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Abstract. Let R(w; q) be Dyson’s generating function for partition ranks. For roots
of unity ζ 6= 1, it is known that R(ζ; q) and R(ζ; 1/q) are given by harmonic Maass
forms, Eichler integrals, and modular units. We show that modular forms arise from
G(w; q), the generating function for ranks of partitions into distinct parts, in a similar
way. If D(w; q) := (1 + w)G(w; q) + (1− w)G(−w; q), then for roots of unity ζ 6= ±1
we show that q

1
12 ·D(ζ; q)D(ζ−1; q) is a weight 1 modular form. Although G(ζ; 1/q)

is not well defined, we show that it gives rise to natural sequences of q-series whose
limits involve infinite products (and modular forms when ζ = 1). Our results follow
from work of Fine on basic hypergeometric series.

1. Introduction and statement of results

There are many famous examples of q-series which coincide with modular forms (up
to a power of q) when q := e2πiτ . For example, the celebrated Rogers-Ramanujan
identities

R1(q) :=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
,

R2(q) :=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn
2+n

(1− q)(1− q2) · · · (1− qn)
,

provide series expansions of infinite products which are essentially weight 0 modular
forms. As another example, the partition generating function satisfies

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
= 1 +

∞∑
n=1

qn
2

(1− q)2(1− q2)2 · · · (1− qn)2
.

Since q−1P (q24) = 1/η(24τ), where η(τ) := q1/24
∏∞

n=1(1−qn) is Dedekind’s weight 1/2
modular form, this generating function is another instance of a modular form which is
a basic hypergeometric type series.
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Dyson’s rank generating function provides two infinite families of basic hypergeometric-
type series which are related to automorphic forms. To make this precise, we first recall
some notation. As usual, we let

(1.1) (a; q)n :=

{
(1− a)(1− aq) · · · (1− aqn−1) if n ≥ 1,

1 if n = 0.

and

(1.2) (a; q)∞ :=
∞∏
n=0

(1− aqn).

Recall that the rank of a partition is its largest part minus its number of parts. For
instance, the rank of the partition (2, 1, 1, 1) of 5 is 2 − 4 = −2. Let N(m,n) denote
the number of partitions of n with rank m. Then the generating function for N(m,n)
is

R(w; q) := 1 +
∞∑
n=1

N(m,n)wmqn = 1 +
∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
.

The two families of functions R(ζ; q) and R(ζ; 1/q), where ζ are roots of unity, are
intimately related to automorphic forms. (We will use the rightmost expression as the
fixed representation of R as a q-series throughout this paper.) We clearly have that

q−1R(1; q24) =
∞∑
n=0

p(n)q24n−1 =
1

η(24τ)

is a weight -1/2 modular form. For ζ 6= 1, a very different phenomenon holds. In this
case Bringmann and the second author proved that R(ζ; q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form [4].

For R̂(w; q) := R(w; 1/q), another phenomenon occurs. A straightforward calculation
shows that

(1.3) R̂(w; q) = 1 +
∞∑
n=1

qn

(wq; q)n(w−1q; q)n
,

and then a classical identity of Ramanujan [1] asserts that

R̂(w; q) = (1− w)
∞∑
n=0

(−1)nw3nq
3n2+n

2 (1− w2q2n+1) +
w
∑∞

n=0(−1)nw2nq
n2+n

2

(wq; q)∞(w−1q; q)∞
.(1.4)

For generic roots of unity w = ζ, the right hand side of (1.4) consists of two false theta
series, which can be thought of as Eichler integrals (for example, see page 103 of [8]),
and an infinite product which is essentially a modular form (see 1.7).

Here we address the analogous questions for the series

(1.5) G(w; q) :=
∑
n≥0
m∈Z

Q(m,n)wmqn = 1 +
∞∑
n=1

q
n2+n

2

(wq; q)n
.
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This is the generating function for Q(m,n), the number of partitions of n into distinct
parts with rank m. Using the fixed representation for G above, we similarly define the

series Ĝ(ζ; q) := G(ζ; 1/q), and relate it to modular forms and other infinite products
for roots of unity ζ.

The case of G(ζ; q) has been thoroughly investigated for ζ ∈ {±1,±i}. In particular,
by considering the Sylvester’s triangle of a partition one can show that

q
1
24G(1; q) =

η(2τ)

η(τ)

is a weight 0 modular form. For ζ = ±i, we have the two false theta functions [9]

qG(±i; q24) =
∞∑
k=0

(±i)kq(6k+1)2 +
∞∑
k=1

(±i)k−1q(6k−1)2 .

