HOOK LENGTHS AND 3-CORES

GUO-NIU HAN AND KEN ONO

Abstract

Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions, for the coefficients of certain power series. In the course of this investigation, he conjectured that $a(n)=0$ if and only if $b(n)=0$, where integers $a(n)$ and $b(n)$ are defined by

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a(n) x^{n}:=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{8} \\
& \sum_{n=0}^{\infty} b(n) x^{n}:=\prod_{n=1}^{\infty} \frac{\left(1-x^{3 n}\right)^{3}}{1-x^{n}}
\end{aligned}
$$

The numbers $a(n)$ are given in terms of hook lengths of partitions, while $b(n)$ equals the number of 3 -core partitions of n. Here we prove this conjecture.

1. Introduction and statement of results

In their work on random partitions and Seiberg-Witten theory, Nekrasov and Okounkov [8] proved the following striking formula:

$$
\begin{equation*}
F_{z}(x):=\sum_{\lambda} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{z}{h^{2}}\right)=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{z-1} \tag{1.1}
\end{equation*}
$$

Here the sum is over integer partitions $\lambda,|\lambda|$ denotes the integer partitioned by λ, and $\mathcal{H}(\lambda)$ denotes the multiset of classical hooklengths associated to a partition λ. In a recent preprint, the first author [3] has obtained an extension of (1.1), one which has a specialization which gives the classical generating function

$$
\begin{equation*}
C_{t}(x):=\sum_{n=0}^{\infty} c_{t}(n) x^{n}=\prod_{n=1}^{\infty} \frac{\left(1-x^{t n}\right)^{t}}{1-x^{n}} \tag{1.2}
\end{equation*}
$$

for the number of t-core partitions of n. Recall that a partition is a t-core if none of its hook lengths are multiples of t.

In the course of his work, the first author [4] formulated a number of conjectures concerning hook lengths of partitions. One of these conjectures is related to classical identities of Jacobi. For positive integers t, he compared the functions $F_{t^{2}}(x)$ and $C_{t}(x)$. If $t=1$, we obviously have that

$$
F_{1}(x)=C_{1}(x)=1
$$

The second author thanks the support of the NSF, and he thanks the Manasse family.

For $t=2$, by two famous identities of Jacobi, we have

$$
\begin{aligned}
& F_{4}(x)=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{3}=\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) x^{\left(k^{2}+k\right) / 2} \\
& C_{2}(x)=\prod_{n=1}^{\infty} \frac{\left(1-x^{2 n}\right)^{2}}{1-x^{n}}=\sum_{k=0}^{\infty} x^{\left(k^{2}+k\right) / 2}
\end{aligned}
$$

In both pairs of power series one sees that the non-zero coefficients are supported on the same terms. For $t=3$, we then have

$$
\begin{align*}
F_{9}(x) & =\sum_{n=0}^{\infty} a(n) x^{n}:=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{8} \tag{1.3}\\
& =1-8 x+20 x^{2}-70 x^{4}+\cdots-520 x^{14}+57 x^{16}+560 x^{17}+182 x^{20}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
C_{3}(x) & =\sum_{n=0}^{\infty} b(n) x^{n}:=\prod_{n=1}^{\infty} \frac{\left(1-x^{3 n}\right)^{3}}{1-x^{n}} \tag{1.4}\\
& =1+x+2 x^{2}+2 x^{4}+\cdots+2 x^{14}+3 x^{16}+2 x^{17}+2 x^{20}+\cdots .
\end{align*}
$$

Remark. It is clear that $b(n)=c_{3}(n)$.
In accordance with the elementary observations when $t=1$ and 2 , one notices that the non-zero coefficients of $F_{9}(x)$ and $C_{3}(x)$ appear to be supported on the same terms. Based on substantial numerical evidence, the first author made the following conjecture.
Conjecture 4.6. (Conjecture 4.6 of [4])
Assuming the notation above, we have that $a(n)=0$ if and only if $b(n)=0$.
Remark. The obvious generalization of Conjecture 4.6 and the examples above is not true for $t=4$. In particular, one easily finds that

$$
\begin{aligned}
F_{16}(x) & =1-15 x+90 x^{2}-\cdots+641445 x^{52}+1537330 x^{54}+\cdots \\
C_{4}(x) & =1+x+2 x^{2}+3 x^{3}+\cdots+5 x^{52}+8 x^{53}+10 x^{54}+\cdots
\end{aligned}
$$

