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1. Introduction and Statement of Results

A partition of a positive integer n is any non-increasing sequence of positive integers whose
sum is n. As usual, let p(n) denote the number of partitions of size n. One of the
fundamental tools used for studying p(n) is Euler’s generating function

(1)
∞∑

n=0

p(n)qn = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 · · · =
∞∏

n=1

1
1− qn

.

(Note: By convention we have that p(0) = 1.)
It is well known that partitions and their associated Ferrers-Young diagrams and tableaux

play an important role in the study of hypergeometric functions, combinatorics, represen-
tation theory, Lie algebras, and statistical mechanics. In some cases the combinatorial
properties of the partitions and Ferrers-Young diagrams are important, while in others
the content of the theorems rely on identities involving relevant q-series generating func-
tions. In this investigation we show that the values of the partition function p(n), viewed
as q-coefficients, play a key role in the arithmetic of several infinite families of modular
L-functions. In particular, this suggests that there is a ‘correspondence’ (in these special
cases) between Tate-Shafarevich groups of certain motives of modular forms and sets of
partitions.

We begin by fixing notation. If ` ≥ 5 is prime, then let 1 ≤ δ` ≤ `− 1 and 1 ≤ r` ≤ 23
be the unique pair of integers for which

24δ` ≡ 1 (mod `),(2)

r` ≡ −` (mod 24),(3)
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and let D(`, n) denote the number given by

(4) D(`, n) def= (−1)
`−3
2 (24n + r`).

Ramanujan proved that if ` = 5, 7 or 11, then

(5) p(`n + δ`) ≡ 0 (mod `)

for every non-negative integer n. There are now many proofs of these congruences which
use a variety of techniques. Most notable are those proofs by A. O. L. Atkin and H.
P. F. Swinnerton-Dyer [At-SwD], F. Garvan [G], G. E. Andrews and F. Garvan [An-G],
and D. Kim, F. Garvan and D. Stanton [G-Ki-St], which are motivated by conjectures of
F. Dyson [Dy] on the existence and behavior of combinatorial statistics known as ‘ranks’
and ‘cranks’. These statistics, by design, describe the divisibility of p(n) in terms of the
combinatorial structure of the partitions themselves.

If 13 ≤ ` ≤ 31 is prime, then we show that the residue classes p(`n + δ`) (mod `) play
an important role in the arithmetic of certain L-functions. For these primes `, let G`(z)
denote the unique newform in the space S`−3(Γ0(6), χ1) whose Fourier expansion at infinity
(see Appendix) begins with the terms

(6) G`(z) =
∞∑

n=1

a`(n)qn := q +
(

2
`

)
· 2

`−5
2 q2 +

(
3
`

)
· 3

`−5
2 q3 + . . . . (here q := e2πiz)

Here χ1 denotes the trivial character and
(·
`

)
denotes the Legendre symbol modulo `.

If D is a fundamental discriminant of a quadratic number field, then let L(G` ⊗ χD, s)
denote the L-function associated to the D-quadratic twist of G`(z). If D is coprime to 6
and χD(·) :=

(
D
·
)

denotes the Kronecker character for Q(
√

D), then for Re(s) > `−2
2 we

have that

L(G` ⊗ χD, s) =
∞∑

n=1

χD(n)a`(n)
ns

.

If n ≥ 0 is an integer for which D(`, n) is square-free, then it turns out that

L
(
G` ⊗ χD(`,n),

`−3
2

)
(24n + r`)

`−4
2

L
(
G` ⊗ χD(`,0),

`−3
2

)
r

`−4
2

`

is the square of an integer. The first result in this paper is a congruence between these
quotients and the square of a quotient of values of the partition function.

Theorem 1. If 13 ≤ ` ≤ 31 is prime and n ≥ 0 is an integer for which D(`, n) is
square-free, then

L
(
G` ⊗ χD(`,n),

`−3
2

)
(24n + r`)

`−4
2

L
(
G` ⊗ χD(`,0),

`−3
2

)
r

`−4
2

`

≡ p(`n + δ`)2

p(δ`)2
(mod `).
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There have been many important general non-vanishing theorems for the critical values
of quadratic twists of modular L-functions by the works of D. Bump, S. Friedberg, J.
Hoffstein, H. Iwaniec, N. Katz, M. R. Murty, V. K. Murty, P. Sarnak, among many others.
Theorem 1 yields the following curious non-vanishing theorem for these special L-functions.

Corollary 2. If 13 ≤ ` ≤ 31 is prime, n ≥ 0 is an integer for which D(`, n) is square-free

and p(`n + δ`) 6≡ 0 (mod `), then L

(
G` ⊗ χD(`,n),

`− 3
2

)
6= 0.

