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Abstract. The problem of estimating the number of imaginary quadratic fields whose ideal

class group has an element of order ` ≥ 2 is classical in number theory. Analogous questions
for quadratic twists of elliptic curves have been the focus of recent interest. Whereas works of

Stewart and Top [St-T], and of Gouvêa and Mazur [G-M] address the nontriviality of Mordell-

Weil groups, less is known about the nontriviality of Shafarevich-Tate groups. Here we obtain
a new type of result for the nontriviality of class groups of imaginary quadratic fields using the

“circle method”, and then we combine it with works of Frey, Kolyvagin and the second author

to obtain results on the nontriviality of Shafarevich-Tate groups of certain elliptic curves. For
E = X0(11), these results imply that

#
˘
−X < D < 0 : D fundamental and X(E(D), Q)[5] 6= {0}

¯
�

X3/5

log2 X
.

1. Introduction and Statement of Results.

Throughout, suppose that D is the fundamental discriminant of the quadratic field Q(
√

D),
and that h(D) is the associated ideal class number. If p is an odd prime, then Cohen and
Lenstra [C-L] have conjectured that the “probability” that p - h(D) for negative D is

∞∏
i=1

(1− p−i) = 1− 1
p
− 1

p2
+

1
p5

+ · · · .

Although there is extensive numerical evidence supporting this prediction, little is known. In
terms of densities, Davenport and Heilbronn [D-H] proved that at least half of the negative
discriminants D have the property that 3 - h(D). Much less is known for primes p ≥ 5. For
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such primes, if ε > 0 and X > 0 is sufficiently large, then Kohnen and the second author have
shown [Ko-O] that

(1.1) # {−X < D < 0 : h(D) 6≡ 0 (mod p)} ≥
(

2(p− 2)√
3(p− 1)

− ε

) √
X

log X
.

It is natural to consider the complementary problem of estimating, for any given integer
` ≥ 2, the number of −X < D < 0 for which CL(D)[`] is nontrivial. Here CL(D)[`] denotes
the `-torsion subgroup of the ideal class group of Q(

√
D) (note: in Theorem 1 and Lemma

6.2 we abuse notation and let CL(d) denote the ideal class group of Q(
√

d) whether or not d
is a fundamental discriminant). Recent works by Murty [M] and Soundararajan [So] address
these problems. For example, using sieve methods Soundararajan proved [So] that if ` is a
multiple of 4, then

(1.2) # {−X < D < 0 : CL(D)[`] 6= {0}} �ε X
1
2+ 2

`−ε.

We obtain further results estimating the number of −X < D < 0 with CL(D)[`] 6= {0}.
Suppose that K/Q is a finite Galois extension, with discriminant ∆K , and suppose that c is
a conjugacy class in Gal(K/Q). Wong [Wo] noticed the utility of establishing the existence
of infinitely many D < 0 for which CL(D)[`] 6= {0}, where each odd prime factor p of D
is unramified in K and has Frob(p) ∈ c. Although he claimed [Th. 2, Wo] that there are
always indeed infinitely many such D, a gap has been found in his proof. Here we remedy the
situation by obtaining a general quantitative result which approaches the quality of Murty’s
[M] and Soundararajan’s estimates [So] (for example, as in (1.2)). Using the “circle method”,
we obtain the following result.

Theorem 1. Let ` ≥ 2 be an integer, K/Q a finite Galois extension and c a conjugacy
class in Gal(K/Q). Suppose that M ≡ 1 (mod 24) is a positive square-free integer for which(
2
q

)
= 1 for any prime q | (M, `∆K). Let S(K, c, M) be the set of positive odd square-free

integers coprime to M whose prime factors p are all unramified in K/Q with Frob(p) ∈ c.
Then we have

# {d < X : d ∈ S(K, c, M), µ(d) = 1, and CL(−dM)[`] 6= {0}} � X
1
2+ 1

2`

log2 X
.

In Theorem 1, µ(n) denotes the usual Möbius function, and the implied constant depends on
`,M,K and c.

Remark 1. We stress that Theorem 1 is proved using the circle method, rather than the
more customary approach involving sieve methods (for example, see [M, So, St-T, G-M]).
We would be very interested in a sieve theoretic argument which proves or improves upon
Theorem 1.

Theorem 1 has implications for the arithmetic of elliptic curves. We begin by fixing nota-
tion. Suppose that E/Q is an elliptic curve

(1.3) E : y2 = x3 + ax + b.
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Let ∆(E) denote its discriminant, and let N(E) denote its conductor. For integers d which
are not perfect squares, let E(d) denote the d-quadratic twist of E

(1.4) E(d) : dy2 = x3 + ax + b.

Moreover, if E is an elliptic curve defined over a number field K, then let rk(E,K) denote the
rank of the Mordell-Weil group E(K). Similarly, let X(E,K) denote the Shafarevich-Tate
group of E/K, and if p is a prime, then let rkp(X(E,K)) denote its p-rank.

It is natural to investigate the indivisibility of orders of Shafarevich-Tate groups. By the
works of Kohnen, James and the second author [Ko-O, J-O], if E/Q is an elliptic curve, then
for all but finitely many primes ` we have

(1.5) # {−X < D < 0 : rk(E(D), Q) = 0 and X(E(D), Q)[`] = {0}} �E,`

√
X

log X
.

This is analogous to estimate (1.1) for class numbers. For the complementary question,
works by Beaver, Bölling, Cassels, Kramer, and Rohrlich [B, Bö, Ca, Kr, R] produce families
of elliptic curves whose Shafarevich-Tate groups contain elements of order ` for primes ` ≤ 5.

Wong suggested [Wo] a method which promised to produce infinitely many quadratic twists
of X0(11) whose Shafarevich-Tate groups have elements of order 5. This observation was a
combination of a theorem of Frey [F], a result of the second author [O1], and [Th. 2, Wo].
Recently, the second author generalized the results in [O1], and these new theorems make it
possible to extend Wong’s observations to a wider class of elliptic curves. Unaware of the gap
in the proof of [Th. 2, Wo], the second author mistakenly used the result to claim [Th. 5,
Cor. 6, O2]. Armed with Theorem 1, we are pleased to resolve this problem. We obtain the
following stronger result for curves E/Q whose torsion subgroup is Z/3Z, Z/5Z or Z/7Z.

Theorem 2. Let E/Q be an elliptic curve whose torsion subgroup over Q is Z/`Z with
` ∈ {3, 5, 7}. If E is good at ` (see §4 for the definition of “good”), then

# {−X < D < 0 : L(E(D), 1) 6= 0, rk(E(D), Q) = 0 and ` | #X(E(D), Q)} �E
X

1
2+ 1

2`

log2 X
.

Remark 2. Although we do not have a proof, it is plausible that every E/Q that has good
reduction at ` is good at `. In particular, if E has good reduction at ` and there is a prime
5 ≤ p ≡ −1 (mod `) for which ordp(N(E)) = 1 and ` - ordp(∆(E)), then E is good at `.
These conditions are very inclusive and include almost every elliptic curve (in the sense of
arithmetic density). For example, they already apply to the first curve, ordered by conductor,
containing a torsion point of order 7. This is the conductor 26 elliptic curve

E : y2 + xy + y = x3 − x2 − 3x + 3,

and so Theorem 2 implies that

# {−X < D < 0 : rk(E(D), Q) = 0 and X(E(D), Q)[7] 6= {0}} � X4/7

log2 X
.
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Nevertheless, it is simple to use Theorem 2 in general. For example, we will show that

# {−X < D < 0 : rk(X0(11)(D)) = 0 and X(X0(11)(D), Q)[5] 6= {0}} � X3/5

log2 X
.

