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Abstract. We show that the coefficients of Ramanujan’s mock theta function f(q)
are the first nontrivial coefficients of a canonical sequence of modular forms. This
fact follows from a duality which equates coefficients of the holomorphic projections of
certain weight 1/2 Maass forms with coefficients of certain weight 3/2 modular forms.
This work depends on the theory of Poincaré series, and a modification of an argument
of Goldfeld and Sarnak on Kloosterman-Selberg zeta functions.

1. Introduction and Statement of Results

In his plenary address at the Millenial Number Theory Conference at the University
of Illinois in 2000, G. E. Andrews [2] promoted a number of conjectures and problems
occurring at the interface of the theory of q-series and the theory of modular forms. The
enigma of Ramanujan’s mock theta functions played a central role among these problems
and conjectures. Thanks to recent works of Zwegers [19, 20], Ramanujan’s mock theta
functions are no longer a deep mystery. They are holomorphic projections of weight 1/2
harmonic weak Maass forms. As Andrews anticipated, these developments, and their
generalizations, indeed play an important role in the resolution of open problems in the
theory of partitions (for example, see [3, 5]).

Thanks to this new perspective, it is not difficult to obtain new relationships between
mock theta functions, formerly little more than formal power series, and classical mod-
ular forms. Here, we obtain a new relationship between modular forms and the mock
theta function

f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

= 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + 7q7 − 6q8 + · · ·+ 486q47 − · · · .
(1.1)

To describe this phenomenon, in Section 3 we construct two canonical sequences of
power series. For every positive integer m we use the theory of harmonic Maass forms
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to define a series

(1.2) fm(q) := 1 +
∞∑

n=1

am(n)qn.

Results in [3] imply that f1(q) = f(q), and numerics for f2(q), . . . , f4(q) suggest that

(1.3)

f1(q) = 1 +q −2q2 +3q3 −3q4 + · · ·+486q47 + · · ·
f2(q) = 1 −281q +2859q2 −17902q3 + · · ·
f3(q) = 1 +3406q −102061q2 + · · ·
f4(q) = 1 −23194q + · · ·
...

...
...

...

Each q−1fm(q24) is, up to the principal part1 which equals −q23−24m + q−1, the holo-
morphic part of a specific weight 1/2 harmonic weak Maass form on Γ0(144) with
Nebentypus χ12 :=

(
12
·

)
where q := e2πiz. For these reasons we choose to refer to the

functions fm as mock theta functions.
In a parallel calculation, we use the classical theory of modular forms to construct,

for every positive integer m, a weight 3/2 weakly holomorphic modular form −qgm(q24)
on Γ0(144) with Nebentypus χ12, where gm(q) is of the form

(1.4) gm(q) := −q−m +
∞∑

n=1

bm(n)qn.

We let g∗m(q) := gm(q) − β 3
2
, 3
4
(0,−m), where βκ,s(u, v) is defined in §3.3. Numerics

suggest that

(1.5)

g∗1(q) = −q−1 +1 −281q +3406q2 −23194q3 + · · ·
g∗2(q) = −q−2 −2 +2859q −102061q2 + · · ·
g∗3(q) = −q−3 +3 −17902q + · · ·
g∗4(q) = −q−4 −3 + · · ·
...

...
...

...
...

g∗47(q) = −q−47 +486 + · · ·
...

...
...

...
...

A brief inspection of (1.3) and (1.5) reveals a striking pattern. One notices that the
coefficients of the g’s, when grouped by column, appear to be the coefficients of the
mock theta functions fm(q) in order, where bm(0) := −β 3

2
, 3
4
(0,−m). Here we prove

that this is indeed the case.

Theorem 1.1. Assume the notation above. If m and n are positive integers, then

am(n) = bn(m− 1).

1Note that for m = 1 the principal part vanishes.



DUALITY INVOLVING THE MOCK THETA FUNCTION f(q) 3

Three remarks.
1) Similar duality theorems for Poincaré series and modular forms appear in earlier
works by Bruinier, Bringmann and Ono, and Zagier [6, 4, 18].

2) It is likely that this phenomenon holds for most (if not all) of Ramanujan’s original
mock theta functions. As the methods of this paper will reveal, the main difficulty arises
from the task of expressing these mock theta functions in terms of explicit Maass-
Poincaré series. (For more on the history of the mock theta functions see [1].) For
example, the results of [3] lead to a similar duality statement for Ramanujan’s mock
theta function

ω(q) :=
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+ · · · ,

where (a; q)n :=
∏n−1

m=0(1− aqm).

3) It is conceivable that the Fourier coefficients am(n), bm(n) are always integers, and
we would be interested in a proof or disproof of this claim. Although a weaker state-
ment, one may be able to employ the Galois action on M !

3
2

(144, χ12) and the fact that

S 3
2
(144, χ12) = 0 to deduce rationality of the coefficients bm(n), and hence rationality

of the am(n) by Theorem 1.1.

