
EULER’S CONCORDANT FORMS

Ken Ono

1. Introduction

In [6] Euler asks for a classification of those pairs of distinct non-zero integers M and N
for which there are integer solutions (x, y, t, z) with xy 6= 0 to

(1) x2 +My2 = t2 and x2 +Ny2 = z2.

This is known as Euler’s concordant forms problem, and when M = −N Euler’s problem
is the congruent number problem. Tunnell gave a conditional solution to the congruent
number problem using elliptic curves and modular forms. Using these ideas, we consider
Euler’s problem which reduces to a study of the elliptic curve over Q :

EQ(M,N) : y2 = x3 + (M +N)x2 +MNx.

If EQ(M,N) has positive rank, then there are infinitely many primitive integer solutions to
(1); but if EQ(M,N) has rank 0, then there may be a non-trivial solution. Such a solution
exists if and only if the torsion group is Z2×Z8 or Z2×Z6. We classify all such cases, thereby
reducing Euler’s problem to a question of ranks. In some cases, the ranks of quadratic twists
of EQ(M,N) are described by the representations of integers by ternary quadratic forms.
Consequently we obtain results regarding Euler’s problem, and the existence of solutions to
a pair of Pell’s equations. Moreover we give a method, using the theory of lacunary modular
forms, which establishes that there are infinitely many rank 0 quadratic twists of EQ(M,N)
by discriminants in arithmetic progressions.

2. Results

A solution to (1) is primitive if x, y, t, and z are positive integers and gcd(x, y)=1. In
[1] E.T. Bell parameterized the solutions of (1) in terms of polynomials in 41 variables, a
solution that is difficult to absorb. In [17] T. Ono mentions various cases of (1) where it is
known that there are infinitely many solutions. For example if M = 1 and N = 2n2 − 1
with n 6= 0, 1, and 2, then there are infinitely many primitive solutions.

By multiplying the two equations in (1) together, and then multiplying by x2

y6 , we get

(2)
x2t2z2

y6
=
x6

y6
+ (M +N)

(
x4

y4

)
+MN

(
x2

y2

)
.
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If we then replace x2

y2 by x and also xtz
y3 by y we find that

(3) y2 = x3 + (M +N)x2 +MNx.

In studying the points of EQ(M,N), we note that one may make the further assumption that
the gcd(M,N) be a square-free integer. To see this we note that if d is a non-zero integer,
then EQ(d2M,d2N) is isomorphic to EQ(M,N) by replacing y by y

d3 and x by x
d2 . Also note

that EQ(M,N)=̃EQ(N,M), hence we may freely interchange the order of M and N in what
follows. Furthermore, we also note that EQ(M,N)=̃EQ(−M,N −M)=̃EQ(−N,M −N) by
replacing x by x − M and x − N. Therefore we could without loss of generality assume
that M and N are both positive integers. Using the standard definitions, one can easily
verify that the discriminant of EQ(M,N) is ∆ = 16M2N2(M −N)2 and its j−invariant is

j =
256(M2 −MN +N2)3

M2N2(M −N)2
.

By Mordell’s Theorem, EQ(M,N) forms a finitely generated abelian group, and so satisfies

EQ(M,N)=̃Etor × Zr

where Etor, the torsion subgroup of EQ(M,N), is a finite abelian group and the rank r is a
non-negative integer. However by Mazur’s theorem Etor satisfies

Etor ∈
{ Zm | where 1 ≤ m ≤ 10, or m = 12

Z2× Z2m | where 1 ≤ m ≤ 4.

Computing the rank r of an elliptic curve E has been the focus of significant interest,
and of central importance is the Hasse-Weil L−function L(E, s). For every prime p let N(p)
denote the number of points (including the point at infinity) on Ep, the reduction of E
modulo p. Then define a(p) by a(p) := p+ 1−N(p). Then L(E, s) is defined by:

L(E, s) :=
∞∑
n=1

a(n)
ns

=
∏
p|∆

1
1− a(p)p−s

∏
p-∆

1
1− a(p)p−s + p1−2s

.

The conjectures of Birch and Swinnerton-Dyer (B-SD) connect the analytic properties of
the Hasse-Weil L−function L(E, s) for an elliptic curve E over Q with its rank. A weak
version is:

Conjecture. (B-SD) If E is an elliptic curve over Q, then let L(E, s) =
∑∞
n=1

a(n)
ns be its

Hasse-Weil L−function. Then L(E, s) has an analytic continuation to the entire complex
plane and the rank of E is positive if and only if L(E, 1) = 0.

In [4] Coates and Wiles proved that if E is a positive rank elliptic curve over Q with
complex multiplication, then L(E, 1) = 0, and as we shall see in section 4, by the work
of Kolyvagin, Murty, Murty, Bump, Friedberg, and Hoffstein much more is now known
concerning this conjecture for modular elliptic curves.

Returning to Euler’s problem, if (1) has a non-trivial integer solution (α, β, γ, δ), then by
(2) we see that EQ(M,N) contains the Q−rational point (α

2

β2 ,
αγδ
β3 ). By factoring (2) and

letting y = 0, we find the three trivial order 2 points (0, 0), (−M, 0), and (−N, 0), and so
Z2×Z2 is always a subgroup of the torsion subgroup of EQ(M,N). Since these points have
y = 0, it is not possible for them to correspond to a non-trivial solution of (1); hence a
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solution of (1), if there are any, must correspond to points of infinite order or torsion points
with order different from 2.

If M = −N, the congruent number case, or if M = 2N, or if M = 1
2N, then the elliptic

curve EQ(M,N) has j = 1728 and hence has complex multiplication by Q(i). If M = 2N,
then by replacing x by x−N in E(2N,N) we obtain the more familiar model

y2 = x3 −N2x.

Since the torsion subgroups of all of these curves is Z2×Z2 and these torsion points do not
afford any solutions, a non-trivial solution to Euler’s problem exists if and only if the rank
of EQ(2N,N) is positive which is precisely the condition for determining whether or not N
is a congruent number. Consequently by Tunnell’s theorem we obtain:

Corollary 1. Let n be a square-free integer, d any non-zero integer, and let M = 2d2n and
N = d2n.

• If n is odd and there is a non-trivial solution to (1), then the number of integer represen-
tations of n by 2x2+y2+32z2 equals the number of its integer representations 2x2+y2+8z2.
Furthermore assuming B-SD, then if the representation numbers of n by these two ternary
quadratic forms are equal, then there are infinitely many primitive solutions to (1).

• If n is even and there is a non-trivial solution to (1), then the number of integer
representations of n

2 by 4x2 + y2 + 32z2 equals the number of its integer representations by
4x2+y2+8z2. Furthermore assuming B-SD, then if the representation numbers of n2 by these
two ternary quadratic forms are equal, then there exist infinitely many primitive solutions
to (1).

