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1. Introduction

S. Chowla conjectured that for a given prime p there are infinitely many imaginary qua-
dratic fields whose class number is not a multiple of p. For p = 2 this conjecture is a
consequence of Gauss’s genus theory, and for p = 3 it follows from the work of Davenport
and Heilbronn [D-H] (who prove the stronger result that a positive proportion of such fields
have class numbers coprime to 3). Via an elementary argument based on the Kronecker re-
lations, Hartung [Ha] established the conjecture for odd primes p. Variants of his argument
have been employed in other similar studies [Ho1,Ho2, Ho-On].

Hartung’s result can be interpreted as an indivisibility result for coefficients of the weight
3
2 modular form Θ3(z), where Θ(z) := 1+2q+2q4 +2q9 +2q16 + . . . (q := e2πiz throughout)
is the classical theta function. For if Θ3(z) =

∑∞
n=0 r(n)qn, and if n > 3 is square-free, then

by a well-known theorem of Gauss

(1) r(n) =
{

12h(−4n) if n ≡ 1, 2, 5, 6 (mod 8),
24h(−n) if n ≡ 3 (mod 8),

where h(D) is the class number of Q(
√
D). The flavor of the Kronecker relations and their

role in Hartung’s work is captured by the observation that the product Θ3(z) · Θ(z) is the
normalized Eisenstein series of weight 2 on Γ0(4). Equating Fourier coefficients yields

(2)
∞∑

k=−∞

r(n− k2) = 8
∑
d|n

d6≡0 (mod 4)

d,
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which in light of (1) is essentially a recurrence relation for class numbers. Indivisibility
results for class numbers can thus be deduced by examining the right hand side of (2). This
idea of extracting indivisibility results for the coefficients of a half-integral weight form g(z)
from properties of the coefficients of the integral weight form obtained by multiplying g(z)
by a theta function inspired (and underlies) the work described in this paper.

In this paper we study the indivisibility of the Fourier coefficients of half-integral weight
eigenforms. For each prime ` we fix throughout an extension |·|` of the usual `-adic valuation
to an algebraic closure of Q. A half-integral weight modular form g(z) is said to be good if for
some theta function θ(z) the expansion of the product G(z) = g(z) ·θ(z) into integral weight
eigenforms contains a newform without complex multiplication (see also the beginning of
§2). Our main result is the following.

Theorem. Let g(z) =
∑∞
n=0 c(n)qn ∈ Mk+ 1

2
(N) be an eigenform whose coefficients are

algebraic integers. If g(z) is good, then for all but finitely many primes ` there exist infinitely
many square-free integers m for which

|c(m)|` = 1.

The idea behind the proof of this theorem is simple. Write G(z) =
∑
αifi(z) + f̃(z) =∑∞

n=0 b(n)qn with each fi a non-CM newform, each αi algebraic, and f̃ a linear combination
of CM-forms and oldforms. For large primes `, the mod ` Galois representation ρi associated
to fi has ‘big’ image, and the ρi’s are essentially independent (one has to be careful about
twist-equivalent forms). Using this together with the connection between the traces of the
ρi’s and the coefficients of the fi’s and a simple application of the Chebotarev Density
Theorem one can show that |b(n)|` = 1 for many more n than can be accounted for if
|c(m)|` = 1 for only finitely many square-free m’s. In this argument, the mod ` Galois
representations take the place of explicit relations of the form (2).

Motivation for studying the indivisibility of Fourier coefficients of half-integral weight
eigenforms is provided by the work of Shimura [Sh] and Waldspurger [Wal] relating the
coefficients of such cuspforms to the central critical values of the L-functions of quadratic
twists of even-weight newforms and by the connections (often conjectural) of such values
to the Tate-Shafarevich groups of elliptic curves and the motives attached to newforms.
Further motivation is provided by the connections between the coefficients of half-integral
weight modular forms, class numbers of imaginary quadratic fields, and generalized Bernoulli
numbers.

As a consequence of the aforementioned connections the Theorem has a number of
corollaries of arithmetic interest. Let f(z) =

∑∞
n=1 a(n)qn ∈ S2k(N,χ0) be a newform

with trivial Nebentypus χ0, and let L(f, s) :=
∑∞
n=1 a(n)n−s be its L-function. Then

Λ(f, s) := (2π)−sΓ(s)Ns/2L(f, s) satisfies the functional equation

Λ(f, s) = ε · Λ(f, 2k − s),

where ε = ±1 is the sign of the functional equation. We shall be interested in the quadratic
twists of this function. If D 6= 0, then let χD denote the Kronecker character for the field
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Q(
√
D), and if D = 0, then let χ0 denote the trivial character. The D-quadratic twist of f ,

denoted fD, is the newform corresponding to the twist of f by the character χD. If D = 0
or if (D,N) = 1, then fD(z) :=

∑∞
n=1 χD(n)a(n)qn. Its L-function satisfies the functional

equation
Λ(fD, s) = ε · χD(−N)Λ(fD, 2k − s).

Combining the Theorem with the work of Waldspurger yields the following.