Corollary 2 provides a useful criterion for deducing the non-vanishing of these central
critical values. To place it in its proper context, we recall that a well known conjecture
due to D. Goldfeld [Go] implies that if F ∈ S2k(M,χ1) is a newform and D denotes the
fundamental discriminant of the quadratic field Q(

√
D), then

(7) #{|D| ≤ X : L(F ⊗ χD, k) 6= 0} � X.

Throughout, the notation L(X) � R(X) shall mean that there is a positive constant c
such that for sufficiently large X we have L(X) ≥ c · R(X). Although N. Katz and P.
Sarnak [Ka-Sa] have conditional proofs of (7), at present the best general result is due
to C. Skinner and the second author [O-S]. They prove that if F (z) ∈ S2k(M,χ1) is a
newform, then

#{|D| ≤ X : L(F ⊗ χD, k) 6= 0} � X

log X
.

To observe the utility of Corollary 2, consider the function Ψ(`,X) given by

Ψ(`,X) def=
# {0 ≤ n ≤ X : D(`, n) square-free and p(`n + δ`) 6≡ 0 (mod `)}

# {0 ≤ n ≤ X : D(`, n) square-free}
.

This function denotes the proportion of non-negative integers n ≤ X for which Corollary 2
implies the nonvanishing of L

(
G` ⊗ χD(`,n),

`−3
2

)
. The authors are indebted to R. Weaver

for compiling the following table.

X Ψ(13, X) Ψ(17, X) Ψ(19, X) Ψ(23, X) Ψ(29, X) Ψ(31, X)
50000 0.900722 0.937501 0.945341 0.950661 0.964081 0.968021
150000 0.905447 0.938867 0.944167 0.950140 0.962894 0.967267
250000 0.907372 0.938756 0.943944 0.950308 0.963168 0.967296

It is well known (for example, see [Fr]) that if E/Q is an elliptic curve with a rational
point of odd prime order `, then there is a close relationship between the `-Selmer groups
of ED, the D-quadratic twist of E, and the `-part of the ideal class group of Q(

√
D).

By a theorem of Mazur, this only occurs for primes ` ≤ 7. In general, apart from some
modest results by the second author and W. Kohnen and K. James [Ko-O, J-O], very little
is known about the distribution of elements of odd prime order in the Tate-Shafarevich
groups of a family of quadratic twists ED.
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In view of Theorem 1 and the Bloch-Kato conjecture, it is natural to suspect that there is
a close relationship between the values of the partition function modulo `, for 13 ≤ ` ≤ 31,
and the orders of the Tate-Shafarevich groups of a quadratic twists of certain motives.
Here we show that there is indeed such a relation assuming the truth of the Bloch-Kato
conjecture.

If 13 ≤ ` ≤ 31 is prime, then let M (`) be the `−3
2 -th Tate twist of the motive G(`)

associated to the newform G` by the work of A. Scholl [Sch]. Let M(`) be any fixed
integral structure of M (`) which satisfies property (P2) at ` (see section 3 for definitions
and a ‘canonical choice’). If n is a non-negative integer, then let D(`,n) denote the motive
associated to the Dirichlet character χD(`,n), and let M (`,n) denote the twisted motive

(8) M (`,n) def= M (`) ⊗Q D(`,n)

with the integral structure M(`,n) induced by M(`). Let X(M(`,n)) denote the Tate-
Shafarevich group of M (`,n) with respect to the integral structure M(`,n).

Theorem 3. Suppose that 13 ≤ ` ≤ 31 is prime and n ≥ 0 is an integer for which

(i) n 6≡ −
[
` + 1
12

]
(mod `),

(ii) D(`, n) is square-free,

(iii) L

(
G` ⊗ χD(`,n),

`− 3
2

)
6= 0.

Assume the truth of the Bloch-Kato Conjecture for M (`,n) and M (`,0). Then we have that

(a) ord`

(
#X(M(`,n))
#X(M(`,0))

)
≥ 0,

(b) ord`

(
#X(M(`,n))
#X(M(`,0))

)
> 0 ⇐⇒ p(`n + δ`) ≡ 0 (mod `).

(Note: [·] denotes the greatest integer function.)

The Bloch-Kato Conjecture is a precise formula for certain special values of L-function
in terms of periods, Tamagawa numbers, and the order of a Tate-Shafarevich group. To
obtain Theorem 3 from Theorem 1, it suffices to show that the only factor in the Bloch-
Kato formula which might not be an `-adic unit is the term corresponding to the order of
the Tate-Shafarevich group. This argument is carried out in §3 and is analogous to results
for modular elliptic curves appearing in [J, J-O].

