
PARITY OF THE PARTITION FUNCTION

KEN ONO

Abstract. Although much is known about the partition function, little is known about its
parity. For the polynomials D(x) := (Dx2 + 1)/24, where D ≡ 23 (mod 24), we show that
there are infinitely many m (resp. n) for which p(D(m)) is even (resp. p(D(n)) is odd) if there
is at least one such m (resp. n). We bound the first m and n (if any) in terms of the class
number h(−D). For prime D we show that there are indeed infinitely many even values. To
this end we construct new modular generating functions using generalized Borcherds products,
and we employ Galois representations and locally nilpotent Hecke algebras.

1. Introduction and statement of results

A partition of a non-negative integer n is a non-increasing sequence of positive integers
that sum to n. Ramanujan investigated [43, 44] p(n), the number of partitions of n, and he
discovered congruences in certain very special arithmetic progressions such as:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

(1.1)

Ramanujan’s congruences have inspired many works (for example, see [2, 3, 4, 5, 6, 7, 8, 9,
15, 19, 20, 24, 26, 28, 31, 32, 39, 51] to name a few). Atkin [6] and Watson [51] notably
proved Ramanujan’s conjectures concerning congruences mod powers of 5, 7 and 11, while
Andrews and Garvan unearthed [5] Dyson’s [19] elusive crank, thereby providing a procedure
for dividing the partitions into 5, 7, and 11 groups of equal size in (1.1).

In the 1960s, Atkin [7] surprisingly discovered further congruences. His work revealed some
multiplicative properties which imply monstrous congruences such as:

p(1977147619n+ 815655) ≡ 0 (mod 19).

Ten years ago the author revisited Atkin’s examples in the context of the Deligne-Serre theory
of `-adic Galois representations and Shimura’s theory of half-integral weight modular forms
[39]. Armed with these powerful tools, the author established, for primes m ≥ 5, that there
always are such congruences mod m. Subsequently, Ahlgren and the author [2, 3] extended
this to include all moduli m coprime to 6. Mahlburg [29] has recently explained the role of
Dyson’s crank within this framework.

Surprisingly, there do not seem to be any such congruences modulo 2 or 3. In fact, the
parity of p(n) seems to be quite random, and it is widely believed that the partition function
is “equally often” even and odd. More precisely, Parkin and Shanks [42] conjectured that

#{n ≤ X : p(n) is even} ∼ 1

2
X.

The author thanks the support of the NSF, the Hilldale Foundation and the Manasse family.
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Although there have been many works (for example, see [1, 10, 11, 14, 21, 22, 23, 27, 30, 33,
34, 35, 36, 37, 38, 42, 49], to name a few) on the parity of p(n), we are very far from proving
this conjecture. Indeed, the best published estimates do not even preclude the possibility that

lim
X→+∞

#{n ≤ X : p(n) is even (resp. odd)}
X

1
2

+ε
= 0.

It is simple to identify one serious obstacle when it comes to parity. Virtually every result
on congruences has relied on the reductions mod powers of m of the generating functions

(1.2) F (m, k; q) :=
∑
D≥0

mkD≡−1 (mod 24)

p

(
Dmk + 1

24

)
qD.

Indeed, Ramanujan initiated this line of reasoning with his identities:

F (5, 1; q) :=
∞∑
n=0

p(5n+ 4)q24n+19 = 5q19

∞∏
n=1

(1− q120n)5

(1− q24n)6
,

F (7, 1; q) :=
∞∑
n=0

p(7n+ 5)q24n+17 = 7q17

∞∏
n=1

(1− q168n)3

(1− q24n)4
+ 49q41

∞∏
n=1

(1− q168n)7

(1− q24n)8

which immediately imply the congruences mod 5 and 7 in (1.1). For primes m ≥ 5, the
F (m, k; q) are congruent modulo powers of m to half-integral weight cusp forms [2, 3, 39].
Unfortunately, F (2, k; q) is identically zero, and this fact has sabotaged attempts to include
parity in the general framework.

We construct new generating functions using the generalized Borcherds products of the
author and Bruinier [16]. If 1 < D ≡ 23 (mod 24) is square-free and q := e2πiz, then we let

(1.3) F̂ (D; z) :=
∑
m≥1

gcd(m,6)=1

p

(
Dm2 + 1

24

) ∑
n≥1

gcd(n,D)=1

qmn.

Three remarks.