Remark 3. It is interesting to compare the estimate in Theorem 2 with current lower bounds
for the number of quadratic twists of a fixed elliptic curve with rank ≥ 2. Stewart and Top
[St-T], improving on earlier conditional work of Gouvêa and Mazur [G-M], have shown that
the Parity Conjecture implies that

#{−X < D < 0 : rk(E(D), Q) ≥ 2} � X1/2,

and have obtained the unconditional result

#{−X < D < 0 : rk(E(D), Q) ≥ 2} � X1/7

log2 X
.

Using Theorem 2, we show, for certain elliptic curves E/Q, that there are infinitely many
number fields K for which both

rk(E,K) � log([K : Q]),(1.6)

rk`(X(E,K)) � log([K : Q]).(1.7)

Theorem 3. Suppose that E/Q is an elliptic curve whose torsion subgroup over Q is Z/`Z
with ` ∈ {3, 5, 7}. If E is good at ` (see §4 for the definition of “good”), then for every pair of
non-negative integers rm and rs there are rm + rs square-free integers d1, d2, . . . , drm+rs

for
which both

rk(E, Q(
√

d1,
√

d2, . . . ,
√

drm+rs
)) ≥ 2rm,

rk`(X(E, Q(
√

d1,
√

d2, . . . ,
√

drm+rs
))[`]) ≥ 2rs.

In §2 we give preliminaries on elliptic curves and describe some applications of a theorem
of Frey. In §3 we consider the nonvanishing of Hasse-Weil L-functions of elliptic curves at
s = 1. In §4 we combine the results from §2 and §3 to prove Theorems 2 and 3 assuming the
truth of Theorem 1. In §5 we prove a technical result in additive number theory via the circle
method, and in §6 we use this result to prove Theorem 1.
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2. Implications of a theorem of Frey.

In this section we recall an important theorem of Frey, and indicate how it is used to obtain
Theorem 2. We begin by fixing notation. Suppose that E/Q is an elliptic curve over Q, and
that j(E) is its j-invariant. If p is prime and S(E, Q) denotes its Selmer group, then we have

(2.1) 1 → E(Q)/pE(Q) → S(E, Q)[p] → X(E, Q)[p] → 1.

The next theorem follows from work of Frey [Fr] on quadratic twists of elliptic curves with
rational points of odd prime order ` (note: a theorem of Mazur implies that ` ∈ {3, 5, 7}).
Theorem 2.1. Suppose that E/Q is an elliptic curve with a Q-rational torsion point of odd
prime order `, and suppose that ` - N(E). Let S(E, `) be the set of primes

S(E, `) := {p | N(E) : 2 < p ≡ −1 (mod `), ` - ordp(∆(E)), and ordp(j(E)) < 0}.

We have
CL(4d)[`] 6= {0} =⇒ S(E(d), Q)[`] 6= {0},

whenever d ≡ 3 (mod 4) is a negative square-free integer coprime to `N(E) satisfying:
(1) If ord`(j(E)) < 0, then

(
d
`

)
= −1.

(2) If p | N(E) is an odd prime with p 6∈ S(E, `), then

(
d

p

)
=


−1 if ordp(j(E)) ≥ 0,

−1 if ordp(j(E)) < 0 and E/Qp is a Tate curve,
1 otherwise.

This result provides explicit examples of quadratic twists of certain elliptic curves whose
`-Selmer groups are nontrivial. To prove Theorem 2, we set out to construct negative
discriminants D satisfying the conditions of Theorem 2.1 for which CL(D)[`] 6= {0} and
rk(E(D), Q) = 0. The following elementary observation plays a crucial role in the proof of
Theorem 2; it essentially reduces the proof to the construction of a suitable set of primes.

Corollary 2.2. Suppose that E/Q is an elliptic curve with a Q-rational torsion point of odd
prime order `, and suppose that ` - N(E). Let M ≡ 1 (mod 4) be any positive square-free
integer coprime to `N(E) with the property that −M satisfies conditions (1) and (2) for d in
Theorem 2.1. Let S be any infinite set of odd primes satisfying the following conditions:

(1) For all q ∈ S we have (q, `N(E)M) = 1.
(2) We have qa ≡ qb (mod 4) for all qa, qb ∈ S.
(3) If p | `N(E) is an odd prime for which p 6∈ S(E, `), then

(
qa

p

)(
qb

p

)
= 1 for all qa, qb ∈ S.

If j is a positive integer and q1, q2, . . . , q2j ∈ S are distinct primes, then apart from at most
finitely many exceptions we have

rk(E(−Mq1q2 · · · q2j), Q) = 0 and CL(−4Mq1q2 · · · q2j)[`] 6= {0}

=⇒ X(E(−Mq1q2 · · · q2j), Q)[`] 6= {0}.
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Proof. By hypothesis, −M satisfies the conditions for d in Theorem 2.1. Moreover, by the
hypotheses on the set of primes in S, it follows that −Mq1q2 · · · q2j also satisfies the conditions
for d in the statement of Theorem 2.1 since 2j is even. Consequently, Theorem 2.1 implies
that

CL(−4Mq1q2 · · · q2j)[`] 6= {0} =⇒ S(E(−Mq1q2 · · · q2j), Q)[`] 6= {0}.

In view of (2.1), the claim now follows from the fact that every elliptic curve E/Q has at
most finitely many quadratic twists possessing a Q-rational torsion point of odd prime order
` (for example, see [Prop. 1, G-M]).

�
To prove Theorem 3, we require some standard facts regarding relations between the p-

ranks of Shafarevich-Tate and Mordell-Weil groups of elliptic curves upon a quadratic exten-
sion. We require the following fact (for a proof see [Lemma 3.1, O-P]).

Lemma 2.3. Let E be an elliptic curve defined over a number field K. Let p be an odd
prime, and let d be a non-square in K. Let r(E,K) denote either rk(E,K), rkp(S(E,K)[p]),
or rkp(X(E,K)[p]). Then

r
(
E,K

(√
d
))

= r(E,K) + r(E(d),K).

We conclude this section with the criterion which is used to obtain Theorem 3.

Lemma 2.4. Suppose that E/Q is an elliptic curve, and that d1, d2, . . . , drs
are rs distinct

square-free numbers such that for all 1 ≤ j ≤ rs we have

X(E(dj), Q)[p] 6= {0} and L(E(dj), 1) 6= 0.

If rm is non-negative, then there are rm distinct square-free integers, say D1, D2, . . . , Drm ,
for which

rk(E, Q(
√

D1,
√

D2, . . . ,
√

Drm ,
√

d1, . . . ,
√

drs)) ≥ 2rm,

rkp(X(E, Q(
√

D1,
√

D2, . . . ,
√

Drm
,
√

d1, . . . ,
√

drs
)[p]) ≥ 2rs.

Proof. By the work of Stewart and Top [St-T] on ranks of twists of elliptic curves, it follows
that for every positive integer rm there are distinct square-free integers D1, D2, . . . , Drm

for
which

rk(E(Di), Q) ≥ 2.

