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Abstract. Euler proved the following recurrence for p(n), the number of partitions of

an integer n :

(1) p(n) +

∞X
k=1

(−1)k(p(n− ω(k)) + p(n− ω(−k))) = 0

for ω(k) = 3k2+k
2

. Using the Jacobi Triple Product identity we show analogues of Euler’s

recurrence formula for common restricted partition functions. Moreover following Kolberg,

these recurrences allow us to determine that these partition functions are both even and
odd infinitely often. Using the theory of modular forms, these recurrences may be viewed

as infinite product identities involving Dedekind’s η-function. Specifically, if the generating

function for an arithmetical function is a modular form, then one often obtains analogous
recurrence formulas; in particular here we get recurrence relations involving the number

of t-core partitions, the number of representations of sums of squares, certain divisor

functions, the number of points in finite fields on certain elliptic curves with complex
multiplication, the Ramanujan τ−function and some appropriate analogs. In some cases

recurrences hold for almost all n, and in others these recurrences hold for all n where
the equality is replaced by a congruence mod m for any fixed integer m. These new

recurrences are consequences of some of the theory of modular forms as developed by

Deligne, Ribet, Serre, and Swinnerton-Dyer.

1. Introduction

In the theory of partitions, one finds that there are many interesting properties which are
exhibited by various partition functions. In particular one of the crowning achievements
is the Hardy-Ramanujan-Rademacher asymptotic formula for the number of partitions
of n, which we denote by p(n),

p(n) ∼ 1
4n
√

3
eπ
√

2n
3
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The congruential behavior of p(n) also has been of significant interest. The most fas-
cinating of the congruence properties of p(n) are the special cases of the Ramanujan
congruences:

p(5n + 4) ≡ 0 mod 5,

p(7n + 5) ≡ 0 mod 7,

and
p(11n + 6) ≡ 0 mod 11.

The behavior of p(n) mod 2 however has been mystifying; computational evidence
suggests that we expect ∼ 1

2x many n ≤ x where p(n) is even. Little is known in the
direction of this conjecture. However in [8], Kolberg proves that the partition function is
both even and odd infinitely often using the recurrence (1). Here we apply the methods
of Kolberg to show that other natural restricted partition functions are both odd and
even infinitely often.

In the second section we derive recurrence formulas for restricted partition functions
using classical techniques, namely the

Jacobi Triple Product Identity. If x, z are complex numbers such that |x| < 1 and
z 6= 0, then

∞∏
n=1

(1− x2n)(1 + x2n−1z−1)(1 + x2n−1z) =
∞∑

n=−∞
xn2

zn = 1 +
∞∑

n=1

xn2
(zn + z−n)

and

Euler’s Pentagonal Number Formula. For x a complex number such that |x| < 1,

∞∏
n=1

(1− xn) =
∞∑

n=−∞
(−1)nx

3n2+n
2 =

∞∑
n=−∞

(−1)nxω(n) = 1 +
∞∑

n=1

(−1)n(xω(n) + xω(−n))

A very useful consequence of the Jacobi Triple Product Identity is the following
infinite product identity:

(2)
∞∏

n=1

(1− xn)3 =
∞∑

n=0

(−1)n(2n + 1)x
n2+n

2 .

In particular, we derive recurrence relations for q(n) the number of partitions into
distinct parts, qO(n) the number of partitions into distinct and odd parts, pE(n) the
number of partitions into an even number of parts, and pO(n) the number of partitions
into an odd number of parts. Moreover if r is a positive integer then we let br(n)
denote the number of partitions of n none of whose parts is a multiple of r. Finally we
consider the partition function g(n) which inherits a nice recurrence; here g(n) denotes
the number of partitions of n into parts none of which is a multiple of 4 and none of
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which is twice another. To do this we recall the generating functions for these restricted
partition functions:

(3)
∞∑

n=0

q(n)xn =
∞∏

n=1

(1 + xn) =
∞∏

n=1

1
1− x2n−1

(4)
∞∑

n=0

qO(n)xn =
∞∏

n=1

(1 + x2n−1)

(5)
∞∑

n=0

(pE(n)− pO(n))xn =
∞∏

n=1

(1− x2n−1)

which together with

∞∑
n=0

p(n)xn =
∞∑

n=0

(pE(n) + pO(n))xn =
∞∏

n=1

1
1− xn

gives us generating functions for pE(n) and pO(n). Also

(6)
∞∑

n=0

br(n)xn =
∞∏

n=1

1− xrn

1− xn

and

(7)
∞∑

n=0

g(n)xn =
∞∏

n=1

(1 + x2n−1 + x4n−2)

In the third section we get recurrence relations involving t-core partitions, the number
of representations as sums of squares, certain divisor functions, the number of points in
finite fields of certain elliptic curves, and the Ramanujan τ -function.

Definition. A partition is a t-core partition if none of the hook numbers are multiples
of t.