In Section 3 we construct the relevant sequences of weight 1/2 harmonic weak Maass
forms and weight 3/2 weakly holomorphic modular forms using the method of Poincaré
series. The numbers am(n) and bm(n) are then explicitly given as complicated infi-
nite sums of Kloosterman-type sums weighted by suitable Bessel functions. Armed
with these formulas, Theorem 1.1 then follows from a duality statement for these
Kloosterman-type sums. The connection to f(q) = f1(q) arises from earlier work by
Bringmann and the second author [3] where f(q) is proven to be the holomorphic part
of such a Maass form. Unfortunately, there is a catch. The complicated formulas for
the numbers am(n) and bm(n) are not visibly convergent. Convergence in the case of
a1(n) was established in [3] using a relationship between these Kloosterman-type sums
and Salié-type sums, and the “equidistribution” of CM points. Such arguments do not
appear to apply for am(n) when m > 1, and so we are forced to resort to other methods.
To establish convergence, we modify an argument of Goldfeld and Sarnak [8, 15], which
stems from earlier work of Selberg [16]. These issues are addressed in Section 2.

Acknowledgements
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2. A Kloosterman-Selberg Zeta function

In this section we address the convergence of certain Kloosterman-Selberg zeta func-
tions at the point s = 3/4. This fact will be employed to justify the convergence of the
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formulas for the am(n) derived in Section 3. Arguments of this type appear in works
by Selberg [16], Goldfeld-Sarnak [8], Iwaniec [10], Iwaniec-Kowalski [11], and Pribitkin
[13].

First we fix notation. Let κ ∈ R, Γ ∈ SL2(Z) a subgroup of finite index, and Ψ a
multiplier system of weight κ on Γ satisfying the consistency conditions

Ψ(−I) = e(κ/2)(2.1)

jγγ′(τ)
κΨ(γγ′) = jγ(γ

′(τ))κjγ′(τ)
κΨ(γ)Ψ(γ′)(2.2)

for γ =
(

a b
c d

)
∈ Γ, γ′ ∈ Γ, where jγ(τ) := cτ + d, I =

(
1 0
0 1

)
, e(t) := e2πit, and τ ∈ H,

the upper-half complex plane. Let g > 0 be the minimal positive integer such that(
1 g
0 1

)
∈ Γ, and fix 0 ≤ α < 1 such that

Ψ
((

1 g
0 1

))
= e(−α).

For such Ψ, we define the generalized Kloosterman sum Sk(n,m,Ψ) for arbitrary integer
pairs (n,m) ∈ Z2, and2 k ∈ N, by

Sk(n,m,Ψ) :=
∑
γ∈Γ

0≤d,d≤gk

Ψ(γ)e

(
(n− α)d+ (m− α)d

gk

)
,(2.3)

where dd ≡ 1 mod k.
Selberg’s Kloosterman zeta function Zn,m(s,Ψ) is defined in terms of the generalized

Kloosterman sums by

Zn,m(s,Ψ) :=
∑
k>0

Sk(n,m,Ψ)

k2s
.(2.4)

For our purposes, we assume κ ∈ 1
2
+ Z, and Γ = Γ0(2), so that g = 1. Moreover, for

those γ =
(

a b
c d

)
∈ Γ0(2) with c ≥ 0, we define the character χ by

χ(γ) :=


e(−b

24
) c = 0,

i−1/2(−1)
1
2
(c+ad+1)e(−a+d

24c
− a

4
+ 3dc

8
)ω−1

−d,c c > 0,
(2.5)

where

ωd,k := eπis(d,k),

and the Dedekind sum s(d, k) is defined by

2Note κ differs from k.
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s(d, k) :=
∑

j mod k

((
j
k

)) ((
dj
k

))
,

with

((x)) :=

{
x− bxc − 1

2
, x ∈ R \ Z,

0 x ∈ Z.
In the notation above we are interested in the case Ψ = χ̂, where

χ̂(γ) :=


ie(−b

24
) c = 0,

i1/2(−1)
1
2
(c+ad+1)e(−13(a+d)

24c
− a

4
+ 3dc

8
)ω−1

−d,c c > 0,
(2.6)

in which case α = 13
24

. We point out that χ̂(γ) is merely χ(γ) twisted by i when c = 0,
and χ(γ) twisted by ie(−(a + d)/2c) when c > 0. With these assumptions, we obtain
the following theorem.

Theorem 2.1. If mn < 0 and κ = 1
2
, then Zn,m(s, χ̂) is convergent at s = 3/4.

Two remarks.
1) A similar proof shows that Theorem 2.1 holds in greater generality, for example, for
weakly holomorphic modular forms with Nebentypus on congruence subgroups Γ0(N),
as well as harmonic weak Maass forms with suitable multiplier Ψ. As it stands, the
proof of Theorem 2.1 ultimately relies on the fact that holomorphic modular forms of
weight 1/2 have no poles, a fact which can be used to obtain convergence whenever
at least one of m and n is negative. However, when m and n are both positive, a
similar argument can also apply by making use of the theory of theta functions where
it is simple to characterize vanishing Fourier coefficients of weight 1/2 modular forms
thanks to results such as the Serre-Stark basis theorem.

2) We emphasize the fact that m and n have opposite sign in Theorem 2.1. Results
pertaining to the analytic behavior of Zn,m(s,Ψ) when mn > 0 are given by Selberg
[16] and Goldfeld-Sarnak [8], and later generalized by Pribitkin [13].

