l_{o}}\right)
$$

for which

$$
\begin{equation*}
\rho_{F, l_{0}} \text { is unramified at all primes } p \nmid N \ell, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Trace}\left(\rho_{F, l_{0}}\left(\operatorname{Frob}_{p}\right)\right)=c(p) \text { for all primes } p \nmid N \ell \tag{3.4}
\end{equation*}
$$

Here Frob_{p} denotes any Frobenius element for the prime p.
Now we let $F(z)=f(z)$, and we let l_{0} be a place over 2 in a number field K which contains the coefficients of all the newforms with level dividing N. Write $f=f^{\text {new }}+f^{\text {old }}$. Since n_{0} is coprime to N, it follows that $f^{\text {new }}$ is not identically zero. Write

$$
f^{\mathrm{new}}=\sum_{j=1}^{h} \alpha_{j} \widehat{f}_{j}(z), \quad \alpha_{j} \neq 0
$$

where each $\widehat{f}_{j}(z):=\sum_{n=1}^{\infty} \widehat{c}_{j}(n) q^{n}$ is a newform. Let L be a finite extension of \mathbb{Q} containing K, the Fourier coefficients of each \widehat{f}_{j}, and the α_{j} 's. Let l be a place of L over l_{0}, let e be the ramification index of l over l_{0}, let $\mathcal{O}_{L, l}$ be the completion of the ring of integers of L at the place l, and let λ be a uniformizer for $\mathcal{O}_{L, l}$. Let

$$
\begin{equation*}
E=\max _{1 \leq j \leq h}\left|\operatorname{ord}_{l}\left(4 \alpha_{j}\right)\right| \tag{3.5}
\end{equation*}
$$

and let $\rho_{\widehat{f_{j}, l}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{L, l}\right)$ be a representation satisfying (3.3) and (3.4) for $\widehat{f}_{j}(z)$. Consider the representation

$$
\begin{equation*}
\rho=\bigoplus_{j=1}^{h} \rho_{\widehat{f}_{j}, l} \quad \bmod \lambda^{E+1} \tag{3.6}
\end{equation*}
$$

Since the primes $p_{1}, p_{2}, \ldots, p_{i-1}$ do not divide $2 N$, the Chebotarev Density Theorem implies, for each $1 \leq r \leq i-1$, that there are $\gg X / \log X$ primes q less than X for which $\rho\left(\operatorname{Frob}_{q}\right)=$ $\rho\left(\operatorname{Frob}_{p_{r}}\right)$. By (3.4), for such a prime, $\widehat{c}_{j}(q) \equiv \widehat{c}_{j}\left(p_{r}\right) \bmod \lambda^{E+1}$ for all j. It follows from these observations and the multiplicativity of the Fourier coefficients of newforms that there are $\gg \frac{X}{\log X}(\log \log X)^{i-2}$ integers $n_{0} q_{1} \cdots q_{i-1}<X$, such that

$$
\widehat{c_{j}}\left(n_{0} p_{1} p_{2} \cdots p_{i-1}\right) \equiv \widehat{c_{j}}\left(n_{0} q_{1} q_{2} \cdots q_{i-1}\right) \bmod \lambda^{E+1}
$$

This in turn implies that $a\left(n_{0} q_{1} q_{2} \cdots q_{i-1}\right) \equiv 1(\bmod 2)$.

To obtain the claim concerning the congruence class modulo M, one simply modifies the construction of ρ in (3.6) to account for the cyclotomic characters giving the action of Galois on w th power roots of unity for the primes w dividing M. For example, since $\operatorname{gcd}(M, 2 N)=1$, one can insist, again by the Chebotarev Density Theorem and Dirichlet's Theorem on Primes in Arithmetic Progressions, that $q_{1}, q_{2}, \cdots, q_{i-2} \equiv 1(\bmod M)$, and that $q_{i-1} \equiv r(\bmod M)$. This then completes the proof of (2).
3.3. Producing some modular forms mod 2. Here we relate $\widehat{F}(D ; z)$ to holomorphic modular forms. Let $H_{D}(x)$ be the usual discriminant $-D$ Hilbert class polynomial, let $h(-D)$ be the class number of the ideal class group $C L(-D)$, and let

