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Abstract. We investigate the combinatorial properties of the
traces of the n-th Hecke operators on the spaces of weight 2k cusp
forms of level N . We establish examples in which these traces
are expressed in terms of classical objects in enumerative combina-
torics (e.g. tilings and Motzkin paths). We establish in general that
Hecke traces are explicit rational linear combinations of values of
Gegenbauer (a.k.a. ultraspherical) polynomials. These results arise
from “packaging” the Hecke traces into power series in weight as-
pect. These generating functions are easily computed using the
Eichler-Selberg trace formula.

1. Introduction and statement of results

Throughout, let k be a positive integer, and let S2k(Γ0(N)) (resp.
Snew

2k (Γ0(N))) denote the space generated by the weight 2k cusp forms
(resp. newforms) on the congruence subgroup Γ0(N) (see [9], [10] for
background on modular forms). For positive integers n and N which
are coprime, define the integers Tr2k(Γ0(N), n) and Trnew

2k (Γ0(N), n) by

(1.1) Trnew
2k (Γ0(N), n) := trace of the n-th Hecke op-

erator on Snew
2k (Γ0(N)),

(1.2) Tr2k(Γ0(N), n) := trace of the n-th Hecke op-
erator on S2k(Γ0(N)).

Recent works (for example, see [1], [5], [11], [12]) have proven con-
gruences between such traces and combinatorial numbers such as the
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Apéry numbers

A(n) :=
n

∑

j=0

(

n + j
j

)2(
n
j

)2

.

For example, Ahlgren and the second author [1] confirmed a conjecture
of Beukers that

Trnew
4 (Γ0(8), p) ≡ A

(

p − 1

2

)

(mod p2)

for every odd prime p. Many more such congruences for traces are
obtained by the authors in [5].

In view of these congruences, it is natural to investigate the instrin-
sic combinatorial properties of these traces. In the n-aspect (i.e. where
2k and N are fixed), one does not expect to find a simple combina-
torial description of these traces. However, in the weight aspect these
traces are indeed combinatorial numbers. We begin by presenting four
examples of this phenomenon.

There are many instances where these traces are combinatorial num-
bers analogous to the Apéry numbers. For example, we establish the
following fact.

Theorem 1.1. If k ≥ 2, then

Tr2k(Γ0(7), 2) = −2 −
k−1
∑

r=0

(

k + r − 1
2r

)

· (−2)k−r−1.

Theorem 1.1 provides a combinatorial formula for the trace of T2

on the space of cusp forms for the congruence subgroup Γ0(7). Such
formulas are often closely connected to hypergeometric functions. First
we recall the traditional notation for these functions. If n is a positive
integer, then define (a)n by

(1.3) (a)n := a(a + 1)(a + 2) · · · (a + n − 1).

If n = 0, then let (a)n := 1. Gauss’ 2F1 hypergeometric functions are
defined by

(1.4) 2F1

(

a, b
c

x

)

:=

∞
∑

n=0

(a)n(b)n

(c)nn!
· xn.

We establish the following formula involving 2F1 functions (which are
Gegenbauer polynomials).
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Theorem 1.2. If k ≥ 3, then

Tr2k(Γ0(17), 3) = −2 + 3(−2)k−1 · 2F1

(

(2−k)/2, (3−k)/2
2−k

∣

∣

∣
9
)

+ (−2)k · 2F1

(

(1−k)/2, (2−k)/2
1−k

∣

∣

∣
9
)

.

In general we shall see that, apart from certain simple summands,
Hecke traces are almost always sums of such 2F1 evaluations.

In view of the combinatorial formulas in Theorems 1.1 and 1.2, it
is natural to wonder whether these traces are connected to classical
topics in enumerative combinatorics. The next two examples confirm
this speculation.

If n is a non-negative integer, then let

(1.5) T (n) := #{tilings of a 3×n rectangle using
1 × 1 and 2 × 2 tiles}.

For example, here are the five tilings when n = 3.

Figure 1. Square tilings of 3 × 3 rectangles

It turns out that Tr12(Γ0(3), 2) = 6 · T (3) = 30, an example of the
following more general result.