2.1. The Selberg approach après Goldfeld and Sarnak. Here we recall facts about
eigenvalues and eigenfunctions of the Laplacian, and their implications concerning the
analytic behavior of Zn,m(s,Ψ). To make this precise, we first fix notation. For γ =(

a b
c d

)
∈ Γ, κ ∈ R+, the functions f : H −→ C satisfying the conditions

f(γz) = Ψ(γ)

(
cz + d

|cz + d|

)κ

f(z),∫∫
FΓ

|f(z)|2 dxdy
y2

<∞
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form a Hilbert space which we denote by L2(FΓ, κ), where FΓ is a fundamental domain
for the quotient space H/Γ. The inner product 〈·, ·〉 is defined by

〈f, g〉 :=

∫∫
FΓ

f(z)g(z)
dxdy

y2
.(2.7)

As defined in (2.1) of [8] (see also [16], [14]), the operator

∆̃κ := y2

(
∂2

∂x2
+

∂2

∂y2

)
− iκy

∂

∂x
(2.8)

has a self-adjoint extension to L2(FΓ, κ) with real spectrum [14]. Let

σκ(∆̃κ) := {λ ∈ Spec(∆̃κ) : 0 ≤ λ < 1/4},

where Spec(∆̃κ) denotes the spectrum of ∆̃κ. The spectrum Spec(∆̃κ) was first investi-
gated seriously by Selberg in [16], who made the important observation that

dim(σκ(∆̃κ)) <∞.

We order the elements of the finite spectrum λ1 ≤ λ2 ≤ λ3 · · · ≤ λl. For each λj,
1 ≤ j ≤ l, we define sj ∈ (1/2, 1] by λj = sj(1− sj), and let uj(z) be the eigenfunction
corresponding to λj, where z = x+ iy ∈ H. The functions uj(z), 1 ≤ j ≤ l, are chosen
so that they form an orthonormal basis for L2 with respect to the inner product as
defined in (2.7). Each uj(z) admits a Fourier expansion of the form

uj(z) = ρj(0)ysj + ρ′j(0)y1−sj

+
∑

n∈Z,n6=α

ρj(n)Wκ
2
sgn(n−α

g ), sj− 1
2

(
4π

∣∣∣∣n− α

g

∣∣∣∣ y) e(n− α

g
x

)
,

(2.9)

where ρj(n), n ∈ Z, are constants, and Wν,µ(y) is the classical Whittaker function.
The next proposition of Goldfeld and Sarnak [8], which essentially realizes Zn,m(s,Ψ)

as an inner product of Poincaré series Pn(z, s,Γ,Ψ, κ), allows one to analytically con-
tinue Zn,m(s,Ψ) to all s with Re(s) > 1/2. For Γ ⊆ SL2(Z), we let Γ := Γ/{±1}, and
choose Ψ, κ as in the previous section. For integers n, we define the Poincaré series
Pn(z, s,Γ,Ψ, κ) by

Pn(z, s,Γ,Ψ, κ) :=
∑

γ∈Γ/Γ∞

Ψ(γ)

(
cz + d

|cz + d|

)−κ

e((n− α)Re(γz)/g)e2π|n−α|Im(γz)/g ys

|cz + d|2s
,

(2.10)

where Γ∞ =
{(

1 gn
0 1

)
: n ∈ Z

}
.
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Lemma 2.2. (Goldfeld-Sarnak [8]) If m,n, κ > 0, then∫∫
FΓ

Pn(z, s,Γ,Ψ, κ)Pm(z, s+ 2,Γ,Ψ, κ)
dxdy

y2

=
(−i)κ4−s−1n−2Γ(2s+ 1)

πΓ(s+ k/2)Γ(s+ 2− k/2)
Zn,m(s,Ψ) + R̃(s),

where R̃(s) is holomorphic in Re(s) > 1/2 and satisfies the condition R̃(s) � Re(s)1/2.

Using Lemma 2.2 to analytically continue Zn,m(s,Ψ) to Re(s) > 1/2, one finds that the

poles Zn,m(s,Ψ) are dictated by the elements of the finite spectrum σκ(∆̃κ), that they
are simple, and that they can only occur at the points sj. The following lemma bounds

σκ(∆̃κ) from below (see for example [16] or [15]).

Lemma 2.3. The finite spectrum σκ(∆̃κ) is bounded below by λ∗κ := κ
2

(
1− κ

2

)
.

Much is known regarding the relationship between eigenfunctions u(z) of ∆̃κ with
eigenvalue λ∗κ, and modular forms. For simplicity, we describe those u(z) corresponding
to modular forms of half-integral weight with Nebentypus on a congruence subgroup
Γ0(4N) ⊆ SL2(Z).

Lemma 2.4. Let κ ∈ 1
2
+Z, Γ = Γ0(4N), and Ψ = χ∗ a Nebentypus character on Γ (in

the sense of Shimura [17]). If u(z) is an eigenfunction of ∆̃κ corresponding to λ∗κ with
Fourier expansion as in (2.9), then ũ(z) := y−κ/2u(z) is a holomorphic modular form
of weight κ.

Proof. Suppose u(z) is an eigenfunction of ∆̃κ corresponding to λ∗κ, and let

Λ̃κ := (z − z)
∂

∂z
+
κ

2
.