$$
j(z)=q^{-1}+744+196884 q+\cdots
$$

be the usual elliptic modular j-function. Finally, let

$$
\Delta(z):=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+\cdots
$$

be the unique weight 12 normalized cusp form on $\mathrm{SL}_{2}(\mathbb{Z})$.
Lemma 3.4. There is a holomorphic modular form of weight $12 h(-D)+2$ on $\Gamma_{0}(6)$ with integer coefficients which is congruent to

$$
\widehat{F}(D ; z) H_{D}(j(z)) \Delta(z)^{h(-D)} \quad(\bmod 2)
$$

Proof. Let $\mathfrak{F}(D ; z)$ be the meromorphic modular form in the proof of Theorem 1.1. This form has integer coefficients and satisfies the congruence

$$
\mathfrak{F}(D ; z) \equiv \widehat{F}(D ; z) \quad(\bmod 2)
$$

The form $\mathfrak{F}(D ; z)$ has the additional property that its poles are simple, and are supported at some discriminant $-D$ Heegner points under the action of $\Gamma_{0}(6)$. Since $H_{D}(j(z))$ is the modular function which has a simple zero at each discriminant $-D$ Heegner point with respect to $\mathrm{SL}_{2}(\mathbb{Z})$, it follows that $\mathfrak{F}(D ; z) H_{D}(j(z)) \Delta(z)^{h(-D)}$ is a weight $12 h(-D)+2$ holomorphic modular form on $\Gamma_{0}(6)$. The factor $\Delta(z)^{h(-D)}$ is required to compensate for the poles introduced by $H_{D}(j(z))$. The proof follows from Theorem 1.1.
3.4. Proof of Theorem 1.2. First we prove (1). Let $E_{2}(z):=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ be the usual weight 2 Eisenstein series, where $\sigma_{1}(n):=\sum_{d \mid n} d$. Although $E_{2}(z)$ is not modular, it is well known that if $t \geq 2$, then $E_{2}(z)-t E_{2}(t z)$ is a weight 2 modular form on $\Gamma_{0}(t)$. Therefore, we have that

$$
\begin{equation*}
\mathcal{E}(z):=\frac{\left(E_{2}(z)-3 E_{2}(3 z)\right)-2\left(E_{2}(z)-2 E_{2}(2 z)\right)}{24}=q-q^{2}+7 q^{3}-5 q^{4}-\cdots \tag{3.7}
\end{equation*}
$$

is a holomorphic weight 2 modular form on $\Gamma_{0}(6)$. One checks that

$$
\mathcal{E}(z) \equiv \sum_{\substack{m \geq 1 \\ \operatorname{gcd}(m, 6)=1}} \sum_{n \geq 1} q^{m n} \quad(\bmod 2)
$$

A straightforward calculation then shows that

$$
\begin{equation*}
\mathcal{E}(D ; z):=\sum_{1 \leq \delta \mid D} \mathcal{E}(\delta z) \equiv \sum_{\substack{m \geq 1 \\ \operatorname{gcd}(m, 6)=1}} \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} q^{m n}(\bmod 2) \tag{3.8}
\end{equation*}
$$

Therefore if $p\left(\frac{D m^{2}+1}{24}\right)$ is odd for every m coprime to 6 , then $\mathcal{E}(D ; z) \equiv \widehat{F}(D ; z)(\bmod 2)$. Lemma 3.4, combined with the fact that $\mathcal{E}(D ; z)$ is a holomorphic modular form of weight 2 on $\Gamma_{0}(6 D)$, now implies that

$$
\mathcal{E}(D ; z) H_{D}(j(z)) \Delta(z)^{h(-D)} \equiv \widehat{F}(D ; z) H_{D}(j(z)) \Delta(z)^{h(-D)} \quad(\bmod 2)
$$

in $M_{12 h(-D)+2}\left(\Gamma_{0}(6 D)\right)$. A theorem of Sturm [48] shows that this holds if and only if the first $(12 h(-D)+2) \prod_{p}(p+1)$ coefficients are congruent mod 2 , where the product is over the primes p dividing D. This proves the bound concerning the first (if any) even value.

