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Integers Represented by Ternary Quadratic Forms

Ken Ono and K. Soundararajan

ABSTRACT. Some of the most fundamental questions regarding ternary qua-
dratic forms are barely understood. For instance, if f(z,y,z) is an integral
positive ternary quadratic form, then the problem of determining all integers
of the form f(z,v, z) where z,y, z € Z remains open, although it can be han-

- dled for exceptional f. We solve this problem, conditional on the Generalized
Riemann Hypothesis, for Ramanujan’s form. The method readily applies to
many ternary forms with small discriminant.

A non-negative integer N is eligible for a positive ternary quadratic form
f(z,y,2) if there are no congruence conditions prohibiting f from representing
N. Tt is well known that a genus of positive ternary forms represents every eligible
integer, and so if a genus contains only one class then every form f in that class
represents every eligible integer.

L. Dickson, B. Jones, and G. Pall ( [Dil}, [Joi], [Jo2], [JP]) initiated the
study of more general forms, forms in genera with multiple classes. In an effort
to describe those integers represented by such forms, two classes emerged: regular
ternary quadratic forms being those forms which represent all eligible integers, and
irregular ternary quadratic forms being those which miss some eligible integers.

There are methods for deciding if a form is regular (see [Dil], [Jo2], [JP],
[Kal], [Ka2]), and if it turns out to be regular, then the problem of determining
integers represented by it is solved. However the situation is very different for
irregular forms where there is no known effective way of determining the eligible
integers which are represented. In fact the problem has never been solved for an
irregular form missing at least two eligible integers.

In this direction, W. Duke and R. Schulze-Pillot [DS-P] proved that every large
spinor eligible integer, those represented by the spinor genus of f, is represented by
f. Their result depends on Siegei’s lower bound for the class number of imaginary
quadratic number fields, and so is ineffective. That is their strong result does not
give a bound beyond which all spinor eligible integers are represented by f.
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Assuming the Generalized Riemann Hypothesis, we show that one can effec-
tively determine those integers which are represented by ternary forms with small
discriminant. In [OS] we investigated those integers represented by Ramanujan’s
form. The purpose of this note is to give a brief exposition of these results.

In [R], S. Ramanujan investigated the ternary form

(1)  pi(z,y,2) =2 P+ 1025
It is known as Ramanujan’s form, and its genus consists of two classes. The form
(2) T ' ¢2 (m7y’ Z) = 23}2 + 2y2 + 322 — 2xz

is a re’presehtative for the other class. Ramanujan stated that [R, p. 14]
“... the even numbers which are not of the form z2 + y? + 1022 are the numbers

47 (16 + 6),
while the odd numbers that are not of that form, viz.,
3,7,21,31,33,43,67,79,87,133,217, 219, 223, 253, 307,391 . .-

do not seem to obey any simple law.”

Every non-negative integer, except those of the form 4*(16u + 6), is eligible,
and in view of the exceptions, Ramanujan’s form is irregular. In addition to the
integers on Ramanujan’s list, the exceptions 679 and 2719 were discovered by B.
Jones, G. Pall, and H. Gupta ([JP], [Gu]) and W. Galway has verified that there
are no other exceptions below 2 - 10'°. We are thus led to the following conjecture.

CONJECTURE. The eligible integers which are not of the form x% + y? + 1022
are:

3,7,21,31, 33,43, 67,79,87, 133, 217, 219, 223, 253, 307, 391, 679, 2719.

Ramanujan noted that it suffices to consider the odd integers, and it will be
convenient to make the further reduction to integers prime to 10. Legendre proved
that every odd integer is of the form 2n + 1 = 22 + y2 + 222 (see [Di2, p. 261]).
Multiplying by 5 we see that

10n 45 = 5(z% + y2) + 1022 = (2z +y)? + (z — 2y)? + 1022,

which verifies that every integer N = 5 (mod 10) is represented by Ramanujan’s
form. Therefore we may restrict our attention to those integers prime to 10.

By the work of J. Benham and J. Hsia [BHs] it is known that all eligible integers
not of the form z2+y?+1022 are squure-free. We prove this by a completely different

argument, one which leads to our attack on the general problem.
THEOREM 1. Every eligible integer not of the form 2 +y? 41022 is square-free.

PROOF. Let 7;(N) denote the number of representations of N by ¢;, and let
R;(N) denote the number of primitive representations of N by ¢;. Recall that a
representation ¢;(z,y, z) = N is primitive if ged(z,y, z) = 1. Let A; be the matrices
representing the forms ¢;. A 3 x 3 matrix B with determinant 1 is an automorph
of A; if BTA,B = A,. Then it is easy to verify that there are 8 automorphs of Ay,
and there are four automorphs of Aj.