The coefficient of x^{53} vanishes in $F_{16}(x)$ and is non-zero in $C_{4}(x)$.
Here we prove that Conjecture 4.6 is true. We have the following theorem.
Theorem 1.1. Assuming the notation above, we have that $a(n)=0$ if and only if $b(n)=0$. Moreover, we have that $a(n)=b(n)=0$ precisely for those non-negative n for which $\operatorname{ord}_{p}(3 n+1)$ is odd for some prime $p \equiv 2(\bmod 3)$.

Remark. As usual, $\operatorname{ord}_{p}(N)$ denotes the largest power of a prime p dividing an integer N.

Remark. Theorem 1.1 shows that $a(n)=b(n)=0$ in a systematic way. The vanishing coefficients are associated to primes $p \equiv 2(\bmod 3)$. If $n \equiv 1(\bmod 3)$ has the property that $\operatorname{ord}_{p}(n)$ is odd, then we have

$$
a\left(\frac{n-1}{3}\right)=b\left(\frac{n-1}{3}\right)=0 .
$$

For example, since $\operatorname{ord}_{5}(10)=1 \equiv 1(\bmod 2)$, we have that $a(3)=b(3)=0$.
As an immediate corollary, we have the following.
Corollary 1.2. For positive integers N, we have that

$$
\sum_{\lambda \vdash N} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{9}{h^{2}}\right)=0
$$

if and only if there are no 3-core partitions of N.
Theorem 1.1 implies that "almost all" of the $a(n)$ and $b(n)$ are 0 . More precisely, we have the following.

Corollary 1.3. Assuming the notation above, we have that

$$
\lim _{X \rightarrow+\infty} \frac{\#\{0 \leq n \leq X: a(n)=b(n)=0\}}{X}=1
$$

The authors thank Mihai Cipu for insightful comments related to Conjecture 4.6.

2. Proofs

It is convenient to renormalize the functions $a(n)$ and $b(n)$ using the series

$$
\begin{align*}
\mathcal{A}(z) & =\sum_{n=1}^{\infty} a^{*}(n) q^{n}:=\sum_{n=0}^{\infty} a(n) q^{3 n+1} \tag{2.1}\\
& =q-8 q^{4}+20 q^{7}-70 q^{13}+64 q^{16}+56 q^{19}-125 q^{25}-160 q^{28}+\cdots .
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{B}(z) & =\sum_{n=1}^{\infty} b^{*}(n) q^{n}:=\sum_{n=0}^{\infty} b(n) q^{3 n+1} \tag{2.2}\\
& =q+q^{4}+2 q^{7}+2 q^{13}+q^{16}+2 q^{19}+q^{25}+2 q^{28}+\cdots .
\end{align*}
$$

Here we have that $z \in \mathbb{H}$, the upper-half of the complex plane, and we let $q:=e^{2 \pi i z}$. We make these changes since $\mathcal{A}(z)$ and $\mathcal{B}(z)$ are examples of two special types of modular forms (for background on modular forms, see $[1,6,7,9]$). The modularity of these two series follows easily from the properties of Dedekind's eta-function

$$
\begin{equation*}
\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{2.3}
\end{equation*}
$$

The proofs of Theorem 1.1 and Corollary 1.3 shall rely on exact formulas we derive for the numbers $a^{*}(n)$ and $b^{*}(n)$.
2.1. Exact formulas for $a^{*}(n)$. The modular form $\mathcal{A}(z)$ given by

$$
\mathcal{A}(z)=\eta(3 z)^{8}=\sum_{n=1}^{\infty} a^{*}(n) q^{n}
$$

is in $S_{4}\left(\Gamma_{0}(9)\right)$, the space of weight 4 cusp forms on $\Gamma_{0}(9)$. This space is one dimensional (see Section 1.2.3 in [9]). Therefore, every cusp form in the space is a multiple of $\mathcal{A}(z)$. It turns out that $\mathcal{A}(z)$ is a form with complex multiplication.

