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Abstract

We study symmetry properties of non-negative bounded solutions of
fully nonlinear parabolic equations on bounded domains with Dirichlet
boundary conditions. We propose sufficient conditions on the equation
and domain, which guarantee asymptotic symmetry of solutions.

Keywords: Asymptotic symmetry, positive solutions, parabolic equations,
moving hyperplanes

Contents

1 Introduction 2

2 Main results 6

3 Linear equations 12
3.1 Reflection in hyperplanes . . . . . . . . . . . . . . . . . . . . . 13
3.2 Estimates of solutions . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Properties of Ωλ,v . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Proofs of the main results 22

5 Proofs of Lemma 4.5 and Lemma 4.6 31

1



1 Introduction

In this paper we consider a fully nonlinear parabolic problem of the form

∂tu = F (t, x, u, Du, D2u), (x, t) ∈ Ω × (0,∞) ,

u = 0, (x, t) ∈ ∂Ω × (0,∞) ,

u ≥ 0, (x, t) ∈ Ω × (0,∞) .

 (1.1)

Here, Dg and D2g denote the gradient and Hess matrix of a function g. We
assume that

(d1) Ω ⊂ RN , N ≥ 1, is a bounded domain, convex in x1, and symmetric
with respect to the hyperplane

H0 := {x = (x1, · · · , xN) : x1 = 0} .

The non-linearity F satisfies regularity, ellipticity and symmetry conditions
(N1)–(N3) specified below. Our goal is to investigate symmetry and mono-
tonicity properties of global solutions u as t → ∞.

The first symmetry results for positive solutions of elliptic equations date
back to the celebrated paper of Gidas, Ni, Nirenberg [13]. They showed that
if u is a positive classical solution of the problem

∆u = f(u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(1.2)

with a smooth domain Ω satisfying (d1) and a Lipschitz function f , then u
is even in x1 and ∂x1u < 0 in

Ω0 := {x = (x1, · · · , xN) ∈ Ω : x1 > 0} .

The two main mathematical tools used in the proof were the maximum prin-
ciple and the method of moving hyperplanes introduced by Alexandrov [1]
and later developed by Serrin [24]. These results were further generalized
to the fully nonlinear case by Li [19], to problems on non-smooth domains
by Berestycki and Nirenberg [6] and Dancer [10]. Extensions in various di-
rections including degenerate problems, problems on unbounded domains or
cooperative systems of equations were done by many authors, see the surveys
[5, 16, 21, 22].
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The situation for parabolic problems is more complicated, since one can-
not expect solutions to be symmetric, if the initial condition is not symmetric.
However, it is possible that solutions ’symmetrize’ as time approaches infin-
ity, regardless of initial data. More precisely, we say that u is asymptotically
symmetric if all functions in the ω-limit set of u:

ω(u) := {z : z = lim
k→∞

u(·, tk), for some tk → ∞} (1.3)

are even in x1 and nonincreasing in Ω0. The limit in (1.3) is in the supremum
norm.

The first asymptotic symmetry results for parabolic problems appeared in
[15], where Hess and Poláčik established asymptotic symmetry for classical,
bounded, positive solutions of the problem

ut − ∆u = f(t, u), (x, t) ∈ Ω × (0,∞) ,

u = 0, (x, t) ∈ ∂Ω × (0,∞) ,
(1.4)

where f is Hölder continuous in t and Lipschitz in u, and Ω is a smooth
domain satisfying (d1). In addition, it was assumed that

ν1(x) > 0 (x = (x1, x
′) ∈ ∂Ω, x1 > 0) , (1.5)

where (ν1(x), ν ′(x)) = ν(x) is the exterior unit normal vector to ∂Ω at x.
This geometric condition does not appear in the elliptic case but is essential
in the parabolic one, as discussed below.

Independently to [15], Babin [2, 3] and later Babin and Sell [4] proved
asymptotic symmetry of classical solutions of (1.1) where Ω satisfies (d1),
F satisfies (N1)–(N3), and F (t, x, 0, 0, 0) ≥ 0 for all (x, t) ∈ Ω × (0,∞).
In addition, it was assumed that the positive semiorbit φ+(u) := {u(·, t) :
t ∈ (0,∞)} is relatively compact in C2,1

loc (Ω × (0,∞)) and the solution is
bounded away from 0 on compact subsets of Ω. The additional assumptions
on F and u were removed in [23], where Poláčik showed that the classical
bounded solution of (1.1), with Ω satisfying (d1) and F satisfying (N1)–
(N3), is asymptotically symmetric if and only if either ω = {0} or there is
φ ∈ ω(u) with φ > 0 in Ω. He also proposed two explicit sufficient conditions
for asymptotic symmetry - Ω being a ball or

lim inf
t→∞

F (x, t, 0, 0, 0) ≥ 0 (x ∈ Ω) . (1.6)
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We remark that [23] contains an example (see [23, Example 2.3]) of a semi-
linear parabolic problem with a smooth nonlinearity and Ω being a rectangle,
for which the asymptotic symmetry of solutions fails. Observe that the rect-
angle does not satisfy (1.5).

For further extensions including parabolic problems on unbounded do-
mains, asymptotically symmetric equations, cooperative systems of equa-
tions, entire solutions, etc., we refer the reader to the survey [22].

In this paper we propose another explicit sufficient condition that guar-
antee asymptotic symmetry of solutions. To illustrate the results on a model
problem, assume that Ω is a Lipschitz domain satisfying (d1) and:

(d2) For any δ∗ > 0 there is ε > 0 and a unit vector v ∈ RN \{e1} such that

Conex,ε(e1, v) ⊂ Ω̄ (x ∈ ∂Ω, x1 ≥ δ∗) .

Here, Conex,ε(r, s) be the part of the cone spanned by −r,−s with the
tip at x, which lies inside the ball of radius ε centered at x:

Conex,ε(r, s) := {y ∈ RN : x−y = αr+βs, α, β ≥ 0, |x−y| ≤ ε} . (1.7)

Let f : (0,∞) × [0,∞) → R be a continuous function such that

(f1) f : (t, u) 7→ f(t, u) is Lipschitz continuous in u uniformly with respect
to t, meaning that there is β0 > 0 such that

sup
t>0

|f(t, u) − f(t, ū)| ≤ β0|u − ū| (u, ū ∈ [0,∞)) .

(f2) f(·, 0) is a bounded function.

As a result we obtain.

Theorem 1.1. If a Lipschitz domain Ω satisfies (d1), (d2), a function f
satisfies (f1), (f2), and u is a global, nonnegative, bounded, classical solution
of (1.4), then u is asymptotically symmetric, that is, for each z ∈ ω(u)

z(x1, x
′) = z(−x1, x

′) ((x1, x
′) ∈ Ω),

and either z ≡ 0 or z is strictly decreasing in Ω0.

Examples of Lipschitz domains that satisfy (d1) and (d2), include (see
the figures),
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• symmetric domains, which are strictly convex in x1, that is,

α(x1, x
′) + (1 − α)(x1, y

′) ∈ Ω (α ∈ (0, 1), (x1, x
′), (x1, y

′) ∈ ∂Ω) .

• some symmetric domains, which are not strictly convex in x1 such as
isosceles triangles, pentagons, pyramids, upper half balls, and so on.

Notice that a rectangle (the mentioned counterexample provided in [23])
does not satisfy (d2), but it is a ’borderline’ case. Moreover, if Ω is a C2

domain satisfying (d1), then (1.5) implies (d2). Hence, Theorem 1.1 is a
generalization of results in [15].

The main contribution of our Theorem 1.1 and more general results in the
next section, as compared to the results of [23], is that it gives a general, ex-
plicit, and easily verifiable condition, under which the asymptotic symmetry
holds.

In the next section we extend Theorem 1.1 to fully nonlinear problems
such as (1.1). That is, we formulate a sufficient condition for asymptotic
symmetry only in terms of Ω and F . This condition covers a larger class of
problems, compared to the explicit sufficient conditions from [23]. For exam-
ple, if the F does not satisfy (1.6), then asymptotic symmetry of solutions
of (1.1) was not discussed in [4], and [23] requires Ω to be a ball. For a
general domain Ω, the asymptotic symmetry theorem of [23] applies only to
solutions whose ω-limit set contains a positive function. We show that, if
we in addition to (d1) and (N1)–(N3) assume (d2) and minor monotonicity
assumptions on F , then the asymptotic symmetry holds.

As a by-product we obtain an improvement of the results in [8, 9, 11] on
the question when a nonnegative, nontrivial solution of an elliptic problem
is positive (cf. Corollary 2.4).

The method of the proof uses the framework introduced in [23], and we
also use partial results of that paper. However, many arguments need refine-
ments, extensions, or completely new approach. Some results or techniques
might be of independent interest, for example the maximum principle on
general, small, space-time domains.
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The remainder of this paper is organized as follows. In Section 2 we
formulate the assumptions and state the main results. Section 3 contains es-
timates for solutions of linear problems, geometric properties of non-smooth
domains and we recall how the method of moving hyperplanes leads to lin-
earization of nonlinear problems. In Sections 4 and 5 we give proofs of the
symmetry results.