Two representations df N by ¢:, say (z,y,2) and (2',y/,2’), are called essen-
tially distinct if there is no automorph B of A; with the property that (z/,v/,2’) =
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(z,y,2)B. If G(N) denotes the number of essentially distinct primitive representa-
tion of N by the genus of Ramanujan’s form, then for square-free N, since no two
distinct automorphs of representations of N by ¢1 (resp. ¢2) are equal, we obtain

G(N) = Ry(N)/8+ Ra(IN) /4.

By [Jol, Th. 86], one can relate G(IN) to class numbers. In particular, if N > 1is
a positive eligible integer which is relatively prime to 10, then

(3) | e = %h(—4ON).
The function f(z)

[e.0]

(4) f(z)=3 an)" =

n=1

S (ri(n) —re(n))g" =g - ¢’ - g -

g,

q9 + 2q13 + .. € S% (40,)(10),

where q := €2™%, is an eigenform of the half-integral weight Hecke operators T(p?).
Moreover its Shimura lift [Sh] is the weight 2 cusp form

(5) F(z) = 3 Aln)q" = —2¢° — " +24" +¢° +2¢"° +2¢'° — 6" = € 52(20).
. n=1 J
It is important to note that F(z) is an eigenform of the Hecke operators, and its

inverse Mellin transform is the Hasse-Weil L—function L(E, s) for the elliptic curve
over Q g

(6) B Y=+t +dx+4

Since f(z) is an eigenform, for every prime p, there exists a complex number
a(p) such that for every positive integer n

-n
D et = e + o)) ol + xi0()pale/s)
Further, we find that a(p) = A(p), and since a(n) = 2(r1(n) — ra(n)) it follows
from (7) that for square-free integers n :

® ) =) = (40 = xs0(s) (Z2) ) - rstm) =)

Assume that N > 1 is a square-free integer prime to 10 for which ri(N) = 0.
Let p # 2,5 be prime. If r1(Np?) = 0, then by (8) we find that

Tii](\f ]5;) = (A(p) — x10(p) (;pﬁ)) < Alp) + 1.

Since N is square-free we obtain ro(Np?) = Ro(Np?) + Ry(N) = Ra(Np?) +72(N).
Observe that, since N is square-free, 4G(N) = R1(N)/2 + Ry(N) = ro(N). Also,
since Np? # 0, every primitive essentially distinct representation of N p? by ¢2 has
at least 2 different automorphs hence 2G(Np?) < Ry(Np?). Consequently

ra(Np?) | Ra(Np?) 2G(Np®) . | G(Np?)
"y S ey 2T aemy T e

(9)

(10)
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By (3) and the index formula for h(—D) (see [Co]) it follows that

G(Np) _ h(~40Np*) _  (—4ON\_ .
G(N) ~ h(—40N) p =P
which upon substitution in (10) yields
2 2
(11) ra(Np°) L GWVPY) ( p+1

ro(N) — 2G(N) — 2

From (9) and (11) we find that (p — 1)/2 < A(p) which, by Hasse’s bound
|A(p)| < 2/p, is impossible for p > 19. For p = 3,7,11,13,17 we find that
A(3) = -2, A(7) = 2,A(11) = 0, A(13) = 2, and A(17) = —6, and none satisfy
Alp) = (p-1)/2. O

Now‘we have restricted the problem to those integers N that are square-free

and prime to 10. For every integer D let E(D) denote the D—quadratic twist elliptic
curve (over Q) of E :

(12) E(D):  y* =23+ Dz? +4D% + 4D3.

If N is a square-free integer prime to 10, then E(—10N) has conductor 1600N2
[Cr, p. 49]. :

THEOREM 2. If N is an eligible integer not of the form z% + y? + 1022, then

4/N . _ .

h?(—40N) = a L(E(-10N),1),

(E(-10))
where U(E(-10)) ~ 0.71915 is the real period of E(—10).

PROOF. Theorem 2 is derived using a deep theorem due to J.-L. Waldspurger
[Wal] that relates the Fourier coefficients of half-integer weight cusp forms to central
values of the quadratic twists of the L-function of Shimura lifts.