We now briefly recall the notion of a newform with complex multiplication (for example, see Chapter 12 of [6] or Section 1.2 of [9], [10]). Let $D<0$ be the fundamental discriminant of an imaginary quadratic field $K=\mathbb{Q}(\sqrt{D})$. Let O_{K} be the ring of integers of K, and let $\chi_{K}:=\left(\frac{D}{\circ}\right)$ be the usual Kronecker character associated to K. Let $k \geq 2$, and let c be a Hecke character of K with exponent $k-1$ and conductor \mathfrak{f}_{c}, a non-zero ideal of O_{K}. By definition, this means that

$$
c: I\left(\mathfrak{f}_{c}\right) \longrightarrow \mathbb{C}^{\times}
$$

is a homomorphism, where $I\left(\mathfrak{f}_{c}\right)$ denotes the group of fractional ideals of K prime to \mathfrak{f}_{c}. In particular, this means that

$$
c\left(\alpha O_{K}\right)=\alpha^{k-1}
$$

for $\alpha \in K^{\times}$for which $\alpha \equiv 1 \bmod ^{\times} \mathfrak{f}_{c}$. To c we naturally associate a Dirichlet character ω_{c} defined, for every integer n coprime to \mathfrak{f}_{c}, by

$$
\omega_{c}(n):=\frac{c\left(n O_{K}\right)}{n^{k-1}} .
$$

Given this data, we let

$$
\begin{equation*}
\Phi_{K, c}(z):=\sum_{\mathfrak{a}} c(\mathfrak{a}) q^{N(a)} \tag{2.4}
\end{equation*}
$$

where \mathfrak{a} varies over the ideals of O_{K} prime to \mathfrak{f}_{c}, and where $N(\mathfrak{a})$ is the usual ideal norm. It is known that $\Phi_{K, c}(z) \in S_{k}\left(\Gamma_{0}\left(|D| \cdot N\left(\mathfrak{f}_{c}\right)\right), \chi_{K} \cdot \omega_{c}\right)$ is a normalized newform.

Using this theory, we obtain the following theorem.
Theorem 2.1. Assume the notation above. Then the following are true:
(1) If $p=3$ or $p \equiv 2(\bmod 3)$ is prime, then $a^{*}(p)=0$.
(2) If $p \equiv 1(\bmod 3)$ is prime, then

$$
a^{*}(p)=2 x^{3}-18 x y^{2},
$$

where x and y are integers for which $p=x^{2}+3 y^{2}$ with $x \equiv 1(\bmod 3)$.
Remark. It is a classical fact that every prime $p \equiv 1(\bmod 3)$ is of the form $x^{2}+3 y^{2}$. Moreover, there is a unique pair of positive integers x and y for which $x^{2}+3 y^{2}=p$. Therefore, the formula for $a^{*}(p)$ is well defined.

Proof. There is a form with complex multiplication in $S_{4}\left(\Gamma_{0}(9)\right)$. Following the recipe above, it is obtained by letting $k=4, \mathbb{Q}(\sqrt{D})=\mathbb{Q}(\sqrt{-3})$ and $\mathfrak{f}_{c}:=(\sqrt{-3})$. For primes p, the coefficients of q^{p} in this form agree with the claimed formulas. Since $S_{4}\left(\Gamma_{0}(9)\right)$ is one dimensional, this form must be $\mathcal{A}(z)$.

Using this theorem, we obtain the following immediate corollary.
Corollary 2.2. The following are true about $a^{*}(n)$.
(1) If m and n are coprime positive integers, then

$$
a^{*}(m n)=a^{*}(m) a^{*}(n) .
$$

(2) For every positive integer s, we have that $a^{*}\left(3^{s}\right)=0$.
(3) If $p \equiv 2(\bmod 3)$ is prime and s is a positive integer, then

$$
a^{*}\left(p^{s}\right)= \begin{cases}0 & \text { if } s \text { is odd } \\ (-1)^{s / 2} p^{3 s / 2} & \text { if } s \text { is even }\end{cases}
$$

(4) If $p \equiv 1(\bmod 3)$ is prime and s is a positive integer, then $a^{*}\left(p^{s}\right) \neq 0$. Moreover, we have that

$$
a^{*}\left(p^{s}\right) \equiv\left(8 x^{3}\right)^{s} \quad(\bmod p),
$$

where $p=x^{2}+3 y^{2}$ with $x \equiv 1(\bmod 3)$.
Proof. Since $S_{4}\left(\Gamma_{0}(9)\right)$ is one dimensional and since $a^{*}(1)=1$, it follows that $\mathcal{A}(z)$ is a normalized Hecke eigenform. Claim (1) is well known to hold for all normalized Hecke eigenforms.