For all f, g smooth and of compact support on FΓ, one has [14]

〈g, ∆̃κf〉 = 〈Λ̃κg, Λ̃κf〉+ κ
2

(
1− κ

2

)
〈g, f〉.(2.11)

If we let ũ(z) := y−κ/2u(z), then by (2.11) one may establish that ũ(z) is a holomorphic
modular form of weight κ. �

Remark. One may strengthen Lemma 2.4 and establish a converse statement under
suitable conditions. Namely, if ũ(z) is a cusp form, define u(z) = yκ/2ũ(z). One finds

that u(z) satisfies ∆̃κ(u) + λ∗κu = 0, and since ũ(z) is a cusp form, u(z) ∈ L2(FΓ, κ).

2.2. Residue and the resolvent. Since the arguments m and n of the Kloosterman
zeta function have opposite sign in Theorem 2.1, we are unable to simply quote results
from the literature. Here, we give the remaining tools required for the proof of Theorem
2.1. We first state a residue formula for Zn,m(s,Ψ) when m,n > 0 given in [8], and in
the following section discuss the case mn < 0.
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Lemma 2.5. If m,n > 0, then the residue of Zn,m(s,Ψ) at a point si is given by

Ress=si
(Zn,m(s,Ψ)) =

∑ g2ρj(m)ρj(n)
((

m−α
g

)(
n−α

g

))1−sj

Γ(sj + κ/2)Γ(2sj − 1)

Γ(sj − κ/2)(−i)κ42sjπ3sj+1
,

where the sum is over those j for which si = sj.

Proof. A detailed proof, which follows from standard facts from harmonic analysis and
properties of the Poincaré series Pm, is not given in [8]. We offer some detail to elucidate
our eventual analysis of the case mn < 0. We first recall that each Poincaré series
Pm(z, s,Γ,Ψ, κ) satisfies

Pm(z, s,Γ,Ψ, κ) = −4π

(
m− α

q

)(
s− κ

2

)
Rs(1−s)(∆̃κ)(Pm(z, s+ 1,Γ,Ψ, κ)),

where Rλ(∆̃κ) is the Resolvent operator with respect to ∆̃κ at λ (see for example
[12]). This fact, combined with Lemma 2.2, allows one to interpret the residue of Zn,m

in terms of the residue of the Resolvent operator Rλ(∆̃κ). The singularities of the
Resolvent operator occur precisely at the eigenvalues λj, and a standard argument of
harmonic analysis (see for example [12] I. §5) reveals that relations satisfied by the
residues of Rλ imply that they are projections. More precisely, a calculation shows that

Ress=si
〈Pm(z, s,Γ,Ψ, κ), Pn(z, s,Γ,Ψ, κ)〉 =

∑
ρj(m)〈uj, Pn〉,(2.12)

where an explicit formula for 〈uj, Pn〉 may be found in [15]. The sum above is over
those j for which si = sj. Following a short computation, one obtains the lemma. �

2.3. Proof of Theorem 2.1. Extending results beyond the case m,n > 0, by a remark
of Pribitkin [13], one may derive a formula analogous to that of Lemma 2.2 for the case
n < 0 and m > 0 by considering the inner product

〈Pm(z, s,Γ,Ψ, κ), Pn∗(z, w,Γ,Ψ,−κ)〉
where n∗ := −n − 1 for κ ∈ (0, 1). Similarly, one obtains a formula for the case n > 0
and m < 0 by using the case n < 0 and m > 0 combined with the fact that

Zn,m(s,Ψ, κ) = Z−n−1,−m−1(s,Ψ,−κ)
for κ ∈ (0, 1). With this, one may derive a residue formula analogous to that of Lemma
2.5.

One observes that the vanishing or non-vanishing of the coefficients ρ(m) and ρ(n)
determine a residue or non-residue of Zn,m at sj. We note that the minimal eigenvalue
κ
2
(1− κ

2
) = 3/16 corresponds to sj = 3/4 since κ = 1/2. Sincemn < 0, by Lemma 2.4, we

have the product ρ(m)ρ(n) = 0, as eigenfunctions with lowest eigenvalue correspond to
cusp forms. Holomorphicity now follows, since the eigenfunctions with lowest eigenvalue
correspond to holomorphic modular forms. One deduces convergence using standard
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methods relating the series expansions of Kloosterman-Selberg zeta functions with their
integral representations, employing Perron-type formulas.

3. Poincaré series and the proof of Theorem 1.1

We first recall fundamental properties of Maass forms. A weakly holomorphic modular
form is any meromorphic modular form whose poles (if there are any) are supported at
cusps. Theorem 1.1 is a duality statement relating the Fourier coefficients of weight 3/2
weakly holomorphic modular forms and certain weight 1/2 harmonic weak Maass forms.
Now we recall the notion of a harmonic weak Maass form. Suppose that κ ∈ 1

2
+ Z. If

v is odd, then define εv by

(3.1) εv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

Similar to the operator ∆̃κ defined in (2.8), we let

(3.2) ∆κ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iκy

(
∂

∂x
+ i

∂

∂y

)
be the weight κ hyperbolic Laplacian, where z = x+ iy with x, y ∈ R. If N is a positive
integer and ψ (mod 4N) is a Dirichlet character, then a harmonic weak Maass form of
weight κ on Γ0(4N) with Nebentypus ψ is any smooth function f : H → C satisfying:

(1) For all A = ( a b
c d ) ∈ Γ0(4N) and all z ∈ H, we have

f(Az) = ψ(d)

(
c

d

)2κ

ε−2κ
d (cz + d)κ f(z).

(2) We have that ∆κf = 0.
(3) The function f(z) has at most linear exponential growth at all cusps.

