A NOTE ON A QUESTION OF J. NEKOVÁŘ AND THE BIRCH AND SWINNERTON-DYER CONJECTURE

Ken Ono

ABSTRACT. If D is a square-free integer, then let E(D) denote the elliptic curve over \mathbb{Q} given by the equation

(1)
$$E(D): Dy^2 = 4x^3 - 27.$$

Let L(E(D), s) denote the Hasse-Weil *L*-function of E(D), and let $L^*(E(D), 1)$ denote the 'algebraic part' of the central critical value L(E(D), 1). Using a theorem of Sturm, we verify a congruence conjectured by J. Nekovář. By his work, if S(3, E(D)) denotes the 3-Selmer group of E(D) and $D \neq 1$ is a square-free integer with $|D| \equiv 1 \pmod{3}$, then we find that

$$L^*(E(D), 1) \not\equiv 0 \pmod{3} \iff S(3, E(D)) = 0.$$

If $D \neq 1$ is a square-free integer, then E(D) is the *D*-quadratic twist of the Fermat cubic $x^3 + y^3 = 1$. J. Nekovář explicitly computed the 3-Selmer ranks of these elliptic curves, and verified the 'mod 3' part of the Birch and Swinnerton-Dyer Conjecture for most of these curves when $|D| \equiv 1 \pmod{3}$ using Waldspurger's theorem on the Shimura correspondence.

If $q := e^{2\pi i z}$, and $\eta(z)$ and $\Theta(z)$ denote the usual weight 1/2 modular forms

$$\eta(z) := q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$$
 and $\Theta(z) := 1 + 2 \sum_{n=1}^{\infty} q^{n^2}$,

then define a(n) by $\sum_{n=1}^{\infty} a(n)q^n := \eta^2(3z)\eta^2(9z) \in S_2(\Gamma_0(27))$. The Hasse-Weil *L*-function L(E(D), s) is given by

(2)
$$L(E(D),s) := \sum_{n=1}^{\infty} \frac{a(n)\left(\frac{D}{n}\right)}{n^s}$$

1991 Mathematics Subject Classification. Primary 11G40; Secondary 14G10.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Key words and phrases. elliptic curves, modular forms.

The author is supported by National Science Foundation grants DMS-9304580 and DMS-9508976.

KEN ONO

Furthermore let $L^*(E(D), 1)$ denote the 'algebraic part' of the critical value L(E(D), 1). In particular it is given by

(3)
$$L^*(E(D), 1) := \frac{L(E(D), 1)}{\Omega(E(D)) \prod_p c_p}$$

where $\Omega(E(D))$ is the real period of E(D), and $\prod_p c_p$ is the 'Tamagawa factor.' In particular if p is an odd prime and S(p, E(D)) denotes the p-Selmer group of E(D), then the Birch and Swinnerton-Dyer Conjecture predicts that

(4)
$$L^*(E(D), 1) \not\equiv 0 \pmod{p} \Rightarrow S(p, E(D)) = 0.$$

Since the E(D) are curves with complex multiplication by $\mathbb{Q}(\sqrt{-3})$, a theorem of Rubin [R] implies that

$$L^*(E(D), 1) \not\equiv 0 \pmod{p} \Rightarrow S(p, E(D)) = 0$$

for primes $p \ge 5$.

If D is square-free and $|D| \equiv 2 \pmod{3}$, then $L(E(D), 1) = L^*(E(D), 1) = 0$, and so we restrict our attention to those square-free D where $|D| \equiv 1 \pmod{3}$. J. Nekovář computed the 3-Selmer ranks of E(D) and verified (4) when p = 3 [Cor. 7.5, N] for all such D except when

(5)
$$0 > D \equiv 5 \pmod{8}$$
 and $1 < D \equiv 1 \pmod{8}$.

He explicitly computed 3-Selmer ranks using ideal class groups of suitable quadratic fields, and employed elementary congruences between certain Fourier coefficients of weight 3/2 cusp forms and class numbers.

To prove (4) when p = 3 for the remaining cases (5), Nekovář noted that it suffices to prove:

Conjecture [(7.1), N]. Define $a_1(n)$ and $a_2(n)$ by

$$\sum_{n=1}^{\infty} a_1(n)q^n := \eta(6z)\eta(18z)\Theta(3z)$$
$$\sum_{n=1}^{\infty} a_2(n)q^n := \eta(6z)\eta(18z)\Theta(9z).$$

If h(-n) denotes the class number of the quadratic field $\mathbb{Q}(\sqrt{-n})$, then

(i)
$$\frac{a_1(D)}{3} \equiv -h(-D) \pmod{3}$$
 if $D \equiv 19 \pmod{24}$ is square-free,
(ii) $\frac{a_2(D)}{3} \equiv -h(-3D) \pmod{3}$ if $1 < D \equiv 1 \pmod{24}$ is square-free.