(i) The generating functions F (m, k; q) and F̂ (D; z) are quite different. The series F (m, k; q)

are power series over D, while the F̂ (D; z) are power series in m and n. The roles of D and

m are switched, and a new parameter n occurs in F̂ (D; z).

(ii) Each partition number p(n), apart from p(0) = 1, appears in a single F̂ (D; z) since
24n− 1 = Dm2 uniquely determines the square-free 1 < D ≡ 23 mod 24.

(iii) If we let U(r) be Atkin’s U -operator(∑
a(n)qn

)
| U(r) :=

∑
a(rn)qn,

then for r = 2 and 3 we have

F̂ (D; z) | U(2) = F̂ (D; z) | U(3) = F̂ (D; z).

Throughout we assume that D ≡ 23 (mod 24) is a positive square-free integer. To accom-

pany the modular generating functions F (m, k; q), we prove the following for F̂ (D; z).



PARITY OF THE PARTITION FUNCTION 3

Theorem 1.1. We have that F̂ (D; z) is congruent mod 2 to a weight 2 meromorphic modular
form on Γ0(6) with integer coefficients whose poles are simple and are supported on discrimi-
nant −D Heegner points.

Using these modular forms, we obtain the following theorem on the parity of p(n).

Theorem 1.2. If h(−D) is the class number of Q(
√
−D), then the following are true:

(1) There are infinitely many m coprime to 6 for which p
(
Dm2+1

24

)
is even if there is at

least one such m. Furthermore, the first one (if any) is bounded by

(12h(−D) + 2)
∏

p|D prime

(p+ 1).

(2) There are infinitely many n coprime to 6 for which p
(
Dn2+1

24

)
is odd if there is at least

one such n. Furthermore, the first one (if any) is bounded by 12h(−D) + 2.

We have been unable to preclude the possibility that p
(
Dm2+1

24

)
is even (resp. odd) for

every m coprime to 6. Although these possibilities seem to be consistent with the theory of
modular forms, we make the following conjecture.

Conjecture. There are infinitely many m (resp. n) coprime to 6 for which p
(
Dm2+1

24

)
is

even (resp. p
(
Dn2+1

24

)
is odd).

Remark. We have confirmed this conjecture for all D < 25000.

In the direction of this conjecture, we offer the following results.

Theorem 1.3. Suppose that D0 is a square-free integer which is coprime to 6, and suppose
that ` - D0 is a prime which satisfies:

(1) We have that D0` ≡ 23 (mod 24).
(2) We have that

`

12h(−D0`) + 2
>

∏
p|D0 prime

(p+ 1).

Then there are infinitely many integers m coprime to 6 for which p
(
D0`m2+1

24

)
is even.

For a fixed D0 in Theorem 1.3, the bound

h(−D0`)� (D0`)
1
2 log(D0`)

implies that the conclusion of Theorem 1.3 holds for all but finitely many primes ` for which
D0` ≡ 23 (mod 24). For D0 = 1 we have the following corollary.

Corollary 1.4. If ` ≡ 23 (mod 24) is prime, then there are infinitely many m coprime to 6

for which p
(
`m2+1

24

)
is even. Moreover, the first such m is bounded by 12h(−`) + 2.
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Remark. The proof of Corollary 1.4 implies that there is an

m ≤ 12(h(−`) + 2)� `
1
2 log(`)

for which p
(
`m2+1

24

)
is even. This then implies the following estimate:

#{N ≤ X : p(N) is even} � X
1
2/ log(X).

This paper is organized as follows. In §2 we consider the combinatorial properties of the
generating function for p(n), Ramanujan’s mock theta functions, and a certain vector-valued
harmonic Maass form. We then give generalized Borcherds products which arise from this
harmonic Maass form, and we prove Theorem 1.1. In §3 we combine the local nilpotency of
certain Hecke algebras with the Chebotarev Density Theorem, the properties of 2-adic Galois
representations, and some combinatorial arguments to prove Theorem 1.2. We then conclude
with the proof of Theorem 1.3 and Corollary 1.4 using bounds for class numbers.

Acknowledgements
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Evangelos Georgiadis, Pavel Guerzhoy, Karl Mahlburg, Sander Zwegers, and the referees for
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2. Generalized Borcherds products and the New generating functions

Here we relate the generating functions F̂ (D; z) to meromorphic modular forms produced
from generalized Borcherds products, and we prove Theorem 1.1.

