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Abstract

We consider fully nonlinear weakly coupled systems of parabolic
equations on a bounded reflectionally symmetric domain. Assuming
the system is cooperative we prove the asymptotic symmetry of pos-
itive bounded solutions. To facilitate an application of the method
of moving hyperplanes, we derive Harnack type estimates for linear
cooperative parabolic systems.
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1 Introduction

Let Ω be a bounded domain in RN for some N ≥ 1. We consider systems of
nonlinear parabolic equations of the form

∂tui = Fi(t, x, u,Dui, D
2ui), (x, t) ∈ Ω× (0,∞), i = 1, . . . , n, (1.1)

where n ≥ 1 is an integer, u := (u1, · · · , un), and Dui, D
2ui denote, re-

spectively, the gradient and Hessian matrix of ui with respect to x. The
hypotheses on the nonlinearities Fi, which we formulate precisely in the next
section, include, in particular, regularity (Lipschitz continuity), ellipticity,
and the cooperativity condition requiring the derivatives ∂Fi/∂uj to be non-
negative for i 6= j. A model problem to which our results apply is the
reaction-diffusion system

ut = D(t)∆u+ f(t, u), (x, t) ∈ Ω× (0,∞), (1.2)

where D(t) = diag(d1(t), . . . , dn(t)) is a diagonal matrix whose diagonal en-
tries are continuous functions bounded above and below by positive con-
stants, and f = (f1, . . . , fn) : [0,∞)×Rn → Rn is a continuous function which
is Lipschitz continuous in u and which satisfies ∂fi(t, u)/∂uj ≥ 0 whenever
i 6= j and the derivative exists.

Observe that while the more general system (1.1) is fully nonlinear, it is
still only weakly coupled in the sense that the arguments of Fi do not involve
the derivatives of uj for j 6= i.

We complement the system with Dirichlet boundary conditions

ui(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞), i = 1, . . . , n. (1.3)

Our main goal is to investigate symmetry properties of positive solutions
of (1.1), (1.3). More specifically, assuming that Ω is convex in x1 and symmet-
ric with respect to the hyperplane H0 := {x = (x1, . . . , xN) ∈ RN : x1 = 0}
and that the nonlinearities Fi satisfy suitable symmetry conditions, we prove
the asymptotic symmetry of positive global bounded solutions. Our theorems
extend earlier symmetry results for scalar parabolic and elliptic equations and
for elliptic systems. We now summarize the previous results briefly.

In the celebrated paper [22], Gidas, Ni and Nirenberg considered the
semilinear problem

∆u+ f(u) = 0, x ∈ Ω
u = 0, x ∈ ∂Ω,
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where f is Lipschitz, the domain Ω is reflectionally symmetric as above, and
∂Ω is of class C2. They proved that any positive solution u is even in x1 and
monotone in x1 for x1 > 0: ∂x1u < 0 in {x ∈ Ω : x1 > 0}. Of course, if Ω
is also symmetric and convex in other directions, then so is the solution. In
particular, positive solutions on a ball are radially symmetric. The method
of moving hyperplanes, which, combined with the maximum principle, is
the basic tool in the paper, was introduced earlier by Alexandrov [1] and
further developed by Serrin [38] ([38] also contains a related result on radial
symmetry).

Similar symmetry results were later proved for fully nonlinear elliptic
equations F (x, u,Du,D2u) = 0, first for smooth domains by Li [29], later for
general bounded symmetric domains by Berestycki and Nirenberg [8] (see also
[18]). Da Lio and Sirakov [17] considered an even more general class of elliptic
equations, including equations involving Pucci operators, and they proved
the symmetry of positive viscosity solutions. Many authors, starting again
with Gidas, Ni and Nirenberg [23], established symmetry and monotonicity
properties of positive solutions of elliptic equations on unbounded domains
under various conditions on the equations and the solutions. For surveys of
these theorems, as well as additional results on bounded domains, we refer
the readers to [7, 27, 33].

Extensions of the symmetry results to cooperative elliptic systems were
first made by Troy [40], then by Shaker [39] (see also [15]) who considered
semilinear equations on smooth bounded domains. In [20], de Figueiredo re-
moved the smoothness assumption on the domain in a similar way as Beresty-
cki and Nirenberg [8] did for the scalar equation. For cooperative systems on
the whole space, a general symmetry result was proved by Busca and Sirakov
[11], an earlier more restrictive result can be found in [21]. The cooperative
structure of the system assumed in all these references is in some sense un-
avoidable. Without it, neither is the maximum principle applicable nor do
the symmetry result hold in general (see [12] and [39] for counterexamples).

For parabolic equations, first symmetry results in the same spirit ap-
peared in the nineties. In [19], Dancer and Hess proved the spatial symmetry
of periodic solutions of time-periodic reaction diffusion equations. Then, in
[25], reaction diffusion equations with general time dependence were consid-
ered and the asymptotic spatial symmetry of positive bounded solutions was
established. In an independent work, Babin [4, 5] considered fully nonlinear
autonomous equations on bounded domains and proved the spatial symme-
try of bounded solutions defined for all t ∈ R (henceforth we refer to such
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solutions as entire solutions). Using this, in combination with a version of
invariance principle, he also obtained the asymptotic symmetry of suitably
bounded solutions defined for t ≥ 0 (global solutions). Babin and Sell [6] then
extended these results to time-dependent fully nonlinear equations. Unlike
in [25], no smoothness of the domain Ω was assumed in [4, 5, 6]. On the
other hand, rather strong positivity hypotheses were made in these papers
on the nonlinearity and the solution, requiring in particular the solution to
stay away from zero at all (interior) points of Ω. This and other shortcomings
of the existing results (see the introduction of [36] for an account) motivated
the second author of the present paper for writing [36]. Using techniques
originally developed for symmetry theorems for parabolic equations on RN ,
see [34, 35], he removed these restrictions and made further improvements.
We wish to emphasize that when the solution is allowed to converge to zero
along a sequence of times, as in [36] (and also in the present paper), the proof
of the asymptotic symmetry gets significantly more complicated (for compar-
ison, the reader can refer to the appendix of [36], where a much simpler proof
for solutions staying away from zero is given).

Other types of parabolic symmetry results can be found in [16], where
the asymptotic roundness of hypersurfaces evolving under a geometric flow
is established and in [26], where the asymptotic roundness of a (rescaled)
traveling front is proved for a reaction diffusion equation. A variant of this
argument and its application in a multidimensional Stefan problem appeared
in [32].

To the best of our knowledge, the present paper is the first to contain
symmetry results similar to those in [4, 5, 6, 25, 36] for cooperative parabolic
systems. We prove theorems extending the main results of [36]. To do so, we
follow the basic approach and some key ideas of [36], extending the needed
technical results to the present setting. Not all these extensions are straight-
forward. In particular, new difficulties arise is connection with the fact that
different components of the solution may be small at different times. This
situation has to be handled carefully using Harnack type estimates which
we develop for this purpose. As these estimates are of independent interest,
we have devoted a part of the paper to linear cooperative systems, see Sub-
section 3.2. The estimates derived there extend similar results for elliptic
cooperative systems as given in [3, 14, 12]. See Remark 3.7 for additional
bibliographical comments.

Our general symmetry theorems are formulated in Section 2. To give the
reader their flavor, we now state a simpler result dealing with the semilinear
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system (1.2).
For λ ∈ R we denote

Hλ := {x ∈ RN : x1 = λ},
Ωλ := {x ∈ Ω : x1 > λ}.

Assume that

(D1) Ω is convex in x1 and symmetric with respect to the hyperplane H0;

(D2) for each λ > 0 the set Ωλ has only finitely many connected components.

Denoting by Rn
+ the cone in Rn consisting of vectors with nonnegative com-

ponents, we further assume that

(S1) D(t) = diag(d1(t), . . . , dn(t)), where di : [0,∞) → R are continuous
functions satisfying α0 ≤ di(t) ≤ β0 (t ≥ 0, i = 1, . . . , n) for some
positive constants α0 and β0;

(S2) f = (f1, . . . , fn) : [0,∞) × Rn
+ → Rn is a continuous function which

is locally Lipschitz in u uniformly with respect to t: for each M there
exists a constant β1 = β1(M) > 0 such that

|f(t, u)− f(t, v)| ≤ β1|u− v| (t ≥ 0, u, v ∈ Rn
+, |u|, |v| ≤M);

(S3) for each i 6= j and t ∈ [0,∞) one has ∂fi(t, u)/∂uj ≥ 0 for each u ∈ Rn
+

such that the derivative exists (which is for almost every u by (S2)).

The following strong cooperativity condition will allow us to relax the posi-
tivity assumptions on the considered solutions. In Section 2 we formulate a
different condition, the irreducibility of the system, which together with (S3)
can be used in place of (S4).

(S4) For each M there is a constant σ = σ(M) > 0 such that for all i 6= j
and t ∈ [0,∞) one has ∂fi(t, u)/∂uj ≥ σ for each u ∈ Rn

+ with |u| ≤M
such that the derivative exists.

We consider a global classical solution u of (1.2), (1.3) which is non-
negative (by which we mean that all its components are nonnegative) and
bounded:

sup
x∈Ω,t≥0

|u(x, t)| <∞.
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Moreover, we require that u assume the Dirichlet boundary condition uni-
formly with respect to time:

lim
dist(x,∂Ω)→0

sup
t≥0
|u(x, t)| = 0. (1.4)

We formulate the asymptotic symmetry of u in terms of its ω-limit set:

ω(u) = {z : z = lim
k→∞

u(·, tk) for some tk →∞},

where the limit is taken in the space E := (C(Ω̄))n equipped with the supre-
mum norm. It follows from standard parabolic interior estimates and the
assumptions on u, specifically the boundedness and (1.4), that the orbit
{u(·, t) : t ≥ 0} is contained in a compact set in E. Therefore ω(u) is
nonempty and compact in E and it attracts u in the sense that

lim
t→∞

distE(u(·, t), ω(u)) = 0.