2 Main results

Let us introduce the following notation. Denote

Hλ := {x = (x1, x
′) ∈ RN : x1 = λ} (λ ∈ R)

and let Pλ : RN → RN be the reflection in the hyperplane Hλ, that is,
Pλ(x) = (2λ − x1, x

′) for any x = (x1, x
′) ∈ RN . Next, for any subset Ω of

RN define
Ωλ := {x = (x1, x

′) ∈ Ω : x1 > λ} ,

and
` := sup{x1 : x ∈ Ω} .

Consider the problem (1.1) and assume the following hypotheses.

(D1) Ω is a bounded domain in RN (N ≥ 2), such that Ω′
λ := Pλ(Ωλ) ⊂ Ω

for all λ ≥ 0.

(D2) For each λ > 0 the set Ωλ has only finitely many connected components.

(D3) Ω is symmetric with respect to the hyperplane H0.

Notice, that (D1) and (D3) are equivalent to (d1). We formulate them dif-
ferently here to have a unified setting for directions other than e1, where we
cannot require Ω to be symmetric.

The hypothesis (D2) occurred already in [23] and it is still unknown if it
is just technical or not. Based on the proofs in this paper it can be relaxed in
several directions, although not completely removed. Observe that Lipschitz
(and even Hölder) continuity of Ω implies (D2).

Let T ∈ RN2
be the matrix corresponding to P0, the reflection in the

hyperplane H0:

Tij := δij − 2δi1δj1 (i, j = 1, · · · , N) ,

6



where δii = 1 and δij = 0 if i 6= j.
We identify the space of N ×N matrices with RN2

. We then assume that
the real valued function F : (t, x, u, p, q) 7→ R is defined on [0,∞) × Ω̄ ×O,
where O is an open convex subset of R × RN × RN2

invariant under the
transformation

Q : (u, p, q) 7→ (u, pT , T qT ) ,

and it satisfies the following conditions.

(N1) Regularity. The function F is continuous, differentiable with respect
to q and Lipschitz continuous in (u, p, q) uniformly with respect to
(x, t) ∈ Ω̄ × R+. This means that there is β0 > 0 such that

sup
x∈Ω,t≥0

|F (t, x, u, p, q) − F (t, x, ũ, p̃, q̃)| ≤ β0|(u, p, q) − (ũ, p̃, q̃)|

((x, t) ∈ Ω̄ × R+, (u, p, q), (ũ, p̃, q̃) ∈ O) .

(N2) Ellipticity. There is α0 > 0 such that for each ξ ∈ RN and each
(t, x, u, p, q) ∈ [0,∞) × Ω̄ ×O one has

∂F

∂qjk

(t, x, u, p, q)ξjξk ≥ α0|ξ|2.

Here and also in the rest of this paper we use the summation convention,
that is, when an index appears twice in a single term, then we are
summing over all its possible values.

(N3) Symmetry and monotonicity. For each (t, u, p, q) ∈ [0,∞)×O, and any
x = (x1, x

′), (x̃1, x
′) ∈ Ω with x̃1 > x1 ≥ 0

F (t, T x, Q(u, p, q)) = F (t, x, Q(u, p, q)) = F (t, x, u, p, q) ,

F (t, x1, x
′, u, p, q) ≥ F (t, x̃1, x

′, u, p, q) .

As an easy example or F that satisfies (N1) – (N3) is F (t, x, u, p, q) = qii +
f(t, u), where f satisfies (f1) and (f2).

As shown in [13], there are non-symmetric solutions of the problem (1.2),
if f is merely Hölder continuous, thus we cannot relax (N1) in this direc-
tion. On the other hand, (N3) allows nontrivial generalizations. One can

7



for example consider asymptotically symmetric or asymptotically monotone
problems as in [12].

By a solution of (1.1) we mean a classical solution, that is, a function
u ∈ C2,1(Ω× (0,∞))∩C(Ω̄× [0,∞)), with (u,Du,D2u) ∈ O, which satisfies
(1.1) everywhere. We only consider bounded global solutions, that is,

sup
t∈[0,∞)

‖u(·, t)‖L∞(Ω) < ∞ , (2.1)

such that the family of functions {u(·, ·+s)}s≥1, is equicontinuous on Ω̄×[0, 1]:

lim
h→0

sup
x,x̄∈Ω̄,t,t̄∈[0,1],
|t−t̄|,|x−x̄|<h

s≥1

|u(x, t + s) − u(x̄, t̄ + s)| = 0 . (2.2)

Under these assumptions the positive semi-orbit {u(·, t) : t ≥ 0} of u is
relatively compact in the space E := C(Ω̄). Then its ω-limit set (for the
definition see (1.3)) is nonempty and compact in E and

lim
t→∞

distE(u(·, t), ω(u)) = 0 , (2.3)

where distE denotes the distance in E.
We remark, that by [23, Proposition 2.7], (2.2) follows from (2.1), if we

in addition to (N1), (N2) assume Lipschitz continuity of Ω and boundedness
of F (t, x, 0, 0, 0). Observe that, in this paper we do not discuss the existence
of global solutions satisfying (2.1) and (2.2), but we rather investigate their
properties once they exist.

We are ready to formulate our first main result.

Theorem 2.1. Assume (D1) – (D3), (N1) – (N3) and let u be a nonnegative
global solution of (1.1) satisfying (2.1) and (2.2). Then there exists λ0 ≥ 0
such that for each z ∈ ω(u) the following is true: z is monotone nonincreasing
in x1 on Ωλ0 and there is a connected component U of Ωλ0 such that

z(x1, x
′) = z(2λ0 − x1, x

′) ((x1, x
′) ∈ U) . (2.4)

Moreover if λ0 > 0 there is z̃ ∈ ω(u) and a connected component Ũ of Ωλ0

such that

z̃(x1, x
′) = z̃(2λ0 − x1, x

′) ((x1, x
′) ∈ Ũ) , (2.5)

z̃(x) > 0 (x ∈ Ũ) . (2.6)
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If Ωλ0 is connected then for each z ∈ ω(u) either z ≡ 0 in Ωλ0 or z is strictly
decreasing in x1 in Ωλ0. The latter holds in the form zx1 < 0 if zx1 ∈ C(Ωλ0)
for some z ∈ ω(u).

This theorem is an improvement of [23, Theorem 2.4], as it gives more
precise characterization (property (2.6)) of the function z̃, if λ0 > 0. Property
(2.6) is important in the proof of the next theorem.

Next we turn our attention to the question when λ0 from the previous
theorem is equal to 0, that is, when the solution is asymptotically symmetric.
This is not always the case, even if u is strictly positive, as one can construct
examples similar to [23, Example 2.2], for which λ0 = n−1

n
` with n ∈ N,

n ≤ n0 and n0 depends on α0, β0, N, diam Ω.
However, we show that the solution is asymptotically symmetric if Ω and

F satisfy analogous symmetry assumptions in a direction v̂ 6= e1, as they
satisfy in the direction e1. Define

λ∗(v) = inf{µ : Ωµ,v ⊂ Ω0,e1 and Ω′
λ,v ⊂ Ω, for each λ > µ} . (2.7)

Here

Ω′
λ,v := Pλ,v(Ωλ,v) , where Ωλ,v := {x ∈ Ω : x · v ≥ λ|v|} ,

and Pλ,v : RN → RN is the reflection in the hyperplane

Hλ,v := {x ∈ RN : x · v = λ} .

We assume that λ∗(v) is sufficiently small at least for one vector v 6= e1. More
precisely, we suppose that the following hypotheses hold for some δ∗ > 0. In
our theorems we need δ∗ less than or equal to a certain constant depending
on N , α0, β0 and diam Ω (as specified in (4.12)).

(D4) There exists a unit vector v̂ ∈ RN such that 0 < v̂ · e1 < 1 and
Ωδ∗,e1 ⊂ Ωλ∗(v̂),v̂.

(D5) Ωλ,v has finitely many connected components for all vectors v ∈ W :=
{v ∈ Cone0,1(−e1,−v̂) : |v| = 1} and all λ ≥ λ∗(v), where v̂ is as in
(D4) and Cone0,1 was defined in (1.7).

At the end of this section (in the proof of Theorem 1.1), we prove that Lips-
chitz continuity of Ω, (d1), and (d2) imply, that (D4) holds for each δ∗ > 0.
Also, for Lipschitz domains Ωλ,v has finitely many connected components for
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any v and λ, so that (D5) holds. However, even for Lipschitz domains sat-
isfying (d1), the assumption (D4) is weaker than (d2) (consider for example
n-gon with sufficiently large n).

In Lemma 3.10, we prove, that for any v ∈ W sufficiently close to e1,
(D4) holds with v̂ replaced by v. Hölder continuity of Ω provides a sufficient
condition for (D5).