Corollary 1. Let f(z) ∈ S2k(N,χ0) be a newform, let ε be the sign of the functional
equation for L(f, s), and let Ω be a period for f . Then for all but finitely many primes `
there are infinitely many fundamental discriminants D for which

εD > 0 and

∣∣∣∣∣L(fD, k)Dk− 1
2

Ω

∣∣∣∣∣
`

= 1.

There is also a ‘local’ version of Corollary 1.

Corollary 2. Let f(z) ∈ S2k(N,χ0) be a newform, let ε be the sign of the functional
equation for L(f, s), and let Ω be a period for f. Let {p1, p2, . . . ps} be a finite set of primes,
and (ε1, ε2, . . . εs) ∈ {±1}s. For all but finitely many primes ` there are infinitely many
fundamental discriminants D for which εD > 0, χD(pi) = εi for every 1 ≤ i ≤ s, and∣∣∣∣∣L(fD, k)Dk− 1

2

Ω

∣∣∣∣∣
`

= 1.

For an elliptic curve E/Q and a fundamental discriminant D let L(E, s) denote the
Hasse-Weil L-function for E, and let ED denote the D-quadratic twist of E. As a special
case of Corollary 1 we obtain the following partial resolution of a conjecture of Kolyvagin
[Conjecture F, Ko2].

Corollary 3. Let E/Q be a modular elliptic curve, and let ε be the sign of the functional
equation for L(E, s). If Sha(E,D) denotes the order of X(ED) as predicted by the Birch
and Swinnerton-Dyer Conjecture, then for all but finitely many primes ` there are infinitely
many fundamental discriminants for which

εD > 0, L(ED, 1) 6= 0, and Sha(E,D) 6≡ 0 (mod `).

By virtue of a result of Rubin [Ru], restricting attention to elliptic curves having complex
multiplication yields the following result about Tate-Shafarevich groups.

Corollary 4. If E/Q is an elliptic curve with complex multiplication, then for all but finitely
many primes ` there are infinitely many fundamental discriminants D for which L(ED, 1) 6=
0 and

|X(ED)| 6≡ 0 (mod `).

Combining Corollaries 2 and 3 with work of Kolyvagin [Ko1] yields the following for elliptic
curves of analytic rank 1.
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Corollary 5. Let E/Q be a modular elliptic curve for which L(E, s) has a simple zero at
s = 1. For all primes ` outside a finite set which is effectively determinable (see Remark 2)

ord`(|X(E)|) ≤ ord`(Sha(E)),

where Sha(E) denotes the order of X(E) as predicted by the Birch and Swinnerton-Dyer
Conjecture.

Most of the rest of this paper is devoted to proving the Theorem and deducing the
corollaries. We conclude with a few remarks on the proofs and three examples of applications
of the ideas therein (involving, respectively, CM-curves, Ramanujan’s Delta function, and
class numbers of fields of the form Q(

√
−32n− 20)). Finally, we note that results similar to

those in this paper have been obtained independently by Bruinier [B] and Jochnowitz [Jo1,
Jo2] via different methods.

2. Results

If k is a positive integer, then let Sk(N) denote the space of cusp forms of weight k
on Γ1(N), and let Scmk (N) denote the subspace of Sk(N) spanned by those forms having
complex multiplication (cf. [R2]). If χ is a Dirichlet character modulo N , then let Sk(N,χ)
denote the subspace of Sk(N) consisting of those forms having Nebentypus character χ.
By the theory of newforms, every f(z) ∈ Sk(N) can be uniquely expressed as a linear
combination

f(z) =
r∑
i=1

αiAi(z) +
s∑
j=1

βjBj(δjz),

where Ai(z) and Bj(z) are newforms of weight k and level a divisor of N , and where each
δj is a non-trivial divisor of N . Let

fnew(z) :=
r∑
i=1

αiAi(z) and fold(z) :=
s∑
j=1

βjBj(δjz)

be, respectively, the new part of f and the old part of f .
For a non-negative integer k, let Mk+ 1

2
(N) (resp. Sk+ 1

2
(N)) denote the space of modular

forms (resp. cusp forms) of half-integral weight k + 1
2 on Γ1(4N). If i = 0 or 1, 0 ≤ r < t,

and a ≥ 1, then let θa,i,r,t(z) denote the Shimura theta function

θa,i,r,t(z) :=
∑

n≡r (mod t)

niqan
2
.

If Θ(N) is the space of such functions of level 4N, then the Serre-Stark Theorem [S-S] implies

Θ(N) = M 1
2
(N)⊕

{
subspace of M 3

2
(N) spanned by those θa,1,r,t(z) on Γ1(4N)

}
.

If g(z) ∈ Mk+ 1
2
(N) and h(z) ∈ Θ(N ′), then Gh(z) := g(z) · h(z) is a modular form on

Γ1(4NN ′) of integral weight k + 1 or k + 2.
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Definition. A modular form g(z) ∈ Mk+ 1
2
(N) is good if there exists some N ′ and some

h(z) ∈ Θ(N ′) for which

(G1) Gh(z) is a cusp form.