Unlike the congruent number problem, it is the case that there are torsion points which
afford non-trivial solutions. For example if we let M = 5 and N = 32, then the elliptic
curve EQ(5, 32) has rank zero yet (2, 1, 3, 6) is a non-trivial solution to (1). It turns out that
this solution is the unique primitive solution and it corresponds to certain torsion points of
order 3 on the elliptic curve EQ(5, 32). A thorough investigation of the torsion subgroups of
EQ(M,N) shows that certain torsion points of order 3 and certain torsion points of order 4
correspond to non-trivial solutions of (1). In all other cases, there are non-trivial solutions
to (1) if and only if the rank of EQ(M,N) is positive. In section 3 we will prove the following
classification theorem.

Main Theorem 1. The torsion subgroups of EQ(M,N) are uniquely determined by:

• The torsion subgroup of EQ(M,N) contains Z2× Z4 if M and N are both squares, or
−M and N −M are both squares, or if −N and M −N are both squares.

• The torsion subgroup of EQ(M,N) is Z2× Z8 if there exists a non-zero integer d such
that M = d2u4 and N = d2v4, or M = −d2v4 and N = d2(u4 − v4), or M = d2(u4 − v4)
and N = −d2v4 where (u, v, w) forms a Pythagorean triple (i.e. u2 + v2 = w2).

• The torsion subgroup of EQ(M,N) is Z2×Z6 if there exists integers a and b such that
a
b 6∈ {−2,−1,− 1

2 , 0, 1} and M = a4 + 2a3b and N = 2ab3 + b4.

• In all other cases, the torsion subgroup of EQ(M,N) is Z2× Z2.

As a corollary we obtain the following complete classification of the primitive solutions
to (1) which correspond to torsion points in EQ(M,N).

Main Corollary 1. The primitive solutions to (1) afforded by the torsion points of EQ(M,N)
are given by:
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• If there exists a non-zero integer d such that M = d2u4 and N = d2v4 and (u, v, w)
is a Pythagorean triple, then the unique primitive solution to (1) arising from the torsion
subgroup of EQ(M,N) is (| duv |, 1, | duw |, | dvw |).
• If there exists a non-zero integer d such that M = −d2v4 and N = d2(u4 − v4) (resp.

M = d2(u4 − v4) and N = −d2v4) where (u, v, w) is a Pythagorean triple, then the unique
primitive solution to (1) arising from the torsion subgroup of EQ(M,N) is (| dvw |, 1, | duv |
, | duw |) (resp. (| dvw |, 1, | duw |, | duv |)).
• If there exists integers a and b such that a

b 6∈ {−2,−1,− 1
2 , 0, 1} and M = a4 +2a3b and

N = 2ab3 + b4, then the unique primitive solution to (1) arising from the torsion subgroup
of EQ(M,N) is (| ab |, 1, | a(a+ b) |, | b(a+ b) |).
• In all other cases, there are no non-trivial solutions to (1) afforded by the torsion points

of EQ(M,N).

So when the torsion subgroup of EQ(M,N) is Z2×Z2 or Z2×Z4, then there are non-trivial
solutions (infinitely many) to (1) if and only if the rank of EQ(M,N) is positive.

In the general case, assuming the Shimura-Taniyama-Weil conjecture (STW) and B-SD,
we establish how explicit knowledge of the Fourier expansions of weight 3

2 modular forms
can lead to a theoretical solution of suitable cases of Euler’s problem. In several cases
we explicitly carry out the details in connection with representation numbers by ternary
quadratic forms. For convenience, if Q is a quadratic form, then let r(n,Q) be the number
of integer representations of n by Q. We obtain:

Main Theorem 2. Let n1 be a positive square free integer.
(a) Suppose that L(EQ(6n1,−18n1), 1) 6= 0 and r(n1, x

2 +2y2 +12z2) 6= r(n1, 2x2 +3y2 +
4z2). Let n2 ≡ n1 mod 24 be a positive square-free integer and suppose that

(M,N) ∈
{

(24d2n2, 18d2n2), (6d2n2,−18d2n2), (−6d2n2,−24d2n2),
(6d2n2, 54d2n2), (48d2n2,−6d2n2), (−48d2n2,−54d2n2)

}
for some non-zero integer d. If r(n2, x

2 +2y2 +12z2) 6= r(n2, 2x2 +3y2 +4z2), then the rank
of EQ(M,N) is unconditionally 0. If these representation numbers are equal, then assuming
B-SD the rank of EQ(M,N) is positive.

(b) Suppose that L(EQ(40n1,−10n1), 1) 6= 0 and r(n1, x
2 + 2y2 + 20z2) 6= r(n1, 2x2 +

4y2 + 5z2). Let n2 ≡ n1, 9n1 mod 40, be a positive square-free integer and suppose that

(M,N) ∈ { (50d2n2, 10d2n2), (40d2n2,−10d2n2), (−40d2n2,−50d2n2) }

for some non-zero integer d. If r(n2, x
2 +2y2 +20z2) 6= r(n2, 2x2 +3y2 +4z2), then the rank

of EQ(M,N) is unconditionally 0. If these representation numbers are equal, then assuming
B-SD the rank of EQ(M,N) is positive.

(c) Suppose that L(EQ(9n1,−3n1), 1) 6= 0 and r(n1, x
2 + 7y2 + 7z2 − 2yz) 6= r(n1, 3x2 +

4y2 + 5z2 − 4yz). Let n2 ≡ n1 mod 24 be a positive square-free integer and suppose that

(M,N) ∈
{

(12d2n2, 3d2n2), (9d2n2,−3d2n2), (−9d2n2,−12d2n2),
(27d2n2, 24d2n2), (3d2n2,−24d2n2), (−3d2n2,−27d2n2)

}
for some non-zero integer d. If r(n2, x

2 + 7y2 + 7z2 − 2yz) 6= r(n2, 3x2 + 4y2 + 5z2 − 4yz),
then the rank of EQ(M,N) is unconditionally 0. If these representation numbers are equal,
then assuming B-SD the rank of EQ(M,N) is positive.

Consequently we obtain:
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Main Corollary 2. Assume that d is any non-zero integer, and that (M,N) is a pair of
integers belonging to one of the families given in (a), (b) or (c) in Main Theorem 2. Then
in each case we obtain:

(a) Let n2 be an odd positive square-free integer. If r(n2, x
2 + 2y2 + 12z2) 6= r(n2, 2x2 +

3y2 + 4z2), then there are unconditionally no primitive solutions to (1). If these represen-
tation numbers are equal, then assuming B-SD there are infinitely many primitive solutions
to (1).

(b) Let n2 be an odd positive square-free integer. If r(n2, x
2+2y2+20z2) 6= r(n2, 2x2+4y2+

5z2), then there are unconditionally no primitive solutions to (1). If these representation
numbers are equal, then assuming B-SD there are infinitely many primitive solutions to (1).