In addition to examples in the introduction, an example of a domain that
satisfies (D1) – (D5) and bears all complications of a general domain is the
union of finitely many overlapping balls or upper half balls centered at H0.
Generally, such domain is neither convex nor rotationally symmetric.

Let us turn our attention to the assumption on the nonlinearity F . For
any unit vector v ∈ RN denote T v : RN → RN the matrix that represents
the reflection in the hyperplane H0,v:

T v
ij = δij − 2vivj, (i, j ∈ {1, · · ·N}) ,

and let Qv be the transformation

Qv : (u, p, q) 7→ (u, pT v, T vqT v) .

For v̂, already fixed in (D1), suppose that the set O (defined in the paragraph
before (N1)), is invariant under Qv̂. An easy argument shows that O is then
invariant under Qv for any v ∈ W as well.

(N4) For each (t, u, p, q) ∈ [0,∞)×O, and any x, x̃ ∈ Ωλ∗(v̂),v̂ with x̃ = x+ξv̂,
ξ ≥ 0,

F (t, T v̂x,Qv̂(u, p, q)) = F (t, x, Qv̂(u, p, q)) = F (t, x, u, p, q) ,

F (t, x, u, p, q) ≥ F (t, x̃, u, p, q) .

Using (N3) and (N4), it is easy to prove that for any v ∈ W

F (t, T vx,Qv(u, p, q)) = F (t, x, Qv(u, p, q)) = F (t, x, u, p, q) ,

F (t, x, u, p, q) ≥ F (t, x̃, u, p, q) ,

where (t, u, p, q) ∈ [0,∞) ×O, and x, x̃ ∈ Ωλ∗(v),v with x̃ = x + ξv, ξ ≥ 0.
The function F (t, x, u, p, q) = qii+f(u) satisfies (N4). For more a complex

example, suppose without loss of generality (or use a rotation preserving e1)
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that v̂ has the form v̂ = σ̂1e1 + σ̂2e2, where σ̂1 ≥ 0 and σ̃2 > 0. Then, F
satisfies (N3) and (N4), if it depends only on

(t, |(x1, x2)|, x′, u, p2
1 + p2

2, pi, q11 + q22, qij) (3 ≤ i, j ≤ n) .

We formulate the next main result.

Theorem 2.2. There exists δ∗ = δ∗(N,α0, β0, diamΩ) > 0 such that if (D1)
– (D5), (N1) – (N4) hold, and u is a nonnegative global solution of (1.1)
satisfying (2.1), (2.2), then for each z ∈ ω(u) the function z is nonincreasing
in x1 in Ω0 and

z(x1, x
′) = z(−x1, x

′) ((x1, x
′) ∈ Ω0) .

Moreover, z ≡ 0 in Ω or z is strictly decreasing in x1 in Ω0. The latter holds
in the form zx1 < 0 if zx1 ∈ C(Ω0).

Corollary 2.3. Under the assumptions of the previous theorem either z ≡ 0
or z > 0 in Ω, for any z ∈ ω(u).

When the problem (1.1) is time independent and u is an equilibrium,
we obtain, from the corollary, an improvement of results in [8, 9, 11] to the
nonsmooth domain with space dependent nonlinearity.

Corollary 2.4. There exists δ∗ = δ∗(N, α0, β0, diamΩ) > 0 such that, if Ω
is a domain satisfying (D1) – (D5) and u : Ω → R is a classical nonnegative
solution of

F (x, u,Du, D2u) = 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

with F satisfying (N1)–(N4), then either u ≡ 0 or u > 0 in Ω.

Let us prove that Theorem 1.1 follows from the previous theorem.

Proof of Theorem 1.1. It is easy to check that (D1) and (D3) are equivalent
to (d1). As mentioned above, Lipschitz continuity of Ω implies (D2) and
(D5). Moreover, for any δ∗ > 0, (d2) implies the existence of v and ε >
0 such that Conex,ε(e1, v) ⊂ Ω̄ for any x ∈ ∂Ω with x1 ≥ δ∗. Then a
perturbation argument, (D1), and (D2) yield that (D4) holds for a unit
vector v̂ ∈ span{e1, v}, which is sufficiently close to e1.
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In problem (1.4), one has F (t, x, u, p, q) = qii +f(t, u), where the function
f satisfies (f1) and (f2). In this case (N1) – (N4) hold. Finally, by [23,
Proposition 2.7], Lipschitz continuity of Ω, (N1), (N2), boundedness of u
and (f2) imply (2.1) and (2.2). Therefore the assumptions of Theorem 2.2
are satisfied and Theorem 1.1 follows.

3 Linear equations

In this section we describe how one can derive linear equations from nonlinear
problems using reflections in hyperplanes. We also introduce linear parabolic
estimates as a preparation for the method of moving hyperplanes. In the last
subsection we derive some properties of general symmetric domains, which
are convex in two directions.

Recall the following standard notation. For an open set Q ⊂ RN+1 we
denote by ∂P Q the parabolic boundary of Q (for the precise definition see
[20]). Let

QM := {(x, s) ∈ Q : s ∈ M} (M ⊂ R) (3.1)

be a time cut of Q, and if M = {t} we also write Qt instead of Q{t}.
For bounded sets U , U1 in RN or RN+1, the notation U1 ⊂⊂ U means

Ū1 ⊂ U , diam U stands for the diameter of U , and |U | for its Lebesgue
measure (if it is measurable). The open ball in RN centered at x with radius
r is denoted by B(x, r). Symbols f+ and f− denote the positive and negative
parts of a function f : f± := (|f | ± f)/2 ≥ 0.

Denote xλ,v := Pλ,vx and recall that we already defined

Hλ,v = {x ∈ RN : (x, v) = λ|v|} (v ∈ RN , λ ∈ R) ,

Ωλ,v = Ω ∩ {x ∈ RN : x · v > λ|v|} (v ∈ RN , λ ∈ R) ,

Ω′
λ,v = Pλ,v(Ωλ,v) = {xλ,v : x ∈ Ωλ,v} (v ∈ RN , λ ∈ R) .

Since Ω is bounded, Ω ∩ Hλ,v = ∅ for any v ∈ RN and sufficiently large λ.
Equivalently, `(v) < ∞ for all v ∈ RN , where `(v) := sup{λ : Ω ∩ Hλ,v 6= ∅}.

Convention 3.1. If v = e1 we omit the argument v in Hλ,v, Ωλ,v, xλ,v, Ω′
λ,v,

`(v) and we simply write Hλ, Ωλ, xλ, Ω′
λ, ` instead.

We shall use the following definition.
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Definition 3.2. Given an open set Q ⊂ RN+1, and positive numbers α0, β0,
we say that an operator L of the form

L(x, t) = akm(x, t)
∂2

∂xk∂xm

+ bk(x, t)
∂

∂xk

+ c(x, t) (3.2)

belongs to E(α0, β0, Q) if its coefficients akm, bk and c are measurable func-
tions defined on Q and they satisfy

|akm|, |bk|, |c| ≤ β0 (k, m = 1, . . . , N) ,

akm(x, t)ξkξm ≥ α0|ξ|2 ((x, t) ∈ Q, ξ ∈ RN) .

3.1 Reflection in hyperplanes

Fix a unit vector v ∈ W , where W was defined in (D5).
If v = e1, the results of this subsection were already published in [23, Sec-

tion 3] with all necessary details and expressions using Hadamard’s formulas.
We only recall the most important steps for later references. Accordingly
with Convention 3.1 we drop the index v since v = e1.

Assume that Ω satisfies (D1), F satisfies (N1) – (N3) and u is a global
solution of (1.1) satisfying (2.1) and (2.2). By (N3),

F (t, xλ, Q(u, p, q)) ≥ F (t, x, u, p, q) ((t, x, u, p, q) ∈ [0,∞) × Ωλ ×O, λ ≥ 0)

and if we denote uλ(x, t) := u(xλ, t), then

∂tu
λ ≥ F (t, x, uλ, Duλ, D2uλ), (x, t) ∈ Ωλ × (0,∞) .

Hence, the function wλ : Ω̄λ × (0,∞) → R, wλ : (x, t) 7→ uλ(x, t) − u(x, t),
λ ∈ [0, `) satisfies

∂tw
λ(x, t) ≥ F (x, t, uλ, Duλ, D2uλ) − F (x, t, u,Du, D2u)

= Lλ(x, t)wλ, (x, t) ∈ Ωλ × (0,∞) ,
(3.3)

where Lλ ∈ E(α0, β0, Ωλ × (0,∞)). Moreover, wλ satisfies the following
boundary condition

wλ(x, t) ≥ 0, (x, t) ∈ ∂Ωλ × (0,∞) . (3.4)
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Next, consider v 6= e1 and in addition to (D1) and (N1)–(N3) assume
(D4) and (N4). By similar arguments as in the case v = e1 we obtain that
for any λ ∈ (λ∗(v), `(v)), the function uλ,v(x, t) := u(xλ,v, t) satisfies

∂tu
λ,v ≥ F (t, x, uλ,v, Duλ,v, D2uλ,v), (x, t) ∈ Ωλ,v × (0,∞) ,

and the function wλ,v : Ω̄λ,v × (0,∞) → R, wλ,v : (x, t) 7→ u(xλ,v, t) − u(x, t)
satisfies

∂tw
λ,v ≥ Lλ,v(x, t)wλ,v, (x, t) ∈ Ωλ,v × (0,∞) , (3.5)

wλ,v ≥ 0, (x, t) ∈ ∂Ωλ,v × (0,∞) , (3.6)

where Lλ,v ∈ E(α0, β0, Ωλ,v × (0,∞)).