Although these two series are not modular, they are Eichler integrals of weight 3/2
modular forms. The case of ζ = −1 is more exotic. If we define numbers a(n) by
qG(−1; q24) =

∑∞
n=1 a(n)qn, then the function

φ(τ) :=
√
y
∞∑
n=1

a(n)e2πinxK0(2πny)

is a simple linear combination of twists of the Hecke-Maass cusp form constructed in
[2, 5]. Here K0 denotes the usual index zero K-Bessel function and τ = x + iy with
x, y ∈ R.

For roots of unity ζ 6= ±1, it turns out that G(ζ; q), G(−ζ; q), G(ζ−1; q) and
G(−ζ−1; q) together give a “factorization” of a certain weight 1 modular form. For
convenience, we define the series

(1.6) D(w; q) := (1 + w)G(w; q) + (1− w)G(−w; q).

For roots of unity ζ 6= 1, we require the weight 0 modular form (for example, see
[7, 10])

(1.7) η(ζ; τ) := q
1
12

∞∏
n=1

(1− ζqn)(1− ζ−1qn).

Theorem 1.1. If ζ 6= ±1 is a root of unity, then we have that q
1
12 ·D(ζ; q)D(ζ−1; q) is

the weight 1 modular form

q
1
12 ·D(ζ; q)D(ζ−1; q) = 4 · η(2τ)4

η(τ)2η(ζ2; 2τ)
.

Example. Here we consider the case where ζ = i. Since D(i; q) = D(−i; q), Theorem 1.1

implies that q
1
24D(i; q) is the weight 1/2 modular form

q
1
24D(i; q) = 2 · η(2τ)3

η(τ)η(4τ)
= 2q

1
24 + 2q

25
24 − 2q

49
24 − · · · .
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Now we turn to the series Ĝ(ζ; q) := G(ζ; 1/q). A straightforward calculation (see
Lemma 3.1) reveals the formal identity

(1.8) Ĝ(w; q) = 1 +
∞∑
n=1

(−w−1)n

(w−1q; q)n
.

Unfortunately, this is not a well defined q-series. By that, we mean that if

(1.9) Ĝm(w; q) := 1 +
m∑
n=1

(−w−1)n

(w−1q; q)n
,=:

∞∑
n=0

cm(n)qn

then there are positive integers k such that limm→+∞ cm(k) is not well defined. However,
it turns out that if −ζ−1 6= 1 is a root of unity of order m, then for each 0 ≤ r < m,
we have that limn→∞ cmn+r(k) is well defined for each k, and so

(1.10) lim
n→+∞

Ĝmn+r(ζ; q)

is a well defined q-series. The next theorem describes these limits and shows that in
the case −ζ−1 = −1, it is the sum of a weight −1/2 modular form with a weight 0
modular form.

Theorem 1.2. Suppose that −ζ−1 6= 1 is a primitive mth root of unity. If 0 ≤ r < m,

then limn→∞ Ĝmn+r(ζ; q) is a well defined q-series and satisfies

lim
n→∞

Ĝmn+r(ζ; q) = lim
n→∞

Ĝmn(ζ; q) +
(−ζ−1)r − 1

ζ + 1

1

(ζ−1q; q)∞
.

Furthermore, if we define the sequence b(n) by
∑∞

n=0(−1)nb(n)qn =
∏∞

n=1(1 + q2n−1),
then

lim
n→∞

Ĝ2n(1; q) =
1

2

(
∞∑
n=0

b(n)qn +
1

(q; q)∞

)
and

lim
n→∞

Ĝ2n+1(1; q) =
1

2

(
∞∑
n=0

b(n)qn − 1

(q; q)∞

)
.

Remark. Notice that the sums
∞∑
n=0

(−1)nb(n)qn−
1
24 = q−

1
24

∞∏
n=0

(1 + q2n+1) =
η(2τ)2

η(τ)η(4τ)
,

and
∞∑
n=0

b(n)qn−
1
24 =

η(τ)

η(2τ)

are both modular forms of weight 0. Since η(z) is a weight 1/2 modular form, it follows

that q−1/24 limn→∞ Ĝ2n(1; q) and q−1/24 limn→∞ Ĝ2n+1(1; q) are both equal to a sum of
a weight −1/2 modular form and a weight 0 modular form.
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Example. To illustrate Theorem 1.2 in the case ζ = 1, we list the first few series in the
two convergent sequences:

Ĝ1(1; q) = −q − q2 − q3 − q4 − q5 − q6 − q7 − q8 − q9 − · · ·

Ĝ3(1; q) = −q − q2 − 2q3 − 2q4 − 3q5 − 4q6 − 5q7 − 6q8 − 8q9 − · · ·

Ĝ5(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 7q7 − 9q8 − 13q9 − · · ·

Ĝ7(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − 15q9 − · · ·

Ĝ9(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − 16q9 − · · · ,

and

Ĝ2(1; q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 4q9 + · · ·

Ĝ4(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 5q6 + 6q7 + 9q8 + 10q9 + · · ·

Ĝ6(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 11q8 + 13q9 + · · ·

Ĝ8(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 12q8 + 14q9 + · · ·

Ĝ10(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 12q8 + 14q9 + · · · .

We conclude the introduction with the following open problem.

Problem. Assume the notation and hypotheses in Theorem 1.1. For integers m > 2,
determine whether the q-series

lim
n→+∞

Ĝmn(ζ; q)

appears naturally in the theory of automorphic forms.

In Section 2 we recall some classical identities of Fine, and we prove Theorem 1.1.
In Section 3 we prove Theorem 1.2.

2. Identities of Fine and the proof of Theorem 1.1

First we recall classical work of Fine on q-hypergeometric series (a.k.a. basic hyper-
geometric series).

2.1. Fine’s basic hypergeometric series. Theorem 1.1 follows from the combina-
torial properties of Fine’s basic hypergeometric function

(2.1) F (a, b, t) := 1 +
∞∑
n=1

(aq; q)n
(bq; q)n

tn.

The next lemma (see (6.1), (6.2) and (7.3) of [6]) gives important closed formulas for
certain specializations of this series.
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Lemma 2.1. Assuming that the following series are well defined:

(2.2) F (a, 0, t) =
1

1− t

∞∑
n=0

(−at)nq n2+n
2

(tq; q)n
,

(2.3) F (a, 1, t) =
(atq; q)∞
(t; q)∞

,

(2.4)
∞∑
n=0

(t; q)nq
n

(bq; q)n(q; q)n
=

(t; q)∞
(bq; q)∞(q; q)∞

· F (b/t, 0, t).

The next identity (see (7.1) of [6]) is the key observation which leads to Theorem 1.1.

Lemma 2.2. Assume that the series below are well defined

S = F (a, 0, t),

H =
(b/a; q)∞

(bq; q)∞(b/at; q)∞
,

G =
(b/at)

1− (b/at)

∞∑
n=0

(b/a; q)nq
n

(bq; q)n(bq/at; q)n
,

F = F (a, b, t).

Then we have that

F +G = HS.

2.2. Proof of Theorem 1.1. In Lemma 2.2, let t = ζ and let a = −1/ζ. By (2.2) we
have that

S =
1

1− ζ

∞∑
n=0

q
n2+n

2

(ζq; q)n
=

1

1− ζ
·G(ζ; q).

Now by letting b = 1 we have

H =
(−ζ; q)∞

(q; q)∞(−1; q)∞
=

1 + ζ

2
· (−ζq; q)∞

(q; q)∞(−q; q)∞
,

G = −1

2

∞∑
n=0

(−ζ; q)nq
n

(q; q)n(−q; q)n
,

F =
∞∑
n=0

(−ζ−1q; q)nζ
n

(q; q)n
= F (−ζ−1, 1, ζ).

By (2.3), we then have that

F =
1

1− ζ
· (−q; q)∞

(ζq; q)∞
.
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Combining these observations with Lemma 2.2, we can solve for G(ζ; q) to obtain

(2.5) G(ζ; q) =
2

1 + ζ
· (q; q)∞(−q; q)2

∞
(ζq; q)∞(−ζq; q)∞

− 1− ζ
1 + ζ

· (q; q)∞(−q; q)∞
(−ζq; q)∞

∞∑
n=0

(−ζ; q)nq
n

(q; q)n(−q; q)n
.

By (2.4), where t = −ζ and b = −1, followed by (2.2), we find that

∞∑
n=0

(−ζ; q)nq
n

(q; q)n(−q; q)n
=

(−ζ; q)∞
(−q; q)∞(q; q)∞

· F (ζ−1, 0,−ζ)

=
(−ζq; q)∞

(q; q)∞(−q; q)∞

∞∑
n=0

q
n2+n

2

(−ζq; q)n

=
(−ζq; q)∞

(q; q)∞(−q; q)∞
·G(−ζ; q).