(G2) Gnew
h (z) 6∈ Scmk+1(4NN

′) ∪ Scmk+2(4NN
′).

Let Q be an algebraic closure of Q, and for each rational prime `, let Q` be an algebraic
closure of Q`. Fix an embedding of Q into Q`. This fixes a choice of decomposition group
D`. In particular, if K is any finite extension of Q, and if OK is the ring of integers of K,
then for each ` this fixes a choice of a prime ideal p`,K of OK dividing `. Let F`,K be the
residue field of p`,K , and let | · |` be an extension to Q` of the usual `-adic absolute value on
Q`.

If f(z) =
∑∞
n=1 a(n)qn ∈ Sk(N,χ) is a newform, then the a(n)’s are algebraic integers

and generate a finite extension of Q, say Kf . If K is any finite extension of Q containing
Kf , and if ` is any prime, then by the work of Eichler, Shimura, Deligne, and Serre (see [D],
[D-S]) there is a continuous, semisimple representation

ρf,` : Gal(Q/Q) → GL2(F`,K)

for which

(R1) ρf,` is unramified at all primes p - N`.
(R2) trace ρf,`(frobp) = a(p) mod p`,K for all primes p - N`.

(R3) det ρf,`(frobp) = χ(p)pk−1 mod p`,K for all primes p - N`.
(R4) det ρf,`(c) = −1 for any complex conjugation c.

Here frobp denotes any Frobenius element for the prime p. These representations capture
many properties of the reductions of the a(n)’s modulo p`,K .

Proof of Theorem. Since g(z) is good, there exists a Shimura theta function h(z) ∈ Θ(N ′)
for which Gh(z) = g(z) · h(z) satisfies (G1) and (G2). If Gh(z) =

∑∞
n=1 a(n)qn, and if

h(z) =
∑∞
n=0 b(n)qan

2
, then

(3) a(n) =
∑
x,y

x+ay2=n

c(x)b(y).

Since the c(x)’s and b(y)’s are algebraic integers, the same is true of the a(n)’s.
Let k′ be the weight of Gh(z) (so k′ is either k + 1 or k + 2), and let N0 be the set of

newforms of weight k′ and level dividing 4NN ′. The new part of Gh(z) can be uniquely
expressed as a linear combination

(4) Gnew
h (z) =

∑
f(z)∈N0

αff(z).
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Since the Fourier coefficients of Gh(z) are algebraic, the same is true for those of Gnew
h (z)

and Gold
h (z), and each αf . Note that by (G2) some αf is non-zero.

A critical feature of the proof is the proper ‘bookkeeping’ of newforms which are related
via twisting and Galois conjugation. We now fix our notation. Let X be the set of Dirichlet
characters of conductor dividing 8NN ′, and let

N = {fχ(z) : f ∈ N0, χ ∈ X},

where fχ is the newform corresponding to the twist of f by χ. Each newform in N has level
divisible only by primes dividing 4NN ′ and the conductor of its Nebentypus character is a
divisor of 4NN ′. Let K be a finite, Galois extension of Q containing the Fourier coefficients
of each f ∈ N , the αf ’s, the Fourier coefficients of Gold

h (z), and the values of the characters
in X.

If f ∈ N , then let Gf ⊆ Gal(Q/Q) be the subgroup stabilizing the set

Nf := {fχ(z) : χ ∈ X}.

For each prime `, let Df,` := Gf ∩D`, and let Ff,` := FDf,`

`,K .
Fix a prime ` for which:

(L1) K is unramified at `.

(L2) ` - 4NN ′ and ` > 2(k + 2).

(L3) If αf 6= 0, then |αf |` = 1.

(L4) The characters χ ∈ X, viewed as taking values in F`,K , are distinct.

(L5) The representations ρf,` (f ∈ N ) are pairwise non-isomorphic.

(L6) If f ∈ N does not have complex multiplication, then the image of ρf,`
contains a normal subgroup Hf conjugate to SL2(Ff,`) and for which

Imρf,`/Hf is abelian.

It is clear that (L1) − (L4) hold for all sufficiently large primes `. Property (L5) is also
true for all large primes. For if not, then ρf1,` ∼= ρf2,` for some f1, f2 ∈ N and for infinitely
many primes `. It then follows from (R2) that af1(p) = af2(p) for all primes p - 4NN ′,
contradicting ‘multiplicity one’ for newforms [Theorem 4.6.19, Mi]. Ribet [R3], following the
ideas of Serre [Se], has shown that (L6) holds for all large primes. This property essentially
asserts that the image of ρf.` is almost always ‘as big as possible.’

For each f ∈ N0, let Sf ⊂ D` be a set of representatives for the classes D`/Df,`, and put
Nf,` = ∪σ∈Sf

Nfσ , a disjoint union. Let N ′ = {f1(z), f2(z), ..., fu(z)} be a subset of N0 such
that N is a disjoint union of the Nfi,`’s. We assume that f1(z), ..., fv(z) do not have complex
multiplication and that fv+1(z), ..., fu(z) do. Since Gh(z) satisfies (G2), f1(z) can be chosen
so that the coefficient αf1 of f1(z) in (4) is non-zero. Write fi(z) =

∑∞
n=1 ai(n)qn, write ρi

for ρfi,`, Si for Sfi
, Hi for Hfi

, and Fi for Ffi`. In this way we are able to conveniently keep
track of those distinct newforms which are closely related.