2.1. Combinatorial considerations. Euler is credited for observing that

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
=
q1/24

η(z)
,

where η(z) := q
1
24

∏∞
n=1(1 − qn) is Dedekind’s weight 1/2 modular form. The generating

functions F (m, k; q) arise naturally from this modularity.

A less well known identity for P (q) leads to F̂ (D; z). Although it is well known to specialists,
we recall it to highlight the special combinatorial properties of certain harmonic Maass forms.
As usual, represent a partition λ1 +λ2 + · · ·+λk by a Ferrers diagram, a left justified array of
dots consisting of k rows in which there are λi dots in the ith row. The Durfee square is the
largest square of nodes in the upper left hand corner of the diagram. Its boundary divides a
partition into a square and two partitions whose parts do not exceed the side length of the
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square. For example, consider the partition 5 + 5 + 3 + 3 + 2 + 1:

• • • ... • •

• • • ... • •

• • • ...
· · · · · · · · ·
• • •

• •

•
This partition decomposes as a square of size 9, and the two partitions 2+2, and 3+2+1.

We have the following alternate identity for P (q), which in turn provides a crucial congru-
ence between P (q) and Ramanujan’s third order mock theta function

(2.1) f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

Lemma 2.1. The following combinatorial identity is true:

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
= 1 +

∞∑
m=1

qm
2

(1− q)2(1− q2)2 · · · (1− qm)2
.

In particular, we have that P (q) ≡ f(q) (mod 2).

Proof. For every positive integer m, the q-series

1

(1− q)(1− q2) · · · (1− qm)
=
∞∑
n=0

am(n)qn

is the generating function for am(n), the number of partitions of n whose summands do not
exceed m. Therefore by the discussion above, the q-series

qm
2

(1− q)2(1− q2)2 · · · (1− qm)2
=
∞∑
n=0

bm(n)qn

is the generating function for bm(n), the number of partitions of n with a Durfee square of size
m2. The identity follows by summing in m, and the claimed congruence follows trivially. �

Remark. It is also easy to see that f(q) ≡ P (q) (mod 4).

2.2. A generalized Borcherds product. In their work on derivatives of modular L-functions,
the author and Bruinier [16] produced generalized Borcherds Products arising from weight 1/2
harmonic Maass forms. These products give generalizations of some of the automorphic infi-
nite products obtained by Borcherds [12, 13]. The general result (see Theorems 6.1 and 6.2
of [16]) gives modular forms with twisted Heegner divisor whose infinite product expansions
arise from harmonic Maass forms.
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Ramanujan’s mock theta functions, which are special examples of harmonic Maass forms
of weight 1/2 (for example, see [40, 52, 53, 54]), can be used to construct such products. We
recall one example which involves the third order mock theta functions f(q) (see (2.1)) and

ω(q) :=
∞∑
n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+

q12

(1− q)2(1− q3)2(1− q5)2
+ · · · .

(2.2)

It is important to note that f(q) and ω(q) have integer coefficients.
For 0 ≤ j ≤ 11 we define the functions

Hj(z) =
∑
n≥nj

C(j;n)qn

by

(2.3) Hj(z) :=



0 if j = 0, 3, 6, 9,

q−1f(q24) if j = 1, 7,

−q−1f(q24) if j = 5, 11,

2q8 (−ω(q12) + ω(−q12)) if j = 2,

−2q8 (ω(q12) + ω(−q12)) if j = 4,

2q8 (ω(q12) + ω(−q12)) if j = 8,

2q8 (ω(q12)− ω(−q12)) if j = 10.

For each D (recall that 1 < D ≡ 23 (mod 24) is square-free), we have the function

(2.4) PD(X) :=
∏

b mod D

(1− e(−b/D)X)(
−D

b ),

where e(α) := e2πiα and
(−D

b

)
is the Kronecker character for the negative fundamental dis-

criminant −D. We define the generalized Borcherds product ΨD(z) by

(2.5) ΨD(z) :=
∞∏
m=1

PD(qm)C(m;Dm2).

Here n denotes the canonical residue class of n modulo 12.

Theorem 2.2. [§8.2 of [16]] The function ΨD(z) is a weight 0 meromorphic modular form on
Γ0(6) with a discriminant -D twisted Heegner divisor (see §5 of [16] for the explicit divisor).