A straightforward generalization of the argments in [J-O, Ko-O] yields the following
result.
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Corollary 4. Let 13 ≤ ` ≤ 31 be prime. If the Bloch-Kato Conjecture holds for M (`,0)

and M (`,n) for every non-negative integer n satisfying conditions (i − iii) in Theorem 3,
then

#
{

n ≤ X : ord`(#X(M(`,n))) = ord`(#X(M(`,0)))
}
�`

√
X

log X
.

Theorem 3 implies that if the `-part of X(M(`,0)) is non-trivial, then the `-part of
X(M(`,n)) is non-trivial for every n satisfying (i− iii). Since it is unlikely that this is ever
the case, we record the following corollary.

Corollary 5. Let 13 ≤ ` ≤ 31 be prime and suppose that n ≥ 0 is an integer satisfying the
conditions in Theorem 3. If the Bloch-Kato Conjecture holds for M (`,n) and M (`,0) and
the `-part of X(M(`,0)) is trivial, then

` | #X(M(`,n)) ⇐⇒ p(`n + δ`) ≡ 0 (mod `).

L. Sze and the second author [O-Sz] have defined a correspondence between 4-core
partitions of size n and ideal class groups of the imaginary quadratic fields Q(

√
−8n− 5).

In view of this correspondence and recent observations by J. Cremona and B. Mazur [Cr-
Ma] on the ‘visualization’ of elements of Tate-Shafarevich groups of elliptic curves, it is
natural to raise the following questions:

Questions. 1) Is there a ‘correspondence’ explaining Theorem 3 and Corollary 5?
2) Do generalizations of ranks and cranks reveal structural properties of X(M(`,n))?

Acknowledgements. The authors thank F. Diamond for a number of helpful comments
in the preparation of this paper.

2. Proof of Theorem 1

The proof of Theorem 1 depends on theorems of Shimura and Waldspurger which relate
the central critical values of quadratic twists of weight 2k modular L-functions to the
Fourier coefficients of certain weight k + 1

2 cusp forms. We begin by defining the relevant
half integral weight forms. Recall that Dedekind’s eta-function is defined by the infinite
product

(9) η(z) def= q1/24
∞∏

n=1

(1− qn).

It is well known that η(24z) is a weight 1/2 cusp form in the space S 1
2
(Γ0(576), χ12).

Furthermore, let E4(z) and E6(z) be the usual weight 4 and 6 Eisenstein series for SL2(Z)

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn,

E6(z) = 1− 504
∞∑

n=1

σ5(n)qn,
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where σν(n) :=
∑

1≤d|n dν .
For each prime 13 ≤ ` ≤ 31, define the modular form g`(z) =

∑∞
n=0 b`(n)qn ∈ Z[[q]] by

(10) g`(z) =
∞∑

n=1

b`(n)qn def=



η11(24z) if ` = 13,

η7(24z)E4(24z) if ` = 17,

η5(24z)E6(24z) if ` = 19,

η(24z)E4(24z)E6(24z) if ` = 23,

η19(24z)E4(24z) if ` = 29,

η17(24z)E6(24z) if ` = 31.

Note that if n 6≡ r` (mod 24), then b`(n) is zero.

Proposition 6. If 13 ≤ ` ≤ 31 is prime, then g`(z) is in the space S `−2
2

(Γ0(576), χ12).
Moreover, g`(z) is an eigenform of the half integral weight Hecke operators and its image
under the Shimura correspondence is G` ⊗ χ12, a newform in the space S`−3(Γ0(144), χ1).

Proof. That each cusp form g` lies in the space S `−2
2

(Γ0(576), χ12) follows immediately
from the fact that η(24z) is a cusp form in S1/2(Γ0(576), χ12), and the assertion that each
g` is an eigenform is easily verified by a straightforward case by case computation (for
example, see [Prop. 1.3, Fr2]).

If F`(z) denotes the image of g` under the Shimura correspondence [Sh], then by a
theorem of Niwa [Ni] it turns out that F`(z) is an eigenform in the space S`−3(Γ0(288), χ1).
However, one easily checks (see Appendix) that the initial segments of the q-expansions of
F` and G` ⊗ χ12 agree for more than (`− 3)[Γ0(1) : Γ0(288)]/12 terms. Consequently, by
the standard dimension counting argument we have that F` = G` ⊗ χ12. It is simple to
check that G` ⊗ χ12 is a newform in the space S`−3(Γ0(144), χ1).

Q.E.D.
By Waldspurger’s work on the Shimura correspondence [Wal], it turns out that many

of the coefficients of the cusp forms g` ‘interpolate’ the central values of certain quadratic
twists. More precisely, we have the following proposition.