FOURIER COEFFICIENTS MODULO ` 7

Lemma. With the above notation,

(i) The image of ρ1 × · · · × ρv contains a normal subgroup conjugate

to SL2(F1)× · · · × SL2(Fv).
(ii) If fi(z) does not have complex multiplication, then for each positive integer

d and each w ∈ Fi, a positive density of primes p ≡ 1 (mod d) satisfies

ai(p) ≡ w (mod p`,K).

(iii) If fi(z) does not have complex multiplication, then for each pair of coprime

positive integers r, d, a positive density of primes p ≡ r (mod d) satisfies

|ai(p)|` = 1.

Proof of Lemma. Part (i) is surely well-known, and in any event can be proved by a simple
modification of the arguments in [R1], [R3], and [Se]. Without loss of generality, we can
assume that Hi = SL2(Fi). Let

H :=
v⋂
i=1

ρ−1
i (Hi).

The map Gal(Q/Q)/H ↪→ Imρ1/H1×· · ·× Imρv/Hv is injective, hence by (L6) the quotient
Gal(Q/Q)/H is abelian. It follows that Imρi/ρi(H) is also abelian. Since ρi(H) ⊆ Hi

and since Hi = SL2(Fi) has no non-trivial abelian quotients, ρi(H) = Hi. It suffices to
show that (ρ1 × · · · × ρv)(H) contains SL2(F1) × · · · × SL2(Fv). By [Lemma 3.3, R1], it
suffices to show that (ρi × ρj)(H) contains SL2(Fi) × SL2(Fj) if i 6= j. Arguing as in the
proofs of [Lemme 8, §6.2, Se] and [Theorem 3.8, R1], one easily sees that if this is not true,
then there is a σ ∈ D` such that ρσi ∼= ρj ⊗ φ for some Dirichlet character φ unramified at
primes not dividing 4NN ′`. Arguing as in the proof of [Theorem 6.1, R1], one sees that
since ` > 2(k+ 2) (see (L2)) φ is unramified at `. Ribet’s arguments employ various results
of Swinnerton-Dyer about level 1 modular forms mod `, which have been generalized to
higher level by Katz [Ka] (see also [§4, Gr]). Now, comparing determinants shows that the
conductor of φ2 divides 4NN ′, so the conductor of φ divides 8NN ′. Therefore, fσ(z) and
fφ(z) are in N and ρfσ,`

∼= ρfφ,`, contradicting (L5). This proves part (i).
Parts (ii) and (iii) are simple consequences of property (L6). Let ε : Gal(Q/Q) → (Z/d)×

be the character defined by ε(σ) = s if ζσd = ζsd . The condition p ≡ r (mod d) is equivalent
to ε(frobp) = r. Since SL2(Fi) has no non-trivial abelian quotient, the image of ρi × ε

contains SL2(Fi)× 1. Let g =
(

0 1
−1 w

)
∈ SL2(Fi). By the Chebotarev Density Theorem, a

positive proportion of primes p satisfy (ρi × ε)(frobp) = (g, 1). For such a p,

ai(p) ≡ trace
(

0 1
−1 w

)
≡ w (mod p`,K) and p ≡ ε(frobp) ≡ 1 (mod d).

This proves part (ii). Now choose σ ∈ Gal(Q/Q) such that ε(σ) = r. Clearly, there exists
some g ∈ SL2(Fi) for which trace (ρi(σ)·g) 6= 0. Again by the Chebotarev Density Theorem,



8 KEN ONO AND CHRISTOPHER SKINNER

a positive proportion of the primes p satisfy (ρi × ε)(frobp) = (ρi(σ), r)(g, 1) = (ρi(σ) · g, r).
This proves part (iii).

Q.E.D. Lemma

Returning to the proof of the theorem, rewrite (4) as

(5) Gnew
h (z) =

u∑
i=1

∑
σ∈Si

∑
χ∈X

α(σ, i, χ)fσi,χ(z),

where α(σ, i, χ) = αfσ
i,χ
, and define a(n)new by Gnew

h (z) =
∑∞
i=1 a(n)newqn. If n is a positive

integer relatively prime to 4NN ′, then by (5)

(6) a(n)new =
u∑
i=1

∑
σ∈Si

∑
χ∈X

α(σ, i, χ)χσ(n)

 ai(n)σ.

If σ1 is the element of S1 for which fσ1
1 = f1, then α(σ1, 1, χ0) = αf1 6= 0. By (L3),

|α(σ1, 1, χ0)|` = 1, and from (L4), one sees easily that there is an integer r relatively prime
to 4NN ′ for which |

∑
χ∈X χ

σ1(r)|` = 1. Fix such an r, and put

λ(σ, i) =
∑
χ∈X

α(σ, i, χ)χσ(r), (1 ≤ i ≤ u; σ ∈ Si).

