DIFFERENTIAL ENDOMORPHISMS FOR MODULAR FORMS ON $\Gamma_0(4)$

Ken Ono

Proceedings of Gainesville 1999 Conference.

ABSTRACT. In this note we construct a graded family of endomorphisms on $M_k(\Gamma_0(4), \chi_k)$ using differential operators. These operators are analogous to those constructed by Kaneko and Zagier in the case of modular forms on $\Gamma_0(1)$. We study the arithmetic of these operators. For example, we classify their eigenforms and their kernels.

1. INTRODUCTION AND STATEMENT OF RESULTS

Kaneko and Zagier [K-Z] studied hypergeometric modular forms whose properties are connected to supersingular *j*-invariants. Recent work by Kaneko and Todaka [K-T] includes a new family of such modular forms. A common thread between these papers is the construction of endomorphisms on spaces of modular forms $M_k(\Gamma_0(1))$, for certain weights k, which are defined using differential operators.

In this simple note we study a similar construction for the spaces of modular forms $M_k(\Gamma_0(4), \chi_k)$ where $k \in \frac{1}{2}\mathbb{N}$ (see [K] for definitions) and

(1)
$$\chi_k := \begin{cases} \chi_{triv} & \text{if } k \in 2\mathbb{Z} \text{ or } k \in \frac{1}{2} + \mathbb{Z}, \\ \chi_{-4} & \text{if } k \in 1 + 2\mathbb{Z}. \end{cases}$$

Typeset by \mathcal{AMS} -T_EX

Key words and phrases. Differential operators, Modular forms..

The author is supported by an NSF grant, an Alfred P. Sloan Research Fellowship, and a David and Lucile Packard Research Fellowship.

We construct, uniformly in k, endomorphisms on $M_k(\Gamma_0(4), \chi_k)$. We characterize some of their intrinsic properties which may be of interest to those working on the combinatorial aspects of q-series and hypergeometric functions.

We shall identify a modular form $f(z) \in M_k(\Gamma_0(4), \chi_k)$ with its Fourier expansion

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n$$
 $(q := e^{2\pi i z} \text{ throughout}).$

For convenience, let d denote the *differential operator* defined by

(2)
$$d\left(\sum_{n=0}^{\infty} a(n)q^n\right) = \sum_{n=0}^{\infty} na(n)q^n = \frac{1}{2\pi i} \cdot \frac{d}{dz} \left(\sum_{n=0}^{\infty} a(n)e^{2\pi i nz}\right).$$

If $k \in \frac{1}{2}\mathbb{N}$, then let C_k denote the map

$$C_k: M_k(\Gamma_0(4), \chi_k) \longrightarrow \mathbb{C}[[q]]$$

given by

(3)
$$C_k(f) := \frac{(k+1/2)(f \cdot d(\theta)) - \frac{1}{2}d(f\theta)}{F\theta},$$

where

$$\theta(z) = \sum_{n=-\infty}^{\infty} q^{n^2} = 1 + 2q + 2q^4 + 2q^9 + \cdots,$$

and

$$F(z) = \sum_{n=0}^{\infty} \sigma_1 (2n+1) q^{2n+1}.$$

Theorem 1. If $k \in \frac{1}{2}\mathbb{N}$, then the map C_k

$$C_k: M_k(\Gamma_0(4), \chi_k) \longrightarrow M_k(\Gamma_0(4), \chi_k)$$

is a \mathbb{C} -linear endomorphism. Moreover, the kernel of C_k is

$$\ker(C_k) = \mathbb{C}\theta^{2k}.$$

It is natural to characterize the eigenforms of the C_k . They are values of terminating hypergeometric functions in terms of the modular forms F(z) and $\theta(z)$, which are defined above. Recall that the classical hypergeometric series ${}_{p}F_{q}\begin{pmatrix} \alpha_{1}, & \alpha_{2} & \dots & \alpha_{p} \\ & \beta_{1}, & \dots & \beta_{q} \end{pmatrix}$ is defined by (4)

$${}_{p}F_{q}\left(\begin{array}{cccc}\alpha_{1}, & \alpha_{2}, & \dots & \alpha_{p}, \\ & \beta_{1}, & \dots & \beta_{q}\end{array} \mid x\right) := \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}(\alpha_{2})_{n}(\alpha_{3})_{n}\cdots(\alpha_{p})_{n}}{(\beta_{1})_{n}(\beta_{2})_{n}\cdots(\beta_{q})_{n}n!}x^{n}$$

where

$$(\gamma)_n := \begin{cases} 1 & \text{if } n = 0, \\ \gamma(\gamma+1)(\gamma+2)\cdots(\gamma+n-1) & \text{if } n \ge 1. \end{cases}$$

Definition. A modular form $f \in M_k(\Gamma_0(4), \chi_k)$ is a normalized eigenform if