(c) Let n2 6≡ 7 mod 8 be an odd positive square-free integer. If r(n2, x
2+7y2+7z2−2yz) 6=

r(n2, 3x2 + 4y2 + 5z2 − 4yz), then there are unconditionally no primitive solutions to (1).
If these representation numbers are equal, then assuming B-SD there are infinitely many
primitive solutions to (1).

With the theory of lacunary modular forms, we show that there are infinitely many
quadratic twists in each of the families mentioned in Main Corollary 2 with rank 0.

Main Theorem 3. Let d be a non-zero integer.

• Let 1 ≤ r ≤ 23 be an odd integer. Then there are infinitely many positive square-free
integers n ≡ r mod 24 such that for

(M,N) ∈
{

(24d2n, 18d2n), (6d2n,−18d2n), (−6d2n,−24d2n)
(6d2n, 54d2n), (48d2n,−6d2n), (−48d2n,−54d2n)

}
the rank of EQ(M,N) is 0. In each of these cases, there are no primitive solutions to (1).
• If 1 ≤ r ≤ 40 is an odd integer, then there are infinitely many positive square-free

integers n ≡ r or 9r mod 40 such that for

(M,N) ∈ { (50d2n, 10d2n), (40d2n,−10d2n), (−40d2n,−50d2n) }

the rank of EQ(M,N) is 0. In each of these cases, there are no primitive solutions to (1).
• Let r be one of 1, 3, 5, 9, 11, 13, 17, 19 or 21. Then there are infinitely many positive

square-free integers n ≡ r mod 24 such that for

(M,N) ∈
{

(12d2n, 3d2n), (9d2n,−3d2n), (−9d2n,−12d2n)
(27d2n, 24d2n), (3d2n,−24d2n), (−3d2n,−27d2n)

}
the rank of EQ(M,N) is 0. In such cases there are no primitive solutions to (1).

3. The torsion subgroup of EQ(M,N)

To obtain Main Theorem 1, we use the following 2-descent Proposition [7, 4.1, p. 37]

Proposition 1. Let P = (x′, y′) be a Q−rational point on E, an elliptic curve over Q given
by

y2 = (x− α)(x− β)(x− γ)

where α, β, and γ ∈ Q. Then there exists a Q−rational point Q = (x, y) on E such that
2Q = P if and only if x′ − α, x′ − β, and x′ − γ are all Q−rational squares.

As an immediate corollary we obtain
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Corollary 2. If M and N are distinct non-zero integers, then there exists a non-trivial
solution to (1) if and only if there exists non-trivial points P = (x′, y′) and Q = (x, y) on
EQ(M,N) such that 2Q = P 6∈ {(0, 0), (−M, 0), (−N, 0)}.

Proof. First note that (3) has the factorization y2 = x(x + M)(x + N). Suppose that
(x, y, t, z) = (a, b, c, d) is a non-trivial solution to (1), then P =

(
a2

b2 ,
acd
b3

)
is a point on

EQ(M,N) and a2 +Mb2 = c2 and a2 +Nb2 = d2. Then we find that a2

b2 ,
a2

b2 +M = c2

b2 , and
a2

b2 +N = d2

b2 are all rational squares. Then by the proposition above there exists a point Q
such that P = 2Q.

Suppose that there exists a Q−rational point Q = (x, y) such that P = (x′, y′) = 2Q. We
may assume that x′ = a2

b2 since by the duplication formula (see [27,28]) it is known that the

x−coordinate of 2Q (denoted X(2Q)) is X(2Q) =
(
x2−MN

2y

)2

= x′. Hence by the above

proposition we know that a2

b2 +M and a2

b2 +N are both non-zero squares; hence by multiplying
through by b2 we obtain the primitive solution (| a |, | b |,

√
a2 +Mb2,

√
a2 +Nb2) to (1).

�

Proof of Main Theorem 1. We prove this theorem by investigating the cases where the
torsion subgroup contains points of order 4, 8, and 3.
• In the first case, we first observe that Z2× Z4 is in the torsion subgroup of EQ(M,N)

if and only if there exists a point of order 4. EQ(M,N) has a point Q of order 4 if and only
if 2Q = (x′, y′), an order 2 point, is one of (0, 0), (−M, 0), or (−N, 0). But by the above
proposition, it is known that (0, 0) (resp. (−M, 0), and (−N, 0)) is twice another point if
and only if M and N are both squares (resp. −M and N −M are both squares and −N
and M −N are both squares).

We now explicitly list the four points of order 4. If M = m2 and N = n2 (we assume

that m,n > 0), then since X(2Q) =
(
x2−m2n2

2y

)2

= 0. Hence it is clear that x = ±mn. By
solving for y in (3) we find that the four order 4 points are

(4) (mn,±mn(m+ n)) and (−mn,±mn(m− n)).

Now when −M = m2 and N −M = k2, then X(2Q) =
(
x2+m2(k2−m2)

2y

)2

= m2. Then by

letting y = ±x2+m2(k2−m2)
2m and solving for x in (3), we obtain the four order 4 points:

(5) (m2 −mk,±k(m2 −mk)) and (m2 +mk,±k(m2 +mk)).

If −N and M −N are both squares, then the four order 4 points are found as in this last
case.
• In this case we determine when the torsion subgroup is Z2 × Z8. Since Z2 × Z4 is a

subgroup of Z2× Z8, we consider each of the cases which arose when determining whether
or not Z2× Z4 is contained in the torsion group.

First we consider the case where M = m2 and N = n2. So if Q = (x, y) is a point of order
8, then 2Q must be one of the four order 4 points given above. In particular it is easy to see
that X(2Q) = mn. By the proposition, such a point Q exists if and only if mn,mn +m2,
and mn+ n2 are all squares. Since we may assume that gcd(M,N) is square free, we may
assume that gcd(m,n) = 1. Hence it is clear that both m and n are both squares, say m = u2

and n = v2. We now know that all of u2v2, u2v2 + u4, and u2v2 + v4 are all squares. This
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occurs if and only if u2 + v2 = w2 (i.e. (u, v, w) is a Pythagorean triple). So we find that if
M and N are both squares and the torsion group is Z2×Z8, then M = d2u4 and N = d2v4

where (u, v, w) is a Pythagorean triple and d is some non-zero integer.
Now we consider the case where −M = m2 and N−M = k2 (the case where M−N = k2

and −N = n2 is handled similarly). If Q = (x, y) is a point of order 8, then by the discussion
above we find that X(2Q) = m2 +mk(by choosing the signs of m and k if necessary). Hence
by the proposition we find that m2 + mk,mk, and mk + k2 are all squares if and only if
there is such a point Q. Since we may assume that the gcd(M,N) is square-free, we may
also assume that the gcd(m, k)=1. Since mk is a square, we may assume that both are
positive and also that m and k are both squares, say m = v2 and k = u2. Therefore all of
v4 + u2v2, u2v2, and u2v2 + u4 are all squares, which then implies that u2 + v2 = w2. Hence
we find that the torsion subgroup is Z2× Z8 when M = −d2v4 and N = d2(u4 − v4).
• In this case we determine those EQ(M,N) for which the torsion subgroup is Z2 × Z6.