Theorem 1.1. Assume (D1), (D2), (S1)–(S3) and let u be a bounded non-
negative global solution of (1.2) satisfying (1.4). Assume in addition that
one of the following conditions holds:

(i) there exists ϕ = (ϕ1, . . . , ϕn) ∈ ω(u) such that ϕi > 0 in Ω for all
i ∈ {1, . . . , n};

(ii) (S4) holds and there is ϕ ∈ ω(u) such that ϕi > 0 in Ω for some
i ∈ {1, . . . , n}.

Then for each z = (z1, . . . , zn) ∈ ω(u)\{0} and each i = 1, . . . , n, the function
zi is even in x1 and it is strictly decreasing in x1 on {x ∈ Ω : x1 > 0}.

The additional assumption in the theorem means that along a sequence of
times all components of u (or at least some components, if (S4) is assumed)
stay away from 0 at every x ∈ Ω. Although this assumption can be relaxed
somewhat, it cannot be removed completely even if u is required to be strictly
positive and n = 1 (see [36, Example 2.3]). Without this assumption, a
weaker symmetry theorem is valid if (S4) holds. Namely, the components
of u symmetrize, as t → ∞, around a hyperplane {x : x1 = µ} with µ ≥ 0
possibly different from zero. The strong cooperativity condition (S4), or
more general cooperativity and irreducibility conditions given in Section 2,
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are needed to guarantee that all the components symmetrize around the same
hyperplane.

Theorem 1.1 follows from more general Theorem 2.1 given in the next
section. The equicontinuity condition (2.4) assumed in Theorem 2.1 is eas-
ily verified in the semilinear setting using (1.4), the boundedness of u, and
standard parabolic interior estimates, as mentioned above.

We remark that the technical assumption (D2) on Ω can be removed if

lim inf
t→∞

u(x, t) > 0

for each x ∈ Ω.
The remainder of the paper is organized as follows. In Section 2, after

fixing general notation, we formulate our main theorems. Section 3 is de-
voted to linear systems. We prove there Harnack type estimates for positive
solutions and a related result for sign-changing solutions. The proofs of our
symmetry results are given in Section 4.

2 Statements of the symmetry results

As in the introduction, Ω is a bounded domain in RN , N ≥ 1, satisfying
(D1), (D2), and for any λ ∈ R we denote

Hλ = {x ∈ RN : x1 = λ},
Ωλ = {x ∈ Ω : x1 > λ}.

Also we let

xλ := (2λ− x1, x
′) (x = (x1, x

′) ∈ R× RN−1),

Ω′λ := {xλ : x ∈ Ωλ},
` := sup{λ ≥ 0 : Ω ∩Hλ 6= ∅},
S := {1, . . . , n}.

(2.1)

Note that (D1) implies that Ω′λ ⊂ Ω for each λ ≥ 0.
We consider the fully nonlinear parabolic system (1.1) assuming that for

each i ∈ S the function

Fi : (t, x, u, p, q) 7→ Fi(t, x, u, p, q) ∈ Rn
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is defined on [0,∞)× Ω̄×Oi, where Oi is an open convex subset of Rn+N+N2

invariant under the transformation

Q : (u, p, q) 7→ (u,−p1, p2, . . . , pN , q̃),

q̃ij =

{
−qij if exactly one of i, j equals 1,

qij otherwise.

We further assume that F = (F1, . . . , Fn) satisfies the following hypotheses:

(N1) Regularity. For each i ∈ S the function Fi : [0,∞) × Ω̄ × Oi → Rn is
continuous, differentiable with respect to q and Lipschitz continuous in
(u, p, q) uniformly with respect to (x, t) ∈ Ω̄ × R+. This means that
there is β > 0 such that

|Fi(t, x, u, p, q)− Fi(t, x, ũ, p̃, q̃)| ≤ β|(u, p, q)− (ũ, p̃, q̃)|
((x, t) ∈ Ω̄× R+, (u, p, q), (ũ, p̃, q̃) ∈ Oi). (2.2)

(N2) Ellipticity. There is a positive constant α0 such that for all i ∈ S and
(t, x, u, p, q) ∈ [0,∞)× Ω̄×Oi, and ξ ∈ RN one has

N∑
j,k=1

∂Fi
∂qjk

(t, x, u, p, q)ξjξk ≥ α0|ξ|2.

(N3) Symmetry and monotonicity. For each i ∈ S, (t, u, p, q) ∈ [0,∞)×Oi,
and any (x1, x

′), (x̃1, x
′) ∈ Ω with x̃1 > x1 ≥ 0 one has

Fi(t,±x1, x
′, Q(u, p, q)) = Fi(t, x1, x

′, u, p, q) ≥ Fi(t, x̃1, x
′, u, p, q) .

(N4) Cooperativity. For all i, j ∈ S, i 6= j, (t, x, u, p, q) ∈ [0,∞) × Ω̄ × Oi
one has

∂Fi
∂uj

(t, x, u, p, q) ≥ 0,

whenever the derivative exists.

In some results we need to complement (N4) with the following condition.
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(N5) Irreducibility. There exists σ > 0 such that for any nonempty subsets
I, J ⊂ S with I ∩ J = ∅, I ∪ J = S there exist i ∈ I, j ∈ J such that

∂Fi
∂uj

(t, x, u, p, q) ≥ σ

for all (t, x, u, p, q) ∈ [0,∞)× Ω̄×Oi such the derivative exists.

Note that the derivatives in (N4) and (N5) exist almost everywhere by
(N1).

We remark that although the hypotheses are formulated with fixed con-
stants α0, β, σ, we really need them to be fixed on the range of (u,Du,D2u)
for each considered solution u. Thus, for example, if the solution in question
is bounded and has bounded derivatives Du, D2u, then the Lipschitz continu-
ity can be replaced with the local Lipschitz continuity as in the introduction
and similarly one can relax the ellipticity and irreducibility conditions. Note,
however, that we do not assume any boundedness of the derivatives of u.

If n = 2, condition (N5) is equivalent to ∂Fi/∂uj ≥ σ for all i, j ∈ S,
i 6= j. For n ≥ 3, the latter condition is stronger than (N5), for example,
consider functions satisfying ∂Fi/∂uj ≥ σ for all i, j ∈ S, |i − j| = 1 and
∂Fi/∂uj ≡ 0 for all i, j ∈ S, |i − j| > 1. It is not hard to verify that, aside
from the uniformity in all variables, condition (N5) is equivalent to other
commonly used notions of irreducibility, see for example [2] and references
therein.

Notice that the assumption (N3) implies the following condition

(N3 cor) For each i ∈ S, Fi is even in x1 and for any (t, u, p, q) ∈ [0,∞)×Oi,
λ > 0 and (x1, x

′) ∈ Ωλ, λ > 0, one has

Fi(t, 2λ− x1, x
′, Q(u, p, q)) ≥ Fi(t, x1, x

′, u, p, q).

This weaker condition is sufficient for some of our results but for simplicity
and consistency we just assume (N3) in all our symmetry theorems.

By a solution of (1.1), (1.3) we mean a function u = (u1, . . . , un) such that
ui ∈ C2,1(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)), (u,Dui, D

2ui) ∈ Oi for all i ∈ S and
u satisfies (1.1), (1.3) everywhere. By a nonnegative (positive) solution we
mean a solution with all components ui nonnegative (positive) in Ω× (0,∞).
All solutions of (1.1) considered in this paper are assumed to be nonnegative,
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regardless of whether it is explicitly stated or not. We shall consider solutions
such that

sup
t∈[0,∞)

max
i∈S
‖ui(·, t)‖L∞(Ω) <∞ (2.3)

and the functions u(·, ·+ s), s ≥ 1, are equicontinuous on Ω̄× [0, 1], that is,

lim
h→0

sup
x,x̄∈Ω̄, t,t̄≥1,
|t−t̄|,|x−x̄|<h

|u(x, t)− u(x̄, t̄)| = 0. (2.4)

We remark that if for each i ∈ S one has (0, 0, 0) ∈ Oi and the function
(x, t) 7→ Fi(x, t, 0, 0, 0) is bounded on Ω × [0,∞), then (2.4) holds if (2.3)
and (1.4) hold, or if (2.3) holds and Ω satisfies the exterior cone condition.
This follows from the fact that each ui solves a linear uniformly parabolic
equation with bounded coefficients and a bounded right-hand side (see the
proof of Proposition 2.7 in [36] for details).

The orbit {u(·, t) : t ≥ 0} of a solution satisfying (2.3), (2.4) is relatively
compact in the space E = (C(Ω̄))n and then, as noted in the introduction,
the ω-limit set

ω(u) = {z : z = lim
k→∞

u(·, tk) for some tk →∞},

is nonempty, compact in E and it attracts u(·, t) as t→∞.
We now state a more general version of Theorem 1.1.

Theorem 2.1. Assume (D1), (D2), (N1) - (N4). Let u be a nonnegative
solution of (1.1), (1.3) satisfying (2.3) and (2.4). Assume in addition that
one of the following conditions holds:

(i) there exists ϕ = (ϕ1, . . . , ϕn) ∈ ω(u) such that ϕi > 0 in Ω for all
i ∈ {1, . . . , n};

(ii) (N5) holds and there is ϕ ∈ ω(u) such that ϕi > 0 in Ω for some
i ∈ {1, . . . , n}.