- (1) The first non-zero coefficient in the q-series expansion is 1.
- (2) There is a complex number λ_f for which

$$C_k = \lambda_f f.$$

Theorem 2. If $k \in \frac{1}{2}\mathbb{N}$, then there are exactly $e := \dim(M_k(\Gamma_0(4), \chi_k) - 1)$

normalized eigenforms, say $f_{1,k}, f_{2,k}, \ldots f_{e,k}$, of the endomorphism C_k . If $e \ge 1$, then for all $1 \le m \le e$ we have

(i)
$$f_{m,k} := \left(1 - \frac{16F}{\theta^4}\right)^m \cdot \theta^{2k} = {}_1F_0\left(\begin{array}{c} -m \mid \frac{16F}{\theta^4}\right) \cdot \theta^{2k},$$

$$(ii) C_k(f_{m,k}) = 8mf_{m,k}.$$

It is natural to ask which cusp forms are in the image of C_k . We prove:

Theorem 3. If $k \in \frac{1}{2}\mathbb{N}$, then we have

$$S_k(\Gamma_0(4), \chi_k) \subseteq \operatorname{Im}(C_k).$$

2. Preliminaries

We consider the spaces $M_k(\Gamma_0(4), \chi_k)$ and $S_k(\Gamma_0(4), \chi_k)$ where $k \in \frac{1}{2}\mathbb{N}$. We recall the following well known proposition (see [C]).

Proposition 2.1. Using the notation above, we have the following: (1)

$$\dim(M_k(\Gamma_0(4), \chi_k)) = \begin{cases} 0 & \text{if } k < 0, \\ 1 + [k/2] & \text{if } k \ge 0. \end{cases}$$
$$\dim(S_k(\Gamma_0(4), \chi_k)) = \begin{cases} 0 & \text{if } k \le 2, \\ [k/2] - 1 & \text{if } k > 2 \text{ and } k \notin 2\mathbb{Z}, \\ [k/2] - 2 & \text{if } k > 2 \text{ and } k \in 2\mathbb{Z}. \end{cases}$$

(2) As a graded algebra, we have

$$\oplus_{k \in \frac{1}{2}\mathbb{Z}} M_k(\Gamma_0(4), \chi_k) = \mathbb{C}[F, \theta].$$

In [C], Cohen proved that certain bilinear forms in derivatives of modular forms are again modular forms. The following is a special case of [Th. 7.1, C]:

Theorem 2.2. For i = 1 and 2 suppose that $f_i(z) \in M_{k_i}(\Gamma_0(4), \chi_{k_i})$. The function

$$C(f_1, f_2; z) := (k_1 + k_2)(f_2 \cdot d(f_1)) - k_1 d(f_2 \cdot f_1)$$

is a modular form in $S_{k_1+k_2+2}(\Gamma_0(4), \chi_{k_1+k_2+2})$.

3. Proof of results

Recall the definition of C_k from (3).

Theorem 3.1. If a and b are non-negative integers, then

$$C_{2a+\frac{b}{2}}(F^a\theta^b) = \begin{cases} 0 & \text{if } a = 0, \\ -\frac{a}{2}F^{a-1}\theta^{b+4} + 8aF^a\theta^b & \text{if } a > 0. \end{cases}$$

Proof. It suffices to prove that

(5)
$$C(\theta, F^a \theta^b; z) = \begin{cases} 0 & \text{if } a = 0, \\ -\frac{a}{2} F^a \theta^{b+5} + 8a F^{a+1} \theta^{b+1} & \text{if } a > 0. \end{cases}$$

Using Theorem 2.2 and the standard rules for differentiation, it is simple to verify that if a is a positive integer and b and c are nonnegative integers, then

(6)
$$C(\theta, F^b \theta^{c+1}; z) = \theta C(\theta, F^b \theta^c; z),$$

(7)
$$C(\theta, F^a \theta^b; z) = a F^{a-1} C(\theta, F \theta^b; z).$$

It suffices to compute $C(\theta, \theta; z) \in M_3(\Gamma_0(4), \chi_{-4})$ and $C(\theta, F; z) \in M_{9/2}(\Gamma_0(4), \chi_{9/2})$, and one easily verifies that

$$\begin{split} C(\theta,\theta;z) &= 0,\\ C(\theta,F;z) &= -\frac{1}{2}F\theta^5 + 8F^2\theta \end{split}$$

These identities together with (6) and (7) implies (5).

Proof of Theorem 1. At the outset, there is no guarantee that $C_k(f)$ is a modular form for each $f \in M_k(\Gamma_0(4), \chi_k)$. However, Theorem 3.1 and Proposition 2.1 indeed implies that the image of C_k is in $M_k(\Gamma_0(4), \chi_k)$. The \mathbb{C} -linearity follows immediately from

$$C_k(\alpha f_1 + \beta f_2) = \frac{\left(k + \frac{1}{2}\right)\left(\left(\alpha f_1 + \beta f_2\right) \cdot d(\theta)\right) - \frac{1}{2}d\left(\left(\alpha f_1 + \beta f_2\right)\theta\right)}{F\theta}$$
$$= \frac{\left(k + \frac{1}{2}\right)\alpha f_1 d(\theta)}{F\theta} + \frac{\left(k + \frac{1}{2}\right)\beta f_2 d(\theta)}{F\theta} - \alpha \frac{\frac{1}{2}d(f_1\theta)}{F\theta} - \beta \frac{\frac{1}{2}d(f_2\theta)}{F\theta}$$
$$= \alpha C_k(f_1) + \beta C_k(f_2).$$

Now we characterize the eigenforms of the endomorphisms C_k .