Suppose that there are only finitely many m coprime to 6 , say $m_{1}, m_{2}, \ldots, m_{s}$, for which $p\left(\frac{D m^{2}+1}{24}\right)$ is even. Let m_{1} be the smallest of these numbers. By (3.8), we have that

$$
\begin{equation*}
\mathcal{E}(D ; z)-\widehat{F}(D ; z) \equiv \sum_{i=1}^{s} \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} q^{m_{i} n} \quad(\bmod 2) \tag{3.9}
\end{equation*}
$$

Let $T(D ; z)$ be the level 1 cusp form

$$
\begin{equation*}
T(D ; z)=\sum_{n=5}^{\infty} t(D ; n) q^{n}:=H_{D}(j(z)) \Delta(z)^{h(-D)+5}=q^{5}+\cdots \tag{3.10}
\end{equation*}
$$

By Theorem 3.1, the Hecke algebra acts locally nilpotently on $T(D ; z)$. Since $t(D ; 5)$ is odd, it follows that its degree of nilpotency is an integer $\eta=\eta_{D} \geq 2$. Lastly, Theorem 3.3 (2) implies in every arithmetic progression $r(\bmod M)$, where $\operatorname{gcd}(r, M)=1$ and M is odd, that

$$
\begin{equation*}
\#\{p \leq X: t(D ; p) \equiv 1 \quad(\bmod 2) \quad \text { and } p \equiv r \quad(\bmod M)\} \gg X / \log X \tag{3.11}
\end{equation*}
$$

Using $\mathcal{E}(D ; z)$ and Lemma 3.4, there is a cusp form $S(D ; z)$ on $\Gamma_{0}(6 D)$ for which

$$
\begin{equation*}
S(D ; z)=\sum_{n=1}^{\infty} s(D ; n) q^{n} \equiv(\mathcal{E}(D ; z)-\widehat{F}(D ; z)) T(D ; z) \quad(\bmod 2) \tag{3.12}
\end{equation*}
$$

If N is a positive integer, then (3.9) implies that

$$
\begin{equation*}
s(D ; N) \equiv \sum_{i=1}^{s} \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} t\left(D ; N-m_{i} n\right) \quad(\bmod 2) \tag{3.13}
\end{equation*}
$$

Since $t(D ; \alpha)=0$ when $\alpha \leq 0$, these sums are finite.
By Theorem 3.3 (1), there are infinitely many primes p for which

$$
\begin{equation*}
s(D ; n) \equiv 0 \quad(\bmod 2) \tag{3.14}
\end{equation*}
$$

when $p \| n$. Let $p_{0} \nmid m_{1} m_{2} \ldots m_{s} D$ be such a prime. Now let $Y:=p_{0}^{2} D \cdot \operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{s}\right)$. Using (3.13), it follows by construction that

$$
\begin{equation*}
s(D ; N+Y)-s(D ; N) \equiv \sum_{i=1}^{s} \sum_{\substack{1 \leq n \leq \frac{Y}{m_{i}} \\ \operatorname{gcd}(n, D)=1}} t\left(D ; N+Y-m_{i} n\right) \quad(\bmod 2) . \tag{3.15}
\end{equation*}
$$

Now consider the arithmetic progression

$$
\begin{equation*}
N \equiv p_{0} \quad\left(\bmod p_{0}^{2}\right) \tag{3.16}
\end{equation*}
$$

For each (i, n) with $1 \leq i \leq s$ and $1 \leq n \leq \frac{Y}{m_{i}}$, except $\left(m_{1}, 1\right)$, we consider progressions of the form

$$
\begin{equation*}
N \equiv-\left(Y-m_{i} n\right)+\ell_{1}(i, n) \ell_{2}(i, n) \cdots \ell_{\eta}(i, n) \quad\left(\bmod \ell_{1}(i, n)^{2} \ell_{2}(i, n)^{2} \cdots \ell_{\eta}(i, n)^{2}\right) \tag{3.17}
\end{equation*}
$$

Choose distinct odd primes $\ell_{j}(i, n)$ coprime to $p_{0} m_{1} m_{2} \cdots m_{s} D$ so that the system (3.16) and (3.17) has, by the Chinese Remainder Theorem, a solution of the form $N \equiv r_{0}\left(\bmod M_{D}\right)$, where $\operatorname{gcd}\left(r_{0}+Y-m_{1}, M_{D}\right)=1$. By (3.11), there are then infinitely many primes p of the form $N_{p}+Y-m_{1}$ for which $t\left(D ; N_{p}+Y-m_{1}\right) \equiv 1(\bmod 2)$. For these p, we have:
(1) We have that $p_{0} \| N_{p}$ and $p_{0} \|\left(N_{p}+Y\right)\left(\right.$ since $\left.p_{0}^{2} \mid Y\right)$.
(2) For each pair (i, n) with $1 \leq i \leq s$ and $1 \leq n \leq \frac{Y}{m_{i}}$, except $\left(m_{1}, 1\right)$, we have

$$
N_{p}+Y-m_{i} n \equiv \ell_{1}(i, n) \ell_{2}(i, n) \cdots \ell_{\eta}(i, n) \quad\left(\bmod \ell_{1}(i, n)^{2} \ell_{2}(i, n)^{2} \cdots \ell_{\eta}(i, n)^{2}\right)
$$