Then for each z = (z1, . . . , zn) ∈ ω(u) and i ∈ S, the function zi is even in
x1:

zi(x1, x
′) = zi(−x1, x

′) ((x1, x
′) ∈ Ω0), (2.5)

and either zi ≡ 0 on Ω or zi is strictly decreasing in x1 on Ω0. The latter
holds in the form (zi)x1 < 0 if (zi)x1 ∈ C(Ω0).
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The last condition, (zi)x1 ∈ C(Ω0), is satisfied if {ux1(·, t) : t ≥ 1} is
relatively compact in C(Ω̄). This is the case if, for example, D2u is bounded
(which we do not assume).

Remark 2.2. We will prove (see the proof of Theorems 2.1 and 2.4 in Section
4) that if (N5) holds, in addition to all the other hypotheses of Theorem 2.1,
then for any ϕ ∈ ω(u) the relation ϕi(x) > 0 holds for all x ∈ Ω and i ∈ S
as soon as it holds for some x ∈ Ω and i ∈ S. Hence either ϕ ≡ 0 or all its
components are strictly positive in Ω. This of course may not be true if (N5)
does not hold as can be seen on examples of decoupled systems.

The assumption (i) or (ii) in the previous theorem is somewhat implicit
in that it requires some knowledge of the asymptotic behavior of the solution
as t→∞. One can formulate various alternative more explicit conditions in
terms of the nonlinearity or the domain. The next theorem, which extends
[36, Theorem 2.4] to cooperative systems, shows that the asymptotic positiv-
ity of the nonlinearity implies that if (N5) holds then (ii) is satisfied unless
u converges to zero as t→∞. Other conditions can be formulated in terms
of regularity and geometry of Ω (see for example Theorem 2.5 below).

Theorem 2.3. Assume (D1), (D2), (N1), (N2), (N4). Further assume that
for each i ∈ S one has (0, 0, 0) ∈ Oi and

lim inf
t→∞, x∈Ω

Fi(t, x, 0, 0, 0) ≥ 0. (2.6)

Let u be a nonnegative solution of (1.1), (1.3) satisfying (2.3) and (2.4).
Then for each i ∈ S either ‖ui(·, t)‖L∞(Ω) → 0 or else there exists ϕ ∈ ω(u)
with ϕi > 0 in Ω.

Without assumptions (i), (ii), Theorem 2.1 is not valid in general, even
for positive solutions of scalar equations (see [36, Example 2.3]). However,
the elements of ω(u) still have some reflectional symmetry property, although
the symmetry hyperplane may not be the canonical one. This is stated in
the following theorem which extends [36, Theorem 2.4].

Theorem 2.4. Assume (D1), (D2), (N1) - (N4). Let u be a nonnegative
solution of (1.1), (1.3) satisfying (2.3) and (2.4). Then there exists λ0 ∈ [0, `)
such that the following assertions hold for each z ∈ ω(u).
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(i) For every j ∈ S the function zj is nonincreasing in x1 on Ωλ0 and there
are i ∈ S and a connected component U of Ωλ0 such that

zi(x1, x
′) = zi(2λ0 − x1, x

′) ((x1, x
′) ∈ U). (2.7)

(ii) If (N5) is satisfied, there is a connected component U of Ωλ0 such that
(2.7) holds for each i ∈ S.

(iii) If (N5) is satisfied and Ωλ0 is connected, then (2.7) holds with U = Ωλ0

for all i ∈ S and either z ≡ 0 on Ωλ0 or else for each i ∈ S the
function zi is strictly decreasing in x1 on Ωλ0. The latter holds in the
form (zi)x1 < 0 if (zi)x1 ∈ C(Ωλ0).

As usual, in many problems with rotational symmetry, one can use re-
flectional symmetries in different directions to prove the radial symmetry of
solutions. We give only one such symmetry results, assuming Ω is a ball.
Rotational symmetry in just some variables can be examined in a similar
way. Notice that in the next theorem we do not need the assumption on the
existence of a positive element of ω(u).

Assume that Ω is the unit ball centered at the origin and consider the
problem

∂tui = Fi(t, |x|, u, |Dui|,∆ui), (x, t) ∈ Ω× (0,∞),

ui = 0, (x, t) ∈ ∂Ω× (0,∞),

}
i = 1, . . . , n.

(2.8)
The functions Fi(t, r, u, η, ξ), i ∈ S, are defined on [0,∞)× [0, 1]×B where B
is a ball in Rn+2 centered at the origin and we make the following hypotheses:

(N1)rad For each i ∈ S the function Fi : [0,∞)× [0, 1]× B → Rn is continuous
in all variables, differentiable in ξ, and Lipschitz continuous in (u, η, ξ)
uniformly with respect to (r, t) ∈ [0, 1]× R+.

(N2)rad There is a positive constant α0 such that

∂Fi
∂ξ

(t, r, u, η, ξ) ≥ α0 ((t, r, u, η, ξ) ∈ [0,∞)× [0, 1]× B, i ∈ S).

(N3)rad For each i ∈ S, Fi is nonincreasing in r.
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(N4)rad For any i, j ∈ S with i 6= j, and any (t, r, u, η, ξ) ∈ [0,∞)× [0, 1]×Oi
one has

∂Fi
∂uj

(t, r, u, η, ξ) ≥ 0

whenever the derivative exists.

(N5)rad There exists σ > 0 such that for any nonempty subsets I, J ⊂ S with
I ∩ J = ∅, I ∪ J = S there exist i ∈ I, j ∈ J such that

∂Fi
∂uj

(t, r, u, η, ξ) ≥ σ

for all (t, r, u, η, ξ) ∈ [0,∞)× [0, 1]×Oi such the derivative exists.

Theorem 2.5. Let Ω be the unit ball and assume that (N1)rad − (N5)rad
hold. Let u be a nonnegative solution of (2.8) satisfying (2.3) and (2.4).
Then for any z ∈ ω(u) \ {0} and i ∈ S, the function zi is radially symmetric
and strictly decreasing in r = |x|. The latter holds in the form (zi)r < 0 if
(zi)r ∈ C(Ω0).

3 Linear equations

The proofs of our symmetry theorems use the method of moving hyperplanes
and they depend on estimates of solutions of linear equations and systems.
We prepare all these estimates in this section.

Recall the following standard notation. For an open set D ⊂ RN and for
t < T , we denote by ∂P (D × (t, T )) the parabolic boundary of D × (t, T ):
∂P (D× (t, T )) := (D×{t})∪ (∂D× [t, T ]). For bounded sets U , U1 in RN or
RN+1, the notation U1 ⊂⊂ U means Ū1 ⊂ U , diamU stands for the diameter
of U , and |U | for its Lebesgue measure (if it is measurable). The open ball
in RN centered at x with radius r is denoted by B(x, r). Symbols f+ and f−

denote the positive and negative parts of a function f : f± := (|f |±f)/2 ≥ 0.
We consider time dependent elliptic operators L of the form

L(x, t) =
N∑

k,m=1

akm(x, t)
∂2

∂xk∂xm
+

N∑
k=1

bk(x, t)
∂

∂xk
. (3.1)
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Definition 3.1. Given an open set U ⊂ RN , an interval I, and positive
numbers α0, β, we say that an operator L of the form (3.1) belongs to
E(α0, β, U, I) if its coefficients akm, bk are measurable functions defined on
U × I and they satisfy

|akm(x, t)|, |bk(x, t)| ≤ β ((x, t) ∈ U × I, k,m = 1, . . . , N),
n∑

k,m=1

akm(x, t)ξkξm ≥ α0|ξ|2 ((x, t) ∈ U × I, ξ ∈ RN).

Further we say that a matrix-valued function (cij)i,j∈S belongs to M+(β, U, I)
if its entries cij are measurable functions defined on U × I such that

|cij| ≤ β (i, j ∈ S) and cij ≥ 0 (i, j ∈ S i 6= j).

Let us now recall how linear equations are obtained from (1.1) via reflec-
tions in hyperplanes.

3.1 Linearization via reflections

Assume that Ω ⊂ RN is a domain satisfying the symmetry hypothesis (D1)
and let functions Fi satisfy (N1)-(N4). Let u be a nonnegative solution
of (1.1), (1.3) satisfying (2.3). Using the notation introduced in (2.1), let
uλ(x, t) = u(xλ, t) and wλ(x, t) := uλ(x, t) − u(x, t) for any x ∈ Ωλ, t > 0,
and λ ∈ [0, `). By (N3 cor), for each i ∈ S, x ∈ Ωλ, and t > 0, one has

∂tu
λ
i ≥ Fi(t, x, u(xλ, t), Dui(x

λ, t), D2ui(x
λ, t)).

Hence

∂tw
λ
i (x, t) ≥ Fi(t, x, u(xλ, t), Dui(x

λ, t), D2ui(x
λ, t))

− Fi(t, x, u(x, t), Dui(x, t), D
2ui(x, t))

= Lλi (x, t)w
λ
i +

n∑
j=1

cij(x, t)wλj (x, t) ∈ Ωλ × (0,∞),

(3.2)

where

Lλi (x, t) =
N∑

k,m=1

aikm(x, t)
∂2

∂xk∂xm
+

N∑
k=1

bik(x, t)
∂

∂xk
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and the λ-dependent coefficients aikm, bik, c
ij are obtained from the Hadamard

formula. Specifically (omitting the argument (x, t) of u and uλ),

cij(x, t) =


∫ 1

0

(Fi)uj(t, x, u
λ
1 , . . . , u

λ
j−1, uj + s(uλj − uj), uj+1, . . . ,

un, Dui, D
2ui) ds, if uλj (x, t) 6= uj(x, t),

σ, if uλ(x, t) = u(x, t),

bik(x, t) =


∫ 1

0

(Fi)pk(t, x, u
λ, . . . , uλxk−1

, (ui)xk + s((uλi )xk − (ui)xk),

(ui)xk+1
, . . . , D2ui) ds, if (uλi )xk(x, t) 6= (ui)xk(x, t),

0, if (uλi )xk(x, t) = (ui)xk(x, t),

aikm(x, t) =

∫ 1

0

(Fi)qkm(t, x, uλ, Duλi , D
2(ui) + s(D2uλi −D2ui)) ds,

where σ is a nonnegative constant. If (N5) is not assumed, the choice of the
constant σ is not relevant and we can set σ = 0; if (N5) is assumed we chose
σ as in (N5).