3.2 Estimates of solutions

In this subsection, we derive several estimates for linear problems such as
(3.3) or (3.5). Since the results might be of independent interest, we state
them under more general assumptions than needed for symmetry theorems.

Let Q be an open subset (bounded or unbounded) of RN × (0,∞) and let
β0, α0 be positive constants. We consider a general linear parabolic inequality

vt ≥ L(x, t)v + f(x, t), (x, t) ∈ Q , (3.7)

v ≥ g(x, t), (x, t) ∈ ∂P Q , (3.8)

where L ∈ E(α0, β0, Q), f ∈ LN+1(Q) and g ∈ C(∂P Q) ∩ L∞(∂P Q). Denote
by aij, bi, c, i, j ∈ {1, 2, · · · , n}, the coefficients of L

L(x, t) := aij(x, t)
∂2

∂xi∂xj

+ bi(x, t)
∂

∂xi

+ c(x, t) ((x, t) ∈ Q) ,

and let
M(x, t) := L(x, t) − c(x, t) ((x, t) ∈ Q) . (3.9)

We say that v is a solution of (3.7) (or that it satisfies (3.7)) if it is an element
of the space W 2,1

N+1,loc(Q) and (3.7) is satisfied almost everywhere. If (3.7) is

complemented by (3.8), we also require the solution to be continuous on Q̄
and to satisfy the boundary inequalities everywhere.

One of the key tools in our paper is the maximum principle. If we mention
the maximum or comparison principle, we refer to the following theorem with
f ≡ 0. The proof of Theorem 3.3 can be found in [7] see also [17, 20, 25].
Recall that Q can be unbounded.
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Theorem 3.3. If Q ⊂ RN×[T1, T2] for some T1 < T2, v ∈ C(Q̄) is a bounded
solution of (3.7) with L ∈ E(α0, β0, Q), c ≤ 0 and f ∈ LN+1(Q), then

sup
Q

v− ≤ sup
∂P Q

v− + C‖f−‖LN+1(Q) ,

where C depends on N,α0, β0, T2 − T1.

Corollary 3.4. If c ≤ 0 in the previous theorem is changed to c ≤ β for
some β > 0, and all the other assumptions are retained, then

sup
Q

v− ≤ eβ(T2−T1)

(
sup
∂P Q

v− + C‖f−‖LN+1(Q))

)
.

where C depends on N,α0, β0, T2 − T1.

Proof of Corollary 3.4. We see that the function ṽ := e−βtv satisfies (3.7)
with c replaced by c − β and f changed to e−βtf . Since c − β ≤ 0 in Q,
Theorem 3.3 yields

sup
Q

ṽ− ≤ sup
∂P Q

ṽ− + C‖f̃−‖LN+1(Q) ,

where f̃(x, t) = e−ktf(x, t) and C depends on N,α0, β0, T2 − T1. Using the
definition of ṽ we obtain the desired result.

The following lemma states a version of the maximum principle on small
domains. It was originally proved in [6] in elliptic setting with f = g ≡ 0.
A generalization to parabolic problems on cylindrical domains was proved in
[23] with f = g ≡ 0 and later in [12] for general f and g. Here, we present
yet another extension to sets in space-time (not necessarily cylindrical). The
proof is partly motivated by elliptic results in [7] and it is only based on
Theorem 3.3. It does not rely on a construction of supersolutions as in
[6, 23]. However, such construction is possible for general space-time sets by
an application of parabolic Monge-Ampère equation, but we will not discuss
this approach.

Lemma 3.5. Given any k > 0 there exists δ = δ(α0, β0, N, k) such that
|Q[t,t+1]| < δ for any t ∈ R implies the following. If v ∈ C(Q̄) is a solution
of problem (3.7), (3.8) with L ∈ E(α0, β0, Q) then

‖v−‖L∞(Qt) ≤ 2 max{‖v−‖L∞(Qτ )e
−k(t−τ), ‖g−‖L∞(∂P Q[τ,t]\Qτ )}

+ C‖f−‖LN+1(Q[τ,t]) (τ < t) ,
(3.10)

where C depends on N, β0, α0.
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Proof. In the proof the constant C can vary from step to step, but it only
depends on N, β0, α0. To simplify the notation let

∂SQ[a,b] := ∂P Q[a,b] \ Qa (a < b) .

Corollary 3.4 implies, that on a time interval of length at most one we have

‖v−‖L∞(Q(t,t+s)) ≤ eβ0s max{‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+s])}
+ Ceβ0s‖f−‖LN+1(Q[t,t+s]) (t ∈ [τ, T − 1], s ∈ [0, 1]) .

(3.11)

The function w := e(k+ln 2)tv satisfies

wt − (M(x, t) − c−)w ≥ (c+ + k + ln 2)w + f̃ ((x, t) ∈ Q) ,

w(x, t) ≥ g̃(x, t) ((x, t) ∈ ∂SQ) ,

where f̃(x, t) := e(k+ln 2)tf(x, t), g̃(x, t) := e(k+ln 2)tg(x, t) and M was defined
in (3.9). Since −c− ≤ 0, Theorem 3.3 yields

‖v−‖L∞(Qt+s) = e−(k+ln 2)(t+s)‖w−‖L∞(Qt+s)

≤ e−(k+ln 2)(t+s) max{‖w−‖L∞(Qt), ‖g̃−‖L∞(∂SQ[t,t+s])}
+ e−(k+ln 2)(t+s)C‖(c+ + k + ln 2)w− + f̃−‖LN+1(Q[t,t+s])

≤ max{e−(k+ln 2)s‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+s])}

+ C
[
(β0 + k + ln 2)δ

1
N+1‖v−‖L∞(Q[t,t+s]) + ‖f−‖LN+1(Q[t,t+s])

]
(t ∈ [τ, T − s], s ∈ [0, 1]) .

(3.12)

If we choose δ such that

C(β0 + k + ln 2)δ
1

N+1 ≤ e−k

2
e−β0 ,

then by (3.12) and (3.11)

‖v−‖L∞(Qt+s) ≤ max{e−(k+ln 2)s‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+s])}

+
e−k

2
e−β0‖v−‖L∞(Q[t,t+s]) + C‖f−‖LN+1(Q[t,t+s])

≤ max{e−(k+ln 2)s‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+s])}

+
e−k

2
max{‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+s])} + C‖f−‖LN+1(Q[t,t+s])

(t ∈ [τ, T − 1]) . (3.13)
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In particular for s = 1

‖v−‖L∞(Qt+1) ≤ max{e−k

2
‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+1])}

+
e−k

2
max{‖v−‖L∞(Qt), ‖g−‖L∞(∂SQ[t,t+1])} + C‖f−‖LN+1(Q[t,t+1])

≤ max{e−k‖v−‖L∞(Qt), 2‖g−‖L∞(∂SQ[t,t+1])} + C‖f−‖LN+1(Q[t,t+1])

(t ∈ [τ, T − 1]) .

Iterating the previous expression for any j ∈ N with t + j ≤ T we obtain:

‖v−‖L∞(Qt+j) ≤ max{e−kj‖v−‖L∞(Qt), 2‖g−‖L∞(∂SQ[t,t+j])}
+ C‖f−‖LN+1(Q[t,t+j]) (t ∈ [τ, T − j]) .

(3.14)

Since any t ∈ [τ, T ] can be expressed in the form t = τ+j+s where j ∈ N∪{0}
and s ∈ [0, 1), (3.13) and (3.14) imply

‖v−‖L∞(Qt) ≤ max{e−kj‖v−‖L∞(Qτ+s), 2‖g−‖L∞(∂SQ[τ+s,t])}+C‖f−‖LN+1(Q[τ+s,t])

≤ 2 max{e−kt‖v−‖L∞(Qτ ), ‖g−‖L∞(∂SQ[τ,t])} + C‖f−‖LN+1(Q[τ,t]) .

Remark 3.6. From the proof of Lemma 3.5 one can see that (3.10) can be
changed to

‖v−‖L∞(Qt) ≤ 2 max{‖v−‖L∞(Qτ )e
−k(t−τ), ‖g−‖L∞(∂P Q[τ,t]\Qτ )}

+ C
1

1 + e−k
sup

t∈[τ,T−1]

‖f−‖LN+1(Q[t,t+1]) (τ < t) .

For the reader’s convenience and for an easier reference later on, we for-
mulate the following lemma that was proved in [23].