Proposition 7. If 13 ≤ ` ≤ 31 is prime and n ≥ 0 is an integer for which D(`, n) is
square-free, then

L
(
G` ⊗ χD(`,n),

`−3
2

)
(24n + r`)

`−4
2

L
(
G` ⊗ χD(`,0),

`−3
2

)
r

`−4
2

`

= b`(24n + r`)2.

Proof. This follows from Proposition 6, [Cor. 2, Wal], and the fact that b`(r`) = 1.

Q.E.D.
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Proof of Theorem 1. To prove the theorem it suffices to prove that

(11)
∞∑

n=0

p(`n + δ`)q24n+r` ≡



11g13(z) (mod 13) if ` = 13,

7g17(z) (mod 17) if ` = 17,

5g19(z) (mod 19) if ` = 19,

g23(z) (mod 23) if ` = 23,

8g29(z) (mod 29) if ` = 29,

10g31(z) (mod 31) if ` = 31.

Recall that if M is a positive integer, then the U(M) operator is defined by

(12)
∞∑

n=0

A(n)qn | U(M) def=
∞∑

n=0

A(Mn)qn.

Using Euler’s generating function from (1), one easily finds that

η`(24`z)
η(24z)

| U(`) =

{ ∞∑
n=0

p(n)q24n+`2−1 ·
∞∏

n=1

(1− q24`n)`

}
| U(`)

=
∞∑

n=0

p(`n + δ`)q24n+β` ·
∞∏

n=1

(1− q24n)`,

where β` = ` + 24δ`−1
` = ` + r`. Since (1−X`)` ≡ (1−X)`2 (mod `), we find that

(13)
∞∑

n=0

p(`n + δ`)q24n+r` ≡ ∆
`2−1
24 (24z) | U(`)

η`(24z)
(mod `).

Therefore, the truth of (11) and Theorem 1 follows from the truth of

(14) ∆
`2−1
24 (24z) | U(`) ≡ h`(z) def=



11∆(24z) (mod 13) if ` = 13,

7∆(24z)E4(24z) (mod 17) if ` = 17,

5∆(24z)E6(24z) (mod 19) if ` = 19,

∆(24z)E4(24z)E6(24z) (mod 23) if ` = 23,

8∆2(24z)E4(24z) (mod 29) if ` = 29,

10∆2(24z)E6(24z) (mod 31) if ` = 31.

Since the Hecke operator T (`) and the operator U(`) are equivalent on the reduction
modulo ` of the Fourier expansion of an integer weight modular form with integer Fourier
coefficients, for each ` the form ∆

`2−1
24 (24z) is congruent modulo ` to a cusp form with
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integer coefficients in the space S `2−1
2

(Γ0(24), χ1). The forms on the right hand side of the

alleged congruences in (14) lie in the space S`−1(Γ0(24), χ1).
For each such `, it is well known that the normalized Eisenstein series E`−1(z) satisfies

the congruence E`−1(z) ≡ 1 (mod `) [SwD]. Therefore, E
`−1
2

`−1 (z)·h`(z) is a cusp form which

is in the space S `2−1
2

(Γ0(24), χ1), along with ∆
`2−1
24 (24z) | U(`), and has the same Fourier

expansion modulo ` as h`(z). For each ` a simple computation verifies that (14) holds for
more than the first 2`2− 2 Fourier coefficients. By a theorem of J. Sturm [Theorem 1, St],
this implies the truth of (14).

Q.E.D.
In view of Theorem 1, all of the central critical values of the relevant quadratic twists are

uniquely determined by L
(
G` ⊗ χD(`,0),

`−3
2

)
. The table below contains approximations

for these L-values. These values were calculated using the first few hundred terms of the
Fourier expansions of the G` using the following well known result which is easily deduced
from the integral representation of modular L-functions and the behavior of newforms
under the Atkin-Lehner involution.

Theorem 8. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ S2k(Γ0(N), χ1) is a newform with
integer coefficients. If ε = ±1 is the eigenvalue of f(z) with respect to the Atkin-Lehner
involution WN , then

L(f, k) =
(2π)k · (1 + ε)

∑∞
n=1 a(n)Φ(2πn/

√
N)

(k − 1)!Nk/2
.

Here Φ(x) is defined by

Φ(x) def=
(k − 1)!

xk
· e−x ·

(
1 + x +

x2

2!
+ · · · xk−1

(k − 1)!

)
.