Example. Consider the partition of n = 7, 7 = 3 + 3 + 1. We can represent this by
the Ferrer’s graph

1 2 3
1 •(1,1) •(1,2) •(1,3)

2 •(2,1) •(2,2) •(2,3)

3 •(3,1)

A hand is the rightmost node of any row; here the hands are (1, 3), (2, 3) and (3, 1).
A foot is the bottom node of any column; here the feet are (3, 1), (2, 2) and (2, 3). If
(i, j) is a hand and (k, l) is a foot such that i ≤ k and l ≤ j, then we can define a
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hook connecting them. The arm of the hook connecting (i, j) and (k, l) consists of all
the nodes (i, s) where l ≤ s ≤ j. The leg of this hook consists of all nodes (t, l) where
i ≤ t ≤ k. The hook number of this hook is the number of nodes on the hook; precisely
the hook number for this hook is j− l+k− i+1. The hook numbers in the above Ferrers
graph are 1, 2, 3, 4, and 5.

The generating function for ct(n), the number of t-core partitions of n is

∞∑
n=0

ct(n)xn =
∞∏

n=1

(1− xtn)t

(1− xn)

The t-cores have been useful in [4] where several Ramanujan congruences for p(n)
are proved. These partitions also arise in the theory of modular representations of
symmetric groups [6,9].

Also of interest are the following generating functions for the number of representa-
tions of integers as sums of positive odd integer squares and squares:

(8) θO(z) =
∞∑

n=1,odd

qn2
= q

∞∏
n=1

(1− q16n)2

1− q8n
= q + q9 + q25 + . . .

(9) θ(z) =
∞∑

n=−∞
qn2

=
∞∏

n=1

(1− q2n)5

(1− qn)2(1− q4n)2
= 1 + 2q + 2q4 + 2q9 + . . . .

¿From the definition it is obvious that the coefficient of qm in θk
O(z) is the number of

ways to represent m as a sum of k positive integral odd squares. In particular when
k = 3 we will get a recurrence for this representation number which holds for almost
all m (i.e. for all m in a set of density one in the positive integers). For more on the
theory of partitions see [1].

2. Recurrences from Jacobi’s Triple Product Formula

Henceforth, let n be a positive integer. We now prove an analogue of Euler’s recurrence
for q(n) the number of partitions of n into distinct parts.

Theorem 1. For q(n) the number of partitions of n into distinct parts,

q(n) +
∞∑

k=1

(−1)k(q(n− 2ω(k)) + q(n− 2ω(−k))) =
{

1 if n = m(m+1)
2

0 otherwise.

Proof. Let z = x in the Jacobi Triple Product Identity. We obtain

∞∏
n=1

(1− x2n)(1 + x2n)(1 + x2n−2) =
∞∑

n=−∞
xn2+n
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that is,
∞∏

n=1

(1− x4n)(1 + x2n−2) =
∞∑

n=−∞
xn2+n

Replacing x2 by x, one has:
∞∏

n=1

(1− x2n)(1 + xn−1) =
∞∑

n=−∞
x

n2+n
2

But
∏∞

n=1(1+xn−1) = 2
∏∞

n=1(1+xn) and
∑∞

n=−∞ x
n2+n

2 = 2+2
∑∞

n=1 x
n2+n

2 so that
∞∏

n=1

(1− x2n)
∞∏

n=1

(1 + xn) = 1 +
∞∑

n=1

x
n2+n

2 .

But the left hand side is the product of the generating function of q(n) (3) and Euler’s
Pentagonal Number Formula where x is replaced by x2, so

(1 +
∞∑

k=1

(x2ω(k) + x2ω(−k))(−1)k)(
∞∑

n=0

q(n)xn) = 1 +
∞∑

n=1

x
n2+n

2

Comparing coefficients on xn we get the desired result. �

A similar approach can be used for other restricted partition functions, in fact, for
qO(n), the number of partitions of n with distinct odd parts, the recurrence requires
even less manipulation.

Theorem 2. For qO(n) the number of partitions of n into distinct odd parts,

qO(n) +
∞∑

k=1

(−1)k(qO(n− ω(k)) + qO(n− ω(−k)) =
{

2(−1)m if n = 2m2

0 otherwise .
.

Proof. Let z = i in the Jacobi Triple Product. Then
∞∏

n=1

(1− x2n)(1 + x2n−1i)(1− x2n−1i) = 1 +
∞∑

n=1

xn2
(in + (−i)n)

so
∞∏

n=1

(1− x2n)(1 + x4n−2) = 1 +
∞∑

n=1

xn2
(2 cos

nπ

2
) = 1 +

∞∑
n=1

2(−1)nx4n2
.

If we replace x2 by x, we get
∞∏

n=1

(1− xn)(1 + x2n−1) = 1 +
∞∑

n=1

2(−1)nx2n2
.

So using the Pentagonal Number Formula and the generating function for qO(n) (4) we
get

(1 +
∞∑

k=1

(−1)k(xω(k) + xω(−k)))(
∞∑

n=0

qO(n)xn) = 1 +
∞∑

n=1

2(−1)nx2n2
.