Lemma 3.7. For any r > 0 there exist a constant γ = γ(r,N, α0, β0) > 0
and a smooth function hr on B(0, r) with

hr(x) > 0 (x ∈ B(0, r)), hr(x) = 0 (x ∈ ∂B(0, r)),

such that for any x0 ∈ Ω with B(x0, r) ⊂ Ω and any L ∈ E(α0, β0, B(x0, r)×
(0,∞)), the function φ(x, t) = e−γthr(x − x0) satisfies

∂tφ − L(x, t)φ < 0, (x, t) ∈ B(x0, r) × (0,∞) ,

φ = 0 , (x, t) ∈ ∂B(x0, r) × (0,∞) .
(3.15)
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As a consequence we have the following result.

Corollary 3.8. Given r > 0, let γ = γ(r,N, α0, β0) > 0 be as in Lemma
3.7. For fixed x0 ∈ RN and τ < T set Q = B(x0, r) × (τ, T ), and assume
that v ∈ C(Q̄) satisfies (3.7), (3.8) with g = f ≡ 0, and L ∈ E(α0, β0, Q). If
v(·, τ) ≥ q in B(x0, r) for some q > 0, then

v(x, t) ≥ c̃rqe
−γ(t−τ) ((x, t) ∈ B

(
x0,

r

2

)
× [τ, T )) ,

where 0 < c̃r ≤ 1 depends only on N,α0, β0 and r.

Proof. For the given r consider γ, hr and φ as in Lemma 3.7. Then

vt − L(x, t)v ≥ 0 > φt − L(x, t)φ, (x, t) ∈ B(x0, r) × (τ, T ) ,

v(x, t) ≥ 0 = φ(x, t), (x, t) ∈ ∂B(x0, r) × [τ, T ] ,

and

v(x, τ) ≥ q
φ(x, τ)

‖φ(·, τ)‖L∞(B(x0,r))

(x ∈ B(x0, r)) .

An application of the comparison principle for v and φ gives

v(x, t) ≥ q
φ(x, t)

‖φ(·, τ)‖L∞(B(x0,r))

≥ qe−γ(t−τ) hr(x − x0)

‖hr(· − x0)‖L∞(B(x0,r))

((x, t) ∈ B(x0, r) × [τ, T ]) . (3.16)

Since h > 0 in B(x0, r), we obtain the desired result for

c̃r =
infx∈B(x0,r/2) hr(x − x0)

‖hr(· − x0)‖L∞(B(x0,r))

.

The next lemma, proved in [23, Lemma 3.4.], is a version of Krylov-
Safonov Harnack inequality [17, 18] for sign changing supersolutions of para-
bolic problems (see also [14, 20]). Its formulation needs the following nota-
tion. For any open bounded subset S of Rn+1 and any bounded, continuous
function f : S → R define

[f ]p,S :=

(
1

|S|

∫
S

|f |pdx dt

) 1
p

(p > 0) .
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Lemma 3.9. Given Ω ⊂ RN , d > 0, ε > 0, θ > 0, there are positive con-
stants κ, κ1, p determined only by N, diamΩ, α0, β0, d, ε and θ with the follow-
ing properties. Let D and U be domains in Ω with D ⊂⊂ U , dist (D̄, ∂U) ≥ d,
|D| > ε and let Q = U × (τ, τ + 4θ). Assume that v ∈ C(Q̄) satisfies (3.7)
with L ∈ E(α0, β0, Q) and f ≡ 0. Then

inf
D×(τ+3θ,τ+4θ)

v(x, t) ≥ κ[v+]p,D×(τ+θ,τ+2θ) − sup
∂p(U×(τ,τ+4θ))

e4Mθv− ,

where M = supU×(τ,τ+4θ) c.

3.3 Properties of Ωλ,v

In this purely geometrical subsection we assume that Ω is a bounded do-
main satisfying (D1), (D3) and (D4). Let us start with a lemma that ex-
tends property (D4) to all vectors in W , where W is as in (D5): W =
Cone0,1(−e1,−v̂) ∩ ∂B(0, 1).

Lemma 3.10. If for some δ∗ > 0, Ω satisfies (D1), (D3) and (D4), then
Ωδ∗,e1 ⊂ Ωλ∗(v),v for any v ∈ W sufficiently close to e1.

Proof. Fix v ∈ W and let α, β ∈ [0, 1] be such that v = αv̂ +βe1. If α = 0 or
β = 0 the statement follows directly from (D1) and (D4), thus we consider
α, β > 0. Since v 6= v̂, Hλ∗(v̂),v̂ ∩ Hλ∗(v),v 6= ∅. Then we define Λ as

x · e1 =
1

β
x · v − α

β
x · v̂ =

λ∗(v) − αλ∗(v̂)

β
=: Λ

(x ∈ Hλ∗(v̂),v̂ ∩ Hλ∗(v),v) . (3.17)

First assume Λ ≤ δ∗. By (D4) we have y · e1 > δ∗ and y · v̂ ≥ λ∗(v̂) for any
y ∈ Ωδ∗,e1 . Then using Λ ≤ δ∗ we obtain

y · v = α(y · v̂) + β(y · e1) > αλ∗(v̂) + βδ∗ ≥ λ∗(v) (y ∈ Ωδ∗,e1) ,

and therefore Ωδ∗,e1 ⊂ Ωλ∗(v),v, as desired.
We finish the proof, once we show that Λ > δ∗ leads to a contradiction.

Define

ε0 := β (Λ − δ∗) = β

(
λ∗(v) − αλ∗(v̂)

β
− δ∗

)
> 0 . (3.18)
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By (3.18)

α(x · v̂) + β(x · e1) = x · v ≥ λ∗(v)− ε0 ≥ αλ∗(v̂) + βδ∗ (x ∈ Ωλ∗(v)−ε0,v) .

Thus either x · v̂ ≥ λ∗(v̂) or x · e1 ≥ δ∗ and by (D4), any of these cases
yields x ∈ Ωλ∗(v̂),v̂. Hence Ωλ∗(v)−ε0,v ⊂ Ωλ∗(v̂),v̂ and in particular Ωλ∗(v)−ε,v ⊂
Ωλ∗(v̂),v̂ for any ε ∈ (0, ε0].

Next, the definition of λ∗(v) implies the existence of ε with 0 < ε ≤ ε0,
and a point Q ∈ Ωλ∗(v)−ε,v such that Qλ∗(v)−ε,v 6∈ Ω. Let dv and dv̂ be
distances of Q to the hyperplanes Hλ∗(v)−ε,v and Hλ∗(v̂),v̂ respectively and
observe that dv̂ ≥ dv. Then

Q − Qλ∗(v)−ε,v = 2dvv , Q − Qλ∗(v̂),v̂ = 2dv̂v̂

and consequently using v = αv̂ + βe1

Q − Qλ∗(v)−ε,v = α
dv

dv̂

(Q − Qλ∗(v̂),v̂) + 2βdve1 .

Since Ωλ∗(v)−ε,v ⊂ Ωλ∗(v̂),v̂, one has αdv

dv̂
≤ 1 and the definition of λ∗(v̂) then

implies R := Q − αdv

dv̂
(Q − Qλ∗(v̂),v̂) ∈ Ω. We arrive to a contradiction by

showing that Qλ∗(v)−ε,v = R− 2βdve1 ∈ Ω for v sufficiently close to e1. Since
R ∈ Ω and Ω is symmetric and convex in x1, it is sufficient to prove that
(R + Qλ∗(v)−ε,v) · e1 ≥ 0. Notice that Q − dv̂

e1·v̂e1 ∈ Hλ∗(v̂),v̂ ∩ Ω ⊂ Ω̄0,e1 , and
therefore (

Q − dv̂

e1 · v̂
e1

)
· e1 ≥ 0 .

Then using the definitions of R, Qλ∗(v)−ε,v, and v = αv̂ + βe1 we obtain

R + Qλ∗(v)−ε,v = Q − 2αdvv̂ + Qλ∗(v)−ε,v = 2[Q − αdvv̂ − dvv]

= 2[(Q − dv̂

e1 · v̂
e1) +

dv̂

e1 · v̂
e1 − dv(2αv̂ + βe1)] .

Since dv̂ ≥ dv and 1 > e1 · v̂ > 0, one has (R + Qλ∗(v)−ε,v) · e1 ≥ 0 for any α
sufficiently close to 0 (and β close to 1).

The second lemma shows that the portion of ∂Ω that is close to Hλ,e1 is
not symmetric with respect to this hyperplane.
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Lemma 3.11. Given δ∗ > 0, consider a bounded domain Ω satisfying (D1),
(D3) and (D4). Fix λ ∈ (δ∗, `(e1)) and let U be a connected component of
Ωλ,e1. Then for any ε > 0 there is z ∈ (∂U)\Hλ,e1 such that dist(z,Hλ,e1) < ε
and zλ,e1 ∈ Ω.