` L
(
G` ⊗ χD(`,0),

`−3
2

)
p(δ`) (mod `)

13 10.169 11
17 4.396 7
19 5.261 5
23 3.774 1
29 6.360 8
31 8.949 10

Example. Here we illustrate the first three cases of Theorem 1 when ` = 13. Using
Theorem 8, one easily obtains the following numerical data using the first 500 Fourier
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coefficients of G13.

n b13(24n + 11)2
L(G13 ⊗ χD(13,n), 5) · (24n + 11)9/2

L (G13 ⊗ χ−11, 5) · 119/2

p(13n + 6)2

p(6)2
(mod 13)

1 121 ≡ 4 (mod 13) 120.9998 4
2 1936 ≡ 12 (mod 13) 1935.9998 12
3 3025 ≡ 9 (mod 13) 3024.9997 9

3. Proof of Theorem 3

If 13 ≤ `0 ≤ 31 is prime and n is a non-negative integer, then let M (`0,n) denote
the motive defined in (8). By construction, M (`0) and each M (`0,n) admits a premotivic
structure in the sense of Fontaine and Perrin-Riou (for details see [F-PR]). This structure
consists of Betti, de Rham, and `-adic realizations, together with comparison isomorphisms
which relate these realizations. If M is M (`0) or one of the M (`0,n), then these realizations
and isomorphisms satisfy:

(R1) The Betti realization MB is a 2-dimensional Q-vector space with a GR action.
(R2) The de Rham realization Mdr is a 2-dimensional Q-vector space with a finite de-

creasing filtration Fili.
(R3) For each finite prime ` of Q, the `-adic realization M` is a 2-dimensional Q` vector

space with a continuous pseudo-geometric GQ action.
(R4) There is an R-linear isomorphism

IB : C⊗MB → C⊗Mdr

respecting the GR action and inducing a Q-Hodge structure over R on MB .
(R5) For each finite prime ` of Q there is a Q`-linear isomorphism

IB
` : Q` ⊗Q MB → M`

respecting the action of GR.
(R6) Define the integer NM by

NM :=
{

(`0 − 3)! if M = M (`0),

(`0 − 3)! · (24n + r`0) if M = M (`0,n).

For each prime ` - NM there is a Bdr,`-linear isomorphism

I` : Bdr,` ⊗Q`
M` → Bdr,` ⊗Q`

Mdr

respecting filtrations and the action of GQ`
, where Bdr,` is the filtered Q`[GQ`

]-
algebra constructed by Fontaine.
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To make sense of Theorem 3, we must first specify the nature of the integral structures
M(`0,n) for the motives M (`0,n) which are used to define the relevant Tate-Shafarevich
groups. These structures will be induced from a fixed choice of integral structure M(`0)

for M (`0).
First we begin by defining an essential property for our investigation, motivated by the

definition of motivic pairs in [B-K]. If M is a motive, then an integral structure, say M,
consists of a Z-lattice MB in MB and a Z-lattice Mdr in Mdr such that the Z`-lattice

M`
def= IB

` (Z` ⊗MB) ⊆M`

is invariant under the action of GQ. In addition, there must be a finite set of primes of Q
containing the infinite prime, say S, such that for every prime ` 6∈ S we have:

(C1) M` is a crystalline representation of G`.
(C2) There are integers i ≤ 0 and j ≥ 1 with j− i < ` such that FiliDR(M`) = DR(M`)

and FiljDR(M`) = 0.
(C3) Z` ⊗Mdr(j − 1) is a strongly divisible lattice of Q` ⊗Q Mdr(j − 1).
(C4) The isomorphism

Fil0(Bcrys ⊗Q`
Mdr(j − 1))F=1 = M`(j − 1)

induced by I` restricts to an isomorphism

Fil0(Acrys ⊗Z`
Mdr(j − 1))F=1 = M`(j − 1).

The ring Acrys,` is defined by Fontaine in [F]. For convenience, we make the following
definition.

Definition (Property (P2)). An integral structure M for M has property (P2) at a
prime ` if (C1-C4) hold for `.

There is a canonical integral structure M(`0) for M (`0) that has property (P2) for every
prime ` - (`0 − 3)! (see [D-F-G,Ne,Sch] for further details). Specifically, let s : E6 → X6

be the universal elliptic curve on the modular curve X6 parameterizing elliptic curves with
level 6 structure. One may choose the desired integral structure M(`0) to be the integral
structure coming from the premotivic structure defined by the parabolic cohomology groups
associated to the universal elliptic curve, followed by the `0−3

2 -th Tate twist.
For every non-negative integer n, let D(`0,n) denote for the Dirichlet motive associated

to the Dirichlet character χD(`0,n) (for example, see [De2]), and let D(`0,n) denote the
canonical integral structure of D(`0,n) given by the canonical bases of the realizations. If
` - (24n + r`0), then D(`0,n) has property (P2) at `. After all this, one may simply define
M(`0,n), the integral structure for M (`0,n), by

(16) M(`0,n) def= M(`0) ⊗D(`0,n).
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By construction, M(`0,n) has property (P2) at every prime ` - (`0 − 3)!(24n + r`0).