By (N1) the coefficients are well defined on Ωλ × (0,∞) and they are
measurable functions with absolute values bounded by β. This and (N2)
imply that Lλi ∈ E(α0, β,Ωλ, (0,∞)). Further, by (N4), we have (cij)i,j∈S ∈
M+(β,Ωλ, (0,∞)) and if (N5) is satisfied, then for any nonempty subsets
I, J ⊂ S with I ∩ J = ∅, I ∪ J = S, there exist i ∈ I, j ∈ J such that

cij(x, t) ≥ σ ((x, t) ∈ Ωλ × (0,∞)). (3.3)

The Dirichlet boundary condition and nonnegativity of ui yield

wλi ≥ 0 on ∂Ωλ × (0,∞), i ∈ S. (3.4)

3.2 Estimates of solutions

We now derive several estimates for solutions of a system of inequalities such
as (3.2). The results here are independent of the previous sections.

Throughout this subsection, Ω is a bounded, not necessarily symmetric,
domain in RN and α0, β, σ are fixed positive numbers.

We consider the following system of parabolic inequalities

∂twi − Li(x, t)wi ≥
n∑

i,j=1

cij(x, t)wj, x ∈ U, t ∈ (τ, T ), i ∈ S, (3.5)

15



where −∞ < τ < T ≤ ∞, U is an open subset of Ω, Li ∈ E(α0, β, U, (τ, T ))
(i ∈ S), and (cij)i,j∈S ∈ M+(β, U, (τ, T )). Sometimes we also assume the
following condition.

(IR) There exists σ > 0 such that for any nonempty subsets I, J ⊂ S with
I ∩ J = ∅, I ∪ J = S, there exist i ∈ I, j ∈ J such that

cij(x, t) ≥ σ ((x, t) ∈ U × (τ, T )). (3.6)

We say that w is a solution of (3.5) (or that it satisfies (3.5)) if it is
an element of the space (W 2,1

N+1,loc(U × (τ, T )))n and (3.5) is satisfied almost
everywhere. If (3.5) is complemented by a system of inequalities on ∂U ×
(τ, T ), we also require the solution to be continuous on Ū × (0, T ) and to
satisfy the boundary inequalities everywhere.

We will use several forms of the maximum principle, both for scalar equa-
tions and cooperative systems. For the maximum principle for strong solu-
tions of a single equation we refer to [30]. The following is a version of the
weak maximum principle for cooperative systems.

Theorem 3.2. Let U be an open subset of Ω, 0 ≤ τ < T < ∞, and let
Li ∈ E(α0, β, U, (τ, T )) (i ∈ S), (cij)i,j∈S ∈M+(β, U, (τ, T )). Assume

n∑
j=1

cij ≤ 0 in D × (τ, T ) (3.7)

for all i ∈ S. If w is a continuous function on Ū × [0, T ) which is a solution
of (3.5), then

max
i∈S

sup
U×(τ,T )

w−i ≤ max
i∈S

sup
∂P (U×(τ,T ))

w−i . (3.8)

If the right hand side of (3.8) is 0 (that is, the functions wi are nonnegative
on the parabolic boundary), then the conclusion holds regardless of condition
(3.7).

For classical solutions the result is proved in [37, Section 3.8]. To prove
it for strong solutions, one can use the arguments of [37] combined with the
maximum principle for strong solutions of scalar equations.

We now prove a maximum principle for small domains. It is a general-
ization of Lemma 3.1 in [36] to cooperative systems. Although not needed in
this paper, for future use we make one more generalization by allowing the
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solutions to satisfy nonzero Dirichlet boundary conditions. The maximum
principle for elliptic equations on small domains was first proved in [8]. For
related results and extensions to elliptic systems and parabolic equations see
[4, 9, 10, 13, 20, 36].

Lemma 3.3. Given any q > 0, there is a constant δ determined only by n,
N , α0, β0, diam(Ω), and q such that for any open set U ⊂ Ω with |U | < δ
and any 0 ≤ τ < T ≤ ∞ the following holds. If w ∈ C(Ū × [τ, T )) is a
solution a problem (3.5), where Li ∈ E(α0, β, U, (τ, T )) (i ∈ S), (cij)i,j∈S ∈
M+(β, U, (τ, T )), and if

wi(x, t) ≥ −ε̂ ((x, t) ∈ ∂U × (τ, T ), i ∈ S), (3.9)

where ε̂ ≥ 0 is a constant, then

max
i∈S
‖w−i (·, t)‖L∞(U) ≤ 2 max{max

i∈S
‖w−i (·, τ)‖L∞(U)e

−q(t−τ), ε̂} (t ∈ (τ, T )).

In the proof we employ the following lemma of [8].

Lemma 3.4. Given any a0 > 0, b0 ≥ 1, there exists δ > 0 determined only
by a0, b0, N , and diam(Ω) such that for any closed set K ⊂ Ω with |K| ≤ δ
there exists a smooth function g on Ω such that 1 ≤ g ≤ 2 and for any
symmetric positive definite matrix (aij) with

det(aij) ≥ aN0 (3.10)

one has
aijgxixj + b0(|∇g|+ g) < 0 (x ∈ K). (3.11)

Proof of Lemma 3.3. We claim that the assertion holds if δ is as in Lemma
3.4 with b0 := (n +

√
N)β + q, a0 := α0. To prove this, let U ⊂ Ω and

w satisfy the hypotheses of Lemma 3.3. Without loss of generality we may
assume that |Ū | < δ; otherwise we first prove the results for each open set
U1 ⊂⊂ U and then use an approximation argument (or alternatively we can
proceed similarly as in the proof of Lemma 3.1 in [36]). Let g be as in the
conclusion of Lemma 3.4 with K = Ū .

Denote by aikm, bik the coefficients of Li:

Li(x, t) =
N∑

k,m=1

aikm(x, t)
∂2

∂xk∂xm
+

N∑
k=1

bik(x, t)
∂

∂xk
.
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For each i ∈ S set zi := wi/g. Then zi(·, t) ≥ −ε̂ on ∂U for all t ∈ (τ, T ) and
a simple computation shows that z = (z1, . . . , zn) satisfies

(zi)t − L̃i(x, t)zi ≥
N∑
j=1
j 6=i

cij(x, t)zj + c̃ii(x, t)zi (x, t) ∈ U × (τ, T ), i ∈ S,

(3.12)
where

L̃i(x, t) = Li(x, t)−
2

g(x)

N∑
k,m=1

aikm(x, t)gxk(x)
∂

∂xm

and

c̃ii =
1

g
Lig + cii

≤ 1

g

(
N∑

k,m=1

aikmgxkxm +
√
Nβ(|Dg|+ g)

)

=
1

g

(
N∑

k,m=1

aikmgxkxm + (b0 − q − nβ)(|Dg|+ g)

)
.

By (3.11), we have

c̃ii < −q − nβ on U × (τ, T ) (i ∈ S).

We further transform (3.12) substituting zi(x, t) = e−qtẑi(x, t). Then z̃i sat-
isfies inequalities (3.12) with c̃ii replaced by ĉii = c̃ii+q < −nβ. This implies

ĉii +
n∑
j=1
j 6=i

cij < 0 in U × (τ, T ), i ∈ S.

We also have ẑi(x, s) ≥ −ε̂eqt for any i ∈ S, x ∈ ∂U , and s ∈ (τ, t). Hence
Theorem 3.2 implies

max
i∈S
‖ẑ−i (·, t)‖L∞(U) ≤ max{max

i∈S
‖ẑ−i (·, τ)‖L∞(U), ε̂e

qt} (t ∈ (τ, T )),

or, equivalently,

max
i∈S
‖z−i (·, t)‖L∞(U) ≤ max{max

i∈S
‖z−i (·, τ)‖L∞(U)e

q(τ−t), ε̂} (t ∈ (τ, T )).
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Finally, since 1 ≤ g ≤ 2, the substitution zi = wi/g yields the desired
estimate

max
i∈S
‖w−i (·, t)‖L∞(U) ≤ 2 max{max

i∈S
‖w−i (·, τ)‖L∞(U)e

q(τ−t), ε̂} (t ∈ (τ, T )).

The next lemma is proved in [36, Lemma 3.3].

Lemma 3.5. For any r > 0 there exist a constant γ > 0 depending only on
N, r, α0, β, and a smooth function hr on B(0, r) with

hr(x) > 0 (x ∈ B(0, r)), hr(x) = 0 (x ∈ ∂B(0, r)),

such that the following holds. For any x0 ∈ Ω with U := B(x0, r) ⊂ Ω, any
L ∈ E(α0, β, U, (0,∞)), and any c ∈ L∞(U × (0,∞)) with ‖c‖L∞(U×(0,∞)) ≤
β, the function φ(x, t) = e−γthr(x− x0) satisfies

∂tφ− L(x, t)φ− c(x, t)φ < 0, (x, t) ∈ B(x0, r)× (0,∞),
φ = 0 (x, t) ∈ ∂B(x0, r)× (0,∞).

(3.13)

We now need to introduce further notation. For an open bounded subset
Q of Rn+1, a bounded continuous function f : Q→ R, and p > 0, we set

[f ]p,Q =

(
1

|Q|

∫
Q

|f |pdx dt
) 1

p

.

Also
[f ]∞,Q = sup

Q
|f |.