Let M denote the set M := {1,3,7,13,19, 21, 31, 33}, representatives of all the
square classes modulo 40. If m € M which belongs to the same square class as NV
then, by Waldspurger’s theorem ,

a’(N) _ a*(m)
VNL(E(—-10N),1) vmL(E(-10m),1)

For each m, it turns out that

a*(m) _ 1
VmL(E(=10m),1) ~ 4Q(E(-10))’

- Hence N, which necessarily belongs to one of these.classes, satisfies

(13) @V = s (Ri(N) — Ra(V))? = mﬂ%@u%wm, 1),
If Ri(N) = 0 then, we see that a(N) = (Ry(N) — Ry(N))/4 = —Ry(N)/4 =
—h(—40N)/4 so that Theorem 2 is an immediate consequence of (13). O

Although Theorem 2 is stated in terms of the elliptic curves E(—10N ), we note that

“the method in no way depends on the arithmetic of these special curves. In general
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the L(E(—10N), 1) are replaced by central critical values of suitable automorphic
L—functions which are guaranteed to exist by the work of Waldspurger [Wal].

If a square-free eligible integer N is not represented by Ramanujan’s form then,
la(N)| =r3(N)/4 = Ro(N)/4 = K(—40N) /4. The known effective lower bounds for
class numbers, due to D. Goldfeld [Go] and B. Gross and D. Zagier [GZ], implies
that |a(IN)| > log N, a bound which cannot unconditionally solve the conjecture.

Therefore we aim to obtain an effective solution to the problem under suitable
hypotheses. Assuming the Riemann hypothesis for Dirichlet’s. L-functions, J. E.
Littlewood [L] effectively proved that h(—40N) > +/N/loglog N. Unfortunately
the bound for N, beyond which every eligible integer is represented, obtained in
this way is enormous. To see this assume the best conceivable bound for class
numbers on GRH, A(—40N) > /N (in reality such a strong bound is false) so
that [a(N)| > VN/4. Also suppose that the Iwaniec-Duke ([Dul,[I}) results give
la(N)| < 7(N)N3/7(log 2N)2. Then we require N > (47(N)log®(2N))* to obtain
a contradiction. This occurs only if N > 107%; a bound which is infeasible.

In addition to the Riemann hypothesis for Dirichlet L-functions, suppose we
assume the Riemann hypothesis for L(E(—10N), s): Since the Riemann hypothesis
for L(E(—10N),s) implies the Lindel6f bound, |L(E(—10N),1)| < N¢, it seems
plausible that one can obtain a feasible solution to the problem. However the fa-
miliar deduction of the Lindeldf bound from the Riemann hypothesis (see Theorem
13.2 of E. C. Titchmarsh [T] for a proof in the case of ¢(s); the ideas generalize
easily) leads, at best, to a bound of the form

3 logq
— < ’ 9 ‘
|L(E(-10N),1)| < exp (2 loglOgQ> ’

where ¢ = 1600N2. Assuming the very strong bound h(—40N) > +/N, this requires
N > 108 before Theorem 2 yields a contradiction. Again this is infeasible.

Thus we require a completely different attack. Our attack involves explicit
formulae and Hadamard’s factorization formula. This contrasts sharply with the
traditional method for deducing the Lindeléf bound from the Riemann hypothesis
which uses the Borel-Caratheodory theorem and Hadamard’s three circles theorem
[Ru]. A noteworthy feature of our method is that we exploit the fact that both the
Hasse-Weil L-function L(E(—10N), s) and the Dirichlet L-function for the number
field Q(v/—40N) are twists by the same quadratic character x = —40N/-.

THEOREM 3. Suppose the non-trivial zeros of all Dirichlet L-functions, L(s, x),
with x a primitive, real character, have real part 1/2. Further suppose that the
non-trivial zeros of th Hasse-Weil L-functions L(E(—10N),s) (with N a square-
free integer prime to 10) have real part 1. Then the only eligible integers which are
not of the form x* + y? + 1022 are:

3,7,21,31,33,43,67,79,87,133, 217, 219, 223, 253, 307, 391, 679, 2719.

SKETCH OF PROOF. W. Galway has verified that the only eligible integers
N < 2-10'° not of the form 22 + y? + 1022 are the eighteen known missed eligible
integers. Therefore there is no loss of generality in assuming that N > 2-1019. Let
x = —40N /- denote the Kronecker-Legendre symbol. For brevity let

L(s) := Z x(n)

ns ’
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and

L,(s) := L(E(—~10N),bs) = i é(nr)b__x(n_)

Let ¢ be the conductor of E(—-10N) so q= 1600N 2. Tt is well-known that L,(s)
satisfies the functional equation

YD) r)Las) == (L) @)@ )
(£) (£) "re-an

Sincé X is a primitive charaéter to the modulus 40N = /g and since x(—1) = —1
it follows (see Chapter 12 of [Da2]) that L(s) obeys the functional equation