Proof of Theorem 3. Given an integral structure M(`0,n) for M (`0,n), let (M (`0,n))∗ be the
dual motive of M (`0,n) with the integral structure (M(`0,n))∗ which is dual to M(`0,n). If
n satisfies hypothesis (iii) in the statement of Theorem 3, then the Bloch-Kato conjecture
for M (`0,n) (with respect to M(`0,n)) is given by the formula

Conjecture (Bloch-Kato).
(17)

L(M (`0,n), 0)
µ∞(M(`0,n)(R))

=
#X(M(`0,n))

∏
p<∞ cp(M(`0,n))

#H0(Q,M
(`0,n)
f /M(`0,n)

f )#H0(Q, (M (`0,n))∗(1)f/(M(`0,n))∗(1)f )
.

With respect to the integral structure M(`0,n), recall that
• µ∞(M(`0,n)(R)) is the Bloch-Kato period,
• X(M(`0,n)) is the Tate-Shafarevich group of M (`0,n),
• cp(M(`0,n)) is the Tamagawa factor of M (`0,n) at p.

Moreover, we have that M
(`0,n)
f =

⊕
`<∞ M

(`0,n)
` and M(`0,n)

f =
⊕

`<∞M
(`0,n)
` . The

quantities (M (`0,n))∗(1)f and (M(`0,n))∗(1)f are defined in an analogous manner.

(Note: Although all of the quantities in the conjectured formula except L(M (`0,n), 0) de-
pend on the choice of integral structure, Bloch and Kato [B-K] have shown that the truth
of the conjectured formula is independent of this choice.)

It follows from (17) that

`0-part of
L(M (`0,n), 0)

µ∞(M(`0,n)(R))

(18)

=
`0-part of #X(M(`0,n)) ×

∏
p<∞ `0-part of cp(M(`0,n))

#H0(Q,M
(`0,n)
`0

/M(`0,n)
`0

) #H0(Q, (M (`0,n))∗(1)`0/(M(`0,n))∗(1)`0)
.

It turns out that ρ̄, the residual `0-Galois representation associated to G`0 [De1]

ρ̄ : Gal(Q̄/Q) → Aut(
1
`0
M(`0)

`0
/M(`0)

`0
) → GL2(F`0),

is irreducible. To see this, recall that if p - 6`0 is prime, then

tr(ρ̄(Frob(p))) ≡ a`0(p) (mod `0),

det(ρ̄(Frob(p)) ≡ p`0−4 (mod `0).

Using the formulas in the Appendix and [Prop. 19, Se], it is simple to check that the image
of ρ̄ contains SL2(F`0). Therefore, for every n the mod `0 residual representations of
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Gal(Q̄/Q) on 1
`0
M(`0,n)

`0
/M(`0,n)

`0
and 1

`0
(M`0,n)∗(1)`0/(M`0,n)∗(1)`0 are both irreducible,

and so H0(Q,M `0,n
`0

/M`0,n
`0

) and H0(Q, (M `0,n)∗(1)`0/(M`0,n)∗(1))`0 are both trivial.
Hypothesis (i) in Theorem 3 implies `0 - (24n + r`0). So M (`0,n) has good reduc-

tion at `0 [Sch] and M(`0,n) has (P2) at ` = `0. Therefore, by [Theorem 4.1, B-K], the
`0-part of cp(M(`0,n)) is 1 for every prime p < ∞. Consequently, (17) may be replaced by

(19) ord`0

(
L(M (`0,n), 0)

µ∞(M(`0,n)(R))

)
= ord`0(#X(M(`0,n))).

Since M (`0) is a critical motive in the sense of Deligne [De2], the comparison isomorphism
IB : C⊗Q M

(`0)
B → C⊗Q M

(`0)
dr induces an isomorphism

I+(M (`0)) : R⊗Q (M (`0)
B )GR → R⊗Q (M (`0)

dr /Fil0M (`0)
dr ).

With respect to the lattices M(`0)
B ≤ M

(`0)
B and M(`0)

dr ≤ M
(`0)
dr given by the integral

structure M(`0), the determinant of I+(M (`0)) defines c+(M(`0)) ∈ R×, the Deligne period
for M (`0), up to a choice of sign. Since

M (`0,n) = M (`0) ⊗Q D(`0,n),

it is easy to see that I+(M (`0,n)) = I+(M (`0))⊗ I+(D(`0,n)). Since the determinant of

I+(D(`0,n)) = IB(D(`0,n)) : R⊗Q D
(`0,n)
B → R⊗Q D

(`0,n)
dr

is g−1
n , where gn is the Gauss sum

∑
a (mod D(`0,n))

χD(`0,n)(a)e
2πia

|D(`0,n)| , we have

c+(M(`0,n)) = c+(M(`0))g−1
n .