Proof. Recall, that in (D4) we fixed a unit vector v̂ = (v̂1, v̂
′) with v̂1 ∈ (0, 1)

and Ωδ∗,e1 ⊂ Ωλ∗(v̂),v̂. Choose x∗ ∈ Ū such that x∗ · v̂ = infx∈Ū x · v̂. Clearly
x∗ ∈ ∂U ∩Hλ,e1 . Since λ > δ∗ and Ωδ∗,e1 ⊂ Ω̄λ∗(v̂),v̂, for any sufficiently small
ε > 0 one has B(x∗, ε)∩Ω ⊂ Ωλ∗(v̂),v̂. We prove that for any such ε > 0 there
is a point z in B(x∗, ε) with the desired properties. Since x∗ ∈ Ū , for

δ :=
ε

2

√
1 − v̂2

1

2
√

1 − v̂2
1 + 1

, (3.19)

there is y ∈ U∩B(x∗, δ) and 0 < ρ < δ with B(y, ρ) ⊂ U∩B(x∗, δ). Consider
the two-dimensional plane S passing through y spanned by vectors e1 and v̂.

MN

K L

y
e1

v̂

ṽ

Then the two-dimensional closed square (see figure)
C(y, ρ) ⊂ S centered at y with a side of length ρ perpen-
dicular to e1, is a subset of B(y, ρ) ∩ S ⊂ U . Let ṽ ∈ S
be the unit vector perpendicular to e1 with ṽ · v̂ < 0. An
elementary calculation shows ṽ · v̂ = −

√
1 − v̂2

1. Trans-
late C(y, ρ) along ṽ as far as it stays inside U , that is,
define

κ0 := sup{µ : C(y + κṽ, ρ) ⊂ U for all κ ∈ [0, µ]}.

Denote ŷ and K̂, L̂, M̂ , N̂ the center and the vertices of C(y + κ0ṽ, ρ) (X̂ is
the image of X in translation by vector κ0ṽ). We prove that L̂ is a point
with the desired properties.

First, since C(ŷ, ρ) ⊂ Ū , the definition of x∗ yields ŷ · v̂ ≥ x∗ · v̂ or
equivalently y · v̂ + κ0ṽ · v̂ ≥ x∗ · v̂ and consequently

κ0 ≤
y · v̂ − x∗ · v̂

−ṽ · v̂
≤ |y − x∗||v̂|

−ṽ · v̂
<

δ

−ṽ · v̂
.

Then (3.19) implies

|x − x∗| ≤ |x − ŷ| + |ŷ − y| + |y − x∗| ≤ ρ + κ0 + δ

≤ 2δ +
δ

−ṽ · v̂
< ε (x ∈ C(ŷ, ρ)) .
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Thus C(ŷ, ρ) ⊂ B(x∗, ε) and in particular

dist(L̂,Hλ,e1) ≤ dist(L̂, x∗) < ε .

Next, by the definition of κ0, Int(C(ŷ, ρ)) ⊂ U , where Int(C(ŷ, ρ)) is the
interior of C(ŷ, ρ) in the topology of the plane S. Moreover, there exists
ẑ ∈ ∂U that lies on the side connecting K̂ and L̂. Since C(ŷ, ρ) ⊂ Ωλ∗(v̂),v̂,

there is λ̂ > λ∗(v̂) such that L̂ ∈ Hλ̂,v̂. Then Pλ̂,v̂(IntC(ŷ, ρ)) ⊂ Ω, and in

particular z ∈ Ω for any z 6= L̂ on the side connecting K̂ and L̂, sufficiently
close to L̂. Moreover, the convexity of Ω in e1 implies z ∈ Ω for any z 6= L̂
on the side connecting K̂ and L̂. Thus, L̂ = ẑ ∈ ∂U .

By the definition of ε, one has Pλ,e1L̂ ∈ Ω̄0,e1 . If Pλ,e1L̂ ∈ ∂Ω, then, by

the convexity of Ω in e1, the whole segment connecting L̂ and Pλ,e1L̂ is in

∂Ω, a contradiction. Hence Pλ,e1L̂ ∈ Ω.
Finally, since e1 and ṽ are perpendicular,

dist(L̂,Hλ,e1) = dist(L,Hλ,e1) > 0,

and therefore L̂ 6∈ Hλ,e1 .

4 Proofs of the main results

In this section we assume that Ω satisfies (D1) and (D2) (not necessarily
(D3)) and the nonlinearity F satisfies (N1) – (N3). At some places, where
explicitly stated, we also assume (D3), (D4) or (N4). We remark that, even
though (D2) is not needed in all results, we assume it throughout the section.
Consider a classical solution u of (1.1) satisfying (2.1) and (2.2).

We use the notation introduced at the beginning of Section 2 and the
following one. For any function g : Ω → R, and any λ ∈ [0, `) we set

Vλg(x) := g(xλ) − g(x), (x ∈ Ωλ) ,

and for the solution u of (1.1) we define

wλ(x, t) := u(xλ, t) − u(x, t) ((x, t) ∈ Ωλ × (0,∞)) .

As shown in Subsection 3.1, the function wλ solves a linear problem (3.3),
(3.4) with L ∈ E(α0, β0, Ωλ × (0,∞)). Hence the results of Subsection 3.2
are applicable to wλ. We use this observation below, often without notice.
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We carry out the process of moving hyperplanes in the following way.
Starting from λ = ` we move λ to the left as long as the following property
is preserved

lim
t→∞

‖(wλ(·, t))−‖L∞(Ωλ) = 0. (4.1)

We show below that the process can get started and then we examine the
limit of the process given by

λ0 := inf{µ > 0 : lim
t→∞

‖(wλ(·, t))−‖L∞(Ωλ) = 0 for each λ ∈ [µ, `)}. (4.2)

Remark 4.1. Note, that by the relative compactness of {u(·, t) : t ≥ 0} in
C(Ω̄), (4.1) is equivalent to the following property:

Vλz(x) ≥ 0 (x ∈ Ωλ, z ∈ ω(u), λ ∈ [λ0, `)) . (4.3)

Further observe that each z ∈ ω(u) is nonincreasing in x1 in Ωλ0 . Indeed, if
(x1, x

′), (x̃1, x
′) ∈ Ωλ0 and x1 > x̃1, then Vλz ≥ 0 with λ = (x1 + x̃1)/2 > λ0

gives z(x1, x
′) ≥ z(x̃1, x

′).

The following lemma shows that the process of moving hyperplanes can
get started, that is, λ0 < `. We do not include the proof here, since it follows
from the proof of [23, Lemma 4.1].

Lemma 4.2. For λ0 defined in (4.2) we have λ0 < `. Moreover, if δ =
δ(α0, β0, N) > 0 is such that Lemma 3.5 holds with k = 1, then |Ωλ0 | ≥ δ.

Next, we investigate the properties of functions Vλz and z for λ ∈ [λ0, `),
where z ∈ ω(u).

Lemma 4.3. For any λ̃ ∈ [λ0, `), z ∈ ω(u) and any connected component
Uλ̃ of Ωλ̃ the following statements hold true:

(i) either Vλ̃z ≡ 0 or Vλ̃z > 0 in Uλ̃,

(ii) either z ≡ 0 or z > 0 in Uλ̃,

(iii) z ≡ 0 in Uλ̃ implies Vλ̃z ≡ 0 in Uλ̃.

Proof. The statement (i) was already proved in [23, Lemma 4.2].
To prove (ii) it is sufficient to show that z(x∗) = 0 for some x∗ =

(x∗
1, (x

∗)′) ∈ Uλ̃ implies z ≡ 0 in Uλ̃.
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Since z(x∗) = 0, the monotonicity of z (see Remark 4.1) yields

z(x1, (x
∗)′) = 0 (x1 ∈ [x∗

1, Γx∗ ]) ,

where
Γx∗ := sup{x1 : (x1, (x

∗)′) ∈ Ω} > x∗
1 .

Then for any λ ∈ (x∗
1, Γx∗), (i) with λ̃ = λ yields Vλz ≡ 0 in Ωλ ∩ Uλ̃, and

therefore z(x1, (x
∗)′) = 0 for all x1 ∈ [2x∗

1 − Γx∗ , Γx∗ ]. Since x∗
1 > 2x∗

1 − Γx∗ ,
we can iterate this argument with x∗ replaced by (2x∗

1−Γx∗ , (x∗)′) and obtain
z(x1, (x

∗)′) = 0 for each x1 ∈ [λ̃, Γx∗ ].
Consequently Vλz ≡ 0 in Ωλ ∩ Uλ̃ for all λ ∈ [λ̃, Γx∗ ]. To finish the proof

of (ii), it is sufficient to show Λ = `Uλ̃
, where

`Uλ̃
:= sup{x1 : (x1, x

′) ∈ Uλ̃ for some x′ ∈ RN−1} ,

and

Λ := sup{µ ∈ (λ̃, `Uλ̃
) : Vλz ≡ 0 in Uλ̃ ∩ Ωλ for all λ ∈ (λ̃, µ)} ≥ Γx∗ > λ̃ .