3.1. Two sequences of Poincaré series. We begin by defining the Poincaré series
PΥ

κ,s(r, z) for r ∈ R \ {0}, z ∈ H, and a character Υ on Γ0(2)/± Γ∞ by

PΥ
κ,s(r, z) :=

2√
π

∑
A∈Γ0(2)/±Γ∞

Υ(A)−1(cz + d)−κϕκ,s(r, Az)(3.3)

where A is represented by A =
(

a b
c d

)
. Here, the function ϕκ,s(r, z) is defined by the

M -Whittaker function Mν,µ as follows:

ϕκ,s(r, z) := Ms(4π|r|y)e(rx),

where for y ≥ 0,

Ms(y) := y−
κ
2M−κ

2
, s− 1

2
(y).
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The two sequences of Poincaré series we define are P χ
κ,s(

24m−1
24

, z) and
√

π
2
P χ−1

κ,s (24m+1
24

, z),
where m is a non-positive integer, and the character χ is as defined in (2.5). We will
show the following.

Theorem 3.1. For m a non-positive integer define M1 := M1(m) = 24m−1
24

, and for

m a negative integer define M2 := M2(m) = 24m+1
24

. For κ1 ≤ 1/2, κ1 ∈ 1
2

+ Z and

κ2 ≥ 3/2, κ2 ∈ 3
2

+ Z, the functions P χ

κ1,1−κ1
2

(M1, 24z) and
√

π
2
P χ−1

κ2,
κ2
2

(M2, 24z) are har-

monic weak Maass forms on Γ0(144) with Nebentypus χ12 := (12
· ) of weights κ1 and

κ2 respectively. Moreover, when κ2 = 3/2,
√

π
2
P χ−1

3/2,3/4(M2, 24z) is a weakly holomorphic

modular form.

We prove Theorem 3.1 by first computing the Fourier expansion for the series P χ
κ,s and

P χ−1

κ,s , and then justifying the convergence of the expressions obtained for the Fourier

coefficients. We treat the cases P χ
κ,s and P χ−1

κ,s separately, and begin with the former.

We choose a set of representatives
{
A =

(
a b+na
2c d+2nc

)}
n∈Z for Γ0(2)/ ± Γ∞ indexed by

pairs (2c, d) where c ∈ N, 1 ≤ d < 2c with gcd(2c, d) = 1, and (a, b) chosen arbitrarily
so that ad−2bc = 1, together with the pair (2c, d) = (0, 1). In computing the expansion
of P χ

κ,s, we use the facts that

Mz =
a

c
− 1

c(cz + d)
,

for any M =
(

a b
c d

)
, and also that (−1)−ance(−3c2n/2) = 1. Thus, after some computa-

tion, we may write

P χ
κ,s

(
24m− 1

24
, z

)
=

2√
π
Ms(|24m− 1|πy/6)e

(
(24m− 1)x

24

)
+

2√
π

∑
c>0

i1/2
∑

d(mod 2c)×

(−1)−
1
2
(2c+ad+1)e

(
d

48c
+
a− 3dc

4

)
e
(ma

2c

)
ω−d,2c(2c)

−κTκ

(
z +

d

2c

)
,

(3.4)

where

Tκ(z) :=
∑
n∈Z

(z + n)−κMs(|24m− 1|πy/24c2|z + n|2)e
(
−(24m− 1)(x+ n)

96c2|z + n|2

)
e(n/24).

Remark. For those readers who wish to reproduce calculation (3.4), we note that the
factor e(a/48c) that emerges due to the presence of χ−1(A) in the expansion cancels
with a factor e(−a/48c) that emerges due to the presence of the function ϕκ,s.

We now state a useful form of the Poisson summation formula.
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Lemma 3.2. (Poisson summation) Let h ∈ L1 ∩ C0(R) satisfying |h(x)|, |ĥ(x)| ≤
K|x|−s where |x| ≥ 1, s > 1, and K ∈ R≥0. Then

∞∑
n=−∞

e(nA)h(B + nC) =
∞∑

n=−∞

e(−B(n+ A)/C)ĥ((n+ A)/C),

where

ĥ(t) =

∫ ∞

−∞
e(tx)h(x)dx.

Using Lemma 3.2 with A = 1/24, B = x and C = 1, we find, after changing the
index of summation to −n ∈ Z, that the function Tκ(z) has a Fourier expansion of the
form Tκ(z) =

∑
n∈Z ay(n)e(n− 1/24)x, where

ay(n) :=

∫
R
z−κMs(|24m− 1|πy/24c2|z|2)e

(
−(24m− 1)x

96c2|z|2
− (n− 1/24)x

)
dx.(3.5)

Similar integrals are computed in [6] and [9], from which we deduce

ay(n)=
(2/i)κπΓ(2s)

c1−κΓ
(
s− κ

2

)∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣κ−1
2

J2s−1

(
π
√
|(24m− 1)(24n− 1)|

12c

)
Ws(4π(n−1/24)y)

if n < 0,

ay(n) =
i−κ41−2sπ1+s|24m− 1|sy1−sΓ(2s)

6sc2s(2s− 1)Γ(s+ κ/2)Γ(s− κ/2)

if n = 0, and

ay(n)=
(2/i)κπΓ(2s)

c1−κΓ
(
s+ κ

2

) ∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣κ−1
2

I2s−1

(
π
√
|(24m− 1)(24n− 1)|

12c

)
Ws(4π(n−1/24)y)

if n > 0, where Iα(Y ) and Jα(Y ) are the Iα-Bessel and Jα-Bessel functions respectively.
As usual, we require Kloosterman-like sums to describe the Fourier coefficients of our

Poincaré series PΥ
κ,s. We define

Ax(n,m) :=
∑

d(mod x)×

e

(
nd+md

x

)
ω−d,x(3.6)

Ãx(n,m) :=
∑

d(mod x)×

e

(
nd+md

x

)
ω−1
−d,x(3.7)

where dd ≡ 1 mod x.