Therefore, Lemma 2.3 implies that

(2.2) rk(E, Q(
√

D1,
√

D2, . . . ,
√

Drm
)) ≥

rm∑
j=1

rk(E(Dj), Q) ≥ 2rm.
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Kolyvagin’s theorem [Kol] on the Birch and Swinnerton-Dyer Conjecture (note: finiteness of
X(E, Q) and the existence of the Cassels-Tate pairing implies that rkp(X(E, Q))[p] is even)
implies, for each di, that

rkp(X(E(di), Q)[p]) ≥ 2.

Therefore, by Lemma 2.3 again we have

(2.3) rkp(X(E, Q(
√

d1,
√

d2, . . . ,
√

drs
))[p]) ≥

rs∑
j=1

rkp(X(E(di), Q)) ≥ 2rs.

Consequently, (2.2), (2.3) and Lemma 2.3 imply that

rk(E, Q(
√

D1,
√

D2, . . . ,
√

Drm
,
√

d1,
√

d2, . . . ,
√

drs
) ≥ 2rm,

rkp(E, Q(
√

D1,
√

D2, . . . ,
√

Drm ,
√

d1,
√

d2, . . . ,
√

drs) ≥ 2rs.

This completes the proof.

�

3. Nonvanishing of central values of twisted Hasse-Weil L-functions.

Suppose that FE(z) =
∑∞

n=1 aE(n)qn ∈ S2(Γ0(N(E))) (q := e2πiz throughout) is the
weight 2 newform on Γ0(N(E)) associated to E/Q by the modularity of elliptic curves over
Q. Moreover, let L(E, s) denote its Hasse-Weil L-function which is defined by analytically
continuing

L(E, s) = L(FE , s) =
∞∑

n=1

aE(n)
ns

.

As usual, let χD =
(
D
•
)

denote the usual Kronecker character for the quadratic field Q(
√

D)
(note: recall that D always denotes a fundamental discriminant in this paper). Let FE ⊗ χD

denote the newform that is the D-quadratic twist of FE , and let L(FE ⊗ χD, s) denote the
associated L-function. In particular, if (D,N(E)) = 1, then

(3.1) L(E(D), s) = L (FE ⊗ χD, s) =
∞∑

n=1

χD(n)aE(n)
ns

.

Moreover, if δE (resp. δE(D)) denotes the sign of the functional equation of L(E, s) (resp.
L(E(D), s)), then we have the fundamental relation

(3.2) δE(D) = δE · sign(D) ·
(

D

N(E)

)
.

Such relations will be very important in the sequel.
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Celebrated works of Kohnen [Ko] and Waldspurger [W] on the Shimura correspondence
[Sh] provide formulas for many of the central critical values L(E(D), 1) = L(FE ⊗ χD, 1) in
terms of the Fourier coefficients of certain half-integral weight cusp forms. Here we briefly
recall some of the main results (see [Th. 1, W], [§2, O-Sk]).

For every fundamental discriminant D, define D0 by

(3.3) D0 :=
{ |D| if D is odd,
|D|/4 if D if even.

There is a positive integer N(E) with N(E) | N(E), a Dirichlet character χ modulo 4N(E),
a non-zero complex number ΩFE

, a non-zero half-integral weight Hecke eigenform

(3.4) gE(z) =
∞∑

n=1

bE(n)qn ∈ S 3
2
(Γ0(4N(E)), χ),

and arithmetic progressions of D coprime to 4N(E) with the property that if δED > 0, then

(3.5) bE(D0)2 = εD ·
L(FE ⊗ χD, 1)D

1
2
0

ΩFE

,

where εD is algebraic. Moreover, the coefficients aE(n), bE(n) and the values of χ are in OL,
the ring of integers of some fixed number field L (for example, see [Ste]). In addition, if
p - 4N(E) is prime, then

(3.6) λ(p) = χ(p)aE(p),

where λ(p) is the eigenvalue of gE(z) for the half-integer weight Hecke operator Tχ(p2) on
S 3

2
(Γ0(4N(E)), χ).
The next result, which follows from [Lemma 3.3, O2], is useful for producing many non-zero

L-values.

Lemma 3.1. Assume the notation above, and suppose that E/Q is an elliptic curve without
a Q-rational torsion point of order 2. Suppose that a ∈ (Z/24Z)×, q1, q2, . . . , qs are distinct
odd primes, and that ε1, ε2, . . . , εs ∈ {±1}. Furthermore, suppose there is a square-free integer
n0 ≡ a (mod 24) for which

(
n0
qi

)
= εi, for each 1 ≤ i ≤ s, with

L(E(δEn0), 1) 6= 0 and (n0,N(E)) = 1.

Then there is a positive odd square-free integer m2 ≡ a (mod 24) for which
(
m2
qi

)
= εi, for

all 1 ≤ i ≤ s, and a set of odd primes SE with positive Frobenius density such that for every
positive integer j we have

L(E(δEm2p1p2 · · · p2j), 1) 6= 0,

whenever p1, p2, . . . , p2j ∈ SE are distinct primes not dividing m2. Moreover, if pa, pb ∈ SE,
then pa ≡ pb (mod 24), and for all 1 ≤ i ≤ s we have

(
pa

qi

)(
pb

qi

)
= 1.
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Proof. By taking a simple linear combination of twists, and twists of twists of gE(z), define
the cusp form

(3.7) g∗E(z) =
∑
n∈A

bE(n)qn,

where A consists of those positive integers n for which n ≡ a (mod 24), and where
(

n
qi

)
= εi for

each 1 ≤ i ≤ s. By the existence of n0, (3.5) implies that g∗E(z) is nonzero. Moreover, g∗E(z)
is an eigenform, for all but finitely many Hecke operators Tχ(p2), whose eigenvalues satisfy
(3.6). Since E/Q has no Q-rational torsion point of order 2, it follows, by the Chebotarev
Density Theorem, that a positive proportion of the primes p have the property that aE(p) is
odd. Therefore, [Lemma 3.3, O2] readily applies to g∗E(z).

Let v be a place of OL above 2, and suppose that m2 ∈ A is an integer for which
ordv(bE(m2)) is minimal. Since g∗E(z) is nonzero, it follows that bE(m2) 6= 0. Moreover,
since g∗E(z) is an eigenform, it follows that m2 can be taken to be square-free. The conclusion
of [Lemma 3.3, O2] implies that there is a set of primes SE with positive Frobenius density
such that for each positive integer j we have

bE(m2p1p2 · · · p2j) 6= 0,

whenever p1, p2, . . . , p2j ∈ SE are distinct primes not dividing m2. By (3.5), it follows that

L(E(δEm2p1p2 · · · p2j), 1) 6= 0.

Lastly, since m2p1p2 · · · p2j ∈ A, it follows that if pa, pb ∈ SE , then pa ≡ pb (mod 24), and(
pa

qi

)(
pb

qi

)
= 1 for each 1 ≤ i ≤ s. This completes the proof.

�

Remark 4. By the proof of [Lemma 3.3, O2], which is based on Galois representations,
it is evident that the set SE in Lemma 3.1 always contains, as a subset, a set of primes p
which are unramified in some fixed finite Galois extension K/Q whose Frob(p) is in some
fixed conjugacy class of Gal(K/Q). Moreover, if p is an odd prime which does not divide the
level of g∗E(z), then p is unramified in K/Q; this implies, by (3.5), that every prime dividing
m2 in Lemma 3.1 is unramified in K.