Comparing coefficients of like powers of x we get the result. �

Similarly we can treat pE(n), the number of partition of n into an even number of
parts using the Triple Product Identity specialized for z.
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Theorem 3. For pE(n) the number of partitions of n into an even number of parts,

pE(n) +
∞∑

k=1

(−1)k(pE(n− ω(k)) + pE(n− ω(−k))) =
{

(−1)m if n = m2

0 otherwise.
.

Proof. Let z = −1 in Jacobi’s Triple Product. Then we get

∞∏
n=1

(1− x2n)(1− x2n−1)2 = 1 +
∞∑

n=1

2(−1)nxn2
.

Since 1− x2n = (1− xn)(1 + xn) and
∏∞

n=1(1 + xn) =
∏∞

n=1
1

1−x2n−1 , we get

∞∏
n=1

(1− xn)(1− x2n−1) = 1 +
∞∑

n=1

2(−1)nxn2
.

But now the left hand side is just the generating function of pE(n) − pO(n) (5) times
the Pentagonal Number Formula, so

pE(n)−pO(n)+
∞∑

n=1

(−1)k(pE(n−ω(k))−pO(n−ω(k))+pE(n−ω(−k))−pO(n−ω(−k)))

=
{

2(−1)m if n = m2

0 otherwise.
.

Adding this to the Euler’s recurrence (1) gives

2pE(n) + 2
∞∑

k=1

(−1)k(pE(n− ω(k)) + pE(n− ω(−k))) =
{

2(−1)m if n = m2

0 otherwise.

Dividing both sides by two we get the desired result. �

Given the connection among p(n), pE(n), and pO(n), we may use the recurrence
formulas for the first two partition functions to get one for the third.

Theorem 4. If pO(n) is the number of partitions of n into an odd number of parts,

pO(n) +
∞∑

k=1

(−1)k(pO(n− ω(k)) + pO(n− ω(−k))) =
{

(−1)m−1 if n = m2

0 otherwise.

Proof. This follows from pE(n)+pO(n) = p(n), Euler’s recurrence (1), and the previous
theorem. �

Again, by the generating function for br(n) it is clear that multiplying by the Pen-
tagonal Number Formula should give us a recurrence.
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Theorem 5. If r is a positive integer, then let br(n) denote the number of partitions
of n none of whose parts is a multiple of r. Then

br(n) +
∞∑

k=1

(−1)k(br(n− ω(k)) + br(n− ω(−k))) =

{
(−1)m if n = r

(
3m2+m

2

)
0 otherwise.

Proof. ¿From (6) we know that

∞∑
n=0

br(n)xn =
∞∏

n=1

1− xrn

1− xn

Therefore
∞∏

n=1

(1− xn)
∞∑

n=0

br(n)xn =
∞∏

n=1

(1− xrn)

which reduces to
∞∑

n=−∞
(−1)nxω(n)

∞∑
n=0

br(n)xn =
∞∑

n=−∞
(−1)nxrω(n)

We now get the result by comparing coefficients of like powers of x. �

It might be noted that in our proofs of Theorems 2 and 3 we evaluated the Triple
Product Identity at roots of unity. If we consider evaluating at e

2πi
3 , a third root of

unity, we get a more exotic recurrence.

Theorem 6. If g(n) is the number of partitions of n into distinct parts none of whose
parts is a multiple of 4 and none of whose parts is twice another part, then

g(n) +
∞∑

k=1

(−1)k(g(n− 2ω(k)) + g(n− 2ω(−k))) =


2(−1)m if n = m2, 3|m
(−1)m+1 if n = m2, 3 6 |m
0 otherwise.

Proof. If we specialize the Jacobi Triple Product at z = e
2πi
3 then we get

∞∏
n=1

(1− x2n)(1 + x2n−1e
2πi
3 )(1 + x2n−1e

−2πi
3 ) = 1 +

∞∑
n=1

xn2
(e

2πin
3 + e

−2πin
3 )

so we get
∞∏

n=1

(1− x2n)(1− x2n−1 + x4n−2) = 1 +
∞∑

n=1

xn2
(2 cos

2πn

3
).

Replacing x by −x our left hand side then become Euler’s Pentagonal Number Formula
times the generating function for g(n) (7),

(
∞∑

n=0

g(n)xn)(1 +
∞∑

k=1

(x2ω(k) + x2ω(−k))(−1)k) = 1 +
∑
3|n

2(−1)nxn2
+
∑
3 6 |n

(−1)n+1xn2
.
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Comparing coefficients on like powers of x, we get the result. �

We can use these recurrence formulas to answer questions about the parity of these
partition functions. Using the fact that p(n) changes parity infinitely often [8] we can
say the same thing about qO(n). This follows since the generating function for qO(n) is
congruent to Euler’s generating function for p(n) mod 2 by the Children’s Binomial
Theorem. Precisely we find that

∞∑
n=0

qO(n)xn =
∞∏

n=1

(1 + x2n+1)

≡
∞∏

n=1

(1− x2n+1) =
∞∏

n=1

1− xn

1− x2n

≡
∞∏

n=1

1
1− xn

=
∞∑

n=0

p(n)xn mod 2.

