HOOK LENGTHS AND 3-CORES

GUO-NIU HAN AND KEN ONO

ABSTRACT. Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions, for the coefficients of certain power series. In the course of this investigation, he conjectured that a(n) = 0 if and only if b(n) = 0, where integers a(n) and b(n) are defined by

$$\sum_{n=0}^{\infty} a(n)x^n := \prod_{n=1}^{\infty} (1-x^n)^8,$$
$$\sum_{n=0}^{\infty} b(n)x^n := \prod_{n=1}^{\infty} \frac{(1-x^{3n})^3}{1-x^n}.$$

The numbers a(n) are given in terms of hook lengths of partitions, while b(n) equals the number of 3-core partitions of n. Here we prove this conjecture.

1. INTRODUCTION AND STATEMENT OF RESULTS

In their work on random partitions and Seiberg-Witten theory, Nekrasov and Okounkov [8] proved the following striking formula:

(1.1)
$$F_{z}(x) := \sum_{\lambda} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)} \left(1 - \frac{z}{h^{2}}\right) = \prod_{n=1}^{\infty} (1 - x^{n})^{z-1}$$

Here the sum is over integer partitions λ , $|\lambda|$ denotes the integer partitioned by λ , and $\mathcal{H}(\lambda)$ denotes the multiset of classical hooklengths associated to a partition λ . In a recent preprint, the first author [3] has obtained an extension of (1.1), one which has a specialization which gives the classical generating function

(1.2)
$$C_t(x) := \sum_{n=0}^{\infty} c_t(n) x^n = \prod_{n=1}^{\infty} \frac{(1-x^{tn})^t}{1-x^n}$$

for the number of t-core partitions of n. Recall that a partition is a t-core if none of its hook lengths are multiples of t.

In the course of his work, the first author [4] formulated a number of conjectures concerning hook lengths of partitions. One of these conjectures is related to classical identities of Jacobi. For positive integers t, he compared the functions $F_{t^2}(x)$ and $C_t(x)$. If t = 1, we obviously have that

$$F_1(x) = C_1(x) = 1$$

The second author thanks the support of the NSF, and he thanks the Manasse family.

For t = 2, by two famous identities of Jacobi, we have

$$F_4(x) = \prod_{n=1}^{\infty} (1 - x^n)^3 = \sum_{k=0}^{\infty} (-1)^k (2k+1) x^{(k^2+k)/2},$$
$$C_2(x) = \prod_{n=1}^{\infty} \frac{(1 - x^{2n})^2}{1 - x^n} = \sum_{k=0}^{\infty} x^{(k^2+k)/2}.$$

In both pairs of power series one sees that the non-zero coefficients are supported on the same terms. For t = 3, we then have

(1.3)
$$F_9(x) = \sum_{n=0}^{\infty} a(n)x^n := \prod_{n=1}^{\infty} (1-x^n)^8$$
$$= 1 - 8x + 20x^2 - 70x^4 + \dots - 520x^{14} + 57x^{16} + 560x^{17} + 182x^{20} + \dots$$

and

(1.4)
$$C_3(x) = \sum_{n=0}^{\infty} b(n) x^n := \prod_{n=1}^{\infty} \frac{(1-x^{3n})^3}{1-x^n} = 1 + x + 2x^2 + 2x^4 + \dots + 2x^{14} + 3x^{16} + 2x^{17} + 2x^{20} + \dots$$

Remark. It is clear that $b(n) = c_3(n)$.

In accordance with the elementary observations when t = 1 and 2, one notices that the non-zero coefficients of $F_9(x)$ and $C_3(x)$ appear to be supported on the same terms. Based on substantial numerical evidence, the first author made the following conjecture.

Conjecture 4.6. (Conjecture 4.6 of [4]) Assuming the notation above, we have that a(n) = 0 if and only if b(n) = 0.