4. Deduction of Theorems 2 and 3 from Theorem 1.

Here we deduce Theorems 2 and 3 from Theorem 1. The results from §2 and §3 are required
for these deductions. We begin with the definition of “good”.

Definition 4.1. An elliptic curve E/Q is “good at `” if the following are all true:
(1) We have that ` - N(E).
(2) There is a prime p ≥ 5 for which ordp(N(E)) = 1.
(3) There is a positive square-free integer Q ≡ 1 (mod 24) coprime to `N(E) for which

−Q satisfies the conditions (1) and (2) for d in Theorem 2.1, and which has

δE(−4Q) = +1.
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Deduction of Theorem 2 from Theorem 1. Let Q be a positive square-free integer which
justifies that E is good at `. By (3.2) applied to E(−4), every positive square-free integer
d′ ≡ Qx2 (mod 24`N(E)) has the property that

(4.1) δE(−4d′) = +1,

where (x, 6`N(E)) = 1. Moreover, each such −d′ satisfies the conditions (1) and (2) for d in
Theorem 2.1.

Now let M1 ≡ 1 (mod 4) be any prime not dividing `N(E)Q for which
(

2
M1

)
= 1 and

δE(M1) = −1. That such an M1 can be chosen follows, by the Law of Quadratic Reciprocity,
from (3.2) and Definition 4.1 (2). Now apply Lemma 3.1 to E(M1), where a ≡ M1 (mod 24),
and where the qi’s and εi’s are chosen to sieve out those exponents n in the Fourier expan-
sion, coprime to M1, for which M1n ≡ Q (mod 24`N(E)). The remaining coefficients are
supported on those n for which M1n ≡ Qx2 (mod 24`N(E)), where (x, 6`N(E))) = 1. By
(4.1), if n is such a positive square-free integer, then δE(−4M1n) = +1 and −M1n satisfies
conditions (1) and (2) for d in Theorem 2.1. By a famous result of Friedberg and Hoffstein
[Th. B (i), F-H], there are infinitely many such square-free n for which

(4.2) L(E(−M1n), 1) 6= 0.

Therefore, Lemma 3.1 applies to E(M1), since it is also a curve without a Q-rational point
of order 2. Lemma 3.1 and (4.2) allow us to conclude that there is a positive square-free
integer M2 ≡ M1 (mod 24`N(E)), coprime to M1, and a set of primes SE(M1) with positive
Frobenius density such that for every positive integer j we have

(4.3) L(E(−M1M2p1p2 · · · p2j), 1) 6= 0,

whenever p1, p2, . . . , p2j ∈ SE(M1) are distinct odd primes not dividing M1M2. By Remark
4, one can construct a finite Galois extension, say K/Q, for which there is a conjugacy class
c ∈ Gal(K/Q) with the property that every prime p unramified in K with Frob(p) ∈ c is
in SE(M1). Furthermore, Lemma 3.1 implies that this set satisfies the hypotheses on S in
Corollary 2.2.

By Kolyvagin’s theorem on the Birch and Swinnerton-Dyer Conjecture [Kol], (4.3) implies,
for every positive integer j and every collection of distinct primes p1, p2, . . . , p2j ∈ SE(M1)

coprime to M1M2, that

rk(E(−M1M2p1p2 · · · p2j), Q) = 0 and #X(E(−M1M2p1p2 · · · p2j), Q) < +∞.

Therefore, Corollary 2.2 and Theorem 1 applies with M = M1M2 ≡ 1 (mod 24). Theorem 2
now follows easily since (M,∆K) | M1, a fact which follows from Remark 4.

�

Example 1. Suppose that E/Q is an elliptic curve with torsion subgroup Z/`Z where
` ∈ {3, 5, 7}. If E has good reduction at ` and there is a prime 5 ≤ p0 ≡ −1 (mod `) for
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which ` - ordp0(∆(E)) and ordp0(N(E)) = 1, then E is good at `. This follows from the
fact that Definition 4.1 (3) is satisfied using (3.2). To see this, observe that the negative
square-free integers d in Theorem 2.1 are not required to satisfy a quadratic residue condition
modulo p0, and the fact that ordp0(N(E)) = 1 implies that ordp0(j(E)) < 0 (see [p. 359, S]).
These conditions apply to the conductor 26 elliptic curve

E : y2 + xy + y = x3 − x2 − 3x + 3.

Its torsion subgroup over Q is Z/7Z and ∆(E) = −27 · 13. By letting p0 = 13, we find that
E is good at 7. Consequently, Theorem 2 implies that

#{−X < D < 0 : rk(E(D), Q) = 0 and X(E(D), Q)[7] 6= {0}} � X4/7

log2 X
.

Example 2. Let E be the conductor 11 elliptic curve

E : y2 + y = x3 − x2 − 10x− 20.

This is the modular curve X0(11), and its torsion subgroup over Q is Z/5Z. Furthermore, we
have that

j(E) = −212 · 313

115
.

Definition 4.1 (1) and (2) are both clearly satisfied. Condition (1) in Theorem 2.1 is vacuous
since ord5(j(E)) = 0. Since S(E, 5) is empty, the only condition in Definition 4.1 (3) is
confirmed by finding any positive square-free Q ≡ 1 (mod 24) coprime to 55 for which

(−Q
11

)
=

−1 and δX0(11)(−4Q) = +1. It turns out that Q = 1 enjoys these two properties, and so
Theorem 2 implies that

#{−X < D < 0 : rk(E(D), Q) = 0 and X(E(D), Q)[5] 6= {0}} � X3/5

log2 X
.

Deduction of Theorem 3 from Theorem 1. Theorem 1 implies Theorem 2. Theorem 2 and
Lemma 2.4 implies Theorem 3.

�

5. Proof of a technical result in additive number theory.

If P is an infinite set of primes and q and b are coprime integers, then let P(x, q, b) be
the number of primes p ∈ P with p ≤ x and p ≡ b (mod q). We say that P satisfies a
“Siegel-Walfisz condition for an integer ∆” if for every fixed integer C > 0 we have

(5.1) P(x, q, b) =
γ

φ(q)
π(x) + O

(
x

logC x

)
,

uniformly for all (q, ∆) = 1 and all (q, b) = 1. Here π(x) ∼ x
log x is the usual prime counting

function, and 0 < γ ≤ 1 is the density of the primes in P. The proof of the following result
in additive number theory is the main objective of this section.
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Theorem 5.1. Suppose that A, B, ∆, ` and c0 are positive integers for which

(A,B) = (c0,∆) = 1, A + B ≡ 2 (mod ∆), and 4`2 | ∆.

Let P be an infinite set of primes satisfying a Siegel-Walfisz condition for ∆ that is a subset
of those primes p for which p ≡ c0 (mod ∆). If R(X) denotes the number of positive integers
d ≤ X of the form

d = ABp1 . . . p2` = m2` − n2,

where the pj ∈ P are distinct, then

R(X) � X
1
2+ 1

2`

log2 X
.

Remark 5. The implied constant in Theorem 5.1 depends on P, `, A, B, ∆ and c0. If we
denote the number of those representations with (m, 2n) = 1, pj - AB, and p1 . . . p2` ≥ m`

by R0(X), then we actually prove that the lower bound holds for R0(X).