Indeed, then, as in Remark 4.1, z is constant in x1 in Uλ̃, and the boundary
condition yields z ≡ 0 in Uλ̃ as desired.

For a contradiction assume that Λ < `Uλ̃
. Since λ̃ < (3Λ + λ̃)/4 < Λ,

V(3Λ+λ̃)/4z ≡ 0 and consequently z is constant in x1 for x1 ∈ (λ̃, (3Λ− λ̃)/2).

Thus by (i), Vλz ≡ 0 for each λ ∈ (λ̃, min{(3Λ − λ̃)/2, `Uλ̃
}), a contradiction

to the definition of Λ.
To prove (iii), observe that (using (i)) Vλz ≡ 0 for each λ ∈ (λ̃, `Uλ̃

). Then
the statement follows from the continuity.

The next proposition plays a central role in our arguments. The tech-
niques are partly motivated by [23, Theorem 3.7], but the situation is more
complicated here. Complications arise from the fact, that the solution u
can be small on different connected components of Ωλ0 at different times. A
careful analysis of the interaction between different connected components
of Ωλ0 is required.

Proposition 4.4. Assume λ0 > 0. Then there is z ∈ ω(u) and a connected
component Uλ0 of Ωλ0 such that Vλ0z ≡ 0 and z > 0 in Uλ0.
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Proof. We proceed by a contradiction. That is (cf. Lemma 4.3), we assume:

For any z ∈ ω(u) and any connected component Uλ0 of Ωλ0 either
Vλ0z > 0 or z ≡ 0 in Uλ0 .

(4.4)

The definition of λ0, yields the existence of an increasing sequence (λk)k∈N
converging to λ0, xk ∈ Ωλk

and zk ∈ ω(u) such that Vλk
zk(xk) < 0. Then,

by (D2), we can fix a connected component Uλ0 of Ωλ0 such that, for each
λ < λ0 there is k ∈ N with xk ∈ Uλ, where

Uµ is the connected component of Ωµ with Uµ ∩ Uλ0 6= ∅ . (4.5)

Next, define

U∗
λ0

:=
∩

λ<λ0

Uλ ,

and observe that |Uλ \U∗
λ0
| is arbitrary small if λ > λ0 is sufficiently close to

λ0. (This property does not hold true, if we replace U∗
λ0

by Uλ0 , consider for
example Ω such that Ωλ has two connected components for all λ ≥ λ0, but
it is connected for λ < λ0).

To continue we distinguish three cases

a) there is z ∈ ω(u) such that Vλ0z > 0 on U∗
λ0

,

b) for all z ∈ ω(u), z ≡ 0 on U∗
λ0

,

c) for each z ∈ ω(u), z ≡ 0 on a connected component of U∗
λ0

, and for

some z̃ ∈ ω(u), Vλ0 z̃ > 0 in a connected component Ũλ0 of U∗
λ0

A contradiction with the definition of {xk}k∈N follows in a) from [23,
Lemma 4.3], where we replace Ωλ0 by U∗

λ0
and Ωλ by Uλ. In b) and c) it

follows from the next two lemmas.

Lemma 4.5. Assume that λ0 > 0 and b) holds. Then Vλz ≥ 0 in Uλ for all
z ∈ ω(u) and λ < λ0 sufficiently close to λ0.

Lemma 4.6. Assume that λ0 > 0 and (4.4) holds. Then c) does not hold.

The proofs of the lemmas are postponed till the next section.

Now we address the question how big is the union of the connected com-
ponents of Ωλ0 on which the situation from Proposition 4.4 occurs.
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Lemma 4.7. Let δ = δ(α0, β0, N) > 0 be such that Lemma 3.5 holds with
k = 1. If Ω∗

λ0
denotes the union of connected components U of Ωλ0, for which

there exists z ∈ ω(u) with Vλ0z ≡ 0 and z > 0 in U , then∣∣Ω∗
λ0

∣∣ > δ

2
.

Proof. We proceed by contradiction, that is, we assume
∣∣Ω∗

λ0

∣∣ ≤ δ
2
. Fix

an open set D ⊂⊂ Ωλ0 \ Ω∗
λ0

, convex in x1, with |Ωλ0 \ (Ω∗
λ0

∪ D)| < δ
8
,

and fix ε0 > 0 such that |Ωλ0−ε0 \ Ωλ0| < δ
8
. Then |Ωλ \ D| < 3

4
δ for any

λ ∈ [λ0 − ε0, λ0].
By Proposition 4.4, the set Ω∗

λ0
is nonempty and we can choose its con-

nected component Ũ and z̃ ∈ ω(u) such that Vλ0 z̃ ≡ 0 and z̃ > 0 in Ũ . Then
for

Cλ :=
1

6
‖(Vλz̃)−‖L∞(Ũ) (λ ∈ [λ0 − ε0, λ0]) (4.6)

we have Cλ > 0 for all λ ∈ [λ0 − ε0, λ0) and Cλ → 0 as λ → λ0.
Claim. We can decrease ε0 > 0 such that

|Kz,λ| <
δ

4
(λ ∈ [λ0 − ε0, λ0), z ∈ ω(u)) ,

where

Kz,λ := {x ∈ D : Vλz(x) < −Cλ} (λ ∈ [λ0 − ε0, λ0), z ∈ ω(u)) .

We postpone the proof of this claim, and we finish the proof of the lemma
first.

Fix any λ ∈ [λ0 − ε0, λ0) and denote

Q := {(x, t) ∈ Ωλ : wλ(x, t) < −2Cλ} .

Then (2.3) implies that for each sufficiently large t there is z ∈ ω(u) with
Qt ∩ D ⊂ Kz,λ. Consequently for sufficiently large t

|Qt| ≤ |Ωλ \ D| + |Kt| <
3

4
δ +

1

4
δ = δ ,

and therefore |Q[t,t+1]| < δ (n+1-dimensional measure). Choose (tk)k∈N, tk →
∞ such that u(·, tk) → z̃ as k → ∞. Then (4.6) gives ‖(wλ(·, tk))−‖L∞(Ũ) ≥
5Cλ for any sufficiently large k.
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Since, by the definition of Q and (3.4), one has (wλ)− ≤ Cλ on ∂P Q,
Lemma 3.5 yields for any sufficiently large k

5Cλ ≤ ‖(wλ)−‖L∞(Qtk
) ≤ 2 max{‖(wλ)−‖L∞(Qtk−T )e

−T , 2Cλ}, (0 < T < tk) ,

a contradiction for sufficiently large T .

Proof of the claim. For already fixed z̃ and Ũ denote

M := sup
Ũ

z̃ > 0 . (4.7)

Since Vλ0z ≥ 0 in Ωλ0 ,

Vλz(x1, x
′) = z(2λ − x1, x

′) − z(x1, x
′)

= z(2λ − x1, x
′) − z(2λ0 − (2λ − x1), x

′) + z(x1 + 2(λ0 − λ), x′) − z(x1, x
′)

≥ z(x1 + 2(λ0 − λ), x′) − z(x1, x
′) ((x1, x

′) ∈ Ω(λ), z ∈ ω(u)) ,
(4.8)

where

Ω(λ) := {x = (x1, x
′) ∈ Ωλ0 : (x1+2(λ0−λ), x′) ∈ Ωλ0} (λ ∈ [λ0−ε0, λ0]) .

Decrease ε0 > 0 if necessary such that D ⊂ Ω(λ) for each λ ∈ [λ0 − ε0, λ0].
We show that it is possible to decrease ε0 such that Kz,λ 6= ∅ for some
λ ∈ [λ0 − ε0, λ0], z ∈ ω(u), implies

sup
D

z <
δM

96[diam(Ω)]N
. (4.9)

Assume not, that is, assume that there is (xn)n∈N ⊂ D, (zn)n∈N ⊂ ω(u) and
(λn)n∈N with λn ↗ λ0 as n → ∞ such that Vλnzn(xn) < −Cλn and (4.9) does
not hold. After passing to a subsequence, we can assume zn → z ∈ ω(u)
with convergence in C(Ω̄) and xn → x0 ∈ D̄, as n → ∞. Then Vλ0z(x0) ≤ 0
and ‖z‖L∞(D̄) > 0. Consequently by Lemma 4.3 (i) and (ii) with λ̃ = λ0,
Vλ0z ≡ 0 and z > 0 in a connected component U of Ωλ0 \ Ω∗

λ0
for which

x0 ∈ U , a contradiction to the definition of Ω∗
λ0

.