Theorem 1.3. If k ≥ 3, then

Tr2k(Γ0(3), 2) = 6(−1)k · T (k − 3).

As another example, we consider Motzkin paths. An elevated Motzkin
path of length n is a lattice path which lies strictly above the x-axis,
apart from its endpoints (0, 0) and (n, 0), with steps of the form (1, 1),



4 S. FRECHETTE, K. ONO, AND M. PAPANIKOLAS

(1,−1) and (1, 0). If n ≥ 2, then let

(1.6) Ma(n) := sum of areas bounded by length n
elevated Motzkin paths and the x-
axis.

For example, here are the four elevated Motzkin paths of length 5:

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Figure 2. Motzkin paths of length 5

Therefore, Ma(5) = 20. It turns out that Tr12(Γ0(4), 3) = 12 ·Ma(5) =
240. This formula also generalizes to other weights, as given in the
following result.

Theorem 1.4. If k ≥ 3, then

Tr2k(Γ0(4), 3) = 12(−1)k · Ma(k − 1).

The four theorems above are special cases of a general theorem con-
cerning the combinatorial properties of the traces of Hecke operators
in weight aspect. To illustrate this general phenomenon, consider the
cusp forms in S2k(Γ0(N

2)) given by

(1.7) F new
2k (N ; z) :=

∞
∑

n=1
gcd(N,n)=1

Trnew
2k (Γ0(N), n)qn

(note that q := e2πiz throughout). By Atkin-Lehner theory, such a cusp
form is essentially (and often exactly) the sum of the newforms in the
space Snew

2k (Γ0(N)).
To study the coefficients of these cusp forms, it is convenient to

employ the Eichler-Selberg trace formula (for example, see [3], [4], [8],
[13]). Although these formulas are quite formidable at first glance,
we make some elementary observations which reveal some surprisingly
simple properties leading to results such as the theorems above.



THE COMBINATORICS OF TRACES OF HECKE OPERATORS 5

For the group Γ0(8), consider the forms F new
2k (8; z):

(1.8)

F new
4 (8; z) = q −4q3 −2q5 +24q7 + · · ·

F new
6 (8; z) = q +20q3 −74q5 −24q7 + · · ·

F new
8 (8; z) = 2q −40q3 +348q5 −1680q7 + · · ·

...
...

...
...

...
...

For general N , we use these coefficients, grouped by column, to define
the power series

(1.9) Rnew(Γ0(N), n; x) :=
∞

∑

k=1

Trnew
2k (Γ0(N), n)xk−1.

Similarly, we consider the power series

(1.10) R(Γ0(N), n; x) :=
∞

∑

k=1

Tr2k(Γ0(N), n)xk−1.

For the forms in (1.8), calculations suggest that these series are rational
functions. In particular, for levels 3, 5, and 7, calculations suggest the
following formulas:

Rnew(Γ0(8), 3; x) = −4x + 20x2 − 40x3 + 8x4 + 20x5 + · · ·

=
−4x

27x3 + 15x2 + 5x + 1
,

Rnew(Γ0(8), 5; x) = −2x − 74x2 + 348x3 − · · ·

=
−50x3 − 84x2 − 2x

3125x5 + 625x4 + 70x3 + 14x2 + 5x + 1
,

Rnew(Γ0(8), 7; x) = 24x − 24x2 − 1680x3 + · · ·

=
168x2 + 24x

2401x4 + 392x3 + 78x2 + 8x + 1
.

These formulas prove to be correct, and indeed more is true. For gen-
erating functions of traces in general, we prove the following result.

Theorem 1.5. If N is a positive integer, and if n ≥ 2 is prime to N ,
then Rnew(Γ0(N), n; x) and R(Γ0(N), n; x) are both rational functions
in Q(x). Moreover, their poles are all simple and are algebraic numbers
of degree ≤ 2 over Q.