We stress that the formulation of Theorem 5.1 is dictated by the application we have
in mind (i.e. the proof of Theorem 1). Nevertheless, this theorem is closely connected to
work of Perelli [P] and work of Brüdern, Kawada and Wooley [B-K-W] on the solvability of
F (m) = p + q, where F (m) is an integer valued polynomial and p, q are primes. However,
Theorem 5.1 pertains to sets of primes which are also subsets of a single arithmetic progression
modulo ∆. For the sake of a general result which imposes no conditions on c0, we guarantee
the local solvability modulo ∆ (i.e. the obvious `-th power residue condition) by requiring that
there be 2` many primes rather than just two primes (note: two primes is already sufficient
for the proof of Theorem 1).

To prove Theorem 5.1 we shall obtain a lower bound for R1(x), the number of solutions of
the following ternary additive problem

(5.2) 2m` = Ap1 . . . p` + Bp`+1 . . . p2`,

where the primes pj ∈ P (and similarly p`+j ∈ P), for 1 ≤ j ≤ `, satisfy the conditions

(5.3) x1/2` < pj ≤ x1/` for j = 1, . . . , `− 1, and x1− 1
2` < p1 . . . p` ≤ x.

Notice, that writing n = m` −min(Ap1 . . . p`, Bp`+1 . . . p2`) > 0 we have that

m2` − n2 = (m` − n)(m` + n) = ABp1 . . . p2`.

If d = ABp1 . . . p2` is represented in this way, then the number of representations is at most(
2`
`

)
. Next, if not all primes pj are distinct in (5.2), then either 2m` = ap+bp or 2m` = a+bp2

with some prime p > x1/2` and integers a and b. Obviously we have m � x1/`. In the first
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case p|m and b � x/p. In the second case we have b � x/p2, and the fact that p, m, and b
determine a. Therefore, the contribution of these solutions to R1(x) is bounded by

�
∑

p

∑
m

∑
b

1 �
∑

p

x1+1/`

p2
� x1+1/2`.

In the remaining representations pj - AB, p1 . . . p2` > x2−2/` ≥ m` if x is sufficiently large,
and (m,n) | (Ap1 . . . p`, Bp`+1 . . . p2`) = 1. Finally, we observe that 2m` ≡ 2c`

0 (mod ∆)
implies (m, 2) = 1, and so we have

(5.4) R(X) ≥ R0(X) � R1(x) + O
(
x1+ 1

2`

)
,

where X = ABx2. For the remainder of this section, X is assumed to be a fixed sufficiently
large real number.

As usual, let e(α) = e2πiα, and let P = AB∆. We introduce the generating functions

f(α) =
∑

p1,...,p`

e(p1 . . . p` α) =
∑
n≤x

cne(nα),(5.5)

g(α) =
∑
m

`m`−1e(m`α) =
∑

m≤M

wme(m`α),(5.6)

where the pj satisfy (5.3), and m satisfies

(5.7) m ≤ M =
(

(A + B)x
2

)1/`

, (m,P ) = 1.

It is trivial that 0 ≤ cn ≤ `! � 1, and a straightforward calculation using (5.1) (with q = 1)
shows that

(5.8) f(0) =
∑
n≤x

cn =
∑

p1,...,p`

1 � x

log x
.

The coefficients wm in the definition of g(α) serve to simplify the analysis. However, we
note that in our computation each solution of (5.2) is then weighted by 0 < wm = `m`−1 ≤
`M `−1 � x1− 1

` . By the orthogonality of the trigonometric functions, we have

(5.9) x1− 1
` R1(x) � R2(x) :=

∫ 1

0

f(Aα)f(Bα)g(−2α) dα.

This section is devoted to the proof of the following estimate.

(5.10) R2(x) = 2`(2, `)
∏
p|∆

(`, p− 1)f2(0) + O

(
x2

log3 x

)
,
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which together with (5.4), (5.8) and (5.9) implies Theorem 5.1.
We begin by examining the function g(α). Without the condition that (m,P ) = 1 and the

presence of the weight wm = `m`−1, the results we would require are described in detail in
[V]. Nevertheless, it is not too difficult to modify them for our purposes. First we introduce
some more notation. The symbol

∑
u (q) will denote a sum over the complete residue system

modulo q, while
∑

(u,q)=1 denotes a sum over those classes modulo q that are coprime to q.
For integers q ≥ 1 and a, we require the Gaussian sum

G(q, a) =
∑
u (q)

(u,q,P )=1

e

(
au`

q

)
,

and the auxiliary function

V (η) =
∑

n≤ (A+B)x
2

e(nη).

Lemma 5.2. If a and q ≥ 1 are integers, and η is a real number, then

g

(
a

q
+ η

)
=

(q, P )φ(P )
qφ(q, P )P

·G(q, a)V (η) + O
(
qM `−1(1 + |η|M `)

)
.

Here and in the sequel φ(q, P ) = φ((q, P )), the Euler function evaluated at the greatest
common divisor of q and P .

Proof. The corresponding result is [Lemma 2.7, V]. By gathering the terms in residue classes
modulo q we get

g

(
a

q
+ η

)
=

∑
u (q)

(u,q,P )=1

e

(
au`

q

) ∑
m≤M

(m,P )=1
m≡u (q)

`m`−1e(m`η),

and the result follows, by partial summation, from the estimate

∑
m≤y

(m,P )=1
m≡u (q)

1 =
∑
d|P

µ(d)
∑

md≤y
md≡u (q)

1 =
∑
d|P

(d,q)=1

µ(d)
(

y

qd
+ O(1)

)
.

�
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Lemma 5.3. If M1/2 < q ≤ N := M `−1/2, (a, q) = 1 and |α− a
q | ≤

1
qN , then we have

g(2α) � M `−2−(`+1)
.

Proof. This is essentially Weyl’s inequality. Our statement actually follows from [Lemma 2.4,
V] which states that if (a, q) = 1 and |α− a

q | < q−2 then for any ε > 0 one has

(5.11)
∑
m≤y

e(αm`) � y1+ε

(
1
q

+
1
y

+
q

y`

)21−`

.

Let y ≤ M and write ∑
m≤y

(m,P )=1

e(2αm`) =
∑
d|P

µ(d)
∑

m≤y/d

e(2αd`m`).

By Dirichlet’s Approximation Theorem, for any fixed d there are coprime integers a′ and q′ for
which 1 ≤ q′ ≤ 2N and |2αd` − a′

q′ | ≤
1

q′2N ≤ (q′)−2. We use (5.11) with this approximation

where ε = 2−(`+1). If 2ad`

q = a′

q′ , then 1
2M1/2d−` < q′ ≤ 2N , otherwise

1
qq′

≤
∣∣∣∣2ad`

q
− a′

q′

∣∣∣∣ ≤ ∣∣∣∣2αd` − 2ad`

q

∣∣∣∣+ ∣∣∣∣2αd` − a′

q′

∣∣∣∣ ≤ 2d`

qN
+

1
q′2N

implies that N
4d` ≤ q′ ≤ 2N . In either case, we have∑

m≤y/d

e(2αd`m`) � M1−2−(`+1)
.

Since we have
∑

d|P 1 � 1, and since the weights wm are monotonic, the result follows.

�

Lemma 5.4. If (q1, q2) = 1, then G(q1, a1)G(q2, a2) = G(q1q2, a1q2 + a2q1).

Proof. This is basically [Lemma 2.10, V], and follows easily from the Chinese Remainder
Theorem.