Claim (2) follows by inspection since $a^{*}(n)=0$ if $n \equiv 0,2(\bmod 3)$.
To prove claims (3) and (4), we note that since $\mathcal{A}(z)$ is a normalized Hecke eigenform on $\Gamma_{0}(9)$, it follows, for every prime $p \neq 3$, that

$$
\begin{equation*}
a^{*}\left(p^{s}\right)=a^{*}(p) a^{*}\left(p^{s-1}\right)-p^{3} a^{*}\left(p^{s-2}\right) . \tag{2.5}
\end{equation*}
$$

If $p \equiv 2(\bmod 3)$ is prime, then Theorem 2.1 implies that

$$
a^{*}\left(p^{s}\right)=-p^{3} a\left(p^{s-2}\right) .
$$

Claim (3) now follows by induction since $a^{*}(1)=1$ and $a^{*}(p)=0$.
Suppose that $p \equiv 1(\bmod 3)$ is prime. By Theorem 2.1 , we know that $a^{*}(p) \neq 0$. More importantly, we have that

$$
a^{*}(p) \equiv 8 x^{3} \quad(\bmod p)
$$

where $p=x^{2}+3 y^{2}$ with $x \equiv 1(\bmod 3)$. To see this, one merely observes that

$$
2 x^{3}-18 x y^{2}=2 x\left(x^{2}-9 y^{2}\right)=2 x\left(x^{2}-3\left(p-x^{2}\right)\right) \equiv 8 x^{3} \quad(\bmod p)
$$

Since $|x| \leq \sqrt{p}$ and is non-zero, it follows that $a^{*}(p) \equiv 8 x^{3} \not \equiv 0(\bmod p)$. By (2.5), we then have that

$$
a^{*}\left(p^{s}\right) \equiv a^{*}(p) a^{*}\left(p^{s-1}\right) \equiv 8 x^{3} a^{*}\left(p^{s-1}\right) \quad(\bmod p) .
$$

By induction, it follows that $a^{*}\left(p^{s}\right) \equiv\left(8 x^{3}\right)^{s}(\bmod p)$, which is non-zero modulo p. This proves claim (4).

Example 2.3. Here we give some numerical examples of the formulas for $a^{*}(n)$.

1) One easily finds that $a^{*}(13)=-70$. The prime $p=13$ is of the form $x^{2}+3 y^{2}$ where $x=1$ and $y=2$. Obviously, $x=1 \equiv 1(\bmod 3)$, and so Theorem 2.1 asserts that $a^{*}(13)=2 \cdot 1^{3}-18 \cdot 1 \cdot 2^{2}=-70$.
2) We have that $a^{*}(13)=-70$ and $a^{*}(16)=64$. One easily checks that $a^{*}(13 \cdot 16)=$ $a^{*}(208)=-70 \cdot 64=-4480$. This is an example of Corollary 2.2 (1).
3) If $p=5$ and $s=3$, then Corollary $2.2(3)$ asserts that $a^{*}\left(5^{3}\right)=0$. If $p=5$ and $s=4$, then it asserts that $a^{*}\left(5^{4}\right)=5^{6}=15625$. One easily checks both evaluations numerically.
4) Now we consider the prime $p=13 \equiv 1(\bmod 3)$. Since $x=1$ and $y=2$ for $p=13$, Corollary $2.2(4)$ asserts that $a^{*}\left(13^{s}\right) \equiv 8^{s}(\bmod 13)$. One easily checks that

$$
\begin{aligned}
a^{*}(13) & =-70 \equiv 8 \quad(\bmod 13) \\
a^{*}\left(13^{2}\right) & =2703 \equiv 8^{2} \quad(\bmod 13) \\
a^{*}\left(13^{3}\right) & =-35420 \equiv 8^{3} \quad(\bmod 13)
\end{aligned}
$$

2.2. Proof of Theorem 1.1 and Corollary 1.3. Before we prove Theorem 1.1, we recall a known formula for $b(n)$ (also see Section 3 of [2]), the number of 3-core partitions of n.