By (3.14), both $s\left(D ; N_{p}+Y\right)$ and $s\left(D ; N_{p}\right)$ are even. By Lemma $3.2(2)$, the fact that $T(D ; z)$ has degree of nilpotency η implies that each summand in (3.15), except $t\left(D ; N_{p}+Y-m_{1}\right)$, is even. Since $t\left(D ; N_{p}+Y-m_{1}\right)$ is odd, (3.15) gives the contradiction $0 \equiv 1(\bmod 2)$. Consequently, there must be an infinite number of m coprime to 6 for which $p\left(\frac{D m^{2}+1}{24}\right)$ is even unless there are no such m. This completes the proof of (1).

To prove (2), first notice that $\widehat{F}(D ; z) H_{D}(j(z)) \Delta(z)^{h(-D)}$ is trivial mod 2 if and only if $\widehat{F}(D ; z) \equiv 0(\bmod 2)$. Lemma 3.4 and Sturm's theorem [48] then imply that this triviality occurs if and only if the first $12 h(-D)+2$ coefficients are even.

Suppose now that $\widehat{F}(D ; z) \not \equiv 0(\bmod 2)$, and that there are only finitely many m coprime to 6 , say $m_{1}, m_{2}, \ldots, m_{s}$, for which $p\left(\frac{D m^{2}+1}{24}\right)$ is odd. Then we have that

$$
\widehat{F}(D ; z) \equiv \sum_{i=1}^{s} \sum_{\substack{n \geq 1 \\ \operatorname{gcd}(n, D)=1}} q^{m_{i} n} \quad(\bmod 2)
$$

Since this is the series in (3.9), the proof of (2) follows mutatis mutandis by replacing $(\mathcal{E}(D ; z)-$ $\widehat{F}(D ; z)) T(D ; z)$ with $\widehat{F}(D ; z) T(D ; z)$ in (3.12).
Remark. In the proof of Theorem $1.2(2)$, notice that $\widehat{F}(D ; z) T(D ; z)$ is in the space of modular forms mod 2 on $\Gamma_{0}(6)$, and so local nilpotency applies (i.e. $a=1$ and $N=3$ in Theorem 3.1). We can arrange the progressions so that the resulting $s\left(D ; N_{p}+Y\right)$ and $s\left(D, N_{p}\right)$ are even due to nilpotency instead of Theorem 3.3 (1) which we used in the proof of (1). This is not possible for the proof of (1) since $\mathcal{E}(D ; z)-\widehat{F}(D ; z)(\bmod 2)$ is on $\Gamma_{0}(6 D)$, and the Hecke algebra is not locally nilpotent in general.
3.5. Proof of Theorem 1.3. Suppose on the contrary that $p\left(\frac{D_{0} \ell m^{2}+1}{24}\right)$ is odd for every m coprime to 6 . As in the proof of Theorem 1.2, we then have that

$$
\begin{equation*}
\widehat{F}\left(D_{0} \ell ; z\right) \equiv \mathcal{E}\left(D_{0} \ell ; z\right)=\sum_{1 \leq \delta \mid D_{0} \ell} \mathcal{E}(\delta z) \quad(\bmod 2) \tag{3.18}
\end{equation*}
$$

Since $\mathcal{E}(\delta z)$ is a weight 2 holomorphic modular form on $\Gamma_{0}(6 \delta)$, Lemma 3.4 implies that

$$
\sum_{n \geq 0} b(n) q^{n}:=\left(\widehat{F}\left(D_{0} \ell ; z\right)-\sum_{1 \leq \delta \mid D_{0}} \mathcal{E}(\delta z)\right) H_{D_{0} \ell}(j(z)) \Delta(z)^{h\left(-D_{0} \ell\right)}
$$

is congruent mod 2 to a weight $12 h\left(-D_{0} \ell\right)+2$ holomorphic modular form on $\Gamma_{0}\left(6 D_{0}\right)$. By (3.18), we then have that

$$
\sum_{n \geq 0} b(n) q^{n} \equiv H_{D_{0} \ell}(j(z)) \Delta(z)^{h\left(-D_{0} \ell\right)} \sum_{1 \leq \delta \mid D_{0}} \mathcal{E}(\delta \ell z) \equiv q^{\ell}+\cdots \quad(\bmod 2)
$$