2.3. Proof of Theorem 1.1. If we let Θ := q d
dq

= 1
2πi

d
dz

, then it is well known that Θ(ΨD(z))

is a weight 2 meromorphic modular form on Γ0(6). It follows that the logarithmic derivative
Θ(ΨD(z))

ΨD(z)
is a meromorphic modular form on Γ0(6) whose poles are simple and are supported

at the Γ0(6)-Heegner points of discriminant −D.
A simple calculation using (2.4) shows that

Θ(PD(qm))

PD(qm)
=
√
−Dm

∞∑
n=1

(
−D
n

)
qmn.
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Therefore, (2.5) implies that

(2.6) F(D; z) :=
1√
−D
· Θ(ΨD(z))

ΨD(z)
=

∞∑
m=1

mC(m;Dm2)
∞∑
n=1

(
−D
n

)
qmn

is a weight 2 meromorphic modular form on Γ0(6) with integer coefficients whose poles are
simple and are supported at some Γ0(6)-Heegner points of discriminant −D.

By (2.3), we find that

Hj(z) =
∑
n≥nj

C(j;n)qn ≡

{
q−1f(q24) (mod 2) if j = 1, 5, 7, 11,

0 (mod 2) otherwise.

Using Lemma 2.1, the fact that
(−D
n

)
= 0 if gcd(n,D) 6= 1, and (2.6), we find that

F(D; z) ≡
∑
m≥1

gcd(m,6)=1

p

(
Dm2 + 1

24

) ∑
n≥1

gcd(n,D)=1

qmn (mod 2).

This is F̂ (D; z) (mod 2), and this completes the proof.

3. Modular forms mod 2 and the proof of Theorem 1.2

We give facts about locally nilpotent Hecke algebras, and we give results on the distribution
of the odd coefficients of modular forms. We conclude with proofs of Theorems 1.2 and 1.3.

3.1. Local nilpotency of the Hecke algebra on modular forms mod 2. Serre suggested,
and Tate proved (see page 115 of [45], page 251 of [46], and [50]) that the action of Hecke
algebras on level 1 modular forms mod 2 is locally nilpotent. This means that if f(z) is an
integer weight holomorphic modular form on SL2(Z) with integer coefficients, then there is a
positive integer i with the property that

f(z) | Tp1 | Tp2 | · · · | Tpi
≡ 0 (mod 2)

for every collection of odd primes p1, p2, . . . , pi.
Recently, the author and Taguchi [41] listed further levels where this nilpotency holds.

They used the fact that the phenomenon coincides with the non-existence of non-trivial mod
2 Galois representations which are unramified outside 2 and the primes dividing the level.

We make this precise here. For a subring O of C, we let Sk(Γ;O) be the O-module of cusp
forms of integer weight k with respect to Γ whose coefficients lie in O. If Γ = Γ0(N) and
χ : (Z/NZ)× → C× is a Dirichlet character, we denote by Sk(Γ0(N), χ;O) the O-module of
cusp forms of weight k on Γ0(N) and Nebentypus character χ whose Fourier coefficients lie in
O. We suppress χ from the notation when it is the trivial character. Finally, if l is a prime of
a number field L, then we let OL,l be the localization of the integer ring OL at l.

Theorem 3.1. [Theorem 1.3 of [41]] Let a be a non-negative integer, and let N and k be
positive integers. Suppose that χ : (Z/2aN)× → C× is a Dirichlet character with conductor
f(χ), and suppose that L is a number field containing the coefficients of all the integer weight
k newforms in the spaces Sk(Γ0(M), χ), for every M with M | 2aN and f(χ) | M . Let l be a
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prime of L lying above 2. If N = 1, 3, 5, 15 or 17, then there is an integer c ≥ 0 such that for
every f(z) ∈ Sk(Γ(2aN), χ;OL,l) and every t ≥ 1 we have

f(z) | Tp1 | Tp2 | · · · | Tpc+t ≡ 0 (mod lt),

whenever p1, p2, . . . , pc+t are odd primes not dividing N .

Remark. Theorem 3.1 is the first case of Theorem 1.3 of [41].

Remark. Theorem 3.1 applies to forms whose coefficients are in a subfield K of L. One replaces
l by the prime l0 of K lying below l. If e is the ramification index of l/l0, then

f(z) | Tp1 | Tp2 | · · · | Tpc+et ≡ 0 (mod lt0).