Remark. The obvious generalization of Conjecture 4.6 and the examples above is not true for t = 4. In particular, one easily finds that

$$F_{16}(x) = 1 - 15x + 90x^2 - \dots + 641445x^{52} + 1537330x^{54} + \dots + C_4(x) = 1 + x + 2x^2 + 3x^3 + \dots + 5x^{52} + 8x^{53} + 10x^{54} + \dots$$

The coefficient of x^{53} vanishes in $F_{16}(x)$ and is non-zero in $C_4(x)$.

Here we prove that Conjecture 4.6 is true. We have the following theorem.

Theorem 1.1. Assuming the notation above, we have that a(n) = 0 if and only if b(n) = 0. Moreover, we have that a(n) = b(n) = 0 precisely for those non-negative n for which $\operatorname{ord}_p(3n+1)$ is odd for some prime $p \equiv 2 \pmod{3}$.

Remark. As usual, $\operatorname{ord}_p(N)$ denotes the largest power of a prime p dividing an integer N.

Remark. Theorem 1.1 shows that a(n) = b(n) = 0 in a systematic way. The vanishing coefficients are associated to primes $p \equiv 2 \pmod{3}$. If $n \equiv 1 \pmod{3}$ has the property that $\operatorname{ord}_p(n)$ is odd, then we have

$$a\left(\frac{n-1}{3}\right) = b\left(\frac{n-1}{3}\right) = 0.$$

For example, since $\operatorname{ord}_5(10) = 1 \equiv 1 \pmod{2}$, we have that a(3) = b(3) = 0.

As an immediate corollary, we have the following.

Corollary 1.2. For positive integers N, we have that

$$\sum_{\lambda \vdash N} \prod_{h \in \mathcal{H}(\lambda)} \left(1 - \frac{9}{h^2} \right) = 0$$

if and only if there are no 3-core partitions of N.

Theorem 1.1 implies that "almost all" of the a(n) and b(n) are 0. More precisely, we have the following.

Corollary 1.3. Assuming the notation above, we have that

$$\lim_{X \to +\infty} \frac{\#\{0 \le n \le X : a(n) = b(n) = 0\}}{X} = 1.$$

Acknowledgements

The authors thank Mihai Cipu for insightful comments related to Conjecture 4.6.

2. Proofs

It is convenient to renormalize the functions a(n) and b(n) using the series

(2.1)
$$\mathcal{A}(z) = \sum_{n=1}^{\infty} a^*(n)q^n := \sum_{n=0}^{\infty} a(n)q^{3n+1} = q - 8q^4 + 20q^7 - 70q^{13} + 64q^{16} + 56q^{19} - 125q^{25} - 160q^{28} + \cdots$$

and

(2.2)
$$\mathcal{B}(z) = \sum_{n=1}^{\infty} b^*(n)q^n := \sum_{n=0}^{\infty} b(n)q^{3n+1}$$
$$= q + q^4 + 2q^7 + 2q^{13} + q^{16} + 2q^{19} + q^{25} + 2q^{28} + \cdots$$

Here we have that $z \in \mathbb{H}$, the upper-half of the complex plane, and we let $q := e^{2\pi i z}$. We make these changes since $\mathcal{A}(z)$ and $\mathcal{B}(z)$ are examples of two special types of modular forms (for background on modular forms, see [1, 6, 7, 9]). The modularity of these two series follows easily from the properties of Dedekind's eta-function

(2.3)
$$\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n).$$

The proofs of Theorem 1.1 and Corollary 1.3 shall rely on exact formulas we derive for the numbers $a^*(n)$ and $b^*(n)$.

2.1. Exact formulas for $a^*(n)$. The modular form $\mathcal{A}(z)$ given by

$$\mathcal{A}(z) = \eta(3z)^8 = \sum_{n=1}^{\infty} a^*(n)q^n$$

is in $S_4(\Gamma_0(9))$, the space of weight 4 cusp forms on $\Gamma_0(9)$. This space is one dimensional (see Section 1.2.3 in [9]). Therefore, every cusp form in the space is a multiple of $\mathcal{A}(z)$. It turns out that $\mathcal{A}(z)$ is a form with *complex multiplication*.