This contradicts Sturm's bound [48] for the first odd coefficient, which implies that

$$
\ell \leq\left(12 h\left(-D_{0} \ell\right)+2\right) \prod_{p \mid D_{0} \text { prime }}(p+1)
$$

3.6. Proof of Corollary 1.4. Here we let $D_{0}:=1$ in Theorem 1.3. If $\ell \equiv 23(\bmod 24)$ is a prime for which

$$
\begin{equation*}
\ell>12 h(-\ell)+2 \tag{3.19}
\end{equation*}
$$

then Theorem 1.3 gives the conclusion. By Dirichlet's class number formula it is known that

$$
h(-\ell)<\frac{1}{\pi} \sqrt{\ell} \log (\ell)
$$

which in turn implies that (3.19) holds for all $\ell \geq 599$. The corollary follows by applying Theorem 1.2 (1) for each prime $\ell<599$.

References

[1] S. Ahlgren, Distribution of parity of the partition function in arithmetic progressions, Indagationes Math. (N.S.) 10 (1999), pages 173-181.
[2] S. Ahlgren, The partition function modulo composite integers M, Math. Ann. 318 (2000), pages 793803.
[3] S. Ahlgren and K. Ono, Congruence properties for the partition function, Proc. Natl. Acad. Sci., USA 98 (2001), pages 12882-12884.
[4] G. E. Andrews, The theory of partitions, Cambridge Univ. Press, Cambridge, 1984.
[5] G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N. S.) 18 No. 2 (1988), pages 167-171.
[6] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), pages 14-32.
[7] A. O. L. Atkin, Multiplicative congruence properties and density problems for $p(n)$, Proc. London Math. Soc. (3) 18 (1968), pages 563-576.
[8] A. O. L. Atkin and J. N. O'Brien, Some properties of $p(n)$ and $c(n)$ modulo powers of 13, Trans. Amer. Math. Soc. 126 (1967), pages 442-459.
[9] A. O. L. Atkin and H ;0P. F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. 66 No. 4 (1954), pages 84-106.
[10] B. C. Berndt, A. J. Yee, and A. Zaharescu, On the parity of partition functions, Int. J. Math. 14 (2003), pages 437-459.
[11] B. C. Berndt, A. J. Yee, and A. Zaharescu, New theorems on the parity of partition functions, J. reine Angew. Math. 566 (2004), pages 91-109.
[12] R. E. Borcherds, Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products, Invent. Math. 120 (1995), pages 161-213.
[13] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), pages 491-562.
[14] M. Boylan and K. Ono, Parity of the partition function in arithmetic progressions II, Bull. London Math. Soc. 33 (2001), pages 558-564.
[15] K. Bringmann and K. Ono, Dyson's ranks and Maass forms, Ann. of Math., 171 (2010), pages 419-449.
[16] J. H. Bruinier and K. Ono, Heegner divisors, L-functions and harmonic weak Maass forms, Ann. of Math., accepted for publication.
[17] P. Deligne, Formes modulaires et représentations de GL(2) (French), Modular functions of one variable, II (Proc. Intl. Summer School, Univ. Antwerp, 1972), Springer Lect. Notes. 349 (1973), SpringerVerlag, Berlin, pages 55-105.
[18] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Normale Sup. (4) 7 (1974), pages 507-530.
[19] F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), pages 10-15.
[20] F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), pages 1-17.
[21] F. Garvan and D. Stanton, Sieved partition functions and q-binomial coefficients, Math. Comp. 55 (1990), pages 299-311.
[22] M. Hirschhorn, On the residue mod 2 and 4 of $p(n)$, Acta Arith. 38 (1980), pages 105-109.
[23] M. Hirschhorn, On the parity of $p(n) I I$, J. Comb. Th. (A) 62 (1993), pages 128-138.
[24] M. Hirschhorn and D.C. Hunt, A simple proof of the Ramanujan conjecture for powers of 5, J. Reine Angew. Math. 326 (1981), pages 1-17.
[25] M. Hirschhorn and M. Subbarao, On the parity of p(n), Acta Arith. 50 (1988), pages 355-356.
[26] T. Hjelle and T. Klove, Congruence properties and density problems for coefficients of modular forms, Math. Scand. 23 (1968), pages 160-166.
[27] O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 (1959), pages 377-378.
