DIFFERENTIAL ENDOMORPHISMS

FOR MODULAR FORMS ON $\Gamma_{0}(4)$

Ken Ono
Proceedings of Gainesville 1999 Conference.

Abstract

In this note we construct a graded family of endomorphisms on $M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ using differential operators. These operators are analogous to those constructed by Kaneko and Zagier in the case of modular forms on $\Gamma_{0}(1)$. We study the arithmetic of these operators. For example, we classify their eigenforms and their kernels.

1. Introduction and Statement of Results

Kaneko and Zagier [K-Z] studied hypergeometric modular forms whose properties are connected to supersingular j-invariants. Recent work by Kaneko and Todaka [K-T] includes a new family of such modular forms. A common thread between these papers is the construction of endomorphisms on spaces of modular forms $M_{k}\left(\Gamma_{0}(1)\right)$, for certain weights k, which are defined using differential operators.

In this simple note we study a similar construction for the spaces of modular forms $M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ where $k \in \frac{1}{2} \mathbb{N}$ (see $[\mathrm{K}]$ for definitions) and

$$
\chi_{k}:= \begin{cases}\chi_{\text {triv }} & \text { if } k \in 2 \mathbb{Z} \text { or } k \in \frac{1}{2}+\mathbb{Z} \tag{1}\\ \chi_{-4} & \text { if } k \in 1+2 \mathbb{Z}\end{cases}
$$

[^0]We construct, uniformly in k, endomorphisms on $M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$. We characterize some of their intrinsic properties which may be of interest to those working on the combinatorial aspects of q-series and hypergeometric functions.

We shall identify a modular form $f(z) \in M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ with its Fourier expansion

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \quad\left(q:=e^{2 \pi i z} \text { throughout }\right)
$$

For convenience, let d denote the differential operator defined by

$$
\begin{equation*}
d\left(\sum_{n=0}^{\infty} a(n) q^{n}\right)=\sum_{n=0}^{\infty} n a(n) q^{n}=\frac{1}{2 \pi i} \cdot \frac{d}{d z}\left(\sum_{n=0}^{\infty} a(n) e^{2 \pi i n z}\right) \tag{2}
\end{equation*}
$$

If $k \in \frac{1}{2} \mathbb{N}$, then let C_{k} denote the map

$$
C_{k}: M_{k}\left(\Gamma_{0}(4), \chi_{k}\right) \longrightarrow \mathbb{C}[[q]]
$$

given by

$$
\begin{equation*}
C_{k}(f):=\frac{(k+1 / 2)(f \cdot d(\theta))-\frac{1}{2} d(f \theta)}{F \theta} \tag{3}
\end{equation*}
$$

where

$$
\theta(z)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=1+2 q+2 q^{4}+2 q^{9}+\cdots
$$

and

$$
F(z)=\sum_{n=0}^{\infty} \sigma_{1}(2 n+1) q^{2 n+1}
$$

Theorem 1. If $k \in \frac{1}{2} \mathbb{N}$, then the map C_{k}

$$
C_{k}: M_{k}\left(\Gamma_{0}(4), \chi_{k}\right) \longrightarrow M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)
$$

is a \mathbb{C}-linear endomorphism. Moreover, the kernel of C_{k} is

$$
\operatorname{ker}\left(C_{k}\right)=\mathbb{C} \theta^{2 k}
$$

DIFFERENTIAL ENDOMORPHISMS FOR MODULAR FORMS ON $\Gamma_{0}(4) 3$

It is natural to characterize the eigenforms of the C_{k}. They are values of terminating hypergeometric functions in terms of the modular forms $F(z)$ and $\theta(z)$, which are defined above. Recall that the classical hypergeometric series ${ }_{p} F_{q}\left(\left.\begin{array}{cccc}\alpha_{1}, & \alpha_{2} & \ldots & \alpha_{p} \\ & \beta_{1}, & \ldots & \beta_{q}\end{array} \right\rvert\, x\right)$ is defined by