We now briefly recall the notion of a newform with complex multiplication (for example, see Chapter 12 of [6] or Section 1.2 of [9], [10]). Let D < 0 be the fundamental discriminant of an imaginary quadratic field $K = \mathbb{Q}(\sqrt{D})$. Let O_K be the ring of integers of K, and let $\chi_K := \begin{pmatrix} D \\ \bullet \end{pmatrix}$ be the usual Kronecker character associated to K. Let $k \geq 2$, and let c be a Hecke character of K with exponent k - 1 and conductor \mathfrak{f}_c , a non-zero ideal of O_K . By definition, this means that

$$c: I(\mathfrak{f}_c) \longrightarrow \mathbb{C}^{\times}$$

is a homomorphism, where $I(\mathfrak{f}_c)$ denotes the group of fractional ideals of K prime to \mathfrak{f}_c . In particular, this means that

$$c(\alpha O_K) = \alpha^{k-1}$$

for $\alpha \in K^{\times}$ for which $\alpha \equiv 1 \mod^{\times} \mathfrak{f}_c$. To c we naturally associate a Dirichlet character ω_c defined, for every integer n coprime to \mathfrak{f}_c , by

$$\omega_c(n) := \frac{c(nO_K)}{n^{k-1}}.$$

Given this data, we let

(2.4)
$$\Phi_{K,c}(z) := \sum_{\mathfrak{a}} c(\mathfrak{a}) q^{N(a)},$$

where \mathfrak{a} varies over the ideals of O_K prime to \mathfrak{f}_c , and where $N(\mathfrak{a})$ is the usual ideal norm. It is known that $\Phi_{K,c}(z) \in S_k(\Gamma_0(|D| \cdot N(\mathfrak{f}_c)), \chi_K \cdot \omega_c)$ is a normalized newform.

Using this theory, we obtain the following theorem.

Theorem 2.1. Assume the notation above. Then the following are true:

- (1) If p = 3 or $p \equiv 2 \pmod{3}$ is prime, then $a^*(p) = 0$.
- (2) If $p \equiv 1 \pmod{3}$ is prime, then

$$a^*(p) = 2x^3 - 18xy^2$$

where x and y are integers for which $p = x^2 + 3y^2$ with $x \equiv 1 \pmod{3}$.

Remark. It is a classical fact that every prime $p \equiv 1 \pmod{3}$ is of the form $x^2 + 3y^2$. Moreover, there is a unique pair of positive integers x and y for which $x^2 + 3y^2 = p$. Therefore, the formula for $a^*(p)$ is well defined. Proof. There is a form with complex multiplication in $S_4(\Gamma_0(9))$. Following the recipe above, it is obtained by letting k = 4, $\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\sqrt{-3})$ and $\mathfrak{f}_c := (\sqrt{-3})$. For primes p, the coefficients of q^p in this form agree with the claimed formulas. Since $S_4(\Gamma_0(9))$ is one dimensional, this form must be $\mathcal{A}(z)$.

Using this theorem, we obtain the following immediate corollary.

Corollary 2.2. The following are true about $a^*(n)$.

(1) If m and n are coprime positive integers, then

$$a^*(mn) = a^*(m)a^*(n).$$

- (2) For every positive integer s, we have that $a^*(3^s) = 0$.
- (3) If $p \equiv 2 \pmod{3}$ is prime and s is a positive integer, then

$$a^*(p^s) = \begin{cases} 0 & \text{if } s \text{ is odd,} \\ (-1)^{s/2} p^{3s/2} & \text{if } s \text{ is even} \end{cases}$$

(4) If $p \equiv 1 \pmod{3}$ is prime and s is a positive integer, then $a^*(p^s) \neq 0$. Moreover, we have that

$$a^*(p^s) \equiv (8x^3)^s \pmod{p},$$

th $x \equiv 1 \pmod{3}$

where $p = x^2 + 3y^2$ with $x \equiv 1 \pmod{3}$.