Remark. The function Ax(n,m) is a generalization of the function Ax(n, 0) = Ax(n)

that appears in Rademacher’s exact formula for the partition function p(n), and Ãx(n,m)
another variant that will allow us to see the duality of Theorem 1.1.
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Theorem 3.3. For s = 1− κ
2
, κ ≤ 1

2
, and m a non-positive integer,

P χ
κ,s

(
24m− 1

24
, z

)
=

2√
π
e

(
24m− 1

24
x

)
Ms

(
π|24m− 1|y

6

)
+
∑
n∈Z

ακ,s(n,m)qn− 1
24 ,

where

ακ,s(n,m) =2
√
πi−κ+ 1

2
Γ(2s)

Γ
(
s+ κ

2

) ∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣κ−1
2 ∑

c>0

(−1)b
c+1
2 cA2c

(
n− c(1+(−1)c)

4
,m
)

c

× I2s−1

( π

12c

√
|(24n− 1)(24m− 1)|

)
if n > 0,

ακ,s(0,m)=
21−κi−κ+ 1

2 41−2sπ
1
2
+s|24m− 1|sΓ(2s)e(iy/24)

ys−16s(2s− 1)Γ
(
s+ κ

2

)
Γ
(
s− κ

2

) ∑
c>0

(−1)b
c+1
2 cA2c

(
−c(1+(−1)c)

4
,m
)

c2s+κ
,

and

ακ,s(n,m) = 2
√
πi−κ+ 1

2
Γ
(
s− κ

2
; 4π

∣∣n− 1
24

∣∣ y)Γ(2s)

Γ(s− κ
2
)

∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣κ−1
2

×
∑
c>0

(−1)b
c+1
2 cA2c

(
n− c(1+(−1)c)

4
,m
)

c
J2s−1

( π

12c

√
|(24n− 1)(24m− 1)|

)
if n < 0.

Remark. We point out that for κ = 1
2
, the leading term appearing in the Fourier

expansion for P χ
1
2
, 3
4

reduces to

2√
π
e

(
24m− 1

24
x

)
M 3

4

(
|24m− 1|πy

6

)
= q(24m−1)/24(1− π−

1
2 Γ(1/2, |24m− 1|πy/6)).

This follows from the fact that for κ = 1
2
,

M 3
4
(|y|) =

1

2
(
√
π − Γ(1/2, |y|))e|y|/2,

that Γ(3/2) =
√

π
2
, and that m is non-positive.

We have the following useful lemma.

Lemma 3.4. In the notation above, we have∑
d(mod 2c)×

(−1)−
1
2
(2c+1+ad)e

(
a− 3dc

4
+
nd+ma

2c

)
ω−d,2c =(−1)b

c+1
2 cA2c

(
n− c(1 + (−1)c)

4
,m

)
.
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3.2. Proof of Lemma 3.4. If c ≡ 0 mod 2, then a sufficient condition to prove Lemma
3.4 is the following

3c− (a+ d) + ad+ 1 + 3dc ≡ 0 mod 4,(3.8)

for each d ∈ [1, 2c) such that gcd(d, 2c) = 1. Using the fact that ad − 2bc = 1 we find
that either (a, d) ≡ (1, 1) or (a, d) ≡ (−1,−1) mod 4. An easy check shows that (3.8)
holds in both cases. If c ≡ 1 mod 2 then the following condition is sufficient to prove
Lemma 3.4:

3c− a+ ad+ 2 + 3dc ≡ 0 mod 4,(3.9)

for each d ∈ [1, 2c) such that gcd(d, 2c) = 1. Again using the fact that ad − 2bc = 1,
we have ad ≡ ±1 mod 4. If ad ≡ −1 mod 4 then (3.9) holds if and only if 6c + 2 =
2(3c+ 1) ≡ 0 mod 4, which follows from the fact that c ≡ 1 mod 2. If ad ≡ 1 mod 4
then (a, d) ≡ (1, 1) or (a, d) ≡ (−1,−1) mod 4 and one may easily verify (3.9) in these
cases as well.

3.3. Proof of Theorem 3.3. Strictly speaking, Theorem 3.3 follows by explicit calcu-
lation combined with the fact that our formulas for the Fourier coefficients ακ,s converge.
For κ < 1

2
, one obtains convergence by applying standard existing bounds on Klooster-

man sums, Lemma 3.4, and the identity

W1−κ/2(y) =

{
e−y/2 y > 0,

e−y/2Γ(1− κ, |y|) y < 0,

to the formulas given in the previous sections for ακ,s. Convergence is only questionable
in the case κ = 1

2
, which we give at the end of this section.