A calculation [De2] shows that the Bloch-Kato period µ∞(M(`0,n)(R)) for a critical motive
equals the Deligne period up to a power of 2. Also as is well-known, the motivic L-function
L(M (`0,n), s) equals to L(G`0 ⊗ χD(`0,n), s + `0−3

2 ). So (19) becomes

(20) ord`0

(
L(G`0 ⊗ χD(`0,n),

`0−3
2 )

C+(M(`0))g−1
n

)
= ord`0(#X(M(`0,n))).

Since χD(`0,n) is real, the Gauss sum gn is

gn =

{
i
√
|D(`0, n)| = i

√
24n + r`0 if `0 ≡ 1 (mod 4),√

D(`0, n) =
√

24n + r`0 if `0 ≡ 3 (mod 4).



THE PARTITION FUNCTION AND L-FUNCTIONS 13

We then have

(21)
g0

gn

(
24n + r`0

r`0

) `0−4
2

=
(

24n + r`0

r`0

) `0−3
2

.

In view of Hypothesis (i), this fraction is an `0-unit.
By Theorem 1, (19) and (20), for any n satisfying (i− iii) we have

ord`0

(
p (`0n + δ`0)

2

p (δ`0)
2

)

= ord`0

L(G`0 ⊗ χD(`0,n),
`0−3

2 )(24n + r`0)
`0−4

2

L(G`0 ⊗ χD(`0,0),
`0−3

2 )r
`0−4

2
`0


= ord`0

#X(M(`0,n)) g0(24n + r`0)
`0−4

2

#X(M(`0,0)) gn r
`0−4

2
`0


= ord`0

(
#X(M(`0,n))
#X(M(`0,0))

)
.

Theorem 3 now follows easily from the fact that `0 - p(δ`0).

Q.E.D.

Appendix: q-expansions of the G`(z)

We begin with the following proposition whose proof is a standard exercise.

Proposition. If 13 ≤ ` ≤ 31 is prime, then let S` denote the set

S` := {newforms in S`−3(Γ0(6), χ1)} ∩ Z[[q]].

(i) There is exactly one newform in S13 and its Fourier expansion begins with

q − 16q2 + 81q3 + 256q4 + 2694q5 − . . . .

(ii) There is exactly one newform in S17 and its Fourier expansion begins with

q + 64q2 − 729q3 + 4096q4 + 54654q5 − . . . .

(iii) There are exactly three newforms in S19 and their Fourier expansions begin with

q − 128q2 − 2187q3 + 16384q4 − 314490q5 + . . . ,

q + 128q2 − 2187q3 + 16384q4 − 114810q5 − . . . ,

q + 128q2 + 2187q3 + 16384q4 + 77646q5 + . . . ,
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(iv) There are exactly three newforms in S23 and their Fourier expansions begin with

q + 512q2 + 19683q3 + 262144q4 + 1953390q5 + . . . ,

q − 512q2 + 19683q3 + 262144q4 − 5849490q5 − . . . ,

q − 512q2 − 19683q3 + 262144q4 − 3732474q5 + . . . .

(v) There are exactly three newforms in S29 and their Fourier expansions begin with

q − 4096q2 − 531441q3 + 16777216q4 − 292754850q5 + . . . ,

q + 4096q2 − 531441q3 + 16777216q4 − 799327650q5 − . . . ,

q − 4096q2 + 531441q3 + 16777216q4 + 590425734q5 + . . . .

(vi) There are exactly three newforms in S31 and their Fourier expansions begin with

q + 8192q2 − 1594323q3 + 67108864q4 + 2904255750q5 − . . . ,

q + 8192q2 + 1594323q3 + 67108864q4 + 1220703150q5 + . . . ,

q − 8192q2 + 1594323q3 + 67108864q4 + 1992850350q5 − . . . .

Remark. It is easy to see that the forms G` are well defined by (6).

Now we present formulas for the newforms G`. Since the coefficients a`(2) and a`(3) are
well defined, we simplify our formulas by giving ‘closed’ expressions for some cusp forms
G∗

` (z) =
∑∞

n=1 a∗` (n)qn ∈ S`−3(Γ0(6), χ1). for which

(22)
∑

gcd(n,6)=1

a∗` (n)qn =
∑

gcd(n,6)=1

a`(n)qn ∈ S`−3(Γ0(36), χ1).

These identities are verified by checking that the initial segments of the Fourier expansions
agree for more than 6`− 18 terms.