Proof. Since $S_4(\Gamma_0(9))$ is one dimensional and since $a^*(1) = 1$, it follows that $\mathcal{A}(z)$ is a normalized Hecke eigenform. Claim (1) is well known to hold for all normalized Hecke eigenforms.

Claim (2) follows by inspection since $a^*(n) = 0$ if $n \equiv 0, 2 \pmod{3}$.

To prove claims (3) and (4), we note that since $\mathcal{A}(z)$ is a normalized Hecke eigenform on $\Gamma_0(9)$, it follows, for every prime $p \neq 3$, that

(2.5)
$$a^*(p^s) = a^*(p)a^*(p^{s-1}) - p^3a^*(p^{s-2}).$$

If $p \equiv 2 \pmod{3}$ is prime, then Theorem 2.1 implies that

$$a^*(p^s) = -p^3 a(p^{s-2}).$$

Claim (3) now follows by induction since $a^*(1) = 1$ and $a^*(p) = 0$.

Suppose that $p \equiv 1 \pmod{3}$ is prime. By Theorem 2.1, we know that $a^*(p) \neq 0$. More importantly, we have that

$$\iota^*(p) \equiv 8x^3 \pmod{p},$$

where $p = x^2 + 3y^2$ with $x \equiv 1 \pmod{3}$. To see this, one merely observes that

$$2x^3 - 18xy^2 = 2x(x^2 - 9y^2) = 2x(x^2 - 3(p - x^2)) \equiv 8x^3 \pmod{p}.$$

Since $|x| \leq \sqrt{p}$ and is non-zero, it follows that $a^*(p) \equiv 8x^3 \not\equiv 0 \pmod{p}$. By (2.5), we then have that

$$a^*(p^s) \equiv a^*(p)a^*(p^{s-1}) \equiv 8x^3a^*(p^{s-1}) \pmod{p}$$

By induction, it follows that $a^*(p^s) \equiv (8x^3)^s \pmod{p}$, which is non-zero modulo p. This proves claim (4).

Example 2.3. Here we give some numerical examples of the formulas for $a^*(n)$. 1) One easily finds that $a^*(13) = -70$. The prime p = 13 is of the form $x^2 + 3y^2$ where x = 1 and y = 2. Obviously, $x = 1 \equiv 1 \pmod{3}$, and so Theorem 2.1 asserts that $a^*(13) = 2 \cdot 1^3 - 18 \cdot 1 \cdot 2^2 = -70$.

2) We have that $a^*(13) = -70$ and $a^*(16) = 64$. One easily checks that $a^*(13 \cdot 16) = a^*(208) = -70 \cdot 64 = -4480$. This is an example of Corollary 2.2 (1).

3) If p = 5 and s = 3, then Corollary 2.2 (3) asserts that $a^*(5^3) = 0$. If p = 5 and s = 4, then it asserts that $a^*(5^4) = 5^6 = 15625$. One easily checks both evaluations numerically. 4) Now we consider the prime $p = 13 \equiv 1 \pmod{3}$. Since x = 1 and y = 2 for p = 13, Corollary 2.2 (4) asserts that $a^*(13^s) \equiv 8^s \pmod{13}$. One easily checks that

$$a^*(13) = -70 \equiv 8 \pmod{13},$$

 $a^*(13^2) = 2703 \equiv 8^2 \pmod{13},$
 $a^*(13^3) = -35420 \equiv 8^3 \pmod{13}.$

2.2. Proof of Theorem 1.1 and Corollary 1.3. Before we prove Theorem 1.1, we recall a known formula for b(n) (also see Section 3 of [2]), the number of 3-core partitions of n.