By (6),

a(n)new =
u∑
i=1

∑
σ∈Si

λ(σ, i)ai(n)σ if n ≡ r (mod 8NN ′).

Suppose that there are only finitely many square-free integers m for which |c(m)|` = 1.
Let these be m1, ...,mt. Let N ′′ be the product of the odd prime factors of NN ′m1 · · ·mt.
Let r1 and d1 be relatively prime positive integers such that if p is any prime congruent to r1
modulo d1, then p does not split in any imaginary quadratic subfield having discriminant a
divisor of 4N ′′. Choose a prime p1 for which p1 - 4N ′′, p1 ≡ r1 (mod d1), and |a1(p1)|` = 1.
This is possible by part (iii) of the Lemma. If v+1 ≤ i ≤ u, then ai(p1) = 0 since fi(z) has
complex multiplication. Choose a prime p2 not dividing 4N ′′ and for which |a1(p2)|` = 1
and |ai(p2)|` < 1 (i = 2, ..., v). This is possible by part (i) of the Lemma. For example, let
g ∈ Im(ρ1 × · · · × ρv) be conjugate to(

1 0
0 1

)
×

(
0 −1
1 0

)
× · · · ×

(
0 −1
1 0

)
.

By the Chebotarev Density Theorem, a positive proportion of primes p - 4N ′′ satisfy (ρ1 ×
· · · × ρv)(frobp) = g. Any such prime clearly has the desired properties. Next, choose a
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prime p3 for which p3 ≡ r(p1p2)−1 (mod 8NN ′) and |a1(p3)|` = 1. This is possible by part
(iii) of the Lemma.

For w ∈ OK , write w for its image in F`,K . Since |λ(σ1, 1)a1(p1p2p3)σ1 |` = 1, and since
|λ(σ, 1)a1(p1p2p3)σ|` ≤ 1 for all σ ∈ S1, one sees easily that there is some w ∈ OK for which

(7) w ∈ F×1 and |
∑
σ∈S1

λ(σ, 1)a1(p1p2p3)σwσ|` = 1.

Now choose a prime p4 for which p4 ≡ 1 (mod 8NN ′) and a1(p4) ≡ w (mod p`,K). This
is possible by part (ii) of the Lemma. Let m = p1p2p3p4. By the multiplicitivity of the
Fourier coefficients of a newform, it follows from the choices of p1 and p2 that

|ai(m)|` < 1, (i = 2, ..., u).

Therefore, by (7)

|
u∑
i=2

∑
σ∈Si

λ(σ, i)ai(m)σ|` < 1 and |
∑
σ∈S1

λ(σ, 1)a1(m)σ|` = 1,

so
|a(m)new|` = 1.

Since m is prime to 4NN ′, the mth coefficient of Gold is zero, so it follows that

(8) |a(m)|` = |a(m)new|` = 1.

By (3) and the fact that g(z) is an eigenform, m must be of the form

(9) m = mjx
2 + ay2

for some j ∈ {1, ..., t} and some integers x and y. Since mjX
2 + aY 2 is a positive definite

quadratic form with discriminant, say dj , a divisor of 4N ′′, a necessary condition for a

solution of (9) is that
(
dj

p

)
= 1 for every prime divisor of p of m. But m = p1p2p3p4 was

chosen so that
(
dj

p1

)
= −1 for each dj . This contradiction proves the theorem.

Q.E.D. Theorem

We now turn to the proofs of the corollaries. Suppose f(z) ∈ S2k(N,χ0) is a newform
and that ε ∈ {±1} is the sign of the functional equation for L(f, s). If D is a fundamental
discriminant, then let D0 be defined by

D0 :=
{ |D| if D is odd,
|D|/4 if D is even.
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A non-zero complex number Ω ∈ C× is a period for f(z) if

(10)
L(fD, k)D

k− 1
2

0

Ω
, εD > 0,

is always an algebraic number (this is a slight abuse of standard terminology). A period Ω is
nice if the quantity (10) is always an algebraic integer. That nice periods exist is essentially
a result of Shimura and follows easily from the theory of modular symbols (cf. [M-T-T] and
[Theorem 3.5.4, G-S]). Moreover, any period is a multiple of a nice period by some algebraic
number. As a consequence of the Theorem we obtain Corollary 1.

Proof of Corollary 1. Since any period is the multiple of a nice one by an algebraic number,
it suffices to prove the corollary for Ω a nice period. There is a twist fχ, χ(−1) = (−1)kε,
satisfying Hypotheses H1 and H2 of [pp. 377-378 , Wal]. By [Théorème 1, Wal] there is an
integer N ′ and an eigenform g(z) =

∑∞
n=1 c(n)qn ∈ Sk+ 1

2
(N ′) such that N |N ′ and for each

fundamental discriminant D for which εD > 0

(11) c(D0)2 =

{
εD

L(fD,k)D
k− 1

2
0

Ω if D0 is relatively prime to 4N ′,

0, otherwise,

where εD is an algebraic integer with |εD|` = 1. If g(z) is good, then the conclusion of the
corollary follows from the theorem.