�

Lemma 5.5. If p is prime and a is an integer coprime to p, then |G(p, a)| ≤ (`, p− 1)p1/2.

Proof. This follows easily from [Lemma 4.3, V].

�
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Lemma 5.6. Suppose p|P is prime, and let s = ordp(2`). If p - a and k ≥ max(2, 2s + 1),
then G(pk, a) = G(pk, 2a) = 0.

Proof. We prove the case of G(pk, 2a) = 0; the other proof is identical. It is easy to see that
the following is true∑

u (pk)
p-u

e

(
2au`

pk

)
=

∑
u (pk−s−1)

p-u

∑
v (ps+1)

e

(
2a(u + vpk−s−1)`

pk

)
=

=
∑

u (pk−s−1)
p-u

e

(
2au`

pk

) ∑
v (ps+1)

e

(
2`au`−1v

ps+1

)
= 0.

The last equality follows from the summation over v. In the next to last step we used the
Binomial Theorem and the hypotheses on k.

�

Lemma 5.7. If (q, a) = 1, then
G(q, 2a) � q1− 1

` .

Proof. This is essentially [Th. 4.2, V], and follows immediately from Lemma 5.4, Lemma 5.5,
and Lemma 5.6.

�
Finally, we will need the large sieve (although with extra work we can avoid using it)

[Lemma 5.3, V].

Lemma 5.8. (The Large Sieve) For any complex coefficients cn we have

∑
q≤Q

∑
(a,q)=1

∣∣∣∣∣∣
∑
n≤x

cne

(
an

q

)∣∣∣∣∣∣
2

≤ (x + Q2)
∑
n≤x

|cn|2.

The next statement is the main formula from which Theorem 5.1 will follow. It is proved
using the circle method.

Theorem 5.9. For any 1 ≤ Q ≤ M
min

“
1
6 , `

2(`+1)

”
we have

R2(x) =
∑
q≤Q

∑
(a,q)=1

(q, P )φ(P )
qφ(q, P )P

·G(q,−2a)f
(

aA

q

)
f

(
aB

q

)
+ O

(
x2

Q1/`

)
.

Remark 6. Theorem 5.9 is a result which is far more general than as stated here. In fact,
one can derive a useful formula for the number of solutions to

2m` = AU + BV,
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with virtually any conditions on U and V . Our statement remains valid for arbitrary complex
coefficients cn, not just those defined in (5.5). In general the x2 in the error term should be
replaced by x

∑
n≤x |cn|2.

Remark 7. If in the definition of g(α) and of G(q, a) we replace P by P
∏

p<Q p, then the
upper bound in Lemma 5.7 improves to q1/2+ε for q ≤ Q, and the exponent of Q in the error
term of Theorem 5.9 improves from 1/` to 1/2 − ε. This change makes it possible to make
use of a Siegel-Walfisz type condition with C = 2 + ε. However, such an approach makes
the proofs of Lemma 5.2 and Lemma 5.3 considerably more difficult since

∑
d|P 1 � 1 is no

longer true.

Proof of Theorem 5.9. We are going to use the parameters introduced earlier; for convenience
we repeat their definitions

(5.12) M =
(

(A + B)x
2

)1/`

, N = M `−1/2 � x

M1/2
, Q ≤ M

min
“

1
6 , `

2(`+1)

”
.

By Dirichlet’s Approximation Theorem, for every real number 1
N ≤ α < 1 + 1

N there is a
rational approximation∣∣∣∣α− a

q

∣∣∣∣ < 1
qN

with 1 ≤ a ≤ q ≤ N and (a, q) = 1.

This interval, a piece of the “major arcs”, is denoted by M(a/q), that is

M(a/q) =
{

a

q
− 1

qN
< α <

a

q
+

1
qN

}
,

and they are disjoint for q ≤ M1/2. The rest, the “minor arcs”, is denoted by m, that is

m =
{

1
N
≤ α < 1 +

1
N

}
\

⋃
q≤M1/2

⋃
(a,q)=1

M(a/q).

Note that the functions, f(α) and g(α) have period 1; thus we can freely choose any interval
of length 1, rather than the unit interval in (5.9). We use this fact later again. Our starting
point is the decomposition

(5.13) R2(x) =
∫ 1+ 1

N

1
N

f(Aα)f(Bα)g(−2α) dα =

=
∑

q≤M1/2

∑
(a,q)=1

∫
M(a/q)

f(Aα)f(Bα)g(−2α) dα +
∫

m

f(Aα)f(Bα)g(−2α) dα.

The integral over m is small because g(−2α) itself is small on the minor arcs by Lemma 5.3.
Indeed, by the Cauchy–Schwarz Inequality, Parseval’s Identity, and (5.8), we have

(5.14)
∫

m

f(Aα)f(Bα)g(−2α) dα � M `−2−(`+1)
∫ 1

0

|f(Aα)f(Bα)| dα � M `−2−(`+1)
x.
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On a major arc M(a/q) we use the more precise bound of Lemma 5.2. Note that for q ≤
M1/2 and a

q + η ∈ M(a/q) (i.e. |η| < 1
qN ) the error term in Lemma 5.2 is bounded by

qM `−1(1 + |η|x) � M `− 1
2 . We have, by the Cauchy–Schwarz Inequality and Parseval’s

Identity again, that

(5.15)
∑

q≤M1/2

∑
(a,q)=1

∫
M(a/q)

∣∣∣∣f (A(
a

q
+ η)

)
f

(
B(

a

q
+ η)

)∣∣∣∣M `−1q(1 + |η|x) dη �

� M `− 1
2

∫ 1

0

|f(Aα)f(Bα)| dα � M `− 1
2 x.

Obviously both (5.14) and (5.15) are smaller than the stated error term by (5.12). Applying
Lemma 5.2 to g(−2α) in (5.13), we find that

R2(x) =

=
∑

q≤M1/2

∑
(a,q)=1

(q, P )φ(P )
qφ(q, P )P

·G(q,−2a)
∫ 1

qN

− 1
qN

f

(
A(

a

q
+ η)

)
f

(
B(

a

q
+ η)

)
V (−2η) dη+

+ O(M `−2−(`+1)
x).

Next we estimate the contribution of Q < q ≤ M1/2 by using Lemma 5.7 and the Large
Sieve (Lemma 5.8). We can be rather crude. Note also that V (−2η) � min(x, |η|−1). By the
Cauchy–Schwarz Inequality, we obtain

∑
Q<q≤M1/2

∑
(a,q)=1

(q, P )φ(P )
qφ(q, P )P

G(q,−2a)
∫ 1

qN

− 1
qN

f

(
A(

a

q
+ η)

)
f

(
B(

a

q
+ η)

)
V (−2η) dη �

� Q−1/`

∫ 1/2

−1/2

min(x, |η|−1)
∑

Q<q≤M1/2

∑
(a,q)=1

∣∣∣∣f (A(
a

q
+ η)

)
f

(
B(

a

q
+ η)

)∣∣∣∣ dη �

� Q−1/`

∫ 1/2

−1/2

min(x, |η|−1)(x + M)
∑
n≤x

|cne(nη)|2 � x2Q−1/`.