Lemma 2.4. Assuming the notation above, we have that

$$\mathcal{B}(z) = \sum_{n=1}^{\infty} b^*(n) q^n = \sum_{n=0}^{\infty} b(n) q^{3n+1} = \sum_{n=0}^{\infty} \sum_{d|3n+1} \left(\frac{d}{3}\right) q^{3n+1},$$

where $\left(\frac{\bullet}{3}\right)$ denotes the usual Legendre symbol modulo 3.

Proof. We have that $\mathcal{B}(z) = \eta(9z)^3/\eta(3z)$ is in $M_1(\Gamma_0(9), \chi)$, where $\chi := \left(\frac{-3}{\bullet}\right)$. The lemma follows easily from this fact. One may implement the theory of weight 1 Eisenstein series to obtain the desired formulas.

Alternatively, one may use the weight 1 form

$$\Theta(z) = \sum_{n=0}^{\infty} c(n)q^n := \sum_{x,y \in \mathbb{Z}} q^{x^2 + xy + y^2} = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + \cdots$$

Using the theory of twists, we find that

$$\widetilde{\Theta}(z) = \sum_{n \equiv 1 \pmod{3}} c(n)q^n = 6q + 6q^4 + 12q^7 + 12q^{13} + 6q^{16} + 12q^{19} + 6q^{25} + \cdots$$
$$= 6\left(q + q^4 + 2q^7 + 2q^{13} + q^{16} + 2q^{19} + q^{25} + \cdots\right).$$

By dimensionality (see Section 1.2.3 of [9]) we have that $\mathcal{B}(z) = \frac{1}{6}\widetilde{\Theta}(z)$. The claimed formulas for the coefficients follows easily from the fact that $x^2 + xy + y^2$ corresponds to the norm form on the ring of integers of $\mathbb{Q}(\sqrt{-3})$.

Example 2.5. The only divisors of primes $p \equiv 1 \pmod{3}$ are 1 and p, and so we have that $b^*(p) = 1 + \left(\frac{p}{3}\right) = 1 + \left(\frac{1}{3}\right) = 2$.

Proof of Theorem 1.1. The theorem follows immediately from Theorem 2.1, Corollary 2.2 and Lemma 2.4. One sees that the only $n \equiv 1 \pmod{3}$ for which $a^*(n) = 0$ are those nfor which $\operatorname{ord}_p(n)$ is odd for some prime $p \equiv 2 \pmod{3}$. The same conclusion holds for $b^*(n)$. Using the fact that

$$a(n) = a^*(3n+1)$$
 and $b(n) = b^*(3n+1)$,

the theorem follows.

Proof of Corollary 1.3. In a famous paper [11], Serre proved that "almost all" of the coefficients of a modular form with complex multiplication are zero. This implies that almost all of the $a^*(n)$ are zero. The result now follows thanks to Theorem 1.1.

References

- [1] D. Bump, Automorphic forms and representations, Cambridge Univ. Press, Cambridge, 1998.
- [2] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), no. 1, 331–347.
- [3] G.-N. Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398 [math.CO]
- [4] G.-N. Han, Some conjectures and open problems on partition hook lengths, Experimental Math., in press.
- [5] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Third edition, Göttingen, 1983.
- [6] H. Iwaniec, *Topics in classical automorphic forms*, Grad. Studies in Math. 17, Amer. Math. Soc., Providence, RI., 1997.
- [7] T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
- [8] N. A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, The unity of mathematics, Progr. Math. 244, Birkhauser, Boston, 2006, pages 525-596.
- [9] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, Amer. Math. Soc., Providence, RI, 2004.
- [10] K. Ribet, Galois representations attached to eigenforms with Nebentypus, Springer Lect. Notes in Math. 601, (1977), pages 17-51.
- [11] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. No. 54 (1981), 323–401.

I.R.M.A., UMR 7501, UNIVERSITÉ LOUIS PASTEUR ET CNRS, 7 RUE RENÉ-DESCARTES, F-67084 Strasbourg, France

E-mail address: guoniu@math.u-strasbg.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 E-mail address: ono@math.wisc.edu