Let p be a prime that does not divide 4N ′ and that does not split in any imaginary
quadratic field having discriminant dividing 4N ′. By [Theorem B(i), F-H], there is a fun-
damental discriminant D′ such that p|D′, εD′ > 0, D′ is relatively prime to 4N ′, and
L(fD′ , k) 6= 0. It follows from (11) that c(D′) 6= 0. For sufficiently large integers ν, the D′th
Fourier coefficient of the cusp form Gν(z) = g(z) · θN ′ν ,0,1,1(z) ∈ Sk+1(4N ′ν+1) is equal to
c(D′) and therefore is non-zero. Since D′ is coprime to 4N ′, the D′th coefficient of Gold

ν (z)
is zero. Therefore c(D′) is the D′th coefficient of Gnew

ν (z), and the former being non-zero
implies the same for the latter. Furthermore, the choice of p implies that the new part of
Gν(z) is not contained in Scmk+1(4N

′ν+1) (as the pth Fourier coefficient of any CM-form of
level dividing 4N ′ν+1 is zero). This proves that g(z) is good and completes the proof of the
corollary.

Q.E.D.

Proof of Corollary 2. Let g(z) ∈ Sk+ 1
2
(N ′) be as in the proof of Corollary 1. By taking

combinations of quadratic twists of g (and possibly twists of twists) one obtains an eigenform
g∗(z) whose coefficients are supported on integers of the form D0m

2 for those discriminants
D for which χD(pi) = εi for each i. A straightforward generalization of the proof of Corollary
1 shows that g∗(z) is good (in particular, it is non-zero).

Q.E.D.
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Proof of Corollary 3. Let E/Q be a modular elliptic curve, let N be the conductor of E, and
let ε be the sign of the functional equation for L(E, s). For each fundamental discriminant
εD > 0, let ED be the D-quadratic twist of E. Let ωD be a Neron differential on ED, and
let

ΩD =
∫
ED(R)

|ωD|.

Write ΩE for Ωε. Then

(12) ΩDD
1
2
0 = ΩE .

Since E is modular, it follows that

(13)
L(ED, 1)

ΩD
∈ Q.

However, much more is conjectured to be true. The Birch and Swinnerton-Dyer Conjecture
states that if L(ED, 1) 6= 0, then

(14)
L(ED, 1)

ΩD
=

|X(ED)|
|ED(Q)tor)|2

Tam(ED),

where Tam(ED) is the Tamagawa factor. Moreover, Tam(ED)/Tam(Eε) is an integer
divisible only by the primes 2 or 3. By the work of Mazur [Ma] the order of the torsion
group ED(Q)tor is not divisible by any prime p > 7. Since E is modular, there is a newform
f(z) ∈ S2(N,χ0) such that L(E, s) = L(f, s). More generally,

(15) L(ED, s) = L(fD, s).

It follows from (12), (13), and (14) that ΩE is a period for f(z). The conclusion of the
corollary follows from Corollary 1.

Q.E.D.

Proof of Corollary 4. Rubin [Ru] has shown that if E/Q is an elliptic curve having complex
multiplication by the CM field K, then the only possible primes p - |O×K | dividing |X(ED)|
are those predicted by the Birch and Swinnerton-Dyer Conjecture. This, together with (12),
(13), and (14) implies that

` > 7, |X(ED)| ≡ 0 (mod `) ⇒ ` divides the numerator of
L(ED, 1)

√
D0

ΩE
.

Q.E.D.

Proof of Corollary 5. This is just [Corollary G, Ko2], which is conditional on part (i) of [Con-
jecure F, Ko2] where the discriminants satisfy the congruence condition D ≡ � (mod 4N).
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Corollary 2 removes this condition for all but finitely many primes `, and the proof of the
Theorem shows how to effectively determine this finite set (see Remark 2).

Q.E.D.

Remark 1. Theorem 1 is a result about the coefficients of an eigenform g(z) of half-integral
weight. However, the proof can be applied in a slightly different setting. Let N be an odd
square-free integer, and let f(z) ∈ S2k(N,χ0) be a newform. Kohnen and Zagier [K], [K-Z]
have constructed an explicit cusp form g(z) =

∑∞
n=1 c(n)qn ∈ Sk+ 1

2
(N) for which c(n) = 0

unless (−1)kn ≡ 0, 1 (mod 4) and for which

L(fD, k) = 2−ν(N)|D| 12−k πk

(k − 1)!
〈f, f〉
〈g, g〉

|c(|D|)|2

for any fundamental discriminant D for which (−1)kD > 0 and χD(`) = w`, the eigenvalue
of the Atkin-Lehner involution at `, for each prime ` dividing N . The conclusion and proof
of the Theorem apply (mutatis mutandis).