Theorem. Conjecture (7.1) is true.

Corollary. If $D \neq 1$ is a square-free integer for which $|D| \equiv 1 \pmod{3}$, then

$$L^*(E(D), 1) \not\equiv 0 \pmod{3} \iff S(3, E(D)) = 0.$$

Proof of Corollary. This follows immediately from Theorem 4.6, Proposition 7.1, and Proposition 7.2 in [N].

Proof of Theorem. Throughout k denotes a non-negative integer. We begin with a well known fact. If $g(z) := \sum_{n=1}^{\infty} c(n)q^n \in M_{k+\frac{1}{2}}(\Gamma_1(N))$, then

(6)
$$g_{r,t}(z) := \sum_{n \equiv r \pmod{t}} c(n)q^n \in M_{k+\frac{1}{2}}\left(\Gamma_1\left(\frac{Nt^2}{\gcd(r,t)}\right)\right).$$

We recall a special case of a theorem of Sturm [S]. Suppose that $h(z) := \sum_{n=0}^{\infty} d(n)q^n \in M_k(\Gamma_1(M))$ has integer Fourier coefficients. Sturm proved that

(7)
$$h(z) \equiv 0 \pmod{S} \iff \operatorname{Ord}_S(h(z)) > \frac{k}{12} M^2 \prod_{p|M} \left(1 - \frac{1}{p^2}\right)$$

where $\operatorname{Ord}_S(h(z)) := \min_n(d(n) \neq 0 \pmod{S})$. If $i(z) := \sum_{n=0}^{\infty} e(n)q^n \in M_{k+\frac{1}{2}}(\Gamma_1(M))$ has integer coefficients, then by applying (7) to $i(z)\Theta(z)$ we find that

(8)
$$i(z) \equiv 0 \pmod{S} \iff \operatorname{Ord}_S(i(z)) > \frac{k+1}{12} M^2 \prod_{p|M} \left(1 - \frac{1}{p^2}\right).$$

Case (i): The form $\sum_{n=1}^{\infty} a_1(n)q^n$ is in $S_{\frac{3}{2}}(\Gamma_0(108), \chi_0)$, where χ_0 is the trivial character, and has the property that $a_1(n) = 0$ if $n \not\equiv 1 \pmod{3}$. Therefore by (6) we find that

$$f_1(z) := \sum_{n \equiv 3 \pmod{8}} a_1(n)q^n = \sum_{n \equiv 19 \pmod{24}} a_1(n)q^n = -3q^{19} + 6q^{43} - \dots \in S_{\frac{3}{2}}(\Gamma_1(108 \cdot 8^2)).$$

Similarly if $\Theta^{3}(z) := \sum_{n=0}^{\infty} r_{1}(n)q^{n} \in M_{\frac{3}{2}}(4)$, then by (6)

$$t_1(z) := \sum_{n \equiv 19 \pmod{24}} r_1(n)q^n = 24q^{19} + 24q^{43} + 24q^{67} + 48q^{91} + \dots \in M_{\frac{3}{2}}(4 \cdot 24^2)$$

KEN ONO

It is easy to verify that $f_1(z) \equiv 0 \pmod{3}$ and $t_1(z) \equiv 0 \pmod{24}$, and with these observations define $i_1(z)$ by

$$i_1(z) := \frac{f_1(z)}{3} + \frac{t_1(z)}{24} = 3q^{43} + 3q^{91} + 6q^{139} + \dots \in M_{\frac{3}{2}}(\Gamma_1(6912)).$$

A computation verified the congruence $i_1(z) \equiv 0 \pmod{3}$ for the first 5,400,000 terms, and so by (8)

$$\frac{a_1(n)}{3} \equiv -\frac{r_1(n)}{24} \pmod{3}$$

for every integer $n \equiv 19 \pmod{24}$. Conjecture 7.1 (i) follows immediately by Gauss' theorem that if $n \equiv 19 \pmod{24}$ is square-free, then $r_1(n) = 24h(-n)$ (see [J]).