In Section 3, we obtain Theorem 3.3, a result describing a basis
of rational functions which are summands for R(Γ0(N), n; x). By the
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Atkin-Lehner theory of newforms, Theorem 1.5 follows as an immedi-
ate corollary. The most complicated rational functions appearing in
Theorem 3.3 are of the form

nx + 1

n2x2 + (2n − s2)x + 1
.

Using the well known generating functions for the Gegenbauer (a.k.a.

ultraspherical) polynomials C
(λ)
n (r)

(1 − 2rx + x2)−λ =
∞

∑

n=0

C(λ)
n (r)xn

(for example, see (6.4.10) of [2]), and the fact that

C(λ)
n (r) =

(λ)n

n!
(2r)n · 2F1

(

−n/2, (1 − n)/2
1 − n − λ

1

r2

)

(for example, see (6.4.12) of [2]), it is not difficult to deduce that

(1.11)
nx + 1

n2x2 + (2n − s2)x + 1
= 1 + nx

+

∞
∑

m=1

(s2 − 2n)m
2F1

(

−m/2, (1−m)/2
−m

∣

∣

∣

4n2

(2n−s2)2

)

xm

+ n

∞
∑

m=1

(s2 − 2n)m
2F1

(

−m/2, (1−m)/2
−m

∣

∣

∣

4n2

(2n−s2)2

)

xm+1.

Consequently, it follows in general that Hecke traces are essentially
simple sums of values of Gegenbauer polynomials as in Theorem 1.2.

Theorem 3.3, which is not difficult to prove, follows from an analy-
sis of the intrinsic combinatorial structure of the Eichler-Selberg trace
formula for Hecke operators. In Section 2, we recall a formulation of
this result, and we make some key observations. In the last section, we
derive Theorems 1.1 through 1.4.

Acknowledgements. The authors are grateful to the referee of [5],
whose comments inspired them to look for the connections obtained in
the present paper. The authors also thank Jeremy Rouse for producing
Figures 1 and 2.

2. The Eichler-Selberg Trace formula

Our methods involve reformulating the Eichler-Selberg trace formula
for Tr2k(Γ0(N), n) (see [3], [4], [13]). We utilize the version of this trace
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formula due to Hijikata (see [7], [8]). Fix throughout positive integers
k, N , and n. Let

E = {s ∈ Z | s2 − 4n < 0},(2.1)

H = {s ∈ Z | ∃t ∈ Z+, s2 − 4n = t2},(2.2)

P = {s ∈ Z | s2 − 4n = 0}.(2.3)

Decompose E into the disjoint union E = E ′∪E ′′, where s ∈ E ′ (resp.
s ∈ E ′′) if the discriminant of Q(

√
s2 − 4n) is 1 modulo 4 (resp. 0

modulo 4). For each s ∈ E ∪ H ∪ P , define the non-negative integer
t = t(s) by

(2.4) s2 − 4n =



















mt2 if s ∈ E ′, and m is a fund. disc.

4mt2 if s ∈ E ′′, and 4m is a fund. disc.

t2 if s ∈ H ,

0 if s ∈ P .

Then define sets of integers

(2.5) F (s) :=

{

{f ∈ Z+ | f divides t(s)} if s ∈ E ∪ H ,

{1} if s ∈ P .

Furthermore, for s ∈ E ∪ H ∪ P , define y and ȳ to be the roots of
X2 − sX + n = 0, and accordingly let

(2.6) a(s, k, n) :=



























1

2
· y2k−1 − ȳ2k−1

y − ȳ
if s ∈ E,

min{|y|, |ȳ|}2k−1

|y − ȳ| if s ∈ H ,

1
4
|y|nk−1 if s ∈ P .

Finally, let

(2.7) δ(k, n) :=

{

∏

p|n
1−pordp(n)+1

1−p
if k = 1,

0 otherwise;

and if n is a perfect square,

(2.8) σ(k, N, n) :=
1

12
(2k − 1)nk−1N

∏

`|N
(1 + 1/`);

otherwise σ(k, N, n) := 0.
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Theorem 2.1 (Hijikata [7, Thm. 0.1]). If N and n are positive coprime
integers, and k ≥ 1, then

Tr2k(Γ0(N), n) = δ(k, n) + σ(k, N, n)

−
∑

s∈E∪H∪P

a(s, k, n)
∑

f∈F (s)

b(s, f, n)c(s, f, N, n),

where b(s, f, n), c(s, f, N, n) are rational numbers depending only on s,
f , N , and n, and are given explicitly (see [7, §0], [8, §2]).

