A NOTE ON A QUESTION OF J. NEKOVAR AND THE
BIRCH AND SWINNERTON-DYER CONJECTURE

KEN ONO

ABSTRACT. If D is a square-free integer, then let F(D) denote the elliptic curve over Q given
by the equation

(1) E(D): Dy* =423 —27.

Let L(E(D),s) denote the Hasse-Weil L-function of E(D), and let L*(E(D),1) denote the
‘algebraic part’ of the central critical value L(E(D),1). Using a theorem of Sturm, we verify
a congruence conjectured by J. Nekovir . By his work, if S(3, E(D)) denotes the 3-Selmer
group of E(D) and D # 1 is a square-free integer with |D| =1 (mod 3), then we find that

L*(E(D),1) 20 (mod 3) <= S(3, E(D)) = 0.

If D # 1 is a square-free integer, then F(D) is the D-quadratic twist of the Fermat
cubic 23 4+ y> = 1. J. Nekovaf explicitly computed the 3-Selmer ranks of these elliptic
curves, and verified the ‘mod 3’ part of the Birch and Swinnerton-Dyer Conjecture for
most of these curves when |D| =1 (mod 3) using Waldspurger’s theorem on the Shimura
correspondence.

If ¢ := e?™* and n(z) and O©(z) denote the usual weight 1/2 modular forms

n(z) =g/ [[(1—¢") and O(2):=1+2> ¢",
n=1 n=1

then define a(n) by > o7 a(n)g" := n*(32)n*(92) € S2(I'0(27)). The Hasse-Weil L-
function L(E(D), s) is given by

(2) L(E(D),s) =Y _ a(rgj

1991 Mathematics Subject Classification. Primary 11G40; Secondary 14G10.
Key words and phrases. elliptic curves, modular forms.
The author is supported by National Science Foundation grants DMS-9304580 and DMS-9508976.

Typeset by ApS-TEX



2 KEN ONO

Furthermore let L*(E(D),1) denote the ‘algebraic part’ of the critical value L(E(D),1).
In particular it is given by

L(E(D),1)
QED) I, e
where Q(E(D)) is the real period of E(D), and [], ¢, is the ‘Tamagawa factor.” In par-

ticular if p is an odd prime and S(p, E(D)) denotes the p-Selmer group of E(D), then the
Birch and Swinnerton-Dyer Conjecture predicts that

(4) L*(B(D),1) £ 0 (mod p) = S(p, E(D)) = 0.

Since the E(D) are curves with complex multiplication by Q(1/—3), a theorem of Rubin
[R] implies that

(3) L*(E(D),1) :=

L*(E(D),1) 20 (mod p) = S(p, E(D)) = 0
for primes p > 5.
If D is square-free and |D| = 2 (mod 3), then L(E(D),1) = L*(E(D),1) = 0, and so we
restrict our attention to those square-free D where |[D| =1 (mod 3). J. Nekovai computed
the 3-Selmer ranks of F(D) and verified (4) when p = 3 [Cor. 7.5, N] for all such D except

when
(5) 0>D=5 (mod8 and 1<D=1 (mod8).

He explicitly computed 3-Selmer ranks using ideal class groups of suitable quadratic fields,
and employed elementary congruences between certain Fourier coefficients of weight 3/2
cusp forms and class numbers.

To prove (4) when p = 3 for the remaining cases (5), Nekovar noted that it suffices to
prove:

Conjecture [(7.1), N]. Define a;(n) and az(n) by

Z ay(n n(62)n(182)0(3z)

Z n(62)n(182)0(9z).

If h(—n) denotes the class number of the quadratic field Q(v/—n), then

(1) a(D) = —h(—D) (mod 3) if D =19 (mod 24) is square-free,

= —h(—3D) (mod 3) ifl1< D=1 (mod 24) is square-free.
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Theorem. Congecture (7.1) is true.

Corollary. If D # 1 is a square-free integer for which |D| =1 (mod 3), then

L*(E(D),1) 20 (mod 3) <= S(3, E(D)) = 0.

Proof of Corollary. This follows immediately from Theorem 4.6, Proposition 7.1, and
Proposition 7.2 in [N].