Lemma 2.4. Assuming the notation above, we have that

$$
\mathcal{B}(z)=\sum_{n=1}^{\infty} b^{*}(n) q^{n}=\sum_{n=0}^{\infty} b(n) q^{3 n+1}=\sum_{n=0}^{\infty} \sum_{d \mid 3 n+1}\left(\frac{d}{3}\right) q^{3 n+1},
$$

where $\left(\frac{\bullet}{3}\right)$ denotes the usual Legendre symbol modulo 3.
Proof. We have that $\mathcal{B}(z)=\eta(9 z)^{3} / \eta(3 z)$ is in $M_{1}\left(\Gamma_{0}(9), \chi\right)$, where $\chi:=\left(\frac{-3}{\bullet}\right)$. The lemma follows easily from this fact. One may implement the theory of weight 1 Eisenstein series to obtain the desired formulas.

Alternatively, one may use the weight 1 form

$$
\Theta(z)=\sum_{n=0}^{\infty} c(n) q^{n}:=\sum_{x, y \in \mathbb{Z}} q^{x^{2}+x y+y^{2}}=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\cdots
$$

Using the theory of twists, we find that

$$
\begin{aligned}
\widetilde{\Theta}(z)=\sum_{n \equiv 1} c(n) q^{n} & =6 q+6 q^{4}+12 q^{7}+12 q^{13}+6 q^{16}+12 q^{19}+6 q^{25}+\cdots \\
& =6\left(q+q^{4}+2 q^{7}+2 q^{13}+q^{16}+2 q^{19}+q^{25}+\cdots\right) .
\end{aligned}
$$

By dimensionality (see Section 1.2 .3 of [9]) we have that $\mathcal{B}(z)=\frac{1}{6} \widetilde{\Theta}(z)$. The claimed formulas for the coefficients follows easily from the fact that $x^{2}+x y+y^{2}$ corresponds to the norm form on the ring of integers of $\mathbb{Q}(\sqrt{-3})$.

Example 2.5. The only divisors of primes $p \equiv 1(\bmod 3)$ are 1 and p, and so we have that $b^{*}(p)=1+\left(\frac{p}{3}\right)=1+\left(\frac{1}{3}\right)=2$.

Proof of Theorem 1.1. The theorem follows immediately from Theorem 2.1, Corollary 2.2 and Lemma 2.4. One sees that the only $n \equiv 1(\bmod 3)$ for which $a^{*}(n)=0$ are those n for which $\operatorname{ord}_{p}(n)$ is odd for some prime $p \equiv 2(\bmod 3)$. The same conclusion holds for $b^{*}(n)$. Using the fact that

$$
a(n)=a^{*}(3 n+1) \quad \text { and } \quad b(n)=b^{*}(3 n+1)
$$

the theorem follows.
Proof of Corollary 1.3. In a famous paper [11], Serre proved that "almost all" of the coefficients of a modular form with complex multiplication are zero. This implies that almost all of the $a^{*}(n)$ are zero. The result now follows thanks to Theorem 1.1.

References

[1] D. Bump, Automorphic forms and representations, Cambridge Univ. Press, Cambridge, 1998.
[2] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), no. 1, 331-347.
[3] G.-N. Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398 [math.CO]
[4] G.-N. Han, Some conjectures and open problems on partition hook lengths, Experimental Math., in press.
[5] E. Hecke, Mathematische Werke, Vandenhoeck \& Ruprecht, Third edition, Göttingen, 1983.
[6] H. Iwaniec, Topics in classical automorphic forms, Grad. Studies in Math. 17, Amer. Math. Soc., Providence, RI., 1997.
[7] T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
[8] N. A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, The unity of mathematics, Progr. Math. 244, Birkhauser, Boston, 2006, pages 525-596.
[9] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, Amer. Math. Soc., Providence, RI, 2004.
[10] K. Ribet, Galois representations attached to eigenforms with Nebentypus, Springer Lect. Notes in Math. 601, (1977), pages 17-51.
[11] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. No. 54 (1981), 323-401.
I.R.M.A., UMR 7501, Université Louis Pasteur et CNRS, 7 rue René-Descartes, F-67084 Strasbourg, France

E-mail address: guoniu@math.u-strasbg.fr
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: ono@math.wisc.edu