To do this use the triplication formula (see [28]) which determines whether or not a point
Q = (x, y) has order 3. In the case of EQ(M,N), it turns out that Q has order 3 if and only
if

3x4 + 4(M +N)x3 + 6MNx2 −M2N2 = 0.

As a degree 4 homogeneous polynomial of degree 4 in the variables M,N, and x, it has a
rational parameterization (due to Nigel Boston)

M

x
= (1 + t)2 − 1

N

x
=
(

1 +
1
t

)2

− 1.

So replacing t by a
b (where gcd(a, b)=1) we find that

M

x
=

2ab+ a2

b2
and

N

x
=

2ab+ b2

a2
.

By the Nagell-Lutz Theorem, we know that x is an integer and from the last two equalities
we find that x = a2b2. Hence we find that M = 2a3b+ a4 and N = 2ab3 + b4. Note that if
a
b ∈ {−2,−1,− 1

2 , 0, 1} then we do not obtain an elliptic curve.
By solving for y in (3) where x = a2b2, we find that the two order 3 points are

(6) (a2b2,±a2b2(a+ b)2).

• Since Z2 × Z2 is always contained in the torsion subgroup of EQ(M,N), the torsion
subgroup (by Mazur’s theorem) must be one of Z2 × Z2,Z2 × Z4,Z2 × Z6, or Z2 × Z8.
Therefore if M and N are distinct non-zero integers which do not occur in the list above,
then by process of elimination, the torsion subgroup of EQ(M,N) must be Z2× Z2.

�
As an immediate corollary we obtain Main Corollary 1.

Proof of Main Corollary 1. As a consequence of Corollary 2, we see that non-trivial solutions
afforded by the torsion subgroup of EQ(M,N) exists if and only if the torsion subgroup is
one of Z2×Z8 or Z2×Z6. Moreover from its proof, we find that in these cases the non-trivial
solutions must correspond to the order 4 or 3 torsion points. In each of these cases one may
simply plug in the values of M and N into (4), (5), and (6) to obtain the x−coordinates of
these points. There is only one positive x−coordinate belonging to order 4 and 3 points,
hence there is a unique primitive solution as a consequence of the proof of Corollary 2.

�
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4. Modular forms and quadratic twists of EQ(M,N)

As a consequence of the results in the last section, we see that when the torsion subgroup
of EQ(M,N) is Z2×Z2 or Z2×Z4, then there are primitive solutions to (1) if and only if the
rank of EQ(M,N) is positive. Moreover there are infinitely many such primitive solutions
for any (M,N) if and only if the rank of EQ(M,N) is positive.

The Shimura-Taniyama-Weil Conjecture (STW) asserts that certain weight 2 newforms
correspond to the L−functions of elliptic curves over Q. More precisely, a weak version of
the conjecture is:

Conjecture. (STW) If E is an elliptic curve over Q with conductor N and L−function
L(E, s) =

∑∞
n=1

a(n)
ns , then the Mellin transform of L(E, s), f(z) =

∑∞
n=1 a(n)qn is a weight

2 newform in S2(N,χ0) where χ0 is the trivial Dirichlet character mod N.

If E is a curve for which the STW conjecture holds, then E is known as a modular elliptic
curve. By the works of Carayol, Eichler, and Shimura it is known that if f(z) =

∑∞
n=1 a(n)qn

is a weight 2 newform with integer coefficients with trivial character χ0, then there exists
an elliptic curve E over Q with L(E, s) =

∑∞
n=1

a(n)
ns . Recently Wiles [31] has proven the

conjecture for semistable elliptic curves, and Diamond and Kramer [5] have proved the
conjecture for curves with full 2−torsion. In particular if M 6= N are non-zero integers,
then EQ(M,N) is a modular elliptic curve.

By combining B-SD and STW, it turns out that the rank of an elliptic curve over Q
is positive if and only if the special value of a certain modular L−function at s = 1 is 0.
Recently from the works of Kolyvagin, Murty, Murty, Bump, Friedberg, and Hoffstein (see
[3,10,14]) we have:

Theorem 1. If E is a modular elliptic curve where L(E, 1) 6= 0, then the rank of E is 0.

Let ψ be a Dirichlet character mod M and let f(z) ∈ Sk(N,χ) with Fourier expansion
f(z) =

∑∞
n=1 a(n)qn. Then the function fψ(z), the ψ−twist of f(z), defined by

(7) fψ(z) =
∞∑
n=1

ψ(n)a(n)qn

also is a modular form and is contained in Sk(NM2, χψ2). Now we relate these twists when
ψ is a quadratic character to the twists of an elliptic curve.

If E is an elliptic curve over Q given by the equation y2 = x3 +Ax2 +Bx+ C and D is
a square-free integer, then the equation of its D−quadratic twist is

Dy2 = x3 +Ax2 +Bx+ C.

This curve is denoted by ED. If D is a square free integer, then the D−quadratic twist of
EQ(M,N) is given by Dy2 = x3 + (M + N)x2 + MNx. By multiplying both sides of this
model by D3 and then replacing D2y by y and Dx by x we find that the D−quadratic twist
of EQ(M,N) is

(8) y2 = x3 + (DM +DN)x2 +D2MNx,

the curve EQ(DM,DN). If L(EQ(M,N), s) =
∑∞
n=1

a(n)
ns is the L−function for EQ(M,N),

then the L−function for its quadratic twist L(EQ(DM,DN), s) =
∑∞
n=1 aD(n)qn, up to at

most finitely many Euler factors, is
∞∑
n=1

χD(n)a(n)
ns
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where χD(n) is the quadratic character for Q(
√
D)/Q. Specifically this means that for

primes almost all primes p that aD(p) =
(
D
p

)
a(p) where

(
D
p

)
is the usual Kronecker-Legendre

symbol.
Now we briefly describe the theory of half-integral weight modular forms as developed by

Shimura. Let N be a positive integer that is divisible by 4. Now define
(
c
d

)
and εd by(

c

d

)
:=

{
−
(
c
|d|
)

if c, d < 0(
c
|d|
)

otherwise.

εd :=
{

1 d ≡ 1 mod 4
i d ≡ 3 mod 4.

Also let (cz+d)
1
2 be the principal square root of (cz+d) (i.e. with positive imaginary part).

Let χ be a Dirichlet character mod N. Then a meromorphic function f(z) on H is called
a half integer weight modular form if

f

(
az + b

cz + d

)
= χ(d)

(
c

d

)2λ+1

ε−1−2λ
d (cz + d)λ+ 1

2 f(z)

for all
(
a b
c d

)
∈ Γ0(N). Such a form is called a form with weight λ + 1

2 and character χ.