We establish similar theorems for the other partition functions we have considered. To
do so we give a preliminary

Lemma. The following equations have no solutions a,m in the integers.

ω(a) + 5 = m2

ω(a) + 6 = m2

3a2 − a + 3 = m2

3a2 − a + 10 = m2.

Proof. For the first two, consider getting ω(a) alone and then multiplying by 24 and
adding 1. This allows us to complete the square, so we get

(6a + 1)2 − 24m2 = −119

and
(6a + 1)2 − 24m2 = −143.

Replacing 6a+1 by x and reducing the first equation modulo 7 and the second modulo
11 we get

x2 − 3m2 ≡ 0 mod 7

and
x2 − 2m2 ≡ 0 mod 11.

Since 3 is not a square modulo 7 and 2 is not a square modulo 11, we get the result for
the first two equations. For the third and fourth equations, multiplying by 12, adding
1, letting x = 6a− 1, and reducing modulo 5 or 7 yields

x2 − 2m2 ≡ 0 mod 5

and
x2 − 5m2 ≡ 0 mod 7.

Again we get contradictions. �

These allow us to get results on the parity of our restricted partition functions.
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Theorem 7. Let pE(n) be the number of partitions of n into an even number of parts,
pO(n) the number of partitions of n into an odd number of parts, and g(n) the number
of partitions of n into distinct parts, none of which is a multiple of four and none of
which is twice another part. Then pE(n),pO(n), and g(n) change parity infinitely often.

Proof. Consider pE(n) and suppose it is even for all sufficiently large n, n ≥ a. Since
pE(7) = 7, we have a ≥ 8. By the recurrence for pE(n) Theorem 3 and the last lemma,

pE(5 + ω(a)) + . . . + (−1)a−1(pE(3a + 4) + pE(4a + 3)) + (−1)a(pE(5 + a) + pE(5)) = 0.

Taking this equation modulo two we get a contradiction since pE(5) = 3 is the only odd
term on the left hand side of our equation. Now suppose pE(n) is odd for all n ≥ b.
Since pE(10) = 22 we have b ≥ 11. By Theorem 3 and the last lemma, we have

pE(5 + ω(b)) + . . . + (−1)b−1(pE(3b + 4) + pE(4b + 3)) + (−1)b(pE(5) + pE(5 + b)) = 0.

Modulo two this leads to a contradiction since the left hand side has an odd number of
odd terms. The result for pO(n) and g(n) are treated similarly. �

3. Recurrences by the theory of modular forms

Whereas the method of proof in the previous section involved specializations of Jacobi’s
Triple Product Identity and multiplying by Euler’s Pentagonal Number Formula, here
we make use of the theory of modular forms, finding that there are many examples
similar to those in the previous section as well as new forms of recurrences.

Let SL2(Z) be the group of 2 × 2 matrices with integer entries and determinant 1.
Let H be the upper half complex plane, i.e. the set of all complex numbers with positive
imaginary part. SL2(Z) acts on the upper half complex plane naturally by the linear
fractional transformation,

Az =
az + b

cz + d

where A =
(

a b
c d

)
. Therefore any subgroup Γ of SL2(Z) acts on H. Of particular

interest will be the congruence subgroup of level N , for N a positive integer:

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.

Definition. Let k and N be two positive integers and χ a Dirichlet character modulo
N . Then a holomorphic function f : H → C is a modular function of weight k with
respect to Γ0(N) and χ if

f(Az) = f(z)(cz + d)kχ(d)

for all A =
(

a b
c d

)
∈ Γ0(N).

We also want to restrict the functions at the cusps, Q ∪∞ so that they don’t have
poles.
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Definition. A modular function is a modular form if it is holomorphic at every cusp.

Throughout we let q = e2πiz and note that a holomorphic modular form f(z) with
respect to a congruence subgroup Γ0(N) has a Fourier expansion of the form

f(z) =
∞∑

n=0

a(n)qn.

An example of such a form is the Dedekind η-function,

η(z) = q
1
24

∞∏
n=1

(1− qn).

It is a modular form of weight 1
2 with respect to Γ0(576). For more on half-integral

weight modular forms, see [14]. Another example, η24(z), is the famous ∆-function, a
weight 12 form. If a form f(z) is zero at all cusps, then we say that f(z) is a cusp form.

There are also well known operators, the Hecke operators, T (p) for each prime p
whose action is given by

f(z)|T (p) =
∞∑

n=0

(a(np) + χ(p)pk−1a(
n

p
))qn

If f(z) is a modular form of weight k with respect to Γ0(N) and character χ, then
f |T (p) is one as well. A modular form which is an eigenvector for each Hecke operator
is called an eigenform. For more on the theory of modular forms the reader see [7,15].

A natural question to ask is what properties the Fourier coefficients of modular forms
can have. There is a theorem of Serre [12] which says if the coefficients are algebraic
integers then they have amazing divisibility properties.