0

Proof of Theorem. Throughout k& denotes a non-negative integer. We begin with a well
known fact. If g(2) := .07, c(n)q" € M4 1 (I'1(N)), then

© le) = Xl € My (r ()

We recall a special case of a theorem of Sturm [S]. Suppose that h(z) := """ d(n)¢" €
M. (T'1(M)) has integer Fourier coefficients. Sturm proved that

(7) h(z) =0 (mod S) <= Ordg(h(z)) > f—QMQ H (1 — Z%)
p|M

where Ordg(h(z)) = min,(d(n) # 0 (mod 5)). If i(2) := 377 je(n)g" € My, 1(T1(M))
has integer coefficients, then by applying (7) to i(z)©(z) we find that

(8) i(z) =0 (mod S) <= Ordg(i(z)) > %MQ 1;\[/[ (1 — Z%) .

Case (i): The form Y 7, ai(n)¢"™ is in S3(I'0(108), x0), where xq is the trivial character,
and has the property that a;(n) =0 if n # 1 (mod 3). Therefore by (6) we find that

fi(z) := Z ai(n)q" = Z ai1(n)q" = =3¢ 4+6¢**—--- € Ss (T'1(108-8%)).
n=3 (mod 8) n=19 (mod 24)

Similarly if ©3(2) := 32,7 71(n)¢" € M3(4), then by (6)

t1(z) = Z r1(n)g" = 24¢" + 24¢* + 2457 4+ 48¢°1 + .- € M (4 - 24?).

n=19 (mod 24)

ol
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It is easy to verify that f1(z) = 0 (mod 3) and ¢;(z) = 0 (mod 24), and with these
observations define i1 (2) by
_ Nz | a(z)

5t o = 3¢" +3¢™ +6¢"° + - - € M3 ('1(6912)).

i1(2) :

A computation verified the congruence i;(z) = 0 (mod 3) for the first 5,400,000 terms, and
so by (8)
ai(n) _ 71(n)
3 24
for every integer n = 19 (mod 24). Conjecture 7.1 (i) follows immediately by Gauss’
theorem that if n = 19 (mod 24) is square-free, then r1(n) = 24h(—n) (see [J]).

Case (ii): The form Y °  as(n)q™ € S3(I'o(108), x—3) has the property that az(n) = 0 if
n # 1 (mod 3). Therefore by (6) it turns out that

f202) = ) aa(n)g®= Y as(n)g" =g+ —2¢""— - € S5 (I'1(108-8%)).
n=1 (mod 8) n=1 (mod 24)

(mod 3)

Similarly if > °7 (r2(n)g" := ©%(2)0(3z) € M3 (T'1(12)), then by (6)

ta(z):= > ran)g" =4q+28¢% +28¢" +48¢" + .- € M3 (T1(12-24).
n=1 (mod 24)

It is easy to see that t2(z) =0 (mod 4), and so the modular form

t
fa(2) + Qf) =2¢+8¢% +5¢" +9¢™ +9¢"" +--- € Mg (T (12 - 242),
and modulo 9 its first few terms are
ta(2) _ 25 49 121
fa(z) + =2¢+8¢” +5¢" +5¢ " +--- (mod9).

4

Although it is unnecessary, we recall the following eta-function identity

n°(62) _ Z nqn2 _ Z nq”2 c S% (['1(144)).

1<n=1,2 (mod 6) 0<n=4,5 (mod 6)

By (6) it is easy to see that

)= Y. m" - > ngv €S

1<n=1 (mod 6) 0<n=5 (mod 6)

(D (144 - 4)).

e
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Define the form iz(2) € M3 (I'1(6912)) by

tz(Z)
4

i2(2) = fa(2) + — 2j5(2) = 18¢% — 9¢™ +9¢™ +9¢"" +--- .

After computing the first 5,400,000 terms, by (8) we find that iz(z) = 0 (mod 9). In
particular if 1 <n =1 (mod 24) is square-free, then

(9) ra(n) =0 (mod9).

Since ro(n) = #{x? + y?> + 322 = n | x,y,2 € Z}, and the ternary form 22 + y? + 322 is in
a genus with a single class, by [Th. 86, J] it turns out that ro(n) = 12h(—3n) if 1l <n =1
(mod 24) is square-free. Therefore for such n it is easy to see by (9) that

= —h(—3n) (mod 3).

O

Remark. Using a theorem of Davenport and Heilbronn, as refined by Horie and Nakagawa
(see [D-H], [H-NJ), it is easy to deduce that

#{|D| < x | square-free |[D| =1 (mod 3), with S(3, E(D)) = 0} -
#{|D| < z | square-free |D| =1 (mod 3)} -

liminf,

N | —

In particular for such D the curves E(D) have rank zero at least half the time. These ideas
have been employed by James [Ja], Horie and Nakagawa [H-N], and Wong [W] to deduce
that a positive proportion of certain families of twists of fixed elliptic curves have rank
Z€ero.
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