Plugging this into (2.5), one easily finds that

D(ζ; q) = (1 + ζ)G(ζ; q) + (1− ζ)G(−ζ; q) = 2 · (−q; q)2
∞(q; q)∞

(ζ2q2; q2)∞
.

Using (1.7) and the definition of η(τ), the proof follows easily by multiplying out
D(ζ; q)D(ζ−1; q).

3. Proof of Theorem 1.2

To prove Theorem 1.2, we first prove the following two lemmas.

Lemma 3.1. We have that

(3.1) Ĝ(w; q) = 1 +
∞∑
n=1

(−w−1)n

(w−1q; q)n
.

Proof. We have

Ĝ(w; q) = Ĝ(w; 1/q)

= 1 +
∞∑
n=1

1

qn(n+1)/2

1

(1− w/q)(1− w/q2) · · · (1− w/qn)

= 1 +
∞∑
n=1

1

qn(n+1)/2

−w−1q

(1− w−1q)

−w−1q2

(1− w−1q2)
· · · −w

−1qn

(1− w−1qn)

= 1 +
∞∑
n=1

(−w−1)n

(w−1q; q)n

as desired. �
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Lemma 3.2. Let −ζ−1 be an mth root of unity, and let k be a positive integer. For any

positive integer n > k and any positive integer r, the coefficient of qk in Ĝmn+r(ζ; q) is
the same as the coefficient of qk in

Ĝmn(ζ; q) +
(−ζ−1)r − 1

ζ + 1

1

(ζ−1q; q)∞
.

Proof. For n > k, the coefficient of qk in 1
(ζ−1q;q)n

is the same as that in 1
(ζ−1q;q)∞

. Thus

for n > k, the coefficient of qk in

Ĝmn+r(ζ; q) = 1 +
mn+r∑
t=1

(−ζ−1)t

(ζ−1q; q)t
= Ĝmn +

mn+r∑
t=mn+1

(−ζ−1)t

(ζ−1q; q)t

is the same as the coefficient of qk in

Ĝmn(ζ; q) +
mn+r∑
t=mn+1

(−ζ−1)t

(ζ−1q; q)∞
= Ĝmn(ζ; q) +

1

(ζ−1q; q)∞

r∑
t=1

(−ζ−1)t

= Ĝmn(ζ; q) +
(−ζ−1)r − 1

ζ + 1

1

(ζ−1q; q)∞

and the claim follows. �

3.1. Proof of Theorem 1.2. Setting r = m in Lemma 3.2, it follows that for n > k,

the coefficient of qk in Ĝm(n+1)(ζ; q) is the same as that of Ĝmn(ζ; q). Thus, using

Lemma 3.2 repeatedly, we see that the coefficient of qk in Ĝm(n+a)+r(ζ; q) is the same

as that of Ĝmn+r(ζ; q) for any positive integers a and r. Therefore, the coefficient of

each power of q is eventually constant in the series Ĝmn+r(ζ; q), and so the functions

limn→∞ Ĝmn+r(ζ; q) are well-defined q-series.
Taking the limit as n→∞ on both sides of Lemma 3.2, it follows that

(3.2) lim
n→∞

Ĝmn+r(ζ; q) = lim
n→∞

Ĝmn(ζ; q) +
(−ζ−1)r − 1

ζ + 1

1

(ζ−1q; q)∞
.

We now examine the case −ζ−1 = −1. Notice that by (3.2), we have

(3.3) lim
n→∞

Ĝ2n+1(1; q)− lim
n→∞

Ĝ2n(1; q) =
−1

(q; q)∞
.

Now, define pk(n) to be the number of partitions of n whose largest part is at most
k, and define p(n, k) to be the number of partitions of n whose largest part is equal to
k. It is clear by inspection that the coefficient of qt in 1

(q;q)k
is pk(t) for any positive

integers t and k.

Let c(t) be the coefficient of qt in limn→∞ Ĝ2n+1(1; q) + limn→∞ Ĝ2n(1; q). Suppose t
is even. Then c(t) equal to the coefficient of qt in

Ĝt+1(1; q) + Ĝt(1; q) = 2 + 2
t∑

k=1

(−1)k

(q; q)k
+

−1

(q; q)t+1

,
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so

c(t) = 2(p0(t)− p1(t) + · · · − pt−1(t) + pt(t))− pt+1(t)

since t is even by assumption. Let Even(t) denote the number of partitions of t whose
largest part is even, and let Odd(t) denote the number of partitions of t whose largest
part is odd. Notice that Even(t) + Odd(t) = p(t), pt(t) = pt+1(t) = p(t), and pk(t) =
p(t, k) + p(t, k − 1) + · · ·+ p(t, 1). Therefore,

c(t) = −2((p1(t)− p0(t)) + (p3(t)− p2(t)) + · · ·+ (pt−1(t)− pt−2(t))) + p(t)

= −2(p(t, 1) + p(t, 3) + p(t, 5) + · · ·+ p(t, t− 1)) + p(t)

= −2 Odd(t) + (Even(t) + Odd(t))

= Even(t)−Odd(t).