[28] J. Lovejoy and K. Ono, Extension of Ramanujan's congruences for the partition function modulo powers of 5, J. reine Ange. Math. 542 (2002), pages 123-132.
[29] K. Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci., USA, 102 (2005), pages 15373-15376.
[30] L. Mirsky, The distribution of values of the partition function in residue classes, J. Math. Anal. Appl. 93 (1983), pages 593-598.
[31] M. Newman, Periodicity modulo m and divisibility properties of the partition function, Trans. Amer. Math. Soc. 97 (1960), pages 225-236.
[32] M. Newman, Congruences for the coefficients of modular forms and some new congruences for the partition function, Canadian J. Math. 9 (1957), pages 549-552.
[33] J.-L. Nicolas, On the parity of generalized partition functions. II, Period. Math. Hungar. 43 (2001), pages 177-189.
[34] J.-L. Nicolas, Valeurs impaires de la fonction de partition p(n), Int. J. Number Theory 2 (2006), pages 469-487.
[35] J.-L. Nicolas, Parité des valeurs de la fonction de partition $p(n)$ et anatomie des entiers (French. English summary) [Parity of the values of the partition function $p(n)$ and anatomy of the integers, Anatomy of integers, pages $97-113$, CRM Proc. Lecture Notes, 46 , Amer. Math. Soc., Providence, RI, 2008.
[36] J.-L. Nicolas, I. Z. Ruzsa, and A. Sárközy, On the parity of additive representation functions (appendix by J.-P. Serre), J. Number Th. 73 (1998), pages 292-317.
[37] K. Ono, Parity of the partition function in arithmetic progressions, J. reine Angew. Math. 472 (1996), pages 1-15.
[38] K. Ono, Odd values of the partition function, Discrete Math. 169 (1997) pages 263-268.
[39] K. Ono, The partition function modulo m, Ann. of Math. 151 (2000), pages 293-307.
[40] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, Somerville, Ma.,2009, pages 347-454.
[41] K. Ono and Y. Taguchi, 2-adic properties of certain modular forms and their applications to arithmetic functions, Int. J. Number Th. 1, (2005) pages 75-101.
[42] T. R. Parkin and D. Shanks, On the distribution of parity in the partition function, Math. Comp. 21 (1967), pages 466-480.
[43] S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc. (2) 19, pages 207-210.
[44] S. Ramanujan, Ramanujan's unpublished manuscript on the partition and tau-functions (Commentary by B. C. Berndt and K. Ono) The Andrews Festschrift (Ed. D. Foata and G.-N. Han), Springer-Verlag, Berlin, 2001, pp. 39-110.
[45] J.-P. Serre, Valeurs propres des opérateurs de Hecke modulo ℓ, Asterisque 24-25 (1975), pages 109-117.
[46] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, L’Enseignment Math. 22 (1976), pages 227-260.
[47] G. Shimura, Introduction to the arithmetic theory of automrphic functions, Iwanami Shoten and Princeton Univ. Press, Princeton, 1971.
[48] J. Sturm, On the congruence of modular forms, Springer Lect. Notes in Math. 1240, Springer-Verlag, Berlin (1984), pages 275-280.
[49] M. Subbarao, Some remarks on the partition function, Amer. Math. Monthly 73 (1966), pages 851-854.
[50] J. Tate, The non-existence of certain Galois representations of \mathbb{Q} unramified outside 2, Arithmetic Geometry (Tempe, Arizona), Contemp. Math. 174, Amer. Math. Soc., Providence, RI. (1994), pages 153-156.
[51] G. N. Watson, Ramanujan's vermutung über zerfällungsanzahlen, J. reine Angew. Math. 179 (1938), pages 97-128.
[52] D. Zagier, Ramanujan's mock theta functions and their applications [d'aprés Zwegers and BringmannOno] (2006), Séminaire Bourbaki, no. 986.
[53] S. P. Zwegers, Mock ϑ-functions and real analytic modular forms, q-series with applications to combinatorics, number theory, and physics (Ed. B. C. Berndt and K. Ono), Contemp. Math. 291, Amer. Math. Soc., (2001), pages 269-277.
[54] S. Zwegers, Mock theta functions, Ph.D. Thesis (Advisor: D. Zagier), Universiteit Utrecht, 2002.
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: ono@math.wisc.edu