Case (*ii*): The form $\sum_{n=1}^{\infty} a_2(n)q^n \in S_{\frac{3}{2}}(\Gamma_0(108), \chi_{-3})$ has the property that $a_2(n) = 0$ if $n \not\equiv 1 \pmod{3}$. Therefore by (6) it turns out that

$$f_2(z) := \sum_{n \equiv 1 \pmod{8}} a_2(n)q^n = \sum_{n \equiv 1 \pmod{24}} a_2(n)q^n = q + q^{25} - 2q^{49} - \dots \in S_{\frac{3}{2}}(\Gamma_1(108 \cdot 8^2)).$$

Similarly if $\sum_{n=0}^{\infty} r_2(n) q^n := \Theta^2(z) \Theta(3z) \in M_{\frac{3}{2}}(\Gamma_1(12))$, then by (6)

$$t_2(z) := \sum_{n \equiv 1 \pmod{24}} r_2(n)q^n = 4q + 28q^{25} + 28q^{49} + 48q^{73} + \dots \in M_{\frac{3}{2}}(\Gamma_1(12 \cdot 24^2))$$

It is easy to see that $t_2(z) \equiv 0 \pmod{4}$, and so the modular form

$$f_2(z) + \frac{t_2(z)}{4} = 2q + 8q^{25} + 5q^{49} + 9q^{73} + 9q^{97} + \dots \in M_{\frac{3}{2}}(\Gamma_1(12 \cdot 24^2)),$$

and modulo 9 its first few terms are

$$f_2(z) + \frac{t_2(z)}{4} \equiv 2q + 8q^{25} + 5q^{49} + 5q^{121} + \cdots \pmod{9}.$$

Although it is unnecessary, we recall the following eta-function identity

$$\frac{\eta^5(6z)}{\eta^2(3z)} = \sum_{1 \le n \equiv 1,2 \pmod{6}} nq^{n^2} - \sum_{0 < n \equiv 4,5 \pmod{6}} nq^{n^2} \in S_{\frac{3}{2}}(\Gamma_1(144)).$$

By (6) it is easy to see that

$$j_2(z) := \sum_{1 \le n \equiv 1 \pmod{6}} nq^{n^2} - \sum_{0 < n \equiv 5 \pmod{6}} nq^{n^2} \in S_{\frac{3}{2}}(\Gamma_1(144 \cdot 4)).$$

Define the form $i_2(z) \in M_{\frac{3}{2}}(\Gamma_1(6912))$ by

$$i_2(z) := f_2(z) + \frac{t_2(z)}{4} - 2j_2(z) = 18q^{25} - 9q^{49} + 9q^{73} + 9q^{97} + \cdots$$

After computing the first 5,400,000 terms, by (8) we find that $i_2(z) \equiv 0 \pmod{9}$. In particular if $1 < n \equiv 1 \pmod{24}$ is square-free, then

(9)
$$a_2(n) + \frac{r_2(n)}{4} \equiv 0 \pmod{9}$$

Since $r_2(n) = \#\{x^2 + y^2 + 3z^2 = n \mid x, y, z \in \mathbb{Z}\}$, and the ternary form $x^2 + y^2 + 3z^2$ is in a genus with a single class, by [Th. 86, J] it turns out that $r_2(n) = 12h(-3n)$ if $1 < n \equiv 1 \pmod{24}$ is square-free. Therefore for such n it is easy to see by (9) that

$$\frac{a_2(n)}{3} \equiv -h(-3n) \pmod{3}.$$

Remark. Using a theorem of Davenport and Heilbronn, as refined by Horie and Nakagawa (see [D-H], [H-N]), it is easy to deduce that

$$\liminf_{x \to \infty} \frac{\#\{|D| < x \mid \text{square-free } |D| \equiv 1 \pmod{3}, \text{ with } S(3, E(D)) = 0\}}{\#\{|D| < x \mid \text{square-free } |D| \equiv 1 \pmod{3}\}} \ge \frac{1}{2}$$

In particular for such D the curves E(D) have rank zero at least half the time. These ideas have been employed by James [Ja], Horie and Nakagawa [H-N], and Wong [W] to deduce that a positive proportion of certain families of twists of fixed elliptic curves have rank zero.

Acknowledgements

The author is indebted to W. Galway whose computations verified the conjectured congruences.

References

- [D-H] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II., Proc. Roy. Soc. London, Ser. A. 322 (1971), 405-420.
- [Ja] K. James, L-series with non-zero central critical value, Ph.D. Thesis, Univ. Georgia, 1997.
- [J] B. Jones, The arithmetic theory of of quadratic forms, Math. Assoc. Amer., 1950.
- [H-N] K. Horie and J. Nakagawa, Elliptic curves with no torsion points, Proc. Amer. Math. Soc. 104 (1988), 20-25.

KEN ONO

- [N] J. Nekovář, Class numbers of quadratic fields and Shimura's correspondence, Math. Ann. 287 (1990), 577-594.
- [R] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560.
- [S] J. Sturm, On the congruence of modular forms, Number Theory (New York, 1984-1985) Ed. D.
 C. Chudnovsky, G. V. Chudnovsky, M. B. Nathanson, Springer Lect. Notes. Math. 1240 (1984), 275-280.
- [W] S. Wong, Rank zero twists of elliptic curves, preprint, Brown University.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540 $E\text{-}mail\ address:\ \texttt{ono@math.ias.edu}$

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 *E-mail address*: ono@math.psu.edu