Theorem(Serre). If f(z) is a modular form of positive integer weight k with Fourier
expansion f(z) =

∑∞
n=0 a(n)qn where the a(n) are algebraic integers in a fixed number

field, then for any positive integer m,

a(n) ≡ 0 mod m

for almost all n (here we use almost all in the sense of on a set of density 1).

This theorem follows from multiplicativity of the coefficients of eigenforms and the
theory of `-adic Galois representations as developed by Deligne and Serre. This theorem
tells us that whenever we can multiply the generating function of an arithmetic function
by Euler’s Pentagonal Number Formula or the Jacobi Triple Product Identity and obtain
a modular form , then we get a congruential recurrence that almost always holds up to
any modulus we choose. The philosophy then is that recurrences modulo any integer
m that hold on a set of density 1 will be fairly plentiful. which hold mod m for any
m should be fairly plentiful.

There are two types of forms that will allow us to do even better than just a recurrence
up to modulus almost always. Consider K = Q(

√
−d) an imaginary quadratic field.
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Let OK be the ring of integers of K and fix an ideal Λ in OK . Let I(Λ) be the group
of fractional ideals prime to Λ. A Hecke Grossencharacter of weight k > 1 is any
homomorphism φ from I(Λ) to C× such that

φ(αOK) = αk−1

where α ≡ 1 mod Λ. Throughout we let N(a) denote the norm of ideal a. Hecke proved
that the power series attached to a Grossencharacter is a cusp form of weight k. This
motivates the definition of a modular forms with complex multiplication.

Definition. If φ is a Hecke Grossencharacter of a quadratic imaginary field K with
weight k > 1, then the L−series associated with φ is defined by:

L(s) :=
∑

(a,Λ)=1

φ(a)N(a)−s =
∞∑

n=1

a(n)
ns

where the sum is over all ideals in OK that are relatively prime to the conductor Λ. The
function f(z) defined by the Mellin transform

f(z) :=
∞∑

n=1

a(n)qn

is a cusp form of weight k with respect to the group Γ0(dN(Λ)) where N(Λ) is the
ideal norm of Λ. This form f(z) is called a modular form with complex multiplication
(referred to as a CM form).

¿From the definition, it is clear that the Fourier coefficient a(n) equals the sum of the
values of φ over all ideals in OK prime to Λ with norm n. For such forms half of the
primes are inert so a(p) = 0 for half of the primes. By multiplicativity we see that
a(n) = 0 for almost all n in a CM form and in a finite linear combination of CM forms.
When a generating function for an arithmetic function times the Euler Pentagonal
Number Formula is equal to a CM form, we have a recurrence that holds for almost all
n. The Fourier expansion of a CM form is a special case of what is known as a lacunary
power series. A series

∑∞
n=n0

a(n)qn is called lacunary if a(n) = 0 for almost all n. In
this direction Serre has proven the following about the even powers of the Dedekind
η-function [13].

Theorem(Serre). The only positive integers r for which

∞∏
n=1

(1− qn)2r

is lacunary are r = 1, 2, 3, 4, 5, 7, 13.

Serre proved this theorem by applying a theorem of Ribet [11] which asserts that
the Fourier expansion of a modular form f is lacunary if and only if f is a finite linear
combination of CM forms.
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The second type of special form we wish to consider are newforms. For our purposes
we note they are eigenforms of all the Hecke operators and provide a basis for all cusp
forms. By the theory developed by Serre and Swinnerton-Dyer [17] it is easy to prove
certain types of congruences between their Fourier expansions and the expansions of
Eisenstein series whose coefficients are given by special divisor functions. A famous
example of such a congruence is

τ(n) ≡ σ11(n) mod 691

where σ11(n) =
∑

d|n d11.
Now we proceed by presenting new recurrences which follow from the theory discussed
above.

If we consider the functions θO(z) =
∑∞

n=1,odd qn2
and θ(z) =

∑∞
n=−∞ qn2

, we see
that θd

O(z) has coefficient on qn equal to the number of representations of n as a sum of
d positive odd integers squared, rd,odd(n) and θd(z) has coefficient on qn equal to the
number of ways to write n as a sum of squares, rd(n). We now get a recurrence relation
for these representation numbers that holds up to any fixed modulus for n on a set of
density one in the integers.

Theorem 8. Let m be a positive integer and let d be a positive odd integer. For rd,odd(n)
the number of ways of representing n as a sum of d positive odd integers squared, and
rd(n) the number of ways of representing n as a sum of d squares, we obtain

rd,odd(n− 1) +
∞∑

k=1

(−1)k(rd,odd(n− (6k + 1)2) + rd,odd(n− (−6k + 1)2)) ≡ 0 mod m

and

rd(n− 1) +
∞∑

k=1

(−1)k(rd(n− (6k + 1)2) + rd(n− (−6k + 1)2)) ≡ 0 mod m

for almost all n (i.e. for a set of n with density 1 in the set of integers).

Proof. As a quotient of η-functions, we may rewrite (8) as

θO(z) =
η2(16z)
η(8z)

.