Remark 2. Let E/Q be a modular elliptic curve with conductor N for which L(E, s) has
a simple zero at s = 1. Let g(z) be the relevant half-integral weight eigenform, and let h(z)
be a theta function for which Gh(z) = g(z) · h(z) satisfies (G1) and (G2). Let S1 denote the
set of primes ` not satisfying (L1)− (L6). If c(E) denotes the Manin constant for E, and D
denotes the discriminant of End(E), then define S2 by

S2 := {` | 6D, ` | Tam(E), ` | c(E)}.

If E does not have complex multiplication, then let S3 denote the finite set of primes ` for
which the `−adic representation of the Tate module is not surjective, and if E has complex
multiplication then let S3 be empty. The conclusion of Corollary 5 holds for every prime
` 6∈ S1 ∪ S2 ∪ S3.

3. Examples

Example 1. If N 6= 0 is an integer, then let E(N) denote the elliptic curve/Q

E(N) : y2 = x3 −N2x.

Let g1(z) :=
∑∞
n=1 a1(n)qn ∈ S 3

2
(128, χ0) and g2(z) :=

∑∞
n=1 a2(n)qn ∈ S 3

2
(128, χ2) be the

eigenforms defined by
gi(z) := η(8z)η(16z)Θ(2iz).

Recall that η(z) := q1/24
∏∞
n=1(1− qn). If N ≥ 1 is an odd square-free integer, then Tunnell

[T] proved, assuming the Birch and Swinnerton-Dyer Conjecture, that

(16) |X(E(iN))| =
(
ai(N)
2ν(N)

)2

if ai(N) 6= 0.
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If F (z) := g1(z)Θ(4z) = g2(z)Θ(2z) = η(8z)η(16z)Θ(2z)Θ(4z), then

F ∗(z) :=
∑

n 6≡7 (mod 8)

A(n)qn −
∑

n≡7 (mod 8)

A(n)qn

is in Snew
2 (128, χ0) and does not have complex multiplication. The new part of F (z) is easily

seen to be a linear combination of F ∗(z) and its twists by Dirichlet characters modulo 8,
so g1(z) and g2(z) are both good. By Theorem 1, for all sufficiently large primes `, there
are infinitely many odd, square-free integers N and M for which a1(N) 6≡ 0 (mod `) and
a2(M) 6≡ 0 (mod `). In fact, a quick inspection of the proof of the theorem shows that in
this case ‘sufficiently large’ means that the image of ρF∗,` is conjugate to GL2(F`). The
eigenform F ∗(z) is the newform associated to the elliptic curve y2 = x3 + 2x2 − x which is
a quadratic twist of y2 = x3 − 2x2 − x. Serre [5.9.1, Se] has shown that the image of the
mod ` Galois representation of the latter curve is GL2(F`) for every odd prime `. The same
is therefore true for ρF∗,`.

By Rubin’s theorem [Ru] and (16), if ` is an odd prime, then there are infinitely many
odd square-free integers N and M for which E(N) and E(2M) have rank 0 and X(E(N))
and X(E(2M)) have no elements of order `. The analogous statement when ` = 2 is well
known and follows from 2-descents.

Example 2. Let ∆(z) = η24(z) =
∑∞
n=1 τ(n)qn ∈ S12(1) denote Ramanujan’s cusp form,

and let g(z) =
∑∞
n=1 c(n)qn ∈ S 13

2
(4, χ0) denote the eigenform defined by

g(z) :=
Θ9(z)η8(4z)
η4(2z)

− 18Θ5(z)η16(4z)
η8(2z)

+
32Θ(z)η24(4z)

η12(2z)
.

Kohnen and Zagier proved [K-Z] that if D > 0 is a fundamental discriminant, then

(17) L(∆D, 6) =
(
π

D

)6√
D

5!
〈∆(z),∆(z)〉
〈g(z), g(z)〉

· c(D)2.

If F (z) := g(z)Θ(z) ∈ S7(4, χ−1), then F (z) =
B1(z) + B2(z)

2
, where B1(z) and B2(z) are

complex conjugate newforms in S7(4, χ−1) and where B1(z) is given by

B1(z) =
(

1−
√
−15
15

)
F (z) +

√
−15
30

F (z)|U2.

The first few terms of the Fourier expansion of B1(z) =
∑∞
n=1 b(n)qn are:

B1(z) = q + (2− 2
√
−15)q2 + 8

√
−15q3 − (56 + 8

√
−15)q4 + 10q5 + . . .