Lemma 3.6. Given d > 0, ε > 0, θ > 0, there are positive constants κ, κ1,
and p, determined only by n, N , diam Ω, α0, β, d, ε and θ, such that the
following statement holds. Assume that τ ∈ R; D and U are domains in Ω
with D ⊂⊂ U , dist (D̄, ∂U) ≥ d, and |D| > ε; Li ∈ E(α0, β, U, (τ, τ + 4θ))
for all i ∈ S; and (cij)i,j∈S ∈ M+(β, U, (τ, τ + 4θ)). If v = (v1, . . . , vn) ∈
(C(Ū × [τ, τ + 4θ]))n is a solution of (3.5), then for all i ∈ S

inf
D×(τ+3θ,τ+4θ)

vi(x, t) ≥ κ[v+
i ]p,D×(τ+θ,τ+2θ) − κ1 max

j∈S
sup

∂P (U×(τ,τ+4θ))

v−j .
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Remark 3.7. Lemma 3.6 applied to a nonnegative solution v of (3.5), gives
a weak component-wise Harnack inequality for v:

inf
D×(τ+3θ,τ+4θ)

vi(x, t) ≥ κ[vi]p,D×(τ+θ,τ+2θ).

It is clear from the proof below that in this case the continuity of v up to the
boundary of U × (τ, T ) is not needed. Under the irreducibility assumption
(IR), the full Harnack inequality for nonnegative solutions is given in The-
orem 3.9 below. For elliptic cooperative systems similar results have been
proved in [3, 14, 12]. The most general ones are those in [12], where viscosity
solutions are considered. We only deal with strong solutions and the assump-
tions in our Harnack type results are stronger than the parabolic analogs of
the assumptions in [12] (this is more than satisfactory for our applications
to classical solutions of nonlinear equations). For parabolic systems in the
divergence form a Harnack type result is given in [31].

For a single equation, Lemma 3.6 is proved in a more general form in
[36, Lemma 3.5]. We now state a version of that result as we need it in
the proof of Lemma 3.6 and elsewhere in this paper. The lemma is an
extension of Krylov-Safonov Harnack inequality [28] and its weak version for
supersolutions [24, 30].

Lemma 3.8. Given d > 0, ε > 0, θ > 0, there are positive constants
κ, κ2, p, determined only by N , diam Ω, α0, β, d, ε and θ, such that the
following statement holds. Assume that τ ∈ R; D and U are domains in Ω
with D ⊂⊂ U , dist (D̄, ∂U) ≥ d, and |D| > ε; L ∈ E(α0, β, U, (τ, τ + 4θ));
c ∈ L∞(U×(τ, τ+4θ)) satisfies m := |c|L∞(U×(τ,τ+4θ)) ≤ β; and g ∈ LN+1(U×
(τ, τ + 4θ)). If v ∈ C(Ū × [τ, τ + 4θ]) is a solution of

vt − L(x, t)v ≥ c(x, t)v + g(x, t) (x, t) ∈ U × (τ, τ + 4θ), (3.14)

then

inf
D×(τ+3θ,τ+4θ)

v(x, t) ≥ κ[v+]p,(D×(τ+θ,τ+2θ))

− κ1‖g‖LN+1(U×(τ,τ+4θ)) − sup
∂P (U×(τ,τ+4θ))

emθv−.

If (3.14) is an equation, rather than inequality, then the conclusion holds
with p =∞ and with κ, κ2 independent of ε.
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We remark that in the statement regarding supersolutions, one can re-
place g in (3.14) (and in the conclusion) with g−.

Proof of Lemma 3.6. For i ∈ S let

gi(x, t) :=
n∑
j=1
j 6=i

cij(x, t)v−j .

Obviously, gi ∈ L∞(U × (τ, τ + 4θ)). Since cij ≥ 0 for i 6= j, vi satisfies

(vi)t − Li(x, t)vi − cii(x, t)vi ≥ gi(x, t), (x, t) ∈ U × (τ, τ + 4θ).

Therefore

inf
D×(τ+3θ,τ+4θ)

vi(x, t) ≥ κ[v+
i ]p,D×(τ+θ,τ+2θ)

− κ2‖gi‖LN+1(U×(τ,τ+4θ)) − sup
∂P (U×(τ,τ+4θ))

e4Mθv−i , (3.15)

where κ, κ2, and p are as in Lemma 3.8 andM = maxi,j∈S supU×(τ,τ+4θ) c
ij(x, t).

Now
‖gi‖LN+1(U×(τ,τ+4θ)) ≤ κ̃2‖gi‖L∞(U×(τ,τ+4θ))

≤ κ̃2βnmax
j∈S
‖v−j ‖L∞(U×(τ,τ+4θ)),

(3.16)

where κ̃2 depends only on diam(Ω) and N . Next, the function ṽ := enMtv
satisfies the inequalities

(ṽi)t − Li(x, t)ṽi ≥
n∑
j=1

cij(x, t)ṽj − nMṽi, (x, t) ∈ U × (τ, τ + 4θ), i ∈ S,

where, by the definition of M ,

n∑
j=1

cij(x, t)− nM ≤ 0 ((x, t) ∈ U × (τ, τ + 4θ), i ∈ S).

Hence, Theorem 3.2 implies

max
i∈S

sup
U×(τ,τ+4θ)

ṽ−i ≤ max
i∈S

sup
∂P (U×(τ,τ+4θ))

ṽ−i .
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Consequently, by (3.16),

‖gi‖LN+1(U×(τ,τ+4θ)) ≤ κ̃2nβe
−nMτ max

i∈S
sup

∂P (U×(τ,τ+4θ))

ṽ−i

≤ κ̃2nβe
4nMθ max

i∈S
sup

∂P (U×(τ,τ+4θ))

v−i .

Substituting this into (3.15), we obtain the estimate stated in Lemma 3.6.

The last result of this section is a stronger version of the Harnack inequal-
ity for irreducible systems.

Theorem 3.9. Given d > 0, ε > 0, θ > 0, there are positive constants κ̄
and p, determined only by n, N , diam Ω, α0, β, σ, d, ε and θ, such that the
following statement holds. Assume that

(A) D and U are domains in Ω with D ⊂⊂ U , dist (D̄, ∂U) ≥ d, and |D| >
ε; Li ∈ E(α0, β, U, (τ, τ+4θ)) for all i ∈ S; (cij)i,j∈S ∈M+(β, U, (τ, τ+
4θ)) is such that (IR) holds; and v = (v1, . . . , vn) ∈ (C(Ū×[τ, τ+4θ]))n

is a nonnegative solution of (3.5).

Then for all i ∈ S

inf
D×(τ+ 7

2
θ,τ+4θ)

vi(x, t) ≥ κ̄max
j∈S

[vj]p,D×(τ+θ,τ+2θ). (3.17)

If all inequalities in (3.5) are replaced by equations, then the conclusion
holds with p =∞ and with κ̄ independent of ε.

Proof. Given d > 0, ε > 0, θ > 0, we first fix p and κ such that the statement
of Lemma 3.6 is valid with d replaced by d/(2n). These constants p and κ
depend only on the indicated quantities.

Assume (A) is satisfied. Relabeling the components of v, we may without
loss of generality assume that

[v1]p,D×(τ+θ,τ+2θ) = K0 := max
j∈S

[vj]p,D×(τ+θ,τ+2θ).

We may also assume that cii ≥ 0 for all i ∈ S. Indeed, these relations are
achieved by the substitution v → e−βtv, which clearly does not affect the
validity of the statement.
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For each k ∈ S denote τ k = τ + 7
2
θ − θ

2k
and fix a sequence of domains

{Uk}nk=1 such that D ⊂⊂ Uk+1 ⊂⊂ Uk ⊂⊂ U and dist(Ūk+1, ∂Uk) ≥ d
2n

for
k = 1, . . . , n− 1.

We now use an induction argument. In the first step we apply Lemma
3.6 (see also Remark 3.7), with d replaced by d/(2n), to the sets U1 ⊂ U .
Note that the application of Lemma 3.6 is legitimate by the choice of U1.
This gives

inf
U1×(τ1,τ+4θ)

v1(x, t) = inf
U1×(τ+3θ,τ+4θ)

v1(x, t) ≥ κ[v1]p,U1×(τ+θ,τ+2θ) ≥ κ1K0.

Here κ1 = κεp/|B(0, diam Ω)|p and the last inequality follows from the rela-
tions

[v1]p,U1×(τ+θ,τ+2θ) ≥
(
|D|
|U1|

)p
[v1]p,D×(τ+θ,τ+2θ)

≥
(
ε

|Ω|

)p
K0 ≥

εp

|B(0, diam Ω)|p
K0.

Next assume that for some k ∈ S there is a subset Sk of S with k elements
such that

inf
Uk×(τk,τ+4θ)

vj(x, t) ≥ κkK0 (j ∈ Sk), (3.18)

where κk is a constant depending only on the indicated quantities. If k = n,
then the theorem is already proved: (3.18) and the relations D ⊂ Uk, τk <
τ + 7/2θ give (3.17) with κ̄ = κn. We proceed assuming 1 ≤ k < n. By
(IR), there exist j ∈ Sk and i ∈ S \ Sk such that cij ≥ σ in U × (τ, τ + 4θ).
Then, since (cij)i,j∈S ∈M+(β, U, (τ, τ + 4θ)), cii ≥ 0, and v is a nonnegative
solution,

(vi)t − Li(x, t)vi ≥
n∑
k=1

cik(x, t)vk ≥ cij(x, t)vj

≥ σκkK0 ((x, t) ∈ Uk × (τk, τ + 4θ)).