$$
{ }_{p} F_{q}\left(\left.\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \ldots & \alpha_{p}, \tag{4}\\
& \beta_{1}, & \cdots & \beta_{q}
\end{array} \right\rvert\, x\right):=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n}\left(\alpha_{2}\right)_{n}\left(\alpha_{3}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n}\left(\beta_{2}\right)_{n} \cdots\left(\beta_{q}\right)_{n} n!} x^{n}
$$

where

$$
(\gamma)_{n}:= \begin{cases}1 & \text { if } n=0 \\ \gamma(\gamma+1)(\gamma+2) \cdots(\gamma+n-1) & \text { if } n \geq 1\end{cases}
$$

Definition. A modular form $f \in M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ is a normalized eigenform if
(1) The first non-zero coefficient in the q-series expansion is 1 .
(2) There is a complex number λ_{f} for which

$$
C_{k}=\lambda_{f} f .
$$

Theorem 2. If $k \in \frac{1}{2} \mathbb{N}$, then there are exactly

$$
e:=\operatorname{dim}\left(M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)-1\right.
$$

normalized eigenforms, say $f_{1, k}, f_{2, k}, \ldots f_{e, k}$, of the endomorphism C_{k}. If $e \geq 1$, then for all $1 \leq m \leq e$ we have

$$
\begin{equation*}
f_{m, k}:=\left(1-\frac{16 F}{\theta^{4}}\right)^{m} \cdot \theta^{2 k}={ }_{1} F_{0}\left(-m \left\lvert\, \frac{16 F}{\theta^{4}}\right.\right) \cdot \theta^{2 k} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
C_{k}\left(f_{m, k}\right)=8 m f_{m, k} \tag{ii}
\end{equation*}
$$

It is natural to ask which cusp forms are in the image of C_{k}. We prove:
Theorem 3. If $k \in \frac{1}{2} \mathbb{N}$, then we have

$$
S_{k}\left(\Gamma_{0}(4), \chi_{k}\right) \subseteq \operatorname{Im}\left(C_{k}\right)
$$

2. Preliminaries

We consider the spaces $M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ and $S_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ where $k \in$ $\frac{1}{2} \mathbb{N}$. We recall the following well known proposition (see [C]).

Proposition 2.1. Using the notation above, we have the following:

$$
\begin{align*}
& \operatorname{dim}\left(M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)= \begin{cases}0 & \text { if } k<0, \\
1+[k / 2] & \text { if } k \geq 0\end{cases} \right. \tag{1}\\
& \operatorname{dim}\left(S_{k}\left(\Gamma_{0}(4), \chi_{k}\right)= \begin{cases}0 & \text { if } k \leq 2, \\
{[k / 2]-1} & \text { if } k>2 \text { and } k \notin 2 \mathbb{Z} \\
{[k / 2]-2} & \text { if } k>2 \text { and } k \in 2 \mathbb{Z}\end{cases} \right.
\end{align*}
$$

(2) As a graded algebra, we have

$$
\oplus_{k \in \frac{1}{2} \mathbb{Z}} M_{k}\left(\Gamma_{0}(4), \chi_{k}\right) \tilde{=\mathbb{C}}[F, \theta] .
$$

In [C], Cohen proved that certain bilinear forms in derivatives of modular forms are again modular forms. The following is a special case of [Th. 7.1, C]:

Theorem 2.2. For $i=1$ and 2 suppose that $f_{i}(z) \in M_{k_{i}}\left(\Gamma_{0}(4), \chi_{k_{i}}\right)$. The function

$$
C\left(f_{1}, f_{2} ; z\right):=\left(k_{1}+k_{2}\right)\left(f_{2} \cdot d\left(f_{1}\right)\right)-k_{1} d\left(f_{2} \cdot f_{1}\right)
$$

is a modular form in $S_{k_{1}+k_{2}+2}\left(\Gamma_{0}(4), \chi_{k_{1}+k_{2}+2}\right)$.