The set of all such forms that are holomorphic on H as well as at the cusps is denoted by
Mλ+ 1

2
(N,χ) and is a finite dimensional C−vector space. The set of those f(z) inMλ+ 1

2
(N,χ)

that also vanish at the cusps, the cusp forms, is denoted by Sλ+ 1
2
(N,χ).

As in the case of integer weight forms, there are Hecke operators that preserveMλ+ 1
2
(N,χ)

and Sλ+ 1
2
(N,χ). However for these forms the Hecke operators act on Fourier expansions in

square towers; specifically if p is a prime, then the Hecke operator Tp2 acts on f(z) ∈
Mλ+ 1

2
(N,χ) by

(9) f(z) | Tp2 :=
∞∑
n=0

(a(p2n) + χ(p)
(

(−1)λn
p

)
pλ−1a(n) + χ(p2)p2λ−1a(n/p2))qn.

As in the integer weight case, a form f(z) is called an eigenform if for every prime p there
exists a complex number λp such that

f(z) | Tp2 = λpf(z).

The canonical example of weight 1
2 modular forms is

θ(z) :=
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + . . . .

However this is an example of a more general phenomenon from which many examples of
forms are obtained. For example if Q(x1, x2, . . . , xk) is a positive definite quadratic form in
k variables then let r(n,Q) denote the number of representations of n by Q. The generating
function for r(n,Q) defined by

(10) θQ(z) :=
∑

x1,x2,...xk∈Zk

qQ(x1,x2,...xk)
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is a weight k
2 modular form on some congruence group. Here we illustrate how to construct

cusp forms using quadratic forms. Two positive definite quadratic forms Q1 and Q2 are in
the same genus if they are equivalent over R and over Zp for every prime p. Then let θQ1(z)
and θQ2(z) be defined as in (10). In [26] Siegel showed that if Q1 and Q2 are in the same
genus then the function F (z) := θQ1(z)− θQ2(z) is a cusp form.

Specifically we have the following theorem due to Schoeneberg [22] which explicitly com-
putes the level and character of such cusp forms when there are an even number of variables
in the quadratic form.

Theorem. (Schoeneberg) Let Q be a positive definite quadratic form in 2k variables with
determinant D and let ∆ := (−1)kD be its discriminant. If A is the 2k × 2k matrix which
represents Q, then let N be the smallest positive integer such that NA−1 is an integral
matrix with even diagonal entries. Then θQ(z), as defined in (10), is in Mk(2N,χ) where
χ(n) :=

(
∆
n

)
.

Now equipped with results of Schoeneberg and Siegel we construct three weight 3
2 eigen-

forms which are critical to the sequel. We simply searched through a list of reduced ternary
quadratic forms and we found the following convenient weight 3

2 forms, which by the methods
of this paper, correspond to elliptic curves with full 2−torsion. The referee has informed me
of a paper by Lehman [11] where a systematic version of this method is described. Moreover
there is an explicit table containing all the weight 3

2 theta series arising from positive defi-
nite ternary quadratic forms with level ≤ 100. Consequently with some routine computation,
more cases of Euler’s problem may be handled with the results in [11].

Proposition 2. Let Q1 = x2+2y2+12z2, Q2 = 2x2+3y2+4z2, Q3 = x2+2y2+20z2, Q4 =
2x2 + 4y2 + 5z2, Q5 = x2 + 7y2 + 7z2 − 2yz, and Q6 = 3x2 + 4y2 + 5z2 − 4yz and define
f1(z), f2(z), and f3(z) by

f1(z) := 1
2 (θQ1(z)− θQ2(z))

f2(z) := 1
2 (θQ3(z)− θQ4(z))

f3(z) := 1
2 (θQ5(z)− θQ6(z))

.

Then as weight 3
2 cusp forms we find that f1(z) ∈ S 3

2
(48,

(
6
n

)
), f2(z) ∈ S 3

2
(80,

(
10
n

)
), and

f3(z) ∈ S 3
2
(192,

(
3
n

)
).

Proof. We prove the Proposition for f3(z) leaving f1(z) and f2(z) to the reader. First we
note that Q5 and Q6 are two ternary quadratic forms which are in the same genus. Hence
by Siegel’s theorem f3(z) is a weight 3

2 cusp form on some congruence subgroup.
Let Q̃5 = 7y2 + 7z2 − 2yz and Q̃6 = 4y2 + 5z2 − 4yz. Then by Schoeneberg’s theorem we

find that θQ̃5
(z) ∈M1(192,

(−3
n

)
) and θQ̃6

(z) ∈M1(64,
(−1
n

)
). It is easy to see that θQ5(z) =

θ(z)θQ̃5
(z) and that θQ6(z) = θ(3z)θQ̃6

(z). Since θ(z) ∈M 1
2
(4, χ0) and θ(3z) ∈M 1

2
(12,

(
3
n

)
),

we see that

θQ5

(
az + b

cz + d

)
=
(
c

d

)
ε−1
d

(
−3
d

)
(cz + d)

3
2 θQ5(z)

and

θQ6

(
az + b

cz + d

)
=
(

3
d

)(
c

d

)
ε−1
d

(
−1
d

)
(cz + d)

3
2 θQ6(z)

for all
(
a b
c d

)
∈ Γ0(192). But since ε−2

d =
(−1
d

)
we find that θQ5(z) and θQ6(z) are contained

in M 3
2
(192,

(
3
n

)
), and so f3(z) := 1

2 (θQ5(z)− θQ6(z)) ∈ S 3
2
(192,

(
3
n

)
) since Q5 and Q6 are in

the same genus.
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�
The critical link between the theory of half integer weight modular forms and the integer

weight modular forms is the Shimura lift. The Shimura lifts are a family of maps which
take the L−function of a half integer weight cusp form and returns the L-function of an
integer weight modular form. More precisely let f(z) =

∑∞
n=1 a(n)qn ∈ Sλ+ 1

2
(N,χ) where

λ ≥ 1. Define the Dirichlet character ψ by ψ(d) = χ(d)
(−1
d

)λ
. Now define A(n) by the formal

product of L−functions

∞∑
n=1

A(n)
ns

:= L(s− λ+ 1, ψ)
∞∑
n=1

a(n2)
ns

.

Then Shimura proved that the Mellin transform of this product, which we denote by
S(f(z)) =

∑∞
n=1A(n)qn is a weight 2λ modular form. In fact, it is known that S(f(z)) ∈

M2λ(N2 , χ
2). Furthermore if λ ≥ 2, then S(f(z)) ∈ S2λ(N2 , χ

2).
Shimura conjectured that there are formulae involving special values of modular L−functions

relating the Fourier coefficients of f(z) with those of S(f(z)). First we fix some necessary
notation. If F (z) =

∑∞
n=1A(n)qn is a modular form, then its L−function L(F, s) is defined

by

L(F, s) =
∞∑
n=1

A(n)
ns

.