With our second family of Poincaré series

√
π

2
P χ−1

κ,s

(
24m+ 1

24
, z

)
, similar to the

argument given for P χ
κ,s

(
24m−1

24
, z
)
, we find

√
π

2
P χ−1

κ,s

(
24m+ 1

24
, z

)
= Ms(|24m+ 1|πy/6)e

(
(24m+ 1)x

24

)
+∑

c>0

i−1/2
∑

d(mod 2c)×

(−1)
1
2
(2c+ad+1)e

(
− d

48c
− a− 3dc

4

)
e
(ma

2c

)
ω−1
−d,2c(2c)

−κVκ(z + d/2c)

where

Vκ(z) :=
∑
n∈Z

(z + n)−κMs(|24m+ 1|πy/24c2|z + n|2)e
(
−(24m+ 1)(x+ n)

96c2|z + n|2

)
e(−n/24).

The function Vκ(z) has a Fourier expansion of the form Vκ(z) =
∑

n∈Z by(n)e((n+ 1
24

)x),
where

by(n) :=

∫
R
z−κMs(|24m+ 1|πy/24c2|z|2)e

(
−(24m+ 1)x

96c2|z|2
− (n+ 1/24)x

)
dx.
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One finds as in the case of ay(n) that

by(n) =
(2/i)κπΓ(2s)

c1−κΓ(s− κ/2)

∣∣∣∣ 24n+ 1

24m+ 1

∣∣∣∣κ−1
2

J2s−1

(
π
√
|(24m+ 1)(24n+ 1)|

12c

)
Ws(4π(n+1/24)y)

if n < 0,

by(0) =
i−κ41−2sπ1+s|24m+ 1|sy1−sΓ(2s)

6sc2s(2s− 1)Γ(s+ κ/2)Γ(s− κ/2)
,

and

by(n) =
(2/i)κπΓ(2s)

c1−κΓ(s+ κ/2)

∣∣∣∣ 24n+ 1

24m+ 1

∣∣∣∣κ−1
2

I2s−1

(
π
√
|(24m+ 1)(24n+ 1)|

12c

)
Ws(4π(n+1/24)y)

if n > 0.

Theorem 3.5. For s = κ
2
, κ ≥ 3

2
, and m a negative integer,

√
π

2
P χ−1

κ, κ
2

(
24m+ 1

24
, z

)
= Mκ

2

(
|24m+ 1|πy

6

)
e

(
(24m+ 1)x

24

)
+
∑
n≥1

βκ,s(n,m)qn+ 1
24 ,

(3.10)

where

βκ,s(n,m) =
π

iκ+ 1
2

Γ(2s)

Γ(s+ κ
2
)

∣∣∣∣ 24n+ 1

24m+ 1

∣∣∣∣κ−1
2 ∑

c>0

(−1)b
c+1
2
cÃ2c

(
n+ c(1+(−1)c)

4
,m
)

c

× I2s−1

( π

12c

√
|(24n+ 1)(24m+ 1)|

)
.

(3.11)

3.4. Proof of Theorem 3.5. As in the proof of Theorem 3.3, for κ > 3
2
, Theorem 3.5

follows by explicit calculation combined with the fact that our formulas for the Fourier
coefficients βκ,s converge. For κ = 3

2
, we observe the presence of the factor Γ(s − κ

2
)

in the denominator of the coefficients by(n) for n ≤ 0, so that the terms in the Fourier
expansion corresponding to non-positive n vanish. Arguing as in Proposition 3.4 allows

us to recognize the presence of the Kloosterman-like sum Ãx.

Remark. Note that when κ = 3
2
, the leading term in (3.10) reduces to

M 3
4

(
|24m+ 1|πy

6

)
e

(
(24m+ 1)x

24

)
= q

−24|m|+1
24 .

This follows from the fact, for κ = 3
2
, that M 3

4
(|y|) = e|y|/2, and that m is negative.
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3.5. The fm(q) and gm(q) series. For m ≥ 1, let

fm(z) = −q1−m + 1 + q1/24Hol

(
P χ

1
2
, 3
4

(
−24m+ 23

24
, z

))
gm(z) = −q−1/24

√
π

2
P χ−1

3
2
, 3
4

(
−24m+ 1

24
, z

)
,

so that

am(n) = α 1
2
, 3
4
(n,−m+ 1)

bm(n) = −β 3
2
, 3
4
(n− 1,−m),

where Hol(h) denotes the holomorphic part of h. We first argue the convergence of
the expansions for the Fourier coefficients of these Poincaré series in the case κ = 1/2.
We have chosen to rewrite the Fourier coefficients of the series P χ in terms of the
Kloosterman-like sums A2c(n,m) for purposes of more easily establishing the duality of
Theorem 1.1. To prove convergence, we apply Lemma 3.4 and find

α 1
2
, 3
4
(n,m) = π

∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣− 1
4 ∑

c>0

c−1I 1
2

( π

12c

√
|(24n− 1)(24m− 1)|

)
∑

d(mod 2c)×

i
1
2 χ̂−1

(
a b
2c d

)
e

(
d(n− 13

24
) + d(m− 13

24
)

2c

)
.