Fix an arbitrary point x0 ∈ Uk+1 and set ρ = d/(2n). Since dist(Ūk+1, ∂Uk) ≥
d/2n, we have B(x0, ρ) ⊂ Uk. Define a radial function φ : B(x0, ρ) → R by

φ(x, t) = η( |x−x0|
ρ

, t), where

η(r, t) =

{
(t− τk)V if r ≤ 1

2
, t ∈ [τk, τ + 4θ],

(t− τk)V (1− (2r − 1)3) if 1
2
< r ≤ 1, t ∈ [τk, τ + 4θ],
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and V is a positive constant to be specified below. Clearly φ ∈ C2,1(B̄(x0, ρ)×
[τk, τ+4θ]), φ(x, t) = 0 for |x| = ρ and t ∈ [τk, τ+4θ], φ(·, τk) = 0 in B(x0, ρ),
and

φt(x, t)− Li(x, t)φ(x, t) = V (x ∈ B(x0,
ρ

2
), t ∈ [τk, τ + 4θ]).

Further, it is clear that there is a constant K ≥ 1 depending only on N , β,
θ, d, and n such that

φt(x, t)− Li(x, t)φ(x, t) ≤ |φt(x, t)− Li(x, t)φ(x, t)| ≤ KV

((x, t) ∈ B(x0, ρ) \B(x0,
ρ

2
))× [τk, τ + 4θ]).

Hence, choosing V := σκkK0/K ≤ σκkK0, we see that vi and φ are, re-
spectively, a supersolution and subsolution of the same scalar equation on
B(x0, ρ) × (τk, τ + 4θ). Moreover, on ∂P (B(x0, ρ) × (τk, τ + 4θ)) we have
vi ≥ 0 = φ. The maximum principle therefore implies

v(x0, t) ≥ φ(x0, t) ≥
σκkK0

K
(τk+1 − τk) ≥ κk+1K0 (t ∈ (τk+1, τ + 4θ)),

where

κk+1 =
σκkθ

4K2k+1
.

Since x0 ∈ Uk+1 was arbitrary, we obtain (3.18) with k replaced by k+ 1 and
with Sk+1 = Sk ∪ {i}. This completes the induction argument showing that
after a finite number of steps we establish the validity of (3.18) with k = n,
hence of (3.17), as noted above.

To prove the last statement of the theorem we combine, as usual, estimate
(3.17) with a local maximum principle, as formulated in Lemma 3.10 below.
Assume that all inequalities in (3.5) are replaced by equations and let d > 0
and θ > 0 be given. Assume that (A) holds with condition |D| > ε deleted.

Let D̃ be a domain with the following properties:

D ⊂⊂ D̃ ⊂⊂ U, dist(D, ∂D̃) >
d

4
, dist(D̃, ∂U) >

d

4
.

Set ε := |B(0, d/4)| and note that |D̃| > ε. With this ε and with d replaced by
d/4, we apply the already proved statement of the theorem. Hence we obtain
(3.17) with D replaced by D̃ and with some constants p and κ̄ determined
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only by the indicated quantities, which now refer to n, N , diam Ω, α0, β, σ,
d, and θ (not ε). Hence

inf
D×(τ+ 7

2
θ,τ+4θ)

vi(x, t) ≥ inf
D̃×(τ+ 7

2
θ,τ+4θ)

vi(x, t) ≥ κ̄max
j∈S

[vj]p,D̃×(τ+θ,τ+2θ).

The proof will be completed if we show that the last term can be estimated
below by CK1, where

K1 := max
j∈S

sup
D×(τ+θ,τ+2θ))

vj.

Here C is a constant depending only on the indicated quantities and such
are the constants C1, C2, . . . in the forthcoming estimates.

Obviously, K1 = vm(x0, t0) for some m ∈ S and (x0, t0) ∈ D̄× [τ + θ, τ +
2θ]. Assume first that t0 > τ + 5θ/4. Set δ = min{d/4,

√
θ/2}. Lemma 3.10

gives

K1 = vm(x0, t0) ≤ C1 max
j∈S

[vj]p,B(x0,δ)×(t0−δ2,t0) ≤ C2 max
j∈S

[vj]p,D̃×(τ+θ,τ+2θ).

Thus we have proved the desired estimate under the assumption t0 > 5τ/4.
In other words, we have proved the estimate

inf
D×(τ+ 7

2
θ,τ+4θ)

vi(x, t) ≥ C3 max
j∈S
‖vj‖L∞(D×(τ+ 5θ

4
,τ+2θ)) (i ∈ S).

Applying this result with τ replaced by τ + 7θ/12 and θ by θ/3, we next
obtain

C4 max
j∈S
‖vj‖L∞(D×(τ+θ,τ+ 5θ

4
) ≤ inf

D×(τ+ 7
4
θ,τ+ 23

12
θ)
vi(x, t) ≤ sup

D×(τ+ 5
4
θ,τ+2θ)

vi(x, t).

Combining this with the previous estimate, we conclude that (3.17) holds
with p =∞ and some constant κ̄ depending only on the indicated quantities.

Lemma 3.10. For some (x0, t0) ∈ RN+1 and δ > 0 assume that

Li ∈ E(α0, β, B(x0, δ), (t0 − δ2, t0)) (i ∈ S),

(cij)i,j∈S ∈ M+(β,B(x0, δ), (t0 − δ2, t0)), and v is a solution of the system
(3.5) on U × (τ, T ) = B(x0, δ)× (t0− δ2, t0)) with the inequality sign reversed
(replaced by “≤”). Then for each p > 0 and ρ ∈ (0, 1) one has

max
j∈S

sup
B(x0,ρδ)×(t0−(ρδ)2,t0)

vj ≤ C0 max
j∈S

[vj]p,B(x0,δ)×(t0−δ2,t0),

where C0 is a constant determined only by δ, ρ, p, n, N , α0, β.
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The proof of this lemma can be carried out in a similar way as in the
scalar case, see [30, Theorem 7.21]. Since (3.5) is coupled only in the zero-
oder terms, the adaptation of the proof in [30] is straightforward and is
omitted. We remark that the cooperativity condition cij ≥ 0 is not needed
and can be omitted in the assumptions of this lemma.

4 Proofs of the symmetry results

In this section the assumptions are as in Section 2. Specifically, Ω is a
bounded domain in RN , satisfying (D1), (D2), the nonlinearity F satisfies
(N1) - (N4) and at some places, where explicitly stated, also (N5). We
consider a solution u of (1.1), (1.3) satisfying (2.3) and (2.4).

We use the notation introduced at the beginning of Section 2 and the
following one. For any function g on Ω, scalar or vector valued, and any
λ ∈ [0, `) we let

Vλg(x) := g(xλ)− g(x), (x ∈ Ωλ).

We also set

wλ(x, t) := Vλu(x, t) = u(xλ, t)− u(x, t) (x ∈ Ωλ, t ≥ 0).

As shown in Subsection 3.1, the function wλ solves a linear problem (3.2),
(3.4), with Li ∈ E(α0, β,Ωλ, (0,∞)), (cij)i,j∈S ∈ M+(β,Ωλ, (0,∞)). If (N5)
is satisfied, then also the irreducibility condition (IR) holds with U = Ωλ,
τ = 0, T =∞. Hence the results of Subsection 3.2 are applicable to wλ. We
use this observation below, often without notice.

We carry out the process of moving hyperplanes in the following way.
Starting from λ = ` we move λ to the left as long as the following property
is preserved

lim
t→∞

max
i∈S
‖(wλi (·, t))−‖L∞(Ωλ) = 0. (4.1)

We show below that the process can get started and then examine the limit
of the process given by

λ0 := inf{µ > 0 : lim
t→∞

max
i∈S
‖(wλi (·, t))−‖L∞(Ωλ) = 0 for each λ ∈ [µ, `) }.

(4.2)

Remark 4.1. Note that, by compactness of {u(·, t) : t ≥ 0} in E, (4.1) is
equivalent to the following property: for each z ∈ ω(u) and i ∈ S one has
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Vλzi ≥ 0 in Ωλ. By the definition of λ0 and continuity of the functions in
ω(u), we have

Vλ0zi(x) ≥ 0 (x ∈ Ωλ0 , z ∈ ω(u), i ∈ S, λ ∈ [λ0, `)). (4.3)

Also note that the function zi is nonincreasing in x1 in Ωλ0 . Indeed, if x1 > x̃1

and (x1, x
′), (x̃1, x

′) ∈ Ωλ0 , then Vλzi ≥ 0 with λ = (x1 + x̃1)/2 > λ0 gives
zi(x1, x

′) ≥ zi(x̃1, x
′).

Lemma 4.2. We have λ0 < `. Moreover |Ωλ0 | ≥ δ where δ is a constant
depending only on α0, β,Ω, n,N .

Proof. Let δ > 0 be as in Lemma 3.3 with q = 1. If λ < ` is such that
|Ωλ| < δ, then Lemma 3.3 with w = wλ, ε̂ = 0, τ = 0 and T =∞ gives

max
i∈S
‖(wλi (t))−‖L∞(Ωλ) ≤ Ce−t → 0 as t→∞.

This and the definition of λ0 imply that |Ωλ0| ≥ δ. Since |Ωλ| < δ for λ ≈ `,
we have λ0 < `.

Lemma 4.3. For any z ∈ ω(u), λ ∈ [λ0, `), and any connected component
U of Ωλ the following statements hold.

(i) For each i ∈ S either Vλzi ≡ 0 or Vλzi > 0 in U .

(ii) If (N5) holds and Vλzi 6≡ 0 for some i ∈ S, then Vλzj > 0 in U for each
j ∈ S.

Proof. Fix any λ ∈ [λ0, `) and z ∈ ω(u), and let U be a connected component
of Ωλ. Assume that Vλzi 6≡ 0 on U for some and i ∈ S. Since Vλzi is
continuous and nonnegative, we have

Vλzi > 4r0 in B̄0

for some open ball B0 ⊂ U and r0 > 0. Choose an increasing sequence
tk →∞ such that u(·, tk)→ z in E. Then wλ(·, tk)→ Vλz, hence for a large
enough k0 we have

wλi (x, tk) > 2r0 (x ∈ B̄0, k > k0).