G∗
13(z) = −116η8(z)η2(2z)η8(3z)η2(6z) + 50η7(z)η7(2z)η3(3z)η3(6z)

− 450η3(z)η3(2z)η7(3z)η7(6z) +
(
η8(z)η2(2z)η8(3z)η2(6z) | U(2)

)
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G∗
17(z) =

1063420
1461

η18(z)η2(3z)η8(6z) +
10828
487

η14(z)η8(2z)η6(3z)

+
66824
487

η13(z)η13(2z)η(3z)η(6z) +
2414760

487
η13(z)η(2z)η(3z)η13(6z)

+
5917
2922

(
η18(z)η2(3z)η8(6z) | U(2)

)
+
(
η14(z)η8(2z)η6(3z) | U(2)

)

G∗
19(z) = −214540

477
η26(z)η2(2z)η2(3z)η2(6z)− 2633264

477
η21(z)η3(2z)η(3z)η7(6z)

+
32356
477

η16(z)η16(2z)− 2835536
159

η16(z)η4(2z)η12(6z)

− 460452
53

η14(z)η2(2z)η14(3z)η2(6z) +
(
η26(z)η2(2z)η2(3z)η2(6z) | U(2)

)
+

6793
477

(
η21(z)η3(2z)η(3z)η7(6z) | U(2)

)

G∗
23(z) = −22696872

1613
η32(z)η8(2z)− 18770227340

30647
η28(z)η4(2z)η4(3z)η4(6z)

− 77831474526
30647

η24(z)η8(3z)η8(6z)− 65500631328
30647

η23(z)η5(2z)η3(3z)η9(6z)

+
1036323584

1613
η14(z)η14(2z)η6(3z)η6(6z) +

(
η32(z)η8(2z) | U(2)

)
− 202239385

245176
(
η28(z)η4(2z)η4(3z)η4(6z) | U(2)

)
+

23975190
30647

(
η24(z)η8(3z)η8(6z) | U(2)

)
− 534947419

61294
(
η23(z)η5(2z)η3(3z)η9(6z) | U(2)

)
.
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G∗
29(z) =

4632891951294690053814110128
424668169983336169005

η42(z)η2(3z)η8(6z)

+
53504612971972373910825276749

11466040589550076563135
η38(z)η8(2z)η6(3z)

− 3979434854340016630055193224
674472975855886856655

η37(z)η13(2z)η(3z)η(6z)

+
2765340020679851796448266496

47185352220370685445
η37(z)η(2z)η(3z)η13(6z)

+
894687419955231233957884867

81536288636800544448960
(
η42(z)η2(3z)η8(6z) | U(2)

)

+
61412804553501560307282059
146765319546240980008128

(
η38(z)η8(2z)η6(3z) | U(2)

)

− 536298426905596584785912
103194365305950689068215

(
η37(z)η13(2z)η(3z)η(6z) | U(3)

)

+
4647639878228230505158892
103194365305950689068215

(
η42(z)η2(3z)η8(6z) | U(3)

)

+
639492792211547273854127
103194365305950689068215

(
η38(z)η8(2z)η6(3z) | U(3)

)

+
863747693023369199109614467

9059587626311171605440
(
η37(z)η(2z)η(3z)η13(6z) | U(2)

)

+
270746115415214167379776

674472975855886856655
(
η37(z)η(2z)η(3z)η13(6z) | U(3)

)

+
123223486291750526209068767

244608865910401633346880
(
η37(z)η13(2z)η(3z)η(6z) |U(2)

)
.
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G∗
31(z) =

8764467928168553952519459623
30891300587851524624

η50(z)η2(2z)η2(3z)η2(6z)

+
73419725842368053086155028139

1287137524493813526
η45(z)η3(2z)η(3z)η7(6z)

− 1200930595651799333501307865
7722825146962881156

η40(z)η16(2z)

+
92680825489101355891394707648

214522920748968921
η40(z)η4(2z)η12(6z)

− 1656366896397944526889090235
31781173444291692

η38(z)η2(2z)η14(3z)η2(6z)

+
438375590965076099323490516

882810373452547
η36(z)η4(3z)η16(6z)

+
50248248964724105324453

15445650293925762312
(
η50η2(2z)η2(3z)η2(6z) | U(2)

)

+
223338812649201265633277

834065115871991164848
(
η40(z)η16(2z) | U(3)

)

− 85011693687118126027003
34752713161332965202

(
η45(z)η3(2z)η(3z)η7(6z) | U(3)

)

− 222504747533329274468429
834065115871991164848

(
η50(z)η2(2z)η2(3z)η2(6z) | U(3)

)

− 49605292349825928145421
42374897925722256

(
η36(z)η4(3z)η16(6z) | U(2)

)

− 16588467118194493964012
17376356580666482601

(
η36(z)η4(3z)η16(6z) | U(3)

)

− 6229502876006220268425287
13729466927934010944

(
η40(z)η4(2z)η12(6z) | U(2)

)
.
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