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Abstract. In a recent paper, Guerzhoy obtained formulas for certain class numbers
as p-adic limits of traces of singular moduli. Using earlier work by Bruinier and the
second author, we derive a more precise form of these results using results of Zagier.
Specifically, if −d < −4 is a fundamental discriminant and n is a positive integer,
then

Tr(p2nd) ≡ 24
p− 1

·
(

1−
(−d

p

))
·H(−d) (mod pn)

provided that p ∈ {2, 3} and
(−d

p

)
= −1, or p ∈ {5, 7, 13} and

(−d
p

) 6= 1.

1. Introduction and statement of results

Throughout, let d ≡ 0, 3 (mod 4) be a positive integer, and let Qd denote the set of
positive definite integral binary quadratic forms Q(x, y) = ax2 + bxy + cy2 = [a, b, c]
with discriminant −d = b2 − 4ac (including imprimitive forms if there are any). The
group Γ := PSL2(Z) acts on Qd with finitely many orbits, and if ωQ is defined by

ωQ =





2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise,

then the Hurwitz-Kronecker class number H(−d) is given by

(1.1) H(d) =
∑

Q∈Qd/Γ

1

ωQ

.

If −d < −4 is a fundamental discriminant, then H(−d) is the class number of the ring
of integers of the imaginary quadratic field Q(

√−d).

Recently, Guerzhoy has obtained some interesting expressions for
(
1− (−d

p

))
H(−d)

as p-adic limits of traces of singular moduli. To make this precise, we first recall some
notation. For positive definite binary quadratic forms Q, let αQ be the unique root of
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Q(x, 1) = 0 in the upper half of the complex plane. If j(z) is the usual SL2(Z) modular
function

j(z) =
E4(z)3

∆(z)
= q−1 + 744 + 196884q + · · · ,

where q = e2πiz, then define integers Tr(d) by

(1.2) Tr(d) =
∑

Q∈Qd/Γ

j(αQ)− 744

ωQ

.

The algebraic integers j(αQ) are known as singular moduli. Guerzhoy proved (see
Corollary 2.4 (a) of [5]) that if p ∈ {3, 5, 7, 13} and −d < −4 is a fundamental discrim-
inant, then one has the p-adic limit formula

(1.3)

(
1−

(−d

p

))
·H(−d) =

p− 1

24
lim

n→+∞
Tr(p2nd).

If
(−d

p

)
= 1, then this result simply implies that Tr(p2nd) → 0 p-adically as n tends to

infinity. Thanks to work of Boylan, Edixhoven and the first author (see [2, 4, 6]), it
turns out that more is true. In particular, if p is any prime and

(−d
p

)
= 1, then

(1.4) Tr(p2nd) ≡ 0 (mod pn).

In earlier work [3], Bruinier and the second author obtained certain p-adic expansions
for H(−d) in terms of the Borcherds exponents of certain modular functions with
Heegner divisor. In his paper [5], Guerzhoy asks whether there is a connection between
(1.3) and these results when

(−d
p

) 6= 1. In this note we show that this is indeed the

case by establishing the following congruences.

Theorem 1.1. Suppose that −d < −4 is a fundamental discriminant and that n is a
positive integer. If p ∈ {2, 3} and

(−d
p

)
= −1, or p ∈ {5, 7, 13} and

(−d
p

) 6= 1, then

24

p− 1
·
(

1−
(−d

p

))
·H(−d) ≡ Tr(p2nd) (mod pn).

In particular, under these hypotheses pn divides 24
p−1

(
1− (−d

p

)) ·H(−d) if and only if

pn divides Tr(p2nd).

Three remarks.
1) Theorem 1.1 includes p = 2. For simplicity, Guerzhoy chose to work with odd primes
p, and this explains the omission of p = 2 in (1.3).

2) Despite the uniformity of (1.4), it turns out that the restriction on p in Theorem 1.1 is
required. For example, if p = 11, n = 1 and −d = −15, then

(−15
11

)
= −1, H(−15) = 2,
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and we have

Tr(112 · 15) = −13374447806956269126908865521582974841084501554961922745794

≡ 7 6≡ 48

10
·H(−15) (mod 11).