By the equicontinuity property (see (2.4)), there is ϑ > 0 independent of k
such that

wλi (x, t) > r0 ((x, t) ∈ B̄0 × [tk − 4ϑ, tk], k > k0). (4.4)
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Take now an arbitrary domain D ⊂⊂ U with B0 ⊂⊂ D. In view of (4.1) and
(4.4), an application of Lemma 3.6 (with v = wλ, τ = tk − 4ϑ, θ = ϑ and k
sufficiently large) shows that there is r1 > 0 such that for j = i we have

wλj (·, tk) > r1 in D̄. (4.5)

Letting k →∞, we obtain

Vλzj ≥ r1 in D̄.

Since the domain D was arbitrary, we have Vλzj > 0 in U for j = i. This
proves (i). If (N5) holds then we can also apply the full Harnack inequality,
Theorem 3.9, to v = wλ. In this case, (4.4) implies (4.5) for each j ∈ S and
the above arguments prove (ii).

In the next key lemma we consider the possibility λ0 > 0. We show that
it implies that each z ∈ ω(u) has a partial reflectional symmetry around
Hλ0 . This will be needed in the proof of Theorem 2.4 and also in the proof
of Theorem 2.1 (where the possibility λ0 > 0 is ruled out).

Lemma 4.4. If λ0 > 0, then for each z ∈ ω(u) there exist i ∈ S and a
connected component U of Ωλ0 such that Vλ0zi ≡ 0 in U .

Proof. The proof is by contradiction. Assume that the statement is not true.
Then, by Lemma 4.3, there exists z̃ ∈ ω(u) such that

Vλ0 z̃i(x) > 0 (x ∈ Ωλ0 , i ∈ S). (4.6)

We show that this implies the existence of ε0 > 0 such that (4.1) holds for all
λ ∈ (λ0− ε0, λ0], which is a contradiction to the definition of λ0. We follow a
similar scheme of arguing as in the proof proof of Lemma 4.2 in [36]. First we
show that for λ ≈ λ0, wλ is positive in a bounded cylinder D× [t̄, t̄+θ] which
has a “small” complement in Ωλ × [t̄, t̄+ θ] and the functions wλi have small
negative parts in the complement. We then show that this implies (4.1).

In what follows we assume that (4.6) holds.
Denote by (tk)k∈N an increasing sequence converging to ∞ for which

u(·, tk)→ z̃ in E.
For the remainder of the proof, we fix positive constants r0, γ, and δ as

follows. First we choose r0 > 0 such that each connected component of Ωλ0

contains a closed ball of radius r0. Such a choice is possible as Ωλ0 has only
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finitely many connected components by (D2). Corresponding to r = r0 (and
the constants α0, β from (N1), (N2)), we take γ as in Lemma 3.5. Finally,
let δ > 0 be such that the conclusion of Lemma 3.3 holds for k = γ + 1.

Now let D ⊂⊂ Ωλ0 be an open set such that |Ωλ0 \ D| < δ/2 and such
that the intersection of D with any connected component of Ωλ0 is a domain
containing a ball of radius r0. In particular, D has the same number of
connected components as Ωλ0 . Let ε1 > 0 be so small that |Ωλ0−ε1 \ Ωλ0| <
δ/2, hence also

|Ωλ \D| < δ (λ ∈ (λ0 − ε1, λ0]). (4.7)

Using (4.6) and the equicontinuity of wλ0 one shows easily (cp. the proof
of (4.4) in the proof of Lemma 4.3) that there exist positive constants θ, d1,
and k1 such that for each i ∈ S

wλ0
i (x, t) > 2d1 (x ∈ D̄, t ∈ [tk, tk + 4θ], k > k1). (4.8)

By the equicontinuity of the function u we have

sup
D×[tk,tk+4θ]

j∈S

|wλj − w
λ0
j | → 0 (4.9)

as λ→ λ0, uniformly with respect to k. This and (4.8) imply that, possibly
with a smaller ε1 > 0, for each k > k1

wλi (x, t) > d1 (i ∈ S, x ∈ D̄, t ∈ [tk, tk + 4θ], λ ∈ (λ0 − ε1, λ0]). (4.10)

Thus we have established the positivity of wλ in the bounded cylinder D̄ ×
[tk, tk + 4θ].

Our next aim is to show that the functions wλi (·, tk) have small negative
parts. Namely, we claim that given any ς > 0 there are k2 ≥ k1 > 0 and
ε2 ∈ (0, ε1] such that for any λ ∈ (λ0 − ε2, λ0]

‖(wλi )−(·, tk)‖L∞(Ωλ) ≤ ς (i ∈ S, k > k2). (4.11)

The arguments here are very similar to those used in the proof of estimate
(4.10) in [36], we just recall them briefly. By (4.3), estimate (4.11) holds
for λ = λ0 with ς replaced by ς/2 if k2 is large enough. Therefore, by the
equicontinuity of u, estimate (4.11) with Ωλ replaced by Ωλ0 also holds for
all λ ≈ λ0. Next one shows, using the equicontinuity of u and Dirichlet
boundary conditions, that there exists a neighborhood E of ∂Ω, independent
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of λ, such that (4.11) holds with Ωλ replaced by Ωλ∩E . Finally, the remaining
set Ω̄λ \ (E ∪ Ωλ0) is contained in an arbitrarily small neighborhood G0 of
Hλ0 ∩Ωλ0 \E if λ ≈ λ0. Since wλ0(·, t) vanishes on Hλ0 ∩Ωλ0 \E ⊂⊂ Ω, using
the equicontinuity we can choose G0 so that G0 ⊂⊂ Ω and (4.11) holds for
λ = λ0 with Ωλ replaced by G0 and with ς replaced by ς/2. Then, using the
equicontinuity one more time, we obtain that (4.11) holds with Ωλ replaced
by G0 for any λ ≈ λ0. Combining all these estimates we conclude that (4.11)
holds for all λ ∈ (λ0 − ε2, λ0] if ε2 is small enough.

Our final goal is to prove that (4.10) and (4.11) with a sufficiently small
ς imply that if k > k2, then

wλi (x, t) > 0 (i ∈ S, x ∈ D̄, t ∈ [tk,∞), λ ∈ (λ0 − ε2, λ0]). (4.12)

Observe that (4.12), in conjunction with wλi ≥ 0 on ∂Ωλ × (0,∞), gives
wλi ≥ 0 on ∂(Ωλ \ D) × (tk,∞). Since |Ωλ \ D| < δ, Lemma 3.3 and our
choice of δ imply that for any λ ∈ (λ0 − ε2, λ0]

lim
t→∞

max
i∈S
‖(wλi (·, t))−‖L∞(Ωλ) = lim

t→∞
max
i∈S
‖(wλi (·, t))−‖L∞(Ωλ\D) = 0.

Thus having proved (4.12), we will have the desired contradiction and the
proof of Lemma 4.4 will be complete.

To derive (4.12) we assume that (4.11) holds, ς being a sufficiently small
constant as specified below, see (4.17). Fix any k > k2. Let T be the maximal
element of (tk,∞] such that

wλi (x, t) > 0 (i ∈ S, x ∈ D̄, t ∈ (tk, T ), λ ∈ (λ0 − ε2, λ0]). (4.13)

By (4.10), T > tk+4θ. We need to prove that T =∞. Assume T <∞. Then
there exist λ ∈ (λ0 − ε2, λ0], x̄ ∈ ∂D, and i0 ∈ S such that wλi0(x̄, t) = 0. We
show that this leads to a contradiction by estimating wλi0 from below using
Lemma 3.6. For that we first estimate the functions (wλi )−, i ∈ S, from
above. We have wλi ≥ 0 on ∂(Ωλ \ D) × (tk, T ) and |Ωλ \ D| < δ. Hence
(4.13), Lemma 3.3, and the choice of δ give

‖(wλi )−(·, t)‖L∞(Ωλ\D) ≤ 2e−(γ+1)(t−tk) max
j∈S
‖(wλj )−(·, tk)‖L∞(Ωλ\D)

≤ 2e−(γ+1)(t−tk)ς (t ∈ [tk, T ], i ∈ S),
(4.14)

where ς is as in (4.11).
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Next we estimate wλi0 from below on a ball in D. Let D0 be a connected
component of D such that x̄ ∈ ∂D0. By the manner in which D was chosen,
D0 contains a ball B0 = B(x0, r0) of radius r0. Recall that γ was defined so
that the statement of Lemma 3.5 holds with r = r0. Let hr0 be as in that
statement. Then for each i ∈ S the function φ(x, t) = e−γthr(x−x0) satisfies

∂tφ− Lλi (x, t)φ < cii(x, t)φ, (x, t) ∈ B0 × (tk,∞),
φ = 0 (x, t) ∈ ∂B0 × (tk,∞),

where Lλi ∈ E(α0, β,Ωλ, (0,∞)) and (cij)i,j∈S ∈ M+(β,Ωλ, (0,∞)) are as in
(3.2). Since cij ≥ 0 for i 6= j, we also have

∂tφ− Li(x, t)φ <
n∑
j=1

cij(x, t)φ (x, t) ∈ B0 × (tk,∞), i ∈ S.

We view this as a system of inequalities for the vector function (φ, . . . , φ); it
has the opposite inequality signs than the system satisfied by wλ. For t = tk
we have by (4.10)

wλi (x, tk) > d1 ≥ d1
φ(x, tk)

‖φ(·, tk)‖L∞(B0)

(x ∈ B0, i ∈ S).