Suppose that f(z) is an integer weight modular form on Γ0(N) with integer coefficients.
If f(z) 6≡ 0 (mod 2), then we say that f(z) has degree of nilpotency i if there are primes
p1, p2, . . . , pi−1 not dividing 2N for which

f(z) | Tp1 | Tp2 | · · · | Tpi−1
6≡ 0 (mod 2),

and if for every set of primes `1, `2, . . . , `i not dividing 2N we have

f(z) | T`1 | T`2 | · · · | T`i ≡ 0 (mod 2).

Lemma 3.2. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N); Z) has degree of nilpotency i > 0.
Then the following are true:

(1) There are primes p1, p2, . . . , pi−1 not dividing 2N , and an integer n0 such that

a(n0M
2p1p2 · · · pi−1) ≡ 1 (mod 2)

for every integer M ≥ 1 that is coprime to 2p1p2 · · · pi−1N .
(2) If `1, `2, . . . , `i are primes not dividing 2N , then

a(n`1`2 · · · `i) ≡ 0 (mod 2)

for every n coprime to `1, `2, . . . , `i.

Proof. For brevity we prove (1). The proof of (2) is similar. By definition, there are primes
p1, p2, . . . , pi−1 not dividing 2N for which

(3.1) fi−1(z) =
∞∑
n=1

bi−1(n)qn := f(z) | Tp1 | Tp2 | · · · | Tpi−1
6≡ 0 (mod 2).

Suppose that bi−1(n0) is odd. Without loss of generality, we may assume that n0 is coprime to
p1p2 · · · pi−1. This follows since the coefficients of cusp forms are dictated by the 2-adic Galois
representations associated to the weight k newforms with level dividing N (for example, see
the proof of Theorem 3.3). More precisely, the Chebotarev Density Theorem implies that a
positive proportion of the (i−1)-tuples of primes give the same fi−1(z) (mod 2) when replaced
in (3.1), and so one clearly may choose tuples using primes which do not divide n0.

By the definition of i, if p - 2N is prime, then

f(z) | Tp1 | Tp2 | · · · | Tpi−1
| Tp ≡ 0 (mod 2).
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By the definition of the Hecke operators, this means that

fi−1(z) | Tp ≡
∞∑
n=1

(bi−1(pn) + bi−1(n/p)) qn ≡ 0 (mod 2),

and so it follows that bi−1(n0M
2) ≡ 1 (mod 2) for every integer M ≥ 1 coprime to 2N .

Define integers bj(n) by

∞∑
n=1

b1(n)qn := f(z) | Tp1 ,

∞∑
n=1

b2(n)qn := f(z) | Tp1 | Tp2 ,

...
∞∑
n=1

bi−1(n)qn := f(z) | Tp1 | Tp2 | · · · | Tpi−1
.

For every M coprime to 2Np1p2 · · · pi−1, we then have

1 ≡ bi−1(n0M
2) ≡ bi−2(n0M

2pi−1) ≡ · · · ≡ b1(n0M
2p2p3 · · · pi−1) (mod 2).

The proof follows since b1(n0M
2p2p3 · · · pi−1) ≡ a(n0M

2p1p2 · · · pi−1) (mod 2). �

3.2. Distribution of the “odd” coefficients of modular forms. The following theorem
describes the distribution of the odd coefficients of integer weight modular forms.

Theorem 3.3. If f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N); Z), then the following are true:

(1) A positive proportion of the primes p ≡ −1 (mod 2N) have the property that

f(z) | Tp ≡ 0 (mod 2).

(2) Suppose that n0 is an integer coprime to N with the property that

a(n0p1p2 · · · pi−1) ≡ 1 (mod 2),

where p1, p2, . . . , pi−1 are primes which do not divide 2n0N . If M is an integer coprime
to 2N and gcd(r,M) = 1, then

#{m ≤ X : a(n0m) ≡ 1 (mod 2) and m ≡ r (mod M)} � X

logX
(log logX)i−2.