Therefore the generating function for rd,odd(n) is given by

θd
O(z) =

η2d(16z)
ηd(8z)

,

a modular form of weight d
2 . By Euler’s Pentagonal Number Formula it turns out that

η(24z) =
∞∑

n=−∞
(−1)nq(6n+1)2 .
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Therefore multiplying θd
O(z) by η(24z) yields

θd
O(z)η(24z) =

η2d(16z)η(24z)
ηd(8z)

=
∞∑

n=1

a(n)qn,

a cusp form of integer weight d+1
2 . By Serre’s divisibility theorem we observe that

a(n) ≡ 0 mod m for almost all n given any fixed positive integer m. In terms of
rd,odd(n), we find that

∞∑
n=1

rd,odd(n)qn
∞∑

n=−∞
(−1)nq(6n+1)2 =

∞∑
n=1

a(n)qn.

The proof for rd,odd(n) now follows. An analogous proof works for rd(n). �

Similarly we get a recurrence relation for rd,odd(n) and for rd(n) by multiplying by
the Jacobi Triple Product rather than the Euler Pentagonal Number Formula.

When one can multiply a generating function by η(az) or η3(az) and obtain a lacu-
nary power series, we obtain recurrences which hold for almost all n. An example of
this phenomenon is given in the following theorem.

Theorem 9. Let r3,odd(n) be the number of ways of representing n as a sum of three
odd squares. Then

r3,odd(n− 1) +
∞∑

k=1

(−1)k(2k + 1)r3,odd(n− (2k + 1)2) = 0

for almost all n.

Proof. As in Theorem 8, we interpret the generating function for r3,odd(n) as an η-
quotient. In particular we note that

θ3
O(z) =

η6(16z)
η3(8z)

.

By (2) we note that

η3(8z) =
∞∑

n=0

(−1)n(2n + 1)q(2n+1)2 .

The formal product

θ3
O(z)η3(8z) = η6(16z) =

∞∑
n=1

a(n)qn

is a weight 3 cusp form; moreover by Serre’s Theorem with r = 3 it turns out that
a(n) = 0 for almost all n. Therefore we find that

∞∑
n=1

r3,odd(n)qn
∞∑

n=0

(−1)n(2n + 1)q(2n+1)2 =
∞∑

n=1

a(n)qn,
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where a(n) = 0 for almost all n. The result now follows easily by the formal product of
two power series. �

We now consider t-core partitions. Recall, that the generating function for the num-
ber of t-core partitions is

∞∑
n=0

ct(n)xn =
∞∏

n=1

(1− xtn)t

1− xn
.

We get

Theorem 10. For ct(n) the number of t-core partitions of n,

ct(n) +
∞∑

k=1

(−1)k(ct(n− ω(k)) + ct(n− ω(−k))) = 0

for all n such that n 6≡ 0 mod t.

Proof. Since
∞∏

n=1

(1− qtn)t

1− qn

∞∏
n=1

1− qn =
∞∏

n=1

(1− qtn)t

we see the only powers of q on the right are powers of qt, but on the left we have( ∞∑
n=0

ct(n)qn

)( ∞∑
n=−∞

(−1)nq
3n2+n

2

)
.

Comparing coefficients on like powers of q we get the result. �

For certain t we do much better by Serre’s classification of CM η-products.

Theorem 11. For t = 2, 4, 6, 8, 10, 14, or 26 we get

ct(n) +
∞∑

k=1

(−1)k(ct(n− ω(k)) + ct(n− ω(−k))) = 0

for almost all n.

Note that this tells us that even for n ≡ 0 mod t we almost always get this recur-
rence.

Proof. Multiplying the generating function for ct(n) by Euler’s Pentagonal Number
Formula we obtain( ∞∏

n=1

(1− qtn)t

1− qn

)( ∞∏
n=1

1− qn

)
=

∞∏
n=1

(1− qtn)t.

Since the right hand side is, up to change of variable, the sort of product in Serre’s
classification, this means almost all coefficients are in fact zero. Comparing coefficients
on qn we now get the result. �

In some cases we can be very explicit and improve even on our last theorem
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Theorem 12. For c3(n) the number of 3-core partitions of n

c3(n) +
∞∑

k=1

(−1)k(c3(n− ω(k)) + c3(n− ω(−k))) =

{
0 if n 6= 3m2+3m

2

(−1)m(2m + 1) if n = 3m2+3m
2

.

Proof. Since ( ∞∏
n=1

(1− q3n)3

1− qn

)( ∞∏
n=1

1− qn

)
=

∞∏
n=1

(1− q3n)3

we can realize the generating function for the t-core in terms of Euler’s Pentagonal
Number Formula and Jacobi’s Triple Product; namely( ∞∑

n=0

c3(n)qn

)( ∞∑
n=−∞

(−1)nq
3n2+n

2

)
=

∞∑
n=0

(−1)n(2n + 1)q
3n2+3n

2 .