Also, as B0 ⊂ D, we have wj ≥ 0 = φ on ∂B0 × (tk, T ). These relations
justify an application of Theorem 3.2 to wλ − d1(φ, . . . , φ)/‖φ(·, tk))‖L∞(B0)

and we conclude that

wλi0(x, t) ≥ d1
φ(x, t)

‖φ(·, tk)‖L∞(B0)

= d1e
−γ(t−tk) hr0(x− x0)

‖hr0(· − x0)‖L∞(B0)

((x, t) ∈ B0 × (tk, T )). (4.15)

Equipped with (4.14), (4.15), we are ready to use Lemma 3.6 in order to
estimate wλi0 from below everywhere in D0× (tk, T ). We apply the lemma on
the interval (T − 4θ, T ) and the sets D0 ⊂⊂ Ωλ, noting that (wλi0)

+ = wλi0 in
D0 × (T − 4θ, T ) and dist(D̄0,Ωλ) ≥ d := dist(D̄,Ωλ0). This gives

wλi0(x, T ) ≥ κ[wλi0 ]p,D0×(T−3θ,T−2θ) − κ1 max
j∈S

sup
∂P (Ωλ×(T−4θ,T ))

(wλj )− (x ∈ D0),

where κ, κ1, and p are constants depending only on d, n, N , diam Ω, α0, β,
θ and r0. By (4.15), (4.14), we therefore have

wλi0(x, T ) ≥ κe−γ(T−tk)G(p, r0)− 2κ1e
−(γ+1)(T−4θ−tk) (x ∈ D0),
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where

G(p, r0) :=
1

‖hr0‖L∞(B0)

(
1

|D0|

∫
B0

hpr

) 1
p

> 0.

Consequently

inf
x∈D0

wλi0(x, T ) ≥ e−(γ+1)(T−tk)(κG(p, r0)− κ1ς). (4.16)

We now specify the choice of ς in (4.14):

ς := G(p, r0)/2κ1 (4.17)

This is legitimate, as the number is independent of k and λ. Then (4.16)
and the continuity of wλ imply that wλi0(·, T ) > 0 on ∂D0 contradicting
wλi0(x̄, T ) = 0. This contradiction shows that the maximal T for which (4.13)
holds is equal ∞, that is, (4.12) must hold. As remarked above, this com-
pletes the proof of Lemma 4.4.

The following lemma addresses the strict monotonicity of the functions
in ω(z). The proof is a straightforward modification of the corresponding
lemma in a scalar case, see [36, Lemma 4.6], and is omitted.

Lemma 4.5. Assume that Ωλ0 is connected. Then for any z ∈ ω(u) and any
i ∈ S, either zi ≡ 0 on Ωλ0 or else zi > 0 in Ωλ0 and zi is strictly decreasing
in x1 in Ωλ0. The latter holds in the form (zj)x1 < 0 if (zj)x1 ∈ C(Ωλ0) for
some j ∈ S.

We need one more lemma for the proof of our symmetry results. Its
assumption is identical to hypothesis (i) of Theorem 2.1.

Lemma 4.6. Assume that there exists ϕ = (ϕ1, . . . , ϕn) ∈ ω(u) such that
ϕi > 0 in Ω for all i ∈ {1, . . . , n}. Then λ0 = 0.

Proof. Assume λ0 > 0. By Lemma 4.4, there is i ∈ S such that Vλ0ϕi ≡ 0 on
some connected component of Ωλ0 . In view of Dirichlet boundary condition,
this clearly implies that ϕi vanishes somewhere in Ω a contradiction.

Now we are ready to prove our symmetry theorems.
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Proof of Theorems 2.1 and 2.4 . We claim that the statements (i)-(iii) of
Theorem 2.4 hold with λ0 defined in (4.2). First assume λ0 > 0. Then
statement (i) follows directly from Remark 4.1 and Lemmas 4.3, 4.4; state-
ment (ii) follows from (i) and Lemma 4.3; and statement (iii) follows from
(ii) and Lemma 4.5.

Now we consider the case λ0 = 0. Note that Ωλ0 = Ω0 is connected by
(D1). By Lemma 4.5, for each z ∈ ω(u) and i ∈ S either zi ≡ 0 (and then
of course V0zi ≡ 0) or zi > 0 in Ω0. As V0zi ≥ 0 in Ω0 by (4.3), the relation
zi > 0 in Ω0 implies zi > 0 in Ω. We conclude that for each z ∈ ω(u)

either zi ≡ 0 in Ω or zi > 0 in Ω (i ∈ S). (4.18)

In case (N5) holds, a stronger version of this statement follows from Lemma
4.3(ii):

either z ≡ 0 in Ω or zi > 0 in Ω for each i ∈ S. (4.19)

Now observe that statement (i) of Theorem 2.4 is trivially satisfied for
any z ∈ ω(u) such that zi ≡ 0 for some i ∈ S. Similarly, if (N5) holds, then
statements (ii) and (iii) are satisfied for any such z, for it has to satisfy z ≡ 0
by (4.19). Thus, in view of (4.18), we only need to consider the case that
there exists ϕ ∈ ω(u) with ϕi > 0 for all i ∈ S, that is, hypothesis (i) of
Theorem 2.1 is satisfied. Because of this and Lemma 4.6, the remaining part
of the proof is common to Theorems 2.4 and 2.1. We prove that hypothesis
(i) implies

V0zi ≡ 0 (z ∈ ω(u), i ∈ S). (4.20)

This will complete the proof of the symmetry statements of Theorems 2.4 and
2.1 (note that hypothesis (ii) Theorem 2.1 implies hypothesis (i) by (4.19)).
The strict monotonicity statements follow from Lemma 4.5 as above.

To prove (4.20), we apply the results of this section to the solution
ũ(x1, x

′, t) = u(−x1, x
′, t) in place of u (ũ is indeed a solution as F is even

in x1). Denote by λ̃0 the corresponding number defined as in (4.2) with u
replaced by ũ. Since ũ has a strictly positive element ϕ̃ in its ω-limit set,
Lemma 4.6 gives λ̃0 = 0. This clearly implies (4.20).

Proof of Theorem 2.3. For each i ∈ S we have, similarly as in Subsection
3.1,

(ui)t = Fi(t, x, u,Dui, D
2ui)− Fi(t, x, 0, 0, 0) + Fi(t, x, 0, 0, 0)

= Li(x, t)ui +
n∑
j=1

cij(x, t)uj + Fi(t, x, 0, 0, 0) (x ∈ Ω, t > 0)
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for suitable Li ∈ E(α0, β,Ω, (0,∞)) and (cij)i,j∈S ∈ M+(β,Ωλ, (0,∞)). Set-
ting gi(x, t) := −F−i (t, x, 0, 0, 0) and using the relations cij ≥ 0 for i 6= j, we
obtain the following scalar inequality for each i ∈ S

(ui)t ≥ Li(x, t)ui + cii(x, t)ui + gi(x, t) (x ∈ Ω, t > 0).

By (2.6), supx∈Ω gi(x, t)→ 0 as t→∞.
Such scalar inequalities are considered in the proof of Theorem 2.5 of [36].

The arguments used there can be repeated for each i to obtain the conclusion
of Theorem 2.3.

Proof of Theorem 2.5. Let λ0 be as in (4.2). It is sufficient to prove that
under the assumptions of Theorem 2.5 we have λ0 = 0. Indeed, as in the
proof of Theorems 2.1 and 2.4, λ0 = 0 gives the reflectional symmetry and
the strict monotonicity in x1 > 0 of zi for each z ∈ ω(u) \ {0} and i ∈ S. As
problem (1.1), (1.3) is invariant under rotations, we can apply this to any
of the solutions ũ(x, t) = u(Rx, t), R ∈ O(n). This gives the conclusion of
Theorem 2.5.

The proof is by contradiction. Assume λ0 > 0. Then by (4.2) (see also
Remark 4.1) and the compactness of ω(z) in E, there exist z ∈ ω(u), i ∈ S,
and a sequence λk ↗ λ0 such that (Vλkzi)

− 6≡ 0 in Ωλk for k = 1, 2, . . . . At
the same time we have Vλ0zi ≡ 0, by Lemmas 4.3(ii) and 4.4.

We know by Lemma 4.5 that either zi ≡ 0 in Ωλ0 or zi > 0 in Ωλ0 .
First assume zi > 0 in Ωλ0 . Since Vλ0zi ≡ 0 and zi = 0 on ∂Ω, zi vanishes

on ∂Ω′λ0
\Hλ0 (recall that Ω′λ is the reflection of Ωλ in Hλ). It follows that

if x0 ∈ Hλ0 ∩ ∂Ω and U is any neighborhood of x0 in Ω̄ then zi vanishes
somewhere in Ω ∩ U while at the same time zi 6≡ 0 in U . Using a rotation
R which takes such a point x0 to (1, 0, . . . , 0) and considering the solution
ũ(x, t) = u(Rx, t), we clearly obtain a contradiction to Lemma 4.5.

Next assume zi ≡ 0 in Ωλ0 . As Vλ0zi ≡ 0, we have zi ≡ 0 in Ω̄λ0 ∪ Ω′λ0
.

If there exists x0 ∈ Hλ0 ∩ ∂Ω such that for each neighborhood U of x0 in
Ω̄ one has zi 6≡ 0, then we obtain a contradiction as in the previous case.
Otherwise, zi ≡ 0 on some neighborhood N of Hλ0 ∩ ∂Ω. Now, for λ < λ0

sufficiently close to λ0 one has Ωλ ⊂ Ω̄λ0 ∪ Ω′λ0
∪ N . Therefore zi ≡ 0 in Ωλ

and consequently Vλzi ≥ 0 in Ωλ for all λ ≈ λ0. This is a contradiction to
the existence of the sequence λk.

Thus in either case, λ0 > 0 leads to a contradiction. This proves that
λ0 = 0 as needed.
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