Proof. Claim (1) is a well known result due to Serre [46].
We now prove (2). By the theory of newforms, every F ∈ Sk(Γ0(N)) can be uniquely

expressed as a linear combination

F (z) =
s∑
j=1

αjAj(z) +
t∑

j=1

βjBj(δjz),
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where Aj(z) and Bj(z) are newforms of weight k and level a divisor of N , and where each δj
is a divisor of N with δj > 1. Let

(3.2) F new(z) :=
s∑
j=1

αjAj(z) and F old(z) :=
t∑

j=1

βjBj(δjz)

be, respectively, the new part of F and the old part of F .
If F (z) :=

∑∞
n=1 c(n)qn is a newform, then the c(n)’s are algebraic integers which generate

a finite extension of Q, say KF . If K is any finite extension of Q containing KF , and if OK,l0
is the completion of the ring of integers of K at any finite place l0 with residue characteristic,
say `, then by the work of Deligne, Serre, and Shimura [17, 18, 47] there is a (not necessarily
unique) continuous representation

ρF,l0 : Gal(Q/Q)→ GL2(OK,lo)

for which

(3.3) ρF,l0 is unramified at all primes p - N`,

(3.4) Trace(ρF,l0(Frobp)) = c(p) for all primes p - N`.
Here Frobp denotes any Frobenius element for the prime p.

Now we let F (z) = f(z), and we let l0 be a place over 2 in a number field K which contains
the coefficients of all the newforms with level dividing N . Write f = fnew + f old. Since n0 is
coprime to N , it follows that fnew is not identically zero. Write

fnew =
h∑
j=1

αj f̂j(z), αj 6= 0,

where each f̂j(z) :=
∑∞

n=1 ĉj(n)qn is a newform. Let L be a finite extension of Q containing

K, the Fourier coefficients of each f̂j, and the αj’s. Let l be a place of L over l0, let e be the
ramification index of l over l0, let OL,l be the completion of the ring of integers of L at the
place l, and let λ be a uniformizer for OL,l. Let

(3.5) E = max
1≤j≤h

|ordl(4αj)|,

and let ρ bfj ,l
: Gal(Q/Q)→ GL2(OL,l) be a representation satisfying (3.3) and (3.4) for f̂j(z).

Consider the representation

(3.6) ρ =
h⊕
j=1

ρ bfj ,l
mod λE+1.

Since the primes p1, p2, . . . , pi−1 do not divide 2N , the Chebotarev Density Theorem implies,
for each 1 ≤ r ≤ i− 1, that there are � X/ logX primes q less than X for which ρ(Frobq) =
ρ(Frobpr). By (3.4), for such a prime, ĉj(q) ≡ ĉj(pr) mod λE+1 for all j. It follows from these
observations and the multiplicativity of the Fourier coefficients of newforms that there are
� X

logX
(log logX)i−2 integers n0q1 · · · qi−1 < X, such that

ĉj(n0p1p2 · · · pi−1) ≡ ĉj(n0q1q2 · · · qi−1) mod λE+1.

This in turn implies that a(n0q1q2 · · · qi−1) ≡ 1 (mod 2).
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To obtain the claim concerning the congruence class modulo M , one simply modifies the
construction of ρ in (3.6) to account for the cyclotomic characters giving the action of Galois
on wth power roots of unity for the primes w dividing M . For example, since gcd(M, 2N) = 1,
one can insist, again by the Chebotarev Density Theorem and Dirichlet’s Theorem on Primes
in Arithmetic Progressions, that q1, q2, · · · , qi−2 ≡ 1 (mod M), and that qi−1 ≡ r (mod M).
This then completes the proof of (2). �

3.3. Producing some modular forms mod 2. Here we relate F̂ (D; z) to holomorphic
modular forms. Let HD(x) be the usual discriminant −D Hilbert class polynomial, let h(−D)
be the class number of the ideal class group CL(−D), and let

j(z) = q−1 + 744 + 196884q + · · ·

be the usual elliptic modular j-function. Finally, let

∆(z) := q
∞∏
n=1

(1− qn)24 = q − 24q2 + · · ·

be the unique weight 12 normalized cusp form on SL2(Z).

Lemma 3.4. There is a holomorphic modular form of weight 12h(−D) + 2 on Γ0(6) with
integer coefficients which is congruent to

F̂ (D; z)HD(j(z))∆(z)h(−D) (mod 2).

Proof. Let F(D; z) be the meromorphic modular form in the proof of Theorem 1.1. This form
has integer coefficients and satisfies the congruence

F(D; z) ≡ F̂ (D; z) (mod 2).