Now if ψ is a Dirichlet character and Fψ(z) =
∑∞
n=1 ψ(n)A(n)qn is the ψ−twist of F (z),

then we denote the modular L-function for Fψ(z) by L(F,ψ, s).
In [30] Waldspurger proved this conjecture explicitly. For our purposes we use:

Theorem. (Waldspurger) Let f(z) ∈ Sλ+ 1
2
(N,χ) be an eigenform of the Hecke operators

Tp2 such that S(f(z)) = F (z) ∈ Snew
2λ (M,χ2) for an appropriate positive integer M. Denote

their respective Fourier expansions by f(z) =
∑∞
n=1 a(n)qn and F (z) =

∑∞
n=1A(n)qn. Let

n1 and n2 be two positive square-free integers such that n1
n2
∈ Q×2

p for all p | N. Then

(11) a2(n1)L(F,
(
−1
n

)λ
χ−1χn2 , λ)χ(n2/n1)n

λ− 1
2

2 = a2(n2)L(F,
(
−1
n

)λ
χ−1χn1 , λ)nλ−

1
2

1 .

By combining Waldspurger’s Theorem with B-SD we find that we can determine whether
or not the ranks of certain twists of an elliptic curve over Q are positive.

Theorem 2. Let E be a modular elliptic curve over Q with L(E, s) =
∑∞
n=1

A(n)
ns . Let

f(z) =
∑∞
n=1 a(n)qn ∈ S 3

2
(N,

(
d
n

)
) be an eigenform of the Hecke operators Tp2 such that

S(f(z)) = F (z) =
∑∞
n=1A(n)qn. Now let n1 be a positive square-free integer such that

a(n1) 6= 0 and such that L(E−dn1 , 1) 6= 0. Suppose that n2 is a positive square-free inte-
ger such that n1

n2
∈ Q×2

p for every prime p | N. If a(n2) 6= 0, then the rank of E−dn2 is
unconditionally 0. If a(n2) = 0, then assuming B-SD the rank of E−dn2 is positive.

Proof. In (11) we now substitute 1 for λ and replace χ by
(
d
n

)
. Then by solving for L(F,

(−dn2
n

)
, 1)

we obtain

L(F,
(
−dn2

n

)
, 1) =

a2(n2)L(F,
(−dn1

n

)
, 1)

√
n1√

n2a2(n1)
.
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Since E is a modular elliptic curve corresponding to the weight 2 newform F (z), we find
that

L(E−dn2 , 1) =
a2(n2)L(E−dn1 , 1)

√
n1√

n2a2(n1)
.

So by hypothesis we find that L(E−dn2 , 1) = 0 if and only if a(n2) = 0. If a(n2) 6= 0, then
by Theorem 1 we find that the rank of E−dn2 is unconditionally 0. If a(n2) = 0, then by
B-SD the rank of E−dn2 is positive.

�
We now prove Main Theorem 2.

Proof Main Theorem 2. We now prove Main Theorem 2 which contains explicit examples
of the above theorem. Using the cusp forms f1(z), f2(z) and f3(z) from Proposition 2, let
S(fi(z)) =

∑∞
n=1Ai(n)qn for 1 ≤ i ≤ 3. For example we found that

S(f1(z)) = q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15 + 2q17 + · · · = η(2z)η(4z)η(6z)η(12z)

and

S(f3(z)) = q + q3 − 2q5 + q9 − 4q11 − 2q13 − 2q15 + 2q17 + · · · = η4(4z)η4(12z)
η(2z)η(6z)η(8z)η(24z)

.

In fact it should be noted that S(f3(z)) is S(f1(z)) twisted by the quadratic character
(−1
n

)
which implies that the corresponding curves are twists of each other by D = −1.

Since the Hecke operators Tp2 and Tp commute with the Shimura lift and the images
S(fi(z)) are all weight 2 newforms, it follows that all three weight 3

2 forms are eigenforms.
We find that S(f1(z)) ∈ Snew

2 (24, χ0), S(f2(z)) ∈ Snew
2 (40, χ0), and S(f3(z)) ∈ Snew

2 (48, χ0).
In these cases the weight 2 newforms correspond to certain EQ(M,N). Since elliptic curves
with conductor 24, 40, and 48 are all modular, it is easy to verify that the L(EQ(M,N), s)
are the Mellin transforms of the S(Fi(z)).

The pairs (M,N) for which L(EQ(M,N), s) corresponds to S(f1(z)) are (−4,−3), (−1, 3), (1, 4),
(−1,−9), (−8, 1), and (8, 9). Those pairs corresponding to S(f2(z)) are (−5,−1), (−4, 1), and
(4, 5).And those pairs corresponding to S(f3(z)) are (−4,−1), (−3, 1), (3, 4), (−9,−8), (−1, 8),
and (1, 9). By Theorems 1 and 2 and since the coefficient of qn in fi(z) is 1

2 (r(n,Q2i−1) −
r(n,Q2i)) by Proposition 2 we obtain the main result.

�
As as we immediately obtain Main Corollary 2 by the following computations.

Proof of Main Corollary 2. Since the torsion subgroups (by Main Theorem 1) are not Z2×Z8
nor Z2×Z6, we only need to determine the ranks of the relevant curves. By the last theorem,
we only need to look for square-free positive integers n1 in each arithmetic progression which
satisfy the hypotheses of the last theorem. We check these case by case.
• In the first case one can check that the conditions of Main Theorem 2 are verified by

n1 =1, 3, 5, 7, 57, 35, 13, 39, 17, 67, 93, and 23, and they are the representatives for the
odd arithmetic progressions mod 24 in increasing order by residue class.
• In the second case the hypotheses of Main Theorem 2 are satisfied by n1 = 1, 3, 5, 7,

11, 13, 55, 17, 61, 145, 31, and 195. The arithmetic progressions come in pairs and hence
we only need one representative for each pair.
• In the third case the conditions of the theorem are satisfied by n1 = 1, 3, 5, 57, 11,

37, 17, 19, and 21. These are representatives for the odd arithmetic progressions mod 24
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(except those that are 7 mod 8) in increasing order by residue class. We note that for every
non-negative integer n

r(8n+ 7, x2 + 7y2 + 7z2 − 2yz) = r(8n+ 7, 3x2 + 4y2 + 5z2 − 4yz)

hence the conditions of the theorem are not satisfied for the arithmetic progression 7 mod 8.

�
We now show how one may use results like Main Theorem 2 to establish the existence of
infinitely many quadratic twists of certain curves with rank 0. Using impressive analytic
estimates on certain special values of modular L-functions, L. Mai and M. R. Murty [12]
proved that a modular elliptic curve E has infinitely many quadratic twists by D ≡ 1
mod 4N, where N is the conductor of E, with rank 0. Here we show that this is indeed
the case in the families of quadratic twists in Main Corollary 2. To do this we will use
the theory of modular forms with complex multiplication as developed by Hecke, and Serre.
The author developed two other methods of guaranteeing the existence of rank 0 quadratic
twists in [15,16]. In fact in [16] it is shown that for some elliptic curves E there exists a set
of primes S with density 1

3 for which the D−twist of E has rank 0 provided that all the
prime factors of D are in S.