Comparing coefficients of like powers of q we obtain the result. �

Finally we get some recurrences that involve the number of points on elliptic curves
over finite fields, divisor functions, and the Ramanujan τ -function. Recall that an
elliptic curve E is given by y2 = x3 + ax + b. The discriminant of E, denoted ∆, is
defined by ∆ := −4a3 − 27b2. If p - ∆ is a prime, then the elliptic curve E has good
reduction mod p. For such primes we let Np denote the number of points on the elliptic
curve E over Fp, the finite field with p elements. In particular Np is one more than the
number of solutions to the congruence

y2 ≡ x3 + ax + b mod p.

The extra point corresponds to the additional point at infinity which does not corre-
spond to an affine point (x, y).

The Hasse-Weil L−function L(E, s) is central to the analytic and algebraic theory
of elliptic curves. This function is constructed as an Euler product over primes like the
Riemann ζ−function. Given Np, we define a(p) by a(p) := p+1−Np. For those primes
where E has good reduction, we define the pth factor of the Euler product of L(E, s)
by

1
1− a(p)p−s + p1−2s

.

Precisely we obtain

L(E, s) =
∞∑

n=1

a(n)
ns

=
∏
p|∆

1
1− a(p)p−s

∏
p-∆

1
1− a(p)p−s + p1−2s

.

For elliptic curves over Q (i.e. a, b ∈ Q), the Taniyama-Weil Conjecture asserts that
the Mellin transform of L(E, s) is a newform of weight 2. In other words the function
f(z) =

∑∞
n=1 a(n)qn is a newform of weight 2 with respect to some congruence subgroup

Γ0(N). For elliptic curves with complex multiplication Deuring and Shimura [3,16]
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proved this conjecture; moreover they proved that the Mellin transform of L(E, s) is a
modular form with complex multiplication. For more on elliptic curves see [7].

In the next two theorems we obtain recurrences which relate the number of 2−core
and 4−core partitions with the L−function of two basic elliptic curves with complex
multiplication. Although the next theorem is a recurrence involving the number of
2−core partitions of n, we note that c2(n) = 0 if n is not a triangular number and
c2(n) = 1 if n is a triangular number. This follows from Jacobi’s formula

∞∏
n=1

(1− q2n)2

(1− qn)
=

∞∑
n=0

c2(n)qn =
∞∑

n=0

q
n2+n

2 .

Theorem 13. For c2(n) the number of 2-core partitions of n and a(n) the coefficients
for the L-function of y2 = x3 − x we get

c2(n) +
∞∑

k=1

(−1)k(2k + 1)c2(n−
k(k + 1)

2
) = a(4n + 1).

Moreover we obtain

c2(n) +
∞∑

k=1

(−1)k(2k + 1)c2(n−
k(k + 1)

2
) = 0

for almost all n.

Proof. The elliptic curve y2 = x3−x has L-function corresponding to the weight 2 cusp
form

η2(4z)n2(8z) = q

∞∏
n=1

(1− q8n)2(1− q4n)2.

For details, see [2]. But the 2-core generating function times the Jacobi Triple Product
Identity is( ∞∏

n=1

(1− q2n)2

1− qn

)( ∞∏
n=1

(1− qn)3
)

=

( ∞∑
n=0

c2(n)qn

)( ∞∑
n=0

(−1)n(2n + 1)q
n2+n

2

)
.

Making the change of variables q → q4 and multiplying by q we get the L-function of
the elliptic curve on the left hand side, so

∞∑
n=1

a(n)qn = q

( ∞∑
n=0

c2(n)q4n

)( ∞∑
n=0

(−1)n(2n + 1)q2n2+2n

)
.

Comparing like terms we get the first result; the second result follows since the
modular form η2(4z)η2(8z) is a CM form so almost all of its coefficients vanish.

�

Here is the other theorem where a recurrence relation is established between t−core
partitions and elliptic curves.



RECURRENCES FOR ARITHMETICAL FUNCTIONS 17

Theorem 14. For c4(n) the number of 4-core partitions of n and a(n) the coefficients
in the L-function of y2 = x3 + 1,

c4(n) +
∞∑

k=1

(−1)k(c4(n−
3k2 + k

2
) + c4(n−

3k2 − k

2
)) = a(

3n

2
+ 1).

Moreover we obtain

c4(n) =
∞∑

k=1

(−1)k(c4(n−
3k2 + k

2
) + c4(n−

3k2 − k

2
)) = 0

for almost all n.

Proof. It is well known [2] that the weight 2 cusp form corresponding to the L-function
of the elliptic curve y2 = x3 + 1 is η4(6z) = q

∏∞
n=1(1 − q6n)4. The η-quotient η4(96z)

η(24z)

in terms of c4(n) is
η4(96z)
η(24z)

=
∞∑

n=0

c4(n)q24n+15.

Since η(24z) has the Fourier expansion

η(24z) =
∞∑

n=−∞
(−1)nq(6n+1)2 ,

we find that
∞∑

n=0

c4(n)q24n+15
∞∑

n=−∞
(−1)nq(6n+1)2 = η4(96z).

So if η4(6z) =
∑∞

n=1 a(n)qn, then

∞∑
n=0

c4(n)q24n+15
∞∑

n=−∞
(−1)nq(6n+1)2 =

∞∑
n=1

a(n)q16n.