The form F(D; z) has the additional property that its poles are simple, and are supported at
some discriminant −D Heegner points under the action of Γ0(6). Since HD(j(z)) is the mod-
ular function which has a simple zero at each discriminant −D Heegner point with respect to
SL2(Z), it follows that F(D; z)HD(j(z))∆(z)h(−D) is a weight 12h(−D) + 2 holomorphic mod-
ular form on Γ0(6). The factor ∆(z)h(−D) is required to compensate for the poles introduced
by HD(j(z)). The proof follows from Theorem 1.1. �

3.4. Proof of Theorem 1.2. First we prove (1). Let E2(z) := 1 − 24
∑∞

n=1 σ1(n)qn be the
usual weight 2 Eisenstein series, where σ1(n) :=

∑
d|n d. Although E2(z) is not modular, it is

well known that if t ≥ 2, then E2(z)− tE2(tz) is a weight 2 modular form on Γ0(t). Therefore,
we have that

(3.7) E(z) :=
(E2(z)− 3E2(3z))− 2(E2(z)− 2E2(2z))

24
= q − q2 + 7q3 − 5q4 − · · ·

is a holomorphic weight 2 modular form on Γ0(6). One checks that

E(z) ≡
∑
m≥1

gcd(m,6)=1

∑
n≥1

qmn (mod 2).
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A straightforward calculation then shows that

(3.8) E(D; z) :=
∑

1≤δ|D

E(δz) ≡
∑
m≥1

gcd(m,6)=1

∑
n≥1

gcd(n,D)=1

qmn (mod 2).

Therefore if p
(
Dm2+1

24

)
is odd for every m coprime to 6, then E(D; z) ≡ F̂ (D; z) (mod 2).

Lemma 3.4, combined with the fact that E(D; z) is a holomorphic modular form of weight 2
on Γ0(6D), now implies that

E(D; z)HD(j(z))∆(z)h(−D) ≡ F̂ (D; z)HD(j(z))∆(z)h(−D) (mod 2)

in M12h(−D)+2(Γ0(6D)). A theorem of Sturm [48] shows that this holds if and only if the first
(12h(−D) + 2)

∏
p(p + 1) coefficients are congruent mod 2, where the product is over the

primes p dividing D. This proves the bound concerning the first (if any) even value.
Suppose that there are only finitely many m coprime to 6, say m1,m2, . . . ,ms, for which

p
(
Dm2+1

24

)
is even. Let m1 be the smallest of these numbers. By (3.8), we have that

(3.9) E(D; z)− F̂ (D; z) ≡
s∑
i=1

∑
n≥1

gcd(n,D)=1

qmin (mod 2).

Let T (D; z) be the level 1 cusp form

(3.10) T (D; z) =
∞∑
n=5

t(D;n)qn := HD(j(z))∆(z)h(−D)+5 = q5 + · · · .

By Theorem 3.1, the Hecke algebra acts locally nilpotently on T (D; z). Since t(D; 5) is odd, it
follows that its degree of nilpotency is an integer η = ηD ≥ 2. Lastly, Theorem 3.3 (2) implies
in every arithmetic progression r (mod M), where gcd(r,M) = 1 and M is odd, that

(3.11) #{p ≤ X : t(D; p) ≡ 1 (mod 2) and p ≡ r (mod M)} � X/ logX.

Using E(D; z) and Lemma 3.4, there is a cusp form S(D; z) on Γ0(6D) for which

(3.12) S(D; z) =
∞∑
n=1

s(D;n)qn ≡ (E(D; z)− F̂ (D; z))T (D; z) (mod 2).

If N is a positive integer, then (3.9) implies that

(3.13) s(D;N) ≡
s∑
i=1

∑
n≥1

gcd(n,D)=1

t(D;N −min) (mod 2).

Since t(D;α) = 0 when α ≤ 0, these sums are finite.
By Theorem 3.3 (1), there are infinitely many primes p for which

(3.14) s(D;n) ≡ 0 (mod 2)
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when p||n. Let p0 - m1m2 . . .msD be such a prime. Now let Y := p2
0D · lcm(m1,m2, . . . ,ms).

Using (3.13), it follows by construction that

(3.15) s(D;N + Y )− s(D;N) ≡
s∑
i=1

∑
1≤n≤ Y

mi
gcd(n,D)=1

t(D;N + Y −min) (mod 2).

Now consider the arithmetic progression

(3.16) N ≡ p0 (mod p2
0).

For each (i, n) with 1 ≤ i ≤ s and 1 ≤ n ≤ Y
mi

, except (m1, 1), we consider progressions of the
form

(3.17) N ≡ −(Y −min) + `1(i, n)`2(i, n) · · · `η(i, n) (mod `1(i, n)2`2(i, n)2 · · · `η(i, n)2).