Remark. The numbers b(s, f, n) in the statement of the theorem are
given in terms of class numbers of orders of imaginary quadratic fields
if s ∈ E and in terms of Euler’s φ-function if s ∈ H . The numbers
c(s, f, N, n) are calculated by counting solutions to certain congruences.
In both cases the numbers can be calculated explicitly, but for brevity
we do not repeat their definitions here. The main observation is that
their values are independent of the weight 2k.

3. Proof of Theorem 1.5

Throughout this section we fix coprime positive integers n and N ,
and we recall the definition of the generating function

R(Γ0(N), n; x) =

∞
∑

k=1

Tr2k(Γ0(N), n)xk−1

from (1.10). In this section we explore the combinatorics of the varia-
tion of Tr2k(Γ0(N), n) in k. By the Atkin-Lehner theory of newforms,
Rnew(Γ0(N), n; x) is an integral linear combination of R(Γ0(M), n; x),
where M | N . Hence it suffices to examine R(Γ0(N), n; x). In par-
ticular, in Theorem 3.3, a more precise version of Theorem 1.5, we
determine an explicit formula for R(Γ0(N), n; x).

Continuing with the notation of Section 2, we first make the following
observation about the coefficients a(s, k, n) for s ∈ E.

Proposition 3.1. If s ∈ E, then

a(s, k, n) =
1

2

k−1
∑

j=0

(−1)j

(

2k − 2 − j
j

)

njs2k−2j−2.

Proof. From (2.6), when s ∈ E,

(3.1) a(s, k, n) =
1

2
· y2k−1 − ȳ2k−1

y − ȳ
=

1

2

2k−2
∑

j=0

yj ȳ2k−2−j.
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This sum can be expressed in terms of powers of yȳ and y + ȳ, using
the relation

(3.2) ym + ȳm =

bm/2c
∑

j=0

(−1)j m

m − j

(

m − j
j

)

(yȳ)j(y + ȳ)m−2j .

Then a straightforward induction, in conjunction with the relations
y + ȳ = s and yȳ = n, yields the desired expression. �

We now determine the generating function for the power series with
coefficients a(s, k, n), for s ∈ E.

Lemma 3.2. If s ∈ Z and s2 − 4n < 0, then
∞

∑

k=1

a(s, k, n)xk−1 =
1

2
· nx + 1

n2x2 + (2n − s2)x + 1
.

Proof. The proof follows from Proposition 3.1 and from

(3.3)

∞
∑

j=1

(−1)j

(

2k + j
j

)

xj =
1

(1 + x)2k+1
,

which is simply the binomial theorem. More specifically, we have

∞
∑

k=1

a(s, k, n)xk−1 =
1

2

∞
∑

k=1

k−1
∑

j=0

(−1)j
(

2k−2−j
j

)

njs2k−2j−2 xk−1,

=
1

2

∞
∑

k=0

∞
∑

j=0

(−1)j
(

2k+j
j

)

njs2kxk+j,

=
1

2

∞
∑

k=0

s2kxk

(nx + 1)2k+1
,

where the first equality follows from Proposition 3.1, the second after
reindexing the sums, and the third from (3.3). �

Now let

(3.4) S(N, n) :=

{

N
12

∏

`|N (1 + 1/`) if n a perfect square,

0 otherwise;

and

(3.5) π(N, n) :=

{√
n

2
c (2

√
n, 1, N, n) if n a perfect square,

0 otherwise,

where c (2
√

n, 1, N, n) is defined as in [7, §0].
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Theorem 3.3. If N and n are coprime positive integers, then

R(Γ0(N), n; x) = δ(1, n) + S(N, n)
nx + 1

(nx − 1)2
+

π(N, n)

nx − 1

+
∑

d|n
d<

√
n

2d2

n − d2

∑

f |(n
d
−d)

b
(

n
d

+ d, f, n
)

c
(

n
d

+ d, f, N, n
)

d2x − 1

− 1
2

∑

s∈Z

s2−4n<0

∑

f |t(s)
b(s, f, n)c(s, f, N, n)

nx + 1

n2x2 + (2n − s2)x + 1
.