3. Proof of results

Recall the definition of C_{k} from (3).
Theorem 3.1. If a and b are non-negative integers, then

$$
C_{2 a+\frac{b}{2}}\left(F^{a} \theta^{b}\right)= \begin{cases}0 & \text { if } a=0 \\ -\frac{a}{2} F^{a-1} \theta^{b+4}+8 a F^{a} \theta^{b} & \text { if } a>0\end{cases}
$$

Proof. It suffices to prove that

$$
C\left(\theta, F^{a} \theta^{b} ; z\right)= \begin{cases}0 & \text { if } a=0 \tag{5}\\ -\frac{a}{2} F^{a} \theta^{b+5}+8 a F^{a+1} \theta^{b+1} & \text { if } a>0\end{cases}
$$

Using Theorem 2.2 and the standard rules for differentiation, it is simple to verify that if a is a positive integer and b and c are nonnegative integers, then

$$
\begin{align*}
& C\left(\theta, F^{b} \theta^{c+1} ; z\right)=\theta C\left(\theta, F^{b} \theta^{c} ; z\right) \tag{6}\\
& C\left(\theta, F^{a} \theta^{b} ; z\right)=a F^{a-1} C\left(\theta, F \theta^{b} ; z\right) \tag{7}
\end{align*}
$$

It suffices to compute $C(\theta, \theta ; z) \in M_{3}\left(\Gamma_{0}(4), \chi_{-4}\right)$ and $C(\theta, F ; z) \in$ $M_{9 / 2}\left(\Gamma_{0}(4), \chi_{9 / 2}\right)$, and one easily verifies that

$$
\begin{aligned}
& C(\theta, \theta ; z)=0 \\
& C(\theta, F ; z)=-\frac{1}{2} F \theta^{5}+8 F^{2} \theta
\end{aligned}
$$

These identities together with (6) and (7) implies (5).

Proof of Theorem 1. At the outset, there is no guarantee that $C_{k}(f)$ is a modular form for each $f \in M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$. However, Theorem 3.1 and Proposition 2.1 indeed implies that the image of C_{k} is in $M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$. The \mathbb{C}-linearity follows immediately from

$$
\begin{aligned}
C_{k}(\alpha & \left.f_{1}+\beta f_{2}\right)=\frac{\left(k+\frac{1}{2}\right)\left(\left(\alpha f_{1}+\beta f_{2}\right) \cdot d(\theta)\right)-\frac{1}{2} d\left(\left(\alpha f_{1}+\beta f_{2}\right) \theta\right)}{F \theta} \\
& =\frac{\left(k+\frac{1}{2}\right) \alpha f_{1} d(\theta)}{F \theta}+\frac{\left(k+\frac{1}{2}\right) \beta f_{2} d(\theta)}{F \theta}-\alpha \frac{\frac{1}{2} d\left(f_{1} \theta\right)}{F \theta}-\beta \frac{\frac{1}{2} d\left(f_{2} \theta\right)}{F \theta} \\
& =\alpha C_{k}\left(f_{1}\right)+\beta C_{k}\left(f_{2}\right) .
\end{aligned}
$$

Now we characterize the eigenforms of the endomorphisms C_{k}.
Proof of Theorem 2. Since the $\operatorname{ker}\left(C_{k}\right)=\mathbb{C} \theta^{2 k}$ is one dimensional, there are at most e distinct normalized eigenforms. Using the formulas
in Theorem 3.1, it is simple to verify that these e forms are indeed eigenforms with the designated eigenvalue.

We conclude with a study of those cusp forms which are in the image of the differential operators C_{k}. We recall the following important proposition.