Since B1(z) and B2(z) do not have complex multiplication, for all sufficiently large primes
` there exist infinitely many fundamental discriminants D > 0 for which c(D) 6≡ 0 (mod `)
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(see Remark 2). As B2(z) is the newform associated to the twist of B2(z) by χ−1, an
inspection of the proof of Theorem 1 shows that in this case ‘sufficiently large’ means ρB1,`

is ‘big’ (i.e. (L6) holds). It is straightforward to check that ρB1,` is irreducible if ` 6= 2, 5,
or 61. This can be done by writing down all the possibilities for a reducible ρB1,` and then
comparing with the Fourier coefficients of B1(z) using (R2). As in the proofs of [Lemma
5.7, R1] and [Theorem 2.1, R3], if ρB1,` is not ‘big’, then either its image is dihedral, or for
each prime p - N`

b(p)2/χ−1(p)p6 ∈ {0, 1, 2, 4} or b(p)4 − 3χ−1(p)b(p)2p6 + p12 = 0,

where b(p) denotes the image of b(p) in FB1,`. A simple check of the Fourier coefficients of
B1 shows that ρB1,` is ‘big’ if ` 6= 2, 3, 5 or 61. We leave it to the reader to determine what
happens at ` = 2 and 3. For ` = 5 and ` = 61 we find that

B1(z) + B2(z) ≡
{
Eχ−1ω,ω−1 + Eω,χ−1ω−1 (mod 5),
Eχ0,χ−1 + Eχ−1,χ0 (mod 61),

where Eφ,ψ is the Eisenstein series whose L-function is L(φ, s)L(ψ, s−6). These congruences,
together with the definition of F (z), yield the following Kronecker-style congruences

(18)
∞∑

k=−∞

c(N − k2) ≡

{
1
2N

∑
d|N (χ−1(d) + χ−1(N/d)) d4 (mod 5),

1
2

∑
d|N (χ−1(d) + χ−1(N/d)) d6 (mod 61).

Example 3. In this example we examine `-indivisibility of class numbers of imaginary
quadratic fields. Since obtaining indivisibility results follow easily by Kronecker’s class
number relations (cf. [Ha]), we select an arithmetic progression of discriminants for which
these indivisibility results do not follow so easily. We investigate the `-indivisibility of the
class numbers h(−32n− 20). Using the following identity of Jacobi

η2(16z)
η(8z)

:=
∞∑
n=0

q(2n+1)2 ,

it is easy to see that

η4(32z)
η(8z)

=
η2(16z)
η(8z)

(
η2(32z)
η(16z)

)2

=
∑

n≥5 odd

c(n)qn =
∑

x,y,z≥1 odd

qx
2+2y2+2z2 .

Since the ternary quadratic form x2 + 2y2 + 2z2 is the only class in its genus, if 8n + 5 is
square-free, then h(−32n − 20) = 2c(n). Incidentally, if n ≡ 5 (mod 8), then c(n) is the

number of 4−core partitions of
n− 5

8
(see [O-S]).



FOURIER COEFFICIENTS MODULO ` 15

If F (z) ∈ S3(32, χ−1) is defined by

F (z) :=
η4(16z)
η(4z)

η3(4z) = q3 − 2q7 − q11 + 2q15 + . . . ,

then by Jacobi’s triple product identity

η3(8z) :=
∞∑
n=0

(−1)n(2n+ 1)q(2n+1)2 ,

we find that
F (z) =

∑
n≥5
x≥0

(−1)x(2x+ 1)c(n)q(n+(2x+1)2)/2.

Moreover, F (z) =
B2(z)−B1(z)

8i
, where B1(z) and B2(z) ∈ S3(32, χ−1) are complex

conjugate newforms in S3(32, χ−1) which do not have complex multiplication, and B1(z) is
given by

B1(z) := F (z)|T3 − 4iF (z) = q − 4iq3 + 2q5 + 8iq7 − 7q9 + · · ·
Just as in Example 2, B2(z) is also the newform associated to the twist of B1(z) by χ−1.

While
η4(32z)
η(8z)

is an eigenform,
η4(16z)
η(4z)

is not, so we cannot appeal directly to Theorem

1. However the methods used to prove Theorem 1 show that if ` is any odd prime for
which ρB1,` is ‘big’ (i.e. for which (L6) holds), then there are infinitely many fundamental
discriminants −32n− 20 for which h(−32n− 20) 6≡ 0 (mod `). The arguments employed in
the previous example show that if ` ≥ 5, then ρB1,` is big. Again, we leave the case where
` = 3 to the reader.

4. Concluding remarks

It is unfortunate that the Theorem only pertains to good forms g(z). However, this
condition is expected to be very mild. For suppose g(z) =

∑∞
n=1 c(n)qn ∈ Sk+ 1

2
(N,χd) is

a ‘bad’ eigenform lifting to a newform f(z) ∈ S2k(N ′, χ0) satisfying Hypotheses H1 and
H2 of [Wal]. By [Cor. 2, Wal] there is at least one arithmetic progression r (mod t) for
which every square-free positive integer n ≡ r (mod t) has the property that the sign of the
functional equation of L(f(−1)kdn, s) is +1 and

L(f(−1)kdn, k) = c(n)2 ·An
where An is an explicit non-zero constant. By hypothesis, for every ν ≥ 1 the new part of
g(z)Θ(Nνz) is a linear combination of CM-forms. Therefore c(n) = 0 for every ‘inert’ n, a
set of positive integers with arithmetic density 1, and so L(f(−1)kdn, k) = 0 for almost every
square-free n ≡ r (mod t). Since it is widely believed that there is no such newform f(z),
we are led to the following conjecture.

Conjecture. If g(z) ∈Mk+ 1
2
(N)\ Θ(N), then g(z) is good.
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