Therefore we obtain
∞∑

n=0

c4(n)q24n
∞∑

n=−∞
(−1)nq(36n2+12n) =

∞∑
n=1

a(n)q16n−16.

The first result now follows by the formal product of power series. The second result
follows from Serre’s theorem where r = 2. �

Now we get congruential recurrence relations between divisor functions and certain
t-cores. There are several well known congruences for the Ramanujan τ - function. But
the τ -function is by definition

∞∑
n=1

τ(n)qn = q
∞∏

n=1

(1− qn)24.

We can then relate the 24-core to τ .
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Theorem 15. Let c24(n) be the number of 24-core partitions of n and τ(n) the Ra-
manujan τ -function. Then

c24(n) +
∞∑

k=1

(−1)k(c24(n− ω(k)) + c24(n− ω(−k))) =
{

τ(1 + n
24 ) if n ≡ 0 mod 24

0 otherwise.

Proof. Since, by definition,
∞∑

n=1

τ(n)qn = q
∞∏

n=1

(1− qn)24

and ( ∞∑
n=0

c24(n)qn

)( ∞∑
n=−∞

(−1)nq
3n2+n

2

)
=

∞∏
n=1

(1− q24n)24

1− qn
(1− qn)

we get ( ∞∑
n=0

c24(n)qn

)( ∞∑
n=−∞

(−1)nq
3n2+n

2

)
=

∞∑
n=1

τ(n)q24n−24.

Comparing like terms we get the result. �

Now we are interested in developing congruential recurrence relations for the number
of 24−core partitions and the Ramanujan τ−function. Here we list several of the
congruence properties of τ(n) [17]:

τ(n) ≡ σ11(n) mod 691

τ(n) ≡ n−30σ71(n) mod 125 for (n, 5) = 1

and
τ(n) ≡ nσ9(n) mod 7

which now tell us something about the 24-core.

Corollary 1. For c24(n) the number of 24-core partitions of n and σd(n) the divisor
function

c24(24n) +
∞∑

k=1

(−1)k(c24(24n− ω(k)) + c24(24n− ω(−k))) ≡ σ11(1 + n) mod 691

c24(24n)+
∞∑

k=1

(−1)k(c24(24n−ω(k))+c24(24n−ω(−k))) ≡ (1+n)−30σ71(1+n) mod 53

for n 6≡ −1 mod 5 and

c24(24n) +
∞∑

k=1

(−1)k(c24(24n− ω(k)) + c24(24n− ω(−k))) ≡ (1 + n)σ9(1 + n) mod 7.

Proof. These (and others) follow from the last theorem and congruences for τ(n). �

As a final example, since c12(n) is related to η12(2z), we can use this recurrence and
known congruences of η12(2z) to get
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Theorem 16. For c12(n) the number of 12-core partititions of n,( ∞∑
n=0

c12(n)qn+6

)( ∞∑
n=−∞

(−1)nq
3n2+n

2

)
= q6

∞∏
n=1

(1− q12n)12

1− qn

∞∏
n=1

1− qn = η12(12z).

So under a simple change of variables we can transfer congruences about the coefficients
of η12(2z) to those for c12(n). For example

c12(12n) +
∞∑

k=1

(−1)k(c12(12n− ω(k)) + c12(12n− ω(−k))) ≡ σ5(2n + 1) mod 256.

Proof. The first formula follows from the definition. Replacing q by q
1
6 and equating

coefficients of like integral powers of q we get c12(6n) +
∑∞

k=1(−1)k(c12(6n − ω(k)) +
c12(6n − ω(−k))) = a(1 + n) for a(1 + n) the coefficient on q1+n in η12(2z). The
recurrence then follows from a(2n + 1) ≡ σ5(2n + 1) mod 256 [10].

�

4. Acknowledgements

The authors would like to thank George Andrews for his help in the preparation of this
paper.

References

1. G. Andrews, The Theory of Partitions, Addison-Wesley , Reading, Ma., 1976.

2. J.E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, Cambridge, 1992.

3. M. Deuring, Die zetafunction einer algebraischen eins I, II, III, IV, Nachr. Akad. Wiss. Göttingen
(1953, 1955, 1956, 1957), 85-94, 13-42, 37-76, 55-80.

4. F. Garvan and D. Stanton, Cranks and t−cores, Invent. Math. 101 (1990), 1-17.

5. F. Garvan, Some congruences for partitions that are p−cores, Proc. London Math. Soc. 66 (1993),

449-478.

6. G. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley,
Reading, Ma., 1981.

7. N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, 1984.

8. O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 (1959), 377-378.

9. A. Kylachko, Modular forms and representations of symmetric groups, integral lattices, and finite
linear groups, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 116 (1982).

10. K. Ono, S. Robins, and P. Wahl, On the representation of integers as sums of triangular numbers,
Aequationes Math. (to appear).

11. K. Ribet, Galois representations attached to eigenforms with Nebentypus, Springer Lect. Notes in

Math. 601 (1977), 17-52.
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