Choose distinct odd primes `j(i, n) coprime to p0m1m2 · · ·msD so that the system (3.16) and
(3.17) has, by the Chinese Remainder Theorem, a solution of the form N ≡ r0 (mod MD),
where gcd(r0 + Y −m1,MD) = 1. By (3.11), there are then infinitely many primes p of the
form Np + Y −m1 for which t(D;Np + Y −m1) ≡ 1 (mod 2). For these p, we have:

(1) We have that p0||Np and p0||(Np + Y ) (since p2
0 | Y ).

(2) For each pair (i, n) with 1 ≤ i ≤ s and 1 ≤ n ≤ Y
mi

, except (m1, 1), we have

Np + Y −min ≡ `1(i, n)`2(i, n) · · · `η(i, n) (mod `1(i, n)2`2(i, n)2 · · · `η(i, n)2).

By (3.14), both s(D;Np+Y ) and s(D;Np) are even. By Lemma 3.2 (2), the fact that T (D; z)
has degree of nilpotency η implies that each summand in (3.15), except t(D;Np + Y −m1),
is even. Since t(D;Np + Y − m1) is odd, (3.15) gives the contradiction 0 ≡ 1 (mod 2).

Consequently, there must be an infinite number of m coprime to 6 for which p
(
Dm2+1

24

)
is

even unless there are no such m. This completes the proof of (1).

To prove (2), first notice that F̂ (D; z)HD(j(z))∆(z)h(−D) is trivial mod 2 if and only if

F̂ (D; z) ≡ 0 (mod 2). Lemma 3.4 and Sturm’s theorem [48] then imply that this triviality
occurs if and only if the first 12h(−D) + 2 coefficients are even.

Suppose now that F̂ (D; z) 6≡ 0 (mod 2), and that there are only finitely many m coprime

to 6, say m1,m2, . . . ,ms, for which p
(
Dm2+1

24

)
is odd. Then we have that

F̂ (D; z) ≡
s∑
i=1

∑
n≥1

gcd(n,D)=1

qmin (mod 2).

Since this is the series in (3.9), the proof of (2) follows mutatis mutandis by replacing (E(D; z)−
F̂ (D; z))T (D; z) with F̂ (D; z)T (D; z) in (3.12).

Remark. In the proof of Theorem 1.2 (2), notice that F̂ (D; z)T (D; z) is in the space of modular
forms mod 2 on Γ0(6), and so local nilpotency applies (i.e. a = 1 and N = 3 in Theorem 3.1).
We can arrange the progressions so that the resulting s(D;Np + Y ) and s(D,Np) are even
due to nilpotency instead of Theorem 3.3 (1) which we used in the proof of (1). This is not

possible for the proof of (1) since E(D; z) − F̂ (D; z) (mod 2) is on Γ0(6D), and the Hecke
algebra is not locally nilpotent in general.
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3.5. Proof of Theorem 1.3. Suppose on the contrary that p
(
D0`m2+1

24

)
is odd for every m

coprime to 6. As in the proof of Theorem 1.2, we then have that

(3.18) F̂ (D0`; z) ≡ E(D0`; z) =
∑

1≤δ|D0`

E(δz) (mod 2).

Since E(δz) is a weight 2 holomorphic modular form on Γ0(6δ), Lemma 3.4 implies that

∑
n≥0

b(n)qn :=

F̂ (D0`; z)−
∑

1≤δ|D0

E(δz)

HD0`(j(z))∆(z)h(−D0`)

is congruent mod 2 to a weight 12h(−D0`) + 2 holomorphic modular form on Γ0(6D0). By
(3.18), we then have that∑

n≥0

b(n)qn ≡ HD0`(j(z))∆(z)h(−D0`)
∑

1≤δ|D0

E(δ`z) ≡ q` + · · · (mod 2).

This contradicts Sturm’s bound [48] for the first odd coefficient, which implies that

` ≤ (12h(−D0`) + 2)
∏

p|D0 prime

(p+ 1).

3.6. Proof of Corollary 1.4. Here we let D0 := 1 in Theorem 1.3. If ` ≡ 23 (mod 24) is a
prime for which

(3.19) ` > 12h(−`) + 2,

then Theorem 1.3 gives the conclusion. By Dirichlet’s class number formula it is known that

h(−`) < 1

π

√
` log(`),

which in turn implies that (3.19) holds for all ` ≥ 599. The corollary follows by applying
Theorem 1.2 (1) for each prime ` < 599.
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