Proposition 3.2. The fundamental domain of $\mathfrak{h} / \Gamma_{0}(4)$ has 3 cusps, and canonical representatives are $\left\{0,-\frac{1}{2}, \infty\right\}$. The values of F and θ at these three points are

$$
\begin{aligned}
& F(\infty)=0, \quad F(0)=-\frac{1}{64}, \quad F(-1 / 2)=\frac{1}{16}, \\
& \theta(\infty)=1, \quad \theta(0)=\frac{1-i}{2}, \quad \theta(-1 / 2)=0 .
\end{aligned}
$$

As an immediate corollary we obtain:
Corollary 3.3. Suppose that $k \in \frac{1}{2} \mathbb{N}$ and $f \in M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ has the following canonical decomposition

$$
f=\sum_{j=0}^{[k / 2]} \alpha_{j} F^{j} \theta^{2 k-4 j} .
$$

Then f is a cusp form if and only if

$$
\begin{equation*}
\alpha_{0}=0, \tag{i}
\end{equation*}
$$

(ii) $\quad \alpha_{k / 2}=0$ when $k \in 2 \mathbb{Z}$,
(iii) $\quad \sum_{j=0}^{[k / 2]} \alpha_{j}(1 / 16)^{j}=0$.

The next theorem proves Theorem 3.

Theorem 3.4. If $k \in \frac{1}{2} \mathbb{N}$ and j is a positive integer, then

$$
S_{k}\left(\Gamma_{0}(4), \chi_{k}\right) \subseteq \operatorname{Im}\left(C_{k}\right)
$$

Moreover, every $f \in \operatorname{Im}\left(C_{k}\right)$ has the property that $f\left(z_{0}\right)=0$ for

$$
z_{0} \in \begin{cases}\left\{0,-\frac{1}{2}\right\} & \text { if } k \notin 2 \mathbb{Z} \\ \{0\}, & \text { otherwise }\end{cases}
$$

Proof. By Theorem 3.1, we see that $\operatorname{Im}\left(C_{k}\right)$ is generated by the modular forms

$$
\begin{aligned}
& \theta^{2 k}-16 F \theta^{2 k-4} \\
& \theta^{2 k-4} F-16 F^{2} \theta^{2 k-8}
\end{aligned}
$$

The last generator is of the form $\theta^{4} F^{a-1}-16 F^{a}$ if and only if $k=2 a$ is an even integer.

By Corollary 3.3, it is easy to see that the first form is not a cusp form. However, all the remaining forms (with the exception of the last one when $k \in 2 \mathbb{N}$) is a cusp form. This follows from Corollary 3.3 (iii). It is easy to see that the number of cusp forms equals the dimension of $S_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ from Proposition 2.1. Moreover, it clear that these forms are linearly independent over \mathbb{C}.

The conclusion about the z_{0} follows immediately by noting that $\theta^{a}-16 F \theta^{a-4}$ vanishes at $z=0$ and $-\frac{1}{2}$ while the form $F^{a-1} \theta^{4}-16 F^{a}$ vanishes at $z=0$.

Corollary 3.5. Suppose that $k \in \frac{1}{2} \mathbb{N}$ and that $f \in M_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ has canonical decomposition

$$
f=\sum_{j=0}^{[k / 2]} \alpha_{j} F^{j} \theta^{2 k-4 j}
$$

(1) If $k \notin 2 \mathbb{Z}$, then $C_{k}(f) \in S_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ if and only if $\alpha_{1}=0$.
(2) If $k \in 2 \mathbb{Z}$, then $C_{k}(f) \in S_{k}\left(\Gamma_{0}(4), \chi_{k}\right)$ if and only if $\alpha_{1}=$ $\alpha_{k / 2}=0$.

References

[C] H. Cohen, Sums involving the values at negative integers of Lfunctions of quadratic characters, Math. Ann. 217 (1975), 271-285.
[K-T] M. Kaneko and N. Todaka, Hypergeometric modular forms and supersingular elliptic curves, preprint.
[K-Z] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, "Computational Perspectives in Number Theory", [ed. Buell and Teitelbaum], AMS/IP Studies in Advanced Mathematics, 7 (1997), 97-126.
[K] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York, 1984.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: ono@math.wisc.edu

[^0]: Key words and phrases. Differential operators, Modular forms..
 The author is supported by an NSF grant, an Alfred P. Sloan Research Fellowship, and a David and Lucile Packard Research Fellowship.