For the remaining range of q, we extend each integral to the interval {− 1
2 < η < 1

2}. Trivially,
V (−2η) � |η|−1 ≤ qN on the extension. By Parseval’s Identity for the last time, the error
introduced by this extension is bounded by

2
∑
q≤Q

∑
(a,q)=1

(q, P )φ(P )
qφ(q, P )P

|G(q,−2a)|
∫ 1

2

1
qN

∣∣∣∣f (A(
a

q
+ η)

)
f

(
B(

a

q
+ η)

)
V (−2η)

∣∣∣∣ dη �

� N
∑
q≤Q

∑
(a,q)=1

q1−1/`

∫ 1

0

∣∣∣∣f (A(
a

q
+ η)

)
f

(
B(

a

q
+ η)

)∣∣∣∣ dη � M `− 1
2 xQ3−1/`.
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Collecting all these bounds we arrive at

R2(x) =

=
∑
q≤Q

∑
(a,q)=1

(q, P )φ(P )
qφ(q, P )P

G(q,−2a)
∫ 1

0

f

(
A(

a

q
+ η)

)
f

(
B(

a

q
+ η)

)
V (−2η) dη+

+ O

(
x2

Q1/`

)
.

Notice that the integral counts

e

(
aAp1 . . . p`

q

)
e

(
aBp`+1 . . . p2`

q

)

whenever Ap1 . . . p` + Bp`+1 . . . p2` = 2n ≤ (A + B)x, and this equals f
(

aA
q

)
f
(

aB
q

)
.

�

To complete the proof of Theorem 5.1 we now compute f
(

aA
q

)
. First note that every

q ≤ Q can be uniquely factored into q = dq′, where d is composed only from primes dividing
∆ and (q′,∆) = 1. Next, by Lemma 5.4 and Lemma 5.6 we have that G(q, 2a) = 0 unless
d|∆. Here we require the technical condition that 4`2|∆. If d|∆, then we have

f

(
aA

q

)
=
∑
n≤x

cne

(
aAn

q

)
=

∑
(b,q)=1

e

(
aAb

q

) ∑
n≤x

n≡b (q)

cn =
∑

(b,q)=1

b≡c`
0 (d)

e

(
aAb

q

) ∑
n≤x

n≡b (q′)

cn,

since cn = 0 unless n ≡ c`
0 (∆). We now compute the inner sum above. By the Siegel-Walfisz

condition (note: the pj in the sums below satisfy the conditions in (5.3)), we find that

∑
n≤x

n≡b (q′)

cn =
∑
p1

· · ·
∑
p`−1

∑
p`

p`≡ b
p1...p`−1

(q′)

1 =
1

φ(q′)

∑
p1

· · ·
∑
p`−1

∑
p`

1 + O

(
x

logC x

)
=

=
1

φ(q′)

∑
n≤x

cn + O

(
x

logC x

)
=

1
φ(q′)

f(0) + O

(
x

logC x

)
.

This estimate is uniform in b, and the main term is independent of b, thus we have

f

(
aA

q

)
=

1
φ(q′)

f(0)
∑

(b,q)=1

b≡c`
0 (d)

e

(
aAb

q

)
+ O

(
q′x

logC x

)
.
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Finally, each b in the sum above can be written as b = c`
0q
′q̄′ + b′d, where (b′, q′) = 1 and

q′q̄′ ≡ 1 (d). We recall the well–known formula for the Ramanujan sum [Th. 272, H-W] for
an arbitrary modulus q ∑

(b,q)=1

e

(
ab

q

)
= φ(q)

µ
(

q
(a,q)

)
φ
(

q
(a,q)

) .

For convenience, if we let qA = q′/(A, q′) and qB = q′/(B, q′), then this implies that

∑
(b,q)=1

b≡c`
0 (d)

e

(
aAb

q

)
=

∑
(b′,q′)=1

e

(
aA(c`

0q
′q̄′ + b′d)
q

)
=

= e

(
aAc`

0q̄
′

d

) ∑
(b′,q′)=1

e

(
aAb′d

q′

)
= φ(q′)

µ(qA)
φ(qA)

e

(
aAc`

0q̄
′

d

)
.

If Q ≤ logC/2 x, then these results together with (5.8) and the fact that A + B ≡ 2 (mod ∆)
implies that

f

(
aA

q

)
f

(
aB

q

)
=

µ(qA)µ(qB)
φ(qA)φ(qB)

e

(
2ac`

0q̄
′

d

)
f2(0) + O

(
x2

logC x

)
.

By Theorem 5.9, we then get

(5.16) R2(x) =

= f2(0)
φ(P )

P

∑
d|∆

∑
q′≤Q

d

(q′,∆)=1

µ(qA)µ(qB)(q′, P )
q′φ(qA)φ(qB)φ(d)φ(q′, P )

∑
(a,dq′)=1

G(dq′,−2a)e
(

2ac`
0q̄
′

d

)
+

+ O

(
x2

Q1/`

)
+ O

(
x2Q2− 1

`

logC x

)
.

To complete the proof, we now aim to produce (5.10). By letting Q = log3` x and C = 6`,
we find that the error terms in (5.16) are O(x2/ log3 x) as claimed in (5.10). Therefore, the
remainder of the proof is devoted to the computation of the triple sum in (5.16). Let us write

κ(q) =
∑

(a,q)=1

G(q,−2a)e
(

2ac`
0q̄
′

d

)
,

where q = dq′ and d | ∆ and (q′,∆) = 1. By the Chinese Remainder Theorem, we find that
this function is multiplicative. In particular, we have κ(q′d) = κ(q′)κ(d). Next, note that
from (A,B) = 1 we have µ(qA)µ(qB) = µ2(q′)µ(q′, AB). We have to compute κ(p) for any
prime p - ∆ and also κ(pk) for any prime power pk | ∆.
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If p - ∆ is prime, then

(5.17) κ(p) =
∑
u (p)

(u,p,AB)=1

∑
(a,p)=1

e

(
−2au`

p

)
=

{
1− p if p | AB, p - ∆,

0 if p - AB∆.

By an obvious change of variables, if d | ∆ and (c0,∆) = 1, then

κ(d) =
∑

(a,d)=1

∑
(u,d)=1

e

(
2a(u` − 1)

d

)
.

Let us also introduce the notation

ρ(pk) = #{u (pk) : u` ≡ 1 (mod pk)},

and recall that

ρ(pk) = (`, p− 1)(`, pk−1) if p 6= 2,

ρ(2k) =

{
1 if 2 - `,

(2`, 2k−1) if 2 | `.

If p | ∆ is an odd prime, then
(5.18)

κ(p) =
∑

(u,p)=1

∑
(a,p)=1

e

(
2a(u` − 1)

p

)
= ρ(p)(p−1)+(p− 1− ρ(p)) (−1) = p(`, p−1)−(p−1),

while κ(pk) = 0 for any k ≥ 2 and p - 2` by Lemma 5.6. Let s be the integer s = ordp(2`). In
the remaining cases we have s ≥ 1. Suppose now that p | ` but p 6= 2 and k ≥ 2. We have

κ(pk) =
∑

(u,pk)=1

∑
(a,pk)=1

e

(
2a(u` − 1)

pk

)
=

= ρ(pk)φ(pk) +
k−1∑
n=0

∑
(u,pk)=1

pn|u`−1

pn+1-u`−1

∑
(a,pk)=1

e

(
2a(u` − 1)

pk

)
.