= πi
1
2

∣∣∣∣ 24n− 1

24m− 1

∣∣∣∣− 1
4 ∑

c>0

c−1I 1
2

( π

12c

√
|(24n− 1)(24m− 1)|

)
S2c(n,m, χ̂),

(3.12)

where the last equality follows from the definition of Sk(n,m,Ψ), and that, α = 13/24.
As c 7→ ∞ we have

I 1
2

(
π
√
X

24c

)
∼ |X|1/4

√
12c

.(3.13)

Using this and the formula for the Fourier coefficients α 1
2
, 3
4

given in (3.12), we are left

to show that the Selberg generalized Kloosterman zeta function Zn,m(s, χ̂) converges at
s = 3/4. This follows from Theorem 2.1.

In summary, α 1
2
(n,m) converges for integers n > 0 and m ≤ 0. With this, by

definition, am(n) converges for integers n,m ≥ 1, and thus by the duality Theorem 1.1,
bn(m) converges for integers n,m ≥ 1.

We are left to show convergence only for the non-holomorphic part of the series P χ
1
2
, 3
4

.

In this case, m < 0 and n < 0, and we follow an argument similar to our argument
above for the case mn < 0. We observe that the J 1

2
-Bessel function behaves as the
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I 1
2
-Bessel function does in (3.13) as c 7→ ∞, so that we are left once again to prove

convergence of a Selberg-Kloosterman zeta function Zn,m at s = 3/4. In this setting
we are able to use the residue formula (2.12) given in [8] which holds for nm > 0. We
again use the fact that λ∗1

2

corresponds to sj = 3/4 and apply Lemma 2.4. We observe

again that ρ(m)ρ(n) = 0. From these things we are able to conclude convergence.

3.6. Proof of Theorem 3.1. Let A =
(

a b
c d

)
∈ Γ0(2), and let A′ =

(a′ b′

c′ d′
)
∈ Γ0(2)/±

Γ∞ denote a coset representative. using the definition of P χ
κ,M and properties of χ it is

straightforward to verify that P χ
κ,M(1− κ

2
, z) transforms under A ∈ Γ0(2) by

P χ
k,M

(
1− κ

2
, Az

)
= χ(A)(cz + d)κP χ

κ,M

(
1− κ

2
, z
)
.

The transformation for
√

π
2
P χ−1

κ,M (κ
2
, z) follows similarly. To prove that the functions are

real analytic, for the cases κ < 1/2, respectively κ > 3/2, we argue as in [3] for the
specific case m = 0, where it is shown that the automorphy factor coincides with that
of the Dedekind η-function and is equal to χ12 :=

(
12
·

)
. The convergence for the cases

κ ∈ {1
2
, 3

2
} is as argued in §3.5, and the fact that the forms

√
π

2
P χ−1

3/2,3/4(·, 24z) are weakly

holomorphic modular forms is as argued in Theorem 3.5.

Remark. The Fourier expansions at cusps may be determined for these Poincaré series.
For example, the mock theta function f(q) is a component of a vector valued Maass
Poincaré series along with Ramanujan’s mock theta function ω(q). The work [7] makes
this explicit for ω(q), and one may extend these arguments to the series here.

3.7. The Kloosterman-like sums Ax(n,m) and Ãx(n,m). In order to continue the
proof of Theorem 1.1, we first make the following important observation regarding the

Kloosterman-like sums Ax(n,m) and Ãx(n,m).

Lemma 3.6. For m,n ∈ Z, we have

A2c

(
n− c(1 + (−1)c)

4
,m

)
= Ã2c

(
−m+

c(1 + (−1)c)

4
,−n

)
.(3.14)

Proof. We first observe that

A2c

(
n− c(1 + (−1)c)

4
,m

)
=

∑
d(mod 2c)×

e

(
nd+ma

2c
− d(1 + (−1)c)

8

)
ω−d,2c

=
∑

d(mod 2c)×

e

(
−na+md

2c
+
a(1 + (−1)c)

8

)
ωa,2c.(3.15)



DUALITY INVOLVING THE MOCK THETA FUNCTION f(q) 17

In the case that c ≡ 1 mod 2, the term a(1+(−1)c)
8

vanishes, and in the case that c ≡ 0

mod 2, a(1+(−1)c)
8

= a
4
. Due to the fact that ad− 2bc = 1, in this case ad ≡ 1 mod 4 and

hence a ≡ dmod 4. Finally, we use a property of the Dedekind sums, namely that

s(d, x) = s(d, x).

From these things we may conclude that (3.15) may be written as∑
d(mod 2c)×

e

(
(−m)d+ (−n)a

2c
+
d(1 + (−1)c)

8

)
ω−1
−d,2c = Ã2c

(
−m+

c(1 + (−1)c)

4
,−n

)
.

�

3.8. Proof of Theorem 1.1. The duality follows by applying Theorem 3.3 in the case
κ = 1

2
and by applying Theorem 3.5 in the case κ = 3

2
. We find in the former case a

term of the form (|24n− 1|/|24m− 1|)− 1
4 , and in the latter, (|24n+ 1|/|24m+ 1|) 1

4 . If
we let n→ −m and m→ −n in either one of these terms (but not both) they are seen

to be equal. The Bessel functions appearing in the Fourier expansions for P χ and P χ−1

are both I1/2-Bessel functions, and their arguments are seen to be equal again after
replacing (n,m) by (−m,−n) in one such term. In addition, by applying Lemma 3.6,

and the special value Γ(3/2) =
√

π
2

, we find that other terms in the expressions for the
Fourier coefficients in question are negatives of each other. This proves the theorem.
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