First we give essential preliminaries and definitions regarding modular forms with complex
multiplication. Let K = Q(

√
−d) be an imaginary quadratic field with integer ring OK with

discriminant −D. A Hecke Grössencharakter φ of weight k ≥ 2 with conductor Λ, an ideal
in OK , is a group homomorphism from I(Λ), the group of fractional ideals prime to Λ, to
C× satisfying

φ(αOK) = αk−1 when α ≡ 1 mod Λ.

Given such a φ, define a formal power series Ψ(z) in q = e2πiz by

Ψ(z) :=
∑

a

φ(a)qN(a),

where the sum is over all integral ideals a prime to Λ and N(a) is the ideal norm of a in
OK . The function Ψ(z) is a newform in Snew

k (DN(Λ),
(−d
n

)φ(nOK)
nk−1 ). Such forms are known

as modular forms with complex multiplication. Using these definitions we find that if

Ψ(z) =
∞∑
n=1

a(n)qn,

then for every prime p where
(−d
p

)
= −1 we have a(p) = 0 (then there are no ideals of norm

p). These are the inert primes of K.
Now introduce the notion of a lacunary modular form. Suppose that f(z) =

∑∞
n=1 a(n)qn ∈

Mk(N,χ) for some positive integers k and N and some suitable Dirichlet character χ. The
form f(z) is called lacunary if almost all of the Fourier coefficients a(n) are zero. In this
setting we take almost all to mean that a(n) = 0 on a subset of the positive integers with
density one. In [23], Serre proved that such a form f(z) is lacunary if and only if f(z) is
expressible as a finite linear combination of modular forms with complex multiplication.
We now use these ideas to prove Main Theorem 3.

Proof Main Theorem 3. First we recall the following fact concerning the restriction of the
Fourier expansion of an integer weight modular form to an arithmetic progression.
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Lemma 1. Let f(z) =
∑∞
n=0 a(n)qn be a modular form in Mk(N,χ) and let d := gcd(r, t).

If 0 ≤ r < t, then
fr,t(z) =

∑
n≡r mod t

a(n)qn

is the Fourier expansion of a modular form in Mk

(
Nt2

d

)
.

Define F1(z), F2(z), and F3(z) by

F1(z) := f1(z)θ(24z) =
∞∑
n=1

A1(n)qn, F2(z) := f2(z)θ(40z) =
∞∑
n=1

A2(n)qn,

and

F3(z) := f3(z)θ(24z) =
∞∑
n=1

A3(n)qn.

It is easily verified that F1(z) ∈ S2(192, χ0), F2(z) ∈ S2(160, χ0), and F3(z) ∈ S2(192, χ0).
Let ai(n) for 1 ≤ i ≤ 3 denote the Fourier coefficients of fi(z).

By (9), it is clear that the Hecke operators Tp2 act on ai(n), in square towers. In other
words, if n is a positive square-free integer, then ai(nm2) is uniquely determined by ai(n)
and the eigenvalues for Tp2 for those primes p | m. In fact, it is easy to verify that if ai(n) = 0,
then ai(nm2) = 0 for every non-zero integer m.

Let F1,r(z) be the weight 2 cusp form defined by

F1,r(z) :=
∑

n≡r mod 24

A1(n)qn.

By Lemma 1, it is clear that F1,r(z) is a weight 2 modular form (in fact a cuspidal one) with
respect to the congruence subgroup Γ0(242 · 96). It is easy to verify that if n is a square free
integer such that nm2 ≡ r mod 24 and m is prime to 6, then n ≡ r mod 24.

Let 1 ≤ r ≤ 24 be a positive odd integer. Suppose that there are only finitely many
square-free positive integers n ≡ r mod 24 such that a1(n) 6= 0; moreover let them be
n1, n2, . . . ntr . So by the definition of F1(z), we find that

F1,r(z) =

 tr∑
i=1

∞∑
gcd(m,24)=1

a1(nim2)qnim
2

(∑
n∈Z

q24n
2

)
.

Since the set of positive integers that are represented by any binary quadratic form has
density zero in the set of non-negative integers, we find that F1,r(z) is a lacunary mod-
ular form. Hence by Serre’s Theorem it must be the case that F1,r(z) is a finite linear
combination of complex multiplication modular forms of weight 2. Since F1,r(z) has level
242 · 96 = 21133 and the discriminants of the CM fields divide the level, the only imaginary
quadratic fields whose Hecke Grössencharakters can occur in this linear combination are
Q(i),Q(

√
−2),Q(

√
−3), and Q(

√
−6).

Now if there exists a prime p which is inert in each of these fields such that the coefficient
A1(pm) 6= 0 where pm ≡ r mod 24 and gcd(p,m) = 1, then F1,r(z) cannot be a linear
combination of such CM forms. This follows from the fact that the coefficients in every
newform are multiplicative and since there are no ideals with norm p in any of these fields.
It is impossible for any of the CM forms in the linear combination to have a non-zero
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coefficient associated with the exponent pm. The smallest prime which is inert in each of
these fields is p = 23. For r = 1 it turns out that A1(23 · 71) = −16 6= 0. Hence F1,1(z)
is not a linear combination of CM forms, hence it is not lacunary. This contradicts the
assumption that there are only finitely many square-free positive integers n ≡ 1 mod 24
such that a1(n) 6= 0. Hence there are infinitely many such n where a1(n) 6= 0, and by
Main Corollary 2 this implies that the given pairs of integers (M,N) are rank 0 quadratic
twists. For r = 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23 we find that A1(987) = −16,
A1(437) = 16, A1(391) = 8, A1(345) = −8, A1(299) = −8, A1(253) = −16, A1(207) = 4,
A1(713) = −32, A1(115) = −8, A1(69) = 4, and A1(23) = 4 respectively. All of these indices
contain either 23, 47, or 71 as a simple prime factor and all three primes are inert in all four
quadratic imaginary fields. All of these coefficients are non-zero which shows that none of
the F1,r(z) are lacunary, thereby contradicting the assumption that there are only finitely
many square-free positive integers n ≡ r mod 24 where a1(n) 6= 0.

In the second case, suppose that there are only finitely many square-free positive integers
n ≡ r or 9r mod 40 such that a2(n) 6= 0. Namely let them be n1, n2, . . . ntr . It is easy to
verify that if nm2 ≡ r or 9r mod 40 where n is square-free, then n ≡ r or 9r mod 40.
Hence if we define Fr,9r(z) by

Fr,9r(z) =
∑

n≡r,9r mod 40

A2(n)qn,

Then Fr,9r(z) is a weight 2 cusp form with respect to the group Γ0(402 · 160) and by
hypothesis satisfies

Fr,9r(z) =

 tr∑
i=1

∑
gcd(m,40)=1

a2(nim2)qnim
2

(∑
n∈Z

q40n
2

)
.