() e ()= ()5 (5

where the sign of the functional equation depends on the sign of the Gauss sum
7(x). Apart from the trivial zeros at 0, —1, —2, ... our assumption ensures that
the zeros of L,(s) lie on the line o = 1. Similarly, apart from the trivial zeros at
—1, =3, ..., the zeros of L(s) are guaranteed by GRH to lie on the line o = 1/2.
By Theorem 2 and Dirichlet’s class number formula (see [Da2]) we obtain

WN B _ [V4NL(@1)\ _ 40N
B (1)) (1) = M40 = ( . ) =

L(1)?,

so that, since Q(E(—10)) > 0.7191 and ¢ = 1600N?,

Lo(1) _ T191VN as 2 g\
> —_— .
14) Ty e 2oz 2 (1)

If the functional equation for L,(s) ha,s a negatlve sign then L, (1) = 0, contradict-
ing (14). Thus we may suppose, without loss of generality, that the sign is positive.
We prove Theorem 3 by showing that (14) is violated under the GRH.

Define F(s) by

(VAT La(s)D(s)
S F@‘(%> LE)LE— )

F(s) is regular in the strip 1/2 < o < 3/2 and, because of the functional equation
of L,(s), satisfies the functional equation F(s ) F(2 — s). Using the Phragmen-
Lindeldf principle, see [Ru] for example, to the vertical strip bounded by the lines
with real part o and 2 — o, for 1 < ¢ < 3/2, we see that

Foy < Lol

a2 < max max(|F(c + i), lF(é — 0 +it)]) = max|F(o +it)].

From the perspective of attaining numerically feasible bounds it is desirable to fix,
at the outset, a value for 0. We take ¢ = 7/6 and thus concentrate on boundmg
|F'(7/6 +1t)|, a choice which is admittedly somewhat arbitrary. At any rate, it suf-
fices for our purposes. In the sequel 6 will denote a complex number, not necessarily
the same at each occurence, with |9 < 1.

To obtain an upper bound for max, |F(7/6 + it)|, we obtain an upper bound
for log |L,(7/6 + it)|, and similarly obtain a lower bound for log |L(5/6 + zt)] For
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brevity, we only discuss the automorphlc case here with the understanding that an
analogous treatment holds in the Dirichlet case (see [OS]).

We first obtain explicit formulae for —L/,(s)/Lq(s). From the Euler product for
Lo(s), we obtain the Dirichlet series expansion, for o > 3/2

_%(5) = —————A(”T);‘(n).

It is easy to check that A(n) = 0 unless n is the power of a prime p. Further, if we
write A(p) = o + @ with || = /P, then A(p™) = (@™ +@™)logp for all m > 1.
Consequently |A(p™)| < 2p™/2logp and so |A(n)| < 2y/nA(n) for all n.
LEMMA 1. Let X > 0 be a real number and put
(e.9)
A(n)x(n) _
SIS S U
n=1 '

Let p, denote a typical non-trivial zero of Lq(s). If La(s) # 0 then
L/

-z—(s) ’7:1(8’ X) + RSig(s) + Rtri(s) + Rins(s)
where
Rgig(s) = ZXPa—-SI‘(pa —8), © Ripi(s) = Zx—n-—sr(_n —s),
and

Rins(s) = Z (__2(;)_—”*13/2(8 - n)

n! LK,

(
{

n=1

LEMMA 2. If L,(s) # 0 then

Lﬁz 1 q I 1
LG(S) §10gm—%r(8)+zm

where pg Tuns over the non-trivial zeros of La(s).
With these lemmas we can obtain an upper bound for log |La(7/6 + it)|.
PROPOSITION 1. Let X be a positive real number and put

Fls,X) = Z A(n)x(n) e/ X

— n’ logn

Let s =7/6 +it, s; = 11/6 + it and sy = 27/20 +it. Let

7 X7/20 11/6 )
X)=—— XU (1 — w)d
AX) =~ 0 T (13720) + X772 [, 6 (1 —u)du
and
: 5/6
a(X) = max ) (LX)

XU (—u 4 1y)du — e I(—7/20 + iy)

X7/20

(5+2)
.Y 1/6 20 7y ’
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Ifx> 1nax(500,516g(q/4w2)) then

X 1 log(l+1¢2)
< 2 e T
log |La(s)| < X+1§R.7—"(5,X)+4+ =

(5a(X) — B(X)) ( 51 g 3 2
+ I 1001054W2 +4log(1+t) RF1(s2,X) | .
Further, if X > max (5000, 5log(q/47?)) then
» X 1 log(l+t%)
< R =2 A
log I‘La(s)| < %3 1%f(s,X) + 1 + 3
1 q 5
+ ~X178 log el 18X1/6§R.7:1(32,X).