3) There are generalizations of Theorem 1.1 which hold for primes p 6∈ {2, 3, 5, 7, 13}.
For example, one may employ Serre’s theory [7] of p-adic modular forms to derive more
precise versions of Corollary 2.4 (b) of [5].

2. The proof of Theorem 1.1

The proof of Theorem 1.1 follows by combining earlier work of Bruinier and the
second author with results of Zagier and a combinatorial formula used earlier by the
first author. We recall some necessary notation.

Let M !
λ+ 1

2

be the space of weight λ + 1
2

weakly holomorphic modular forms on Γ0(4)

with Fourier expansion

f(z) =
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

For 0 ≤ d ≡ 0, 3 (mod 4), we let fd(z) be the unique form in M !
1
2

with expansion

(2.1) fd(z) = q−d +
∑

0<D≡0,1 (mod 4)

A(D, d)qD.

The coefficients A(D, d) of the fd are integers. For completeness, we set A(M, N) = 0
if M or N is not an integer. These modular forms are described in detail in [8].

For fundamental discriminants −d < −4, Borcherds’ theory on the infinite product
expansion of modular forms with Heegner divisor [1] implies that

q−H(−d)

∞∏
n=1

(1− qn)A(n2,d)

is a weight zero modular function on SL2(Z) whose divisor consists of a pole of order
H(−d) at infinity and a simple zero at each Heegner point of discriminant −d. Using
this factorization, Bruinier and the second author proved the following theorem.

Theorem 2.1 ([3], Corollary 3). Let −d < −4 be a fundamental discriminant. If
p ∈ {2, 3} and

(−d
p

)
= −1, or p ∈ {5, 7, 13} and

(−d
p

) 6= 1, then as p-adic numbers we

have

H(−d) =
p− 1

24

∞∑

k=0

pkA(p2k, d).
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Remark. The case when p = 13 is not proven in [3]. However, thanks to the re-
mark preceding Theorem 8 of [7] on 13-adic modular forms with weight congruent to
2 (mod 12), and Theorem 2 of [3], the proof of Corollary 3 [3] still applies mutatis
mutandis.

Zagier identified traces of singular moduli with the coefficients A(D, d) as follows.

Theorem 2.2 ([8], Corollary to Theorem 3). For all positive integers d ≡ 0, 3 (mod 4),

Tr(d) = A(1, d).

Combining Zagier’s duality ([8], Theorem 4) between coefficients of modular forms
in M !

1
2

and in M !
3
2

with the action of the Hecke operators on these spaces, the first

author proved the following combinatorial formula.

Lemma 2.3 ([6], Theorem 1.1). If p is a prime and d,D, n are positive integers such
that −d,D ≡ 0, 1 (mod 4), then

A(D, p2nd) =pnA(p2nD, d) +
n−1∑

k=0

(
D

p

)n−k−1 (
A

(
D

p2
, p2kd

)
− pk+1A

(
p2kD,

d

p2

))

+
n−1∑

k=0

(
D

p

)n−k−1 (((
D

p

)
−

(−d

p

))
pkA(p2kD, d)

)
.

Remark. This result is stated for odd p in [6], but the proof holds for p = 2 as well.

Proof of Theorem 1.1. Under the given hypotheses, Theorem 2.1 implies that

(2.2)
24

p− 1
·H(−d) ≡

n−1∑

k=0

pkA(p2k, d) (mod pn).

By letting D = 1 in Lemma 2.3, for these d and p we find that

(2.3)

(
1−

(−d

p

)) n−1∑

k=0

pkA(p2k, d) = A(1, p2nd)− pnA(p2n, d).

Inserting this expression for the sum into (2.2), we conclude that

24

p− 1
·
(

1−
(−d

p

))
·H(−d) ≡ A(1, p2nd) (mod pn),

which by Zagier’s theorem is Tr(p2nd). ¤
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