Proof of Theorem 2. Since the $\ker(C_k) = \mathbb{C}\theta^{2k}$ is one dimensional, there are at most *e* distinct normalized eigenforms. Using the formulas

in Theorem 3.1, it is simple to verify that these e forms are indeed eigenforms with the designated eigenvalue.

We conclude with a study of those cusp forms which are in the image of the differential operators C_k . We recall the following important proposition.

Proposition 3.2. The fundamental domain of $\mathfrak{h}/\Gamma_0(4)$ has 3 cusps, and canonical representatives are $\{0, -\frac{1}{2}, \infty\}$. The values of F and θ at these three points are

$$F(\infty) = 0, \quad F(0) = -\frac{1}{64}, \quad F(-1/2) = \frac{1}{16},$$

$$\theta(\infty) = 1, \quad \theta(0) = \frac{1-i}{2}, \quad \theta(-1/2) = 0.$$

As an immediate corollary we obtain:

Corollary 3.3. Suppose that $k \in \frac{1}{2}\mathbb{N}$ and $f \in M_k(\Gamma_0(4), \chi_k)$ has the following canonical decomposition

$$f = \sum_{j=0}^{[k/2]} \alpha_j F^j \theta^{2k-4j}$$

Then f is a cusp form if and only if

(i)
$$\alpha_0 = 0,$$

(ii) $\alpha_{k/2} = 0 \text{ when } k \in 2\mathbb{Z},$
(iii) $\sum_{j=0}^{[k/2]} \alpha_j (1/16)^j = 0.$

The next theorem proves Theorem 3.

Theorem 3.4. If $k \in \frac{1}{2}\mathbb{N}$ and j is a positive integer, then

$$S_k(\Gamma_0(4), \chi_k) \subseteq \operatorname{Im}(C_k)$$

Moreover, every $f \in \text{Im}(C_k)$ has the property that $f(z_0) = 0$ for

$$z_0 \in \begin{cases} \{0, -\frac{1}{2}\} & \text{if } k \notin 2\mathbb{Z}, \\ \{0\}, & \text{otherwise.} \end{cases}$$

Proof. By Theorem 3.1, we see that $Im(C_k)$ is generated by the modular forms

$$\theta^{2k} - 16F\theta^{2k-4},$$

 $\theta^{2k-4}F - 16F^2\theta^{2k-8},$
 \vdots

The last generator is of the form $\theta^4 F^{a-1} - 16F^a$ if and only if k = 2a is an even integer.

By Corollary 3.3, it is easy to see that the first form is not a cusp form. However, all the remaining forms (with the exception of the last one when $k \in 2\mathbb{N}$) is a cusp form. This follows from Corollary 3.3 (*iii*). It is easy to see that the number of cusp forms equals the dimension of $S_k(\Gamma_0(4), \chi_k)$ from Proposition 2.1. Moreover, it clear that these forms are linearly independent over \mathbb{C} .

The conclusion about the z_0 follows immediately by noting that $\theta^a - 16F\theta^{a-4}$ vanishes at z = 0 and $-\frac{1}{2}$ while the form $F^{a-1}\theta^4 - 16F^a$ vanishes at z = 0.

Corollary 3.5. Suppose that $k \in \frac{1}{2}\mathbb{N}$ and that $f \in M_k(\Gamma_0(4), \chi_k)$ has canonical decomposition

$$f = \sum_{j=0}^{[k/2]} \alpha_j F^j \theta^{2k-4j}$$

- (1) If $k \notin 2\mathbb{Z}$, then $C_k(f) \in S_k(\Gamma_0(4), \chi_k)$ if and only if $\alpha_1 = 0$.
- (2) If $k \in 2\mathbb{Z}$, then $C_k(f) \in S_k(\Gamma_0(4), \chi_k)$ if and only if $\alpha_1 = \alpha_{k/2} = 0$.

References

[C]	Η.	Cohen,	Sums	involving	the	values	at n e	egative	integers	of L-
	fun	nctions o	of quadi	ratic chara	cters	s, Math	. Ann	. 217 (1975), 27	71-285.

- [K-T] M. Kaneko and N. Todaka, Hypergeometric modular forms and supersingular elliptic curves, preprint.
- [K-Z] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, "Computational Perspectives in Number Theory", [ed. Buell and Teitelbaum], AMS/IP Studies in Advanced Mathematics, 7 (1997), 97-126.
- [K] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York, 1984.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: ono@math.wisc.edu