To obtain this we begin by integrating both sides of Lemma 1 from s = 7/6 +it
to s; = 11/6+1it. The contribution of the trivial zeros of L,(s) and the insignificant
poles of the I'-function are handled in a straight-forward, albeit tedious way. The
main difficulties lies in the treatment of the contribution of the non-trivial zeros
of Ly(s): that is, [J* RRsg(w)dw. Let us first discuss the second assertion of
Proposition 1. The contribution of an individual zero p, =1+ i, is

S1
/ RXPTYT(pg — w)dw

e gl (720 2) g L
=0 X' Tl —u+ily, —t))du| | — + —(t —
[ X =k - )] (5 + T -0 R
1
= 0vy(X)R ,
Y(X) p—
where
5/6 720
~v(X) = max XT“T(—u+1y)du (— + —y2> .
Y 1/6 20 7

Summing over all zeros p, we obtain .

| / " RRig (1) = 04(X) TR

Pa

1

82 — Pq

Note the role played by the positivity of R(1/(s2 = pa)) in the above argument.
hiadamard’s factorization formula (Lemma 2) affords an alternate expression for
>, R(s2 — pa)”! as a sum of RL,(s2)/La(s2) and other easily handled terms.
The RL;(s2)/La(s2) term causes us some difficulties here. We deal with it by
using Lemma 1 to essentially reduce the problem to estimating RR;4(s2). This
quantitiy is estimated by repeating the argument used above: that is, by bounding
each individual term, RX#=72I'(p, — s2), by some function of X times R(ss—p, )~
and then summing and using Hadamard factorization. Residual traces of these
complications may be seen in the presence of the terms involving RF;(s2, X) in
Proposition 1. '

The bound obtained in this way is not sufficiently effective for ‘small’ values

s of g. The first assertion is used to obtain more economical constants (at the price

of greater complications) for these g. We expect that the maximum over y in the
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expreséion defining o(X) is attained at y = 0. If so, then a(X) would have the
value '

56 B8(X)

7 —u : ;
XD (—w)du — WF(_WO)“ — B(X).

20 /16
This is not a proof, and we have merely demonstrated that a(X) > B(X), but
this expectation should help motivate our definitions of a(X) and B(X). In our

application a(X) and 3 (X) will turn out to be very nearly equal. In other words,
we obtain further savings by exploiting the fact that if

log(ILa()l/ Lalon)) = | " _RL, () La(w)dw

is very large, then —RL/(s2)/La(s2) s very Jarge as well. This works in our favor
by forcing (see Lemma 2)

1 (1 q I L,
;%82 = e = <2 1og An? + ‘SRT—(SQ) -+ %E(SQ)>

to be small.
To make this more precise, consider the contribution of an indvidual zero
pa = 1+ 17, t0 f:’ RRsig(w)dw with y = v, — &

S1
ER/ XPa%T(p, — w)dw = ROB(X)XP">2T (pa — 52)
5/6 ) ]
+ R ( XU (—u + dy)du — B(X)X T/ (-7/20 + iy))
1/6 -

< B(X )RRy (52) + A X)R——.

S2 — Pa

Summing over all zeros p, We obtain

(16) / R Ry (w)dw < (X)) R—
s Pa

82 — Pa

+ B(X)RRsig(s2)-

As usual we use the partiall fractions decomposition of Lemma 2 to estimate
>, Rls2 — po)”* in terms of RL' (s2)/La(s2) and other easy terms and then we
use Lemma 1 to reduce the RL}(s2)/La(s2) term to —RRsig(s2). In this way we
loosely obtain _
1 2 L:l [43 )
R— < “known terms” + R=2(s2) < “known terms” — RRsig(s2)-
82 — Pa L,

a

Since a(X) and B(X) are expected to be nearly equal we see upon using this in
(16) that the meddlesome RRig(s2) term has been practically eliminated! This
plan is executed and the tedious details appear in [§8, OS]. The net effect of this
trick is to save a factor of X7/20/(T'(13/20) + X 7/20 which, although negligible for
large X, is of vital importance to the ‘small’ range of ¢ where we apply it.
Proposition 1 and its analog for the Dirichlet case constitute the bulk of our
argument for Theorem 3. Using them we establish without too much difficulty,
Theorem 3 in the range 50 < log(gq/4m?). Since the range N < 2-10% includes the
zange log(g/4n?) < 50, we see that the proof of Theorem 3 is complete. O
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