Now suppose t is an odd integer. In this case,

c(t) = 2(p0(t)− p1(t) + · · ·+ pt−1(t)− pt(t)) + pt+1(t)

= 2((p2(t)− p1(t)) + · · ·+ (pt−1(t)− pt−2(t)))− p(t)
= 2(p(t, 2) + p(t, 4) + · · ·+ p(t, t− 1))− p(t)
= 2 Even(t)− (Even(t) + Odd(t))

= Even(t)−Odd(t).

Thus c(t) = Even(t)−Odd(t) for any positive integer t.
Recall that b(n) is defined by

∑∞
n=0(−1)nb(n)qn =

∏∞
n=1(1 + q2n−1), so b(n) is equal

to (−1)n times the number of partitions of n into distinct odd parts. A bijection of
Sylvester (c.f. [3], p. 28) shows that b(n) is equal to the difference between the number
of partitions of n having an even number of parts and the number of partitions of
n having an odd number of parts. By taking the conjugates of the partitions of n
(interchanging the rows and columns of their Young diagrams), it follows that b(n) =
Even(n)−Odd(n) = c(n) for all n. Therefore,

(3.4) lim
n→∞

Ĝ2n+1(1; q) + lim
n→∞

Ĝ2n(1; q) =
∞∑
n=0

b(n)qn.

Combining (3.3) and (3.4), the conclusion follows.

Remark. We have presented the above proof of Theorem 1.2 in order to explore the
combinatorial properties of the related partition functions. Here we give an alternate
proof (due to the referee) that uses only manipulation of q-series. For any positive
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integer n, we have

Ĝn(1; q) + Ĝn−1(1; q) =
n∑
k=0

(−1)k

(q; q)k
+

n−1∑
k=0

(−1)k

(q; q)k

=
n∑
k=0

(−1)k

(q; q)k
−

n∑
k=1

(−1)k

(q; q)k−1

= 1 +
n∑
k=1

(−1)k
{

1

(q; q)k
− 1

(q; q)k−1

}

= 1 +
n∑
k=1

(−1)kqk

(q; q)k

=
n∑
k=0

(−1)kqk

(q; q)k

Taking the limit as n→∞ yields

lim
n→∞

Ĝ2n+1(1; q) + lim
n→∞

Ĝ2n(1; q) =
∞∑
k=0

(−1)kqk

(q; q)k
.

Setting a = 0 and t = −q in the identity 2.3, we find that this sum simplifies to 1
(−q;q)∞ ,

as desired.

Acknowledgments

We thank the referee for making comments which improved the final form of this
paper.

References

[1] G. E. Andrews, An introduction to Ramanujan’s “lost” notebook, Ramanujan: essays and surveys,
Hist. Math. 22, Amer. Math. Soc., Providence, RI., 2001, pages 165-184.

[2] G. E. Andrews, F. Dyson, D. Hickerson, Partitions and indefinite quadratic forms, Invent. Math.
91 (1988), pages 391-407.

[3] G. E. Andrews K. Eriksson, Integer Partitions, 2nd Ed., Cambridge University Press, 2004.
[4] K. Bringmann K. Ono, Dyson’s ranks and Maass forms, Ann. of Math, to appear.
[5] H. Cohen, q-identities for Maass waveforms, Invent. Math. 91 (1988), pages 409-422.
[6] N. J. Fine, Basic hypergeometric series and applications, Math. Surveys and Monographs, Vol.

27, Amer. Math. Soc., Providence, 1988.
[7] S. Lang, Elliptic functions, Springer-Verlag, New York, 1987.
[8] R. Lawrence, D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math.

3 (1999), pages 93-107.
[9] M. Monks, Number theoretic properties of generating functions related to Dyson’s rank for par-

titions into distinct parts, preprint.
[10] B. Schoeneberg, Elliptic modular functions: an introduction, Springer-Verlag, New York, 1974.



MODULAR FORMS ARISING FROM Q(n) AND DYSON’S RANK 11

290 Massachusetts Avenue, Cambridge, MA 02139
E-mail address: monks@mit.edu

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: ono@math.wisc.edu