Obviously 2(u` − 1) = Upn with some integer p - U , and the inner sum becomes pn copies of
the Ramanujan sum attached to pk−n (i.e. pnµ(pk−n)). Therefore, we find that

(5.19) κ(pk) = ρ(pk)φ(pk)− pk−1
∑

(u,pk)=1

pk−1|u`−1

pk-u`−1

1 = ρ(pk)φ(pk)− pk−1
(
pρ(pk−1)− ρ(pk)

)
=

= pk
(
ρ(pk)− ρ(pk−1)

)
=

{
(`, p− 1)(p2k−1 − p2k−2) if 2 ≤ k ≤ s + 1,

0 if k ≥ s + 2.
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The computation of κ(2k) is similar, and it turns out that

(5.20) κ(2k) =


1 if k = 1,

4 if k = 2,

22k−2 if 3 ≤ k ≤ s + 2, and 2 | `,
0 otherwise.

Note that the “otherwise” above implies that either 2 - ` and k ≥ 3, or 2 | ` and k ≥ s + 3. If
we replace q′ by q in (5.16), the second line of (5.17) implies immediately that the summand
with respect to q in (5.16) is zero unless q | AB. If X is sufficiently large, then clearly we
have Q ≥ AB∆, and so the sum over q ≤ Q/d and (q, ∆) = 1 becomes a sum over q | AB
with (q, ∆) = 1. Using our formulas for κ(qd) (i.e. (5.17-20)), (5.16) reduces to

R2(x) = f2(0)
φ(P )

P

∑
d|∆

∑
q|AB

(q,∆)=1

µ(q)κ(d)κ(q)
φ(d)φ2(q)

+ O

(
x2

log3 x

)
=

= f2(0)
φ(P )

P

∏
p|2`

(
1 +

κ(p)
φ(p)

+
κ(p2)
φ(p2)

+ . . .

)∏
p|∆
p-2`

(
1 +

κ(p)
φ(p)

) ∏
p|AB
p-∆

(
1− κ(p)

φ2(p)

)
+

+ O

(
x2

log3 x

)
= 2`(2, `)

∏
p|∆

(`, p− 1)f2(0) + O

(
x2

log3 x

)
.

This is (5.10), and so the proof of Theorem 5.1 is complete.

6. Proof of theorem 1.

To reduce Theorem 1 to Theorem 5.1 we need two more elementary facts. We state them
as Lemmas 6.1 and 6.2.

Lemma 6.1. If the integers M and ∆ satisfy

M ≡ 1 (mod (24,∆)),
(

2
p

)
= 1 for every prime p | (M,∆),

then there are positive integers a and b such that

Ma2 + b2 ≡ 2 (mod ∆), (Ma, b) = 1, (ab,M∆) = 1.

Proof. First we prove that there are integers u and v, coprime to ∆, such that M ≡ 2u2− v2

(mod ∆). By Chinese Remainder Theorem, it suffices to check, for any pk | ∆, that there
are u and v coprime to p such that M ≡ 2u2 − v2 (mod pk). For p = 2 and k ≤ 3 the choice
u = v = 1 is a good one since M ≡ 1 (mod (8,∆)). Suppose that k ≥ 3 and that v2

0 ≡ 2−M
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(mod 2k) (i.e. u = 1, v = v0 is a solution mod 2k, 2 - v0). Then u = 1 and one of v1 = v0 or
v2 = v0 + 2k−1 is a solution mod 2k+1 since v2

2 ≡ v2
0 + 2k (mod 2k+1). This settles the case

of p = 2.
For odd primes p | ∆, Hensel’s Lemma implies that it is enough to prove that there are

integers u and v, coprime to p, for which M ≡ 2u2 − v2 (mod p). If 3 | ∆, then M ≡ 1
(mod 3) and u = v = 1 is an obvious choice. If p | M , let u = 1 and choose v so that v2 ≡ 2
(mod p). Finally, if p - 6M , then the set of residue classes {M − 2u2 : 0 ≤ u ≤ p−1

2 } cannot
be disjoint to the set of residue classes {v2 : 0 ≤ v ≤ p−1

2 } by the Pigeon Hole Principle. This
provides a pair of integers u and v which completes the proof if both are coprime to p. If
they are not both coprime to p, then either M ≡ −v2

0 (mod p) and then u = 2v0 and v = 3v0

is a good choice for u and v. Otherwise we have M ≡ 2u2
0 (mod p), in which case u = 3u0,

v = 4u0 is a good choice.
To obtain the claimed statement, let uū ≡ 1 (mod ∆) and choose a to be any positive

integer a ≡ ū (mod ∆) for which (a,M) = 1, and then choose b to be any positive integer
b ≡ ūv (mod ∆) for which (b, aM) = 1. (note: by Dirichlet’s Theorem, a and b can be chosen
to be big primes).

�

The next lemma [Prop. 1, So] provides the essential criterion for producing elements in
class groups.

Lemma 6.2. Let ` ≥ 2 be an integer and let d ≥ 63 be a square–free integer for which

dt2 = m2` − n2,

where m and n are integers with (m, 2n) = 1 and m` ≤ d. Then CL(−d) contains an element
of order 2`.

Proof of Theorem 1. Let K/Q be a finite Galois extension, c a conjugacy class in Gal(K/Q),
and M ≡ 1 (mod 24) a positive square-free integer with the property that

(
2
q

)
= 1 for every

prime q | (M, `∆K). Let ∆ := lcm (4`2,∆K) and choose an arbitrary prime p0 ∈ S(K, c, M).
Then there is a cyclotomic extension K ′/K and a conjugacy class c′ in Gal(K ′/Q) such that
every prime p which is unramified in K ′/Q with Frob(p) ∈ c′ has the property that p ≡ p0

(mod ∆). Furthermore, we have S(K ′, c′,M) ⊂ S(K, c, M). Let P denote the set of these
primes.

Observe that the prime factors of the discriminant of K ′ are the same as those of ∆.
Therefore, if q is coprime to ∆, the conjugacy class c′ splits into φ(q) classes of equal size in
the qth cyclotomic extension of K ′. In particular, the constant in the Chebotarev Density
Theorem is 1

φ(q) ·
#c′

#Gal(K′/Q) . The Chebotarev Density Theorem applied to cyclotomic exten-
sions of K ′ implies that P satisfies the Siegel-Walfisz condition for ∆. This is the number field
generalization of the Siegel-Walfisz Theorem describing the uniform distribution of primes in
residue classes. The proof follows as in the classical case (for example, see [D], [Go], [Mi])
after one notices that the only Artin L-functions for irreducible representations that might
have exceptional real zeros are those associated with real 1-dimensional representations (i.e.
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quadratic Dirichlet characters). Then the required estimates for the zero-free regions for Artin
L-functions (for example, see [Go] or [Mi]) are exactly the same as those in the classical case.

By Lemma 6.1, there are positive integers a and b for which Theorem 5.1 applies with
A = Ma2 and B = b2, and where `, ∆, c0 = p0 and P are given. Consequently, there are at
least � X

1
2+ 1

2` log−2 X integers of the form

M(ab)2p1 . . . p2` = m2` − n2 ≤ X,

where the pj ∈ P are distinct, pj - Mab∆, (m, 2n) = 1 and p1 . . . p2` ≥ m`. By Lemma 6.2,
we have that CL(−d) contains an element of order ` for all of the above d = Mp1 . . . p2`.

�
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[Bö] R. Bölling, Die Ordung der Schafarewitsch-Tate Gruppe kann beliebeg gross werden, Math. Nachr.

67 (1975), 157-179.
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