Again as in the first case we find that Fr,9r(z) is a lacunary modular form and hence it
is a finite linear combination of CM forms with respect to Q(i),Q(

√
−2),Q(

√
−5), and

Q(
√
−10). However we find that A2(1209) = 32, A2(923) = 8, A2(1085) = 8, A2(527) = −8,

A2(651) = −24, A2(213) = 24, A2(775) = 4, A2(217) = −8, A2(341) = −8, A2(1065) = −24,
A2(31) = 4, and A2(355) = −4. All of these coefficients are non-zero and they cover all pairs
of residue classes r, 9r mod 40 with r odd. Since every one of the exponents above contain
either 31 or 71 as simple factors and they are inert in all four quadratic imaginary fields, it
is not the case that any of the Fr,9r(z) are finite linear combinations of CM forms. Hence
by Serre’s theorem none of them are lacunary; therefore if 1 ≤ r ≤ 40 is odd, then there are
infinitely many square-free integers n ≡ r or 9r mod 40 for which the relevant EQ(M,N)
twisted by n has rank 0.

In the third case for 1 ≤ r ≤ 24 odd, we define F3,r(z) by

F3,r(z) =
∞∑

n≡r mod 24

A3(n)qn.

If there are only finitely many square-free positive integers n ≡ r mod 24, such that a3(n) 6=
0, say n1, n2, . . . ntr , then F3,r(z) has the following factorization:

F3,r(z) =

 tr∑
i=1

∑
gcd(m,24)=1

a3(nim2)qnim
2

(∑
n∈Z

q24n
2

)
.
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So F3,r(z) is a lacunary weight 2 cusp form with respect to the group Γ0(242 · 96). Hence
by Serre’s theorem this implies that F3,r(z) is a finite linear combination of CM forms with
respect to Q(i),Q(

√
−2),Q(

√
−3), and Q(

√
−6). For r = 1, 3, 5, 9, 11, 13, 17, 19, and 21

we find that A3(1081) = 16, A3(483) = 16, A3(437) = −16, A3(345) = −8, A3(851) = 32,
A3(805) = 48, A3(161) = −8, A3(115) = −16, and A3(69) = −4 respectively. All of these
coefficients are non-zero and these indices all contain at least one of 23 or 47, primes that
are inert in each of these four quadratic imaginary fields, as simple prime factors. As in
the previous two cases, if r =1, 3, 5, 9, 11, 13, 17, 19, or 21, then there are infinitely many
square-free positive integers n ≡ r mod 24 such that the quadratic twist of EQ(M,N) by
n has rank 0.

�

5. Simultaneous Pellian equations

Let M and N be distinct positive integers. In this section we investigate the existence of
simultaneous nontrivial integer solutions (a, b, c) to the pair of Pellian equations

(12) a2 −Mb2 = 1 and c2 −Nb2 = 1.

Such a solution (a, b, c) is called nontrivial if b 6= 0. Using the methods developed by Schmidt
[20,21], Schlickewei [19] proved that the number of simultaneous integer solutions (a, b, c) to
(12) is � 4 · 8278

. In recent work by Masser and Rickert [13], this bound has been lowered
to 132, and M. Bennett has informed me that he [2] has lowered this bound to 28.

The aim of this section is to show that there are several infinite families of such systems
where one may deduce the nonexistence of nontrivial solutions to (12) by simply computing
the number of representations of certain integers by pairs of ternary quadratic forms.
We first prove the following elementary proposition.

Lemma 2. If M and N are distinct positive integers and (a, b, c) is a nontrivial solution
to (12), then (x, y) =

(
1
b2 ,

ac
b3

)
is a point of infinite order on the elliptic curve EQ(M,N). In

particular, if EQ(M,N) has rank 0, then there are no nontrivial solutions to (12).

Proof. Suppose that (a, b, c) is a nontrivial solution to (12). Therefore it is easy to see that
1 +Mb2 = a2 and 1 +Nb2 = c2. Therefore (x, y, t, z) = (1, b, a, c) is a nontrivial solution
to (1). It is easy to see that this implies that

a2c2 = 1 + (M +N)b2 +MNb4,

which after multiplying through by 1
b6 becomes

a2c2

b6
=

1
b6

+
M +N

b4
+
MN

b4
.

Hence (x, y) =
(

1
b2 ,

ac
b3

)
is a rational point on EQ(M,N). Moreover by the Lutz-Nagell

theorem [Theorem 5.1,7] since the coordinates of torsion points are integers, we may assume
that b = ±1.

By Main Corollary 1, the primitive solutions (x, y, t, z) to (12) afforded by the torsion
points of E(M,N) were completely classified. It is a straightforward exercise to deduce that(

1
b2
,
ac

b3

)
is not any of the torsion points found in the proof of Main Theorem 1.

�
We immediately obtain the followiing as a consequence of Lemma 2, Corollary 1, and Main
Corollary 2.
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Main Corollary 3. Let d be any nonzero integer.
(i) Let n be an odd positive square-free integer and suppose that (M,N) = (2d2n, d2n). If

2r(n, 2x2 + y2 + 32z2) 6= r(n, 2x2 + y2 + 8z2), then there are no nontrivial solutions to (12).
(ii) Let n be an even positive square-free integer and suppose that (M,N) = (2d2n, d2n).

If 2r
(
n
2 , 4x

2 + y2 + 32z2)
)
6= r

(
n
2 , 4x

2 + y2 + 8z2
)
, then there are no nontrivial solutions

to (12).
(iii) Let n be an odd positive square-free integer and suppose that (M,N) = (24d2n, 18d2n)

or (6d2n, 54d2n). If r(n, x2+2y2+12z2) 6= r(n, 2x2+3y2+4z2), then there are no nontrivial
solutions to (12).

(iv) Let n be an odd positive square-free integer and suppose that (M,N) = (50d2n, 10d2n).
If r(n, x2 + 2y2 + 20z2) 6= r(n, 2x2 + 4y2 + 5z2), then there are no nontrivial solutions to
(12).

(v) Let n 6≡ 7 mod 8 be an odd positive square-free integer for which (M,N) = (12d2n, 3d2n)
or (27d2n, 24d2n). If r(n, x2 +7y2 +7z2− 2yz) 6= r(n, 3x2 +4y2 +5z2− 4yz), then there are
no nontrivial primitive solutions to (12).

Remark. In [18] Rickert proves that there are no nontrivial solutions to (12) where M = 2
and N = 3. By the above proposition, it is easy to obtain this result because E(2, 3) is a rank
0 elliptic curve.
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