Proof. We proceed by using the trace formula from Theorem 2.1. The
first and second terms in the proposed formula for R(Γ0(N), n; x) follow
easily from (2.7) and (2.8). The third term arises from the terms in
the trace formula corresponding to s ∈ P . (We make use of the fact
that b(s, 1, n) = 1 as in [7, §0].) The sum on divisors d of n with
d <

√
n corresponds to the terms in the trace formula coming from

s ∈ H . Finally, using Lemma 3.2, the last sum corresponds to the sum
on s ∈ E in the trace formula. �

Remark. By taking n = 1, Theorem 3.3 provides generating functions
for dimensions of spaces of modular forms. For example,

∞
∑

k=1

dim S2k(Γ0(25))xk−1 =
x3 + 4x2 + 5x

(x + 1)(x − 1)2

= 5x + 9x2 + 15x3 + · · · .

4. Combinatorial Theorems

Here we prove Theorems 1.1 through 1.4. These results follow from
an analysis of the generating functions described in Theorem 3.3. Using
this result, it is straightforward to verify the following proposition.
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Proposition 4.1. With the notation as in (1.10), we have

R(Γ0(3), 2; x) =
2x

x − 1
+

2x

2x + 1

= −6x2 + 6x3 − 18x4 + · · · ,

R(Γ0(7), 2; x) = 3 +
2

x − 1
− 2x + 1

4x2 + 3x + 1

= −x − x2 − 9x3 + · · · ,

R(Γ0(4), 3; x) = 4 +
3

x − 1
− 1

3x + 1

= −12x2 + 24x3 − · · · ,

R(Γ0(17), 3; x) = 4 +
2

x − 1
− 6x + 2

9x2 + 2x + 1

= −4x + 20x2 − 28x3 − · · · .

Proof of Theorem 1.1. By Proposition 4.1, we have that

R(Γ0(7), 2; x) = 3 +
2

x − 1
− 2x + 1

4x2 + 3x + 1

= 1 − 2

∞
∑

n=1

xn − 2x + 1

4x2 + 3x + 1
.

To prove the theorem, it suffices to show that

a(n) =

n
∑

j=0

(

n + j
2j

)

(−2)n−j,

where the integers a(n) are defined by

2x + 1

4x2 + 3x + 1
=

∞
∑

n=0

a(n)xn = 1 − x − x2 + 7x3 − · · · .

This is a straightforward calculation involving recurrence relations. �

Proof of Theorem 1.2. By Proposition 4.1, we have

R(Γ0(17), 3; x) = 4 +
2

x − 1
− 6x + 2

9x2 + 2x + 1

= 2 − 2

∞
∑

n=1

xn − 6x + 2

9x2 + 2x + 1
.

The theorem follows from (1.11). �
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Proof of Theorem 1.3. By Proposition 4.1, we have

R(Γ0(3), 2; x) =
2x

x − 1
+

2x

2x + 1
=

6x2

2x2 − x − 1
.

By replacing x by −x, we obtain the known recurrence for 6T (n) (see
Theorem 1 of [6]). �

Proof of Theorem 1.4. By Proposition 4.1, we have

R(Γ0(4), 3; x) = 4 +
3

x − 1
− 1

3x + 1
=

12x2

3x2 − 2x − 1
.

By replacing x by −x, we obtain the known recurrence for 12Ma(n)
(see Propositions 1 and 2 of [14]). �

In view of the results presented here, it is natural to revisit the prop-
erties of the Hecke operators from a purely combinatorial perspective.
For example, it is natural to ask the following question.

Question. Are there direct combinatorial proofs of Theorems 1.1 through
1.4 using the theory of modular symbols?
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