27



Next, by (4.8), monotonicity of z on Ωλ0 ,convexity of D in x1, and (4.9)

|Kz,λ| =

∫
D

I{x∈D:Vλz(x)<−Cλ}dx ≤
∫

D

I{x∈D:z(x1+2(λ0−λ),x′)−z(x1,x′)<−Cλ}dx

=

∫∫
D

I{x∈D:[z(x1,x′)−z(x1+2(λ0−λ),x′)]/Cλ>1}dx1dx′

≤ 1

Cλ

∫∫
D

z(x1, x
′) − z(x1 + 2(λ0 − λ), x′)dx1dx′

≤ 1

Cλ

∫
D

z dx − 1

Cλ

∫
D2(λ0−λ)

z dx ≤ 2(λ0 − λ) supD z

Cλ

[diam(Ω)]N−1

≤ (λ0 − λ)δM

48Cλdiam(Ω)
(λ ∈ [λ0 − ε0, λ0], z ∈ ω(u)) ,

(4.10)
where IA is the indicator function of a set A and Dµ := {x ∈ D : x−µe1 ∈ D}.
Finally, let us estimate Cλ. Decrease ε0 > 0 one more time to obtain

sup
Ω(λ)∩Ũ

z̃ ≥ M

2
(λ ∈ [λ0 − ε0, λ0]) . (4.11)

Since z̃λ0 ≡ 0 in Ũ , the inequality (4.8) becomes an equality:

z̃(x1+2(λ0−λ), x′)−z̃(x1, x
′) = Vλz̃(x1, x

′) ≥ −6Cλ ((x1, x
′) ∈ Ω(λ)∩Ũ) ,

where the last inequality follows from (4.6). Hence, the function z̃ cannot
decrease in x1 by more than 6Cλ on an interval of length 2(λ0−λ). Moreover,
z̃(x1 + 2(λ0 − λ), x′) = 0 for (x1, x

′) ∈ ∂Ω(λ) \ Hλ0 . Thus using (4.11) we
obtain

Cλ ≥ (λ0 − λ)M

12diam(Ω)
(λ ∈ [λ0 − ε0, λ0]) .

A substitution of this estimate into (4.10) yields the desired result.

The next lemma deals with the strict monotonicity of functions in ω-limit
set. The proof can be found in [23, Lemma 4.6].

Lemma 4.8. Assume that Ωλ0 is connected. Then for any z ∈ ω(u) we have
either z ≡ 0 on Ωλ0 or else z > 0 and z is strictly decreasing in x1 in Ωλ0.
The latter holds in the form zx1 < 0 if zx1 ∈ C(Ωλ0).

Once we proved all auxiliary results, it is rather standard to prove our
first main theorem.
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Proof of theorem 2.1. In addition to the assumptions of this section we also
assume (D3). We show that λ0 defined in (4.2) satisfies the assertions of the
theorem. First, by Remark 4.1, each z ∈ ω(u) is nonincreasing in x1 in Ωλ0 .

Assume λ0 > 0. By [23, Lemma 4.5], for each z ∈ ω(u) there is a
connected component U of Ωλ0 such that (2.4) holds true. Next, the existence
of z̃ ∈ ω(u) such that (2.5), (2.6) hold follows from Proposition 4.4 and the
strict monotonicity follows from Lemma 4.8.

Assume λ0 = 0. Since Ω0 is connected, Lemma 4.3 (ii) and (iii) with
λ̃ = λ0 = 0, imply that for each z ∈ ω(u) either z ≡ 0 and Vλ0z ≡ 0 in Ω0

or z > 0 and Vλ0z ≥ 0 in Ω0. It means that either z ≡ 0 in Ω or z > 0 in Ω.
If there is z ∈ ω(u) such that z > 0 in Ω, then the theorem follows from [23,
Theorem 2.2].

If ω(u) = {0}, the statement is trivial.

Let us turn our attention to the second main result.
Proof of theorem 2.2. In the proof we do not apply Convention 3.1 and we
indicate explicitly the dependence of all functions and sets on a vector v ∈ W .
By Lemma 3.10 we can assume (if we change v̂) that for each v ∈ W , (D4)
holds with v̂ replaced by v.

Let δ = δ(α0, β0, N) > 0 be such that Lemma 3.5 holds with
k = 1. We show that the theorem holds true for any δ∗ > 0 for
which |Ω0,e1 \ Ωδ∗,e1 | < δ

2
.

(4.12)

In addition to the assumptions of this section we also assume (D3), (D5),
(N4) and (D4) with already fixed δ∗. Analogously as before define

Vλ,vζ(x) := ζ(xλ,v) − ζ(x) (x ∈ Ωλ,v, v ∈ W, ζ ∈ ω(u), λ > λ∗(v)) .

Moreover for wλ,v = u(xλ,v, t) − u(x, t) denote

λ0(v) := inf{µ > λ∗(v) : lim
t→∞

‖(wλ,v(·, t))−‖L∞(Ωλ,v) = 0 for each λ ∈ [µ, `(v))}.

We now use moving hyperplanes in a direction v ∈ W in a similar way as we
did in the direction e1. The hyperplanes are now Hλ,v, for λ ∈ (λ∗(v), `(v)).
Then one of the following statements is true:

(i) λ0(v) = λ∗(v),

(ii) λ0(v) ∈ (λ∗(v), `(v)) and there exists a connected component U(v) of
Ωλ0(v),v and ζ ∈ ω(u) such that ζ > 0 and Vλ0(v),vζ ≡ 0 in U(v).
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To prove this, we use arguments analogous of those used in Lemmas 4.2, 4.3,
4.7, and in Proposition 4.4, where we replace the direction e1 with v and
the assumption λ0(e1) > 0 with λ0(v) > λ∗(v). Also the assumption (D1) is
replaced by Lemma 3.10, (D2) by (D5), and (N3) by (N4). The assumptions
(N1), (N2) remain unchanged as they are independent of a direction, and
(D3) was not supposed in these results.

To prove Theorem 2.2 we need to show that λ0(e1) = 0 (the rest of
the statements follow from Theorem 2.1). We show that the assumption
λ0(e1) > 0 leads to a contradiction.

First assume that λ0(e1) > δ∗ and the condition (i) holds true for some
v ∈ W \ {e1}. Then, by Proposition 4.4, there is z̃ ∈ ω(u) and a connected
component U(e1) of Ωλ0(e1),e1 such that Vλ0(e1),e1 z̃ ≡ 0 and z̃ > 0 in U(e1).
Also, (i) and Lemma 3.10 imply

Ωλ0(e1)−(λ0(e1)−δ∗),e1 = Ωδ∗,e1 ⊂ Ωλ∗(v),v = Ωλ0(v),v .

Consequently, Lemma 3.11 with ε = (λ0(e1) − δ∗)/2 > 0 yields x̃ ∈ ∂Ω ∩
∂U(e1) such that x̃λ0(e1),e1 ∈ Ωλ0(e1)−2ε,e1 ⊂ Ωλ0(v),v.

Furthermore, Vλ0(e1),e1 z̃(x̃) = 0 and z̃(x̃) = 0, because x̃ ∈ ∂Ω. Therefore
z̃(x̃λ0(e1),e1) = 0. Then, since x̃λ0(e1),e1 ∈ Ωλ0(v),v, Lemma 4.3 (ii) (in the

direction v) with λ̃ = λ0(v) yields z̃ ≡ 0 in the connected component of
Ωλ∗(v),v that has a nonempty intersection with U(e1). Finally, Lemma 4.3 (ii)

(in the direction e1) with λ̃ = λ0(e1) implies z̃ ≡ 0 in U(e1), a contradiction.
Next, we assume that λ0(e1) > δ∗ and (ii) hold for all v ∈ W . Since W

is uncountable and |U(v)| > 0 for each v ∈ W , there are v, v′ ∈ W such that
U(v)∩U(v′) 6= ∅. Denote A := U(v)∪Pλ0(v),vU(v), B := U(v′)∪Pλ0(v′),v′U(v′)
and without loss of generality assume B 6⊂ A (otherwise interchange v and
v′). Then B\A 6= ∅ and ∂(B\A) ⊂ ∂B∪∂A. Next, we see that ∂(B\A) 6⊂ ∂B,
since otherwise we obtain B \ A = B, a contradiction to ∅ 6= U(v) ∩ U(v′) ⊂
A ∩ B.

Thus, there is x̂ ∈ B ∩ ∂A, or equivalently

x̂ ∈ B ∩ (Pλ0(v),v∂U(v) \ ∂Hλ0(v),v) .

By ii) there is ζ ∈ ω(u) such that ζ > 0 in U(v) and ζλ0(v),v ≡ 0 in U(v) and
in particular ζ(x̂) = 0. By the analogous arguments as in the previous case
ζ ≡ 0 in B and since U(v) ∩ U(v′) 6= ∅, also ζ ≡ 0 in U(v), a contradiction.

Finally, assume 0 < λ0(e1) ≤ δ∗. If we start the process of the moving
hyperplanes from the left (or we replace e1 by −e1), then using analogous
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arguments as above, we obtain 0 ≥ λ−
0 (e1) ≥ −δ∗, where

λ−
0 (e1) := sup{µ < 0 : lim

t→∞
‖(wλ(·, t))−‖L∞(P0,e1 (Ωλ,e1

)) = 0 for each λ ∈ (−`, µ]} .

y∗x∗ UU−

0 λ0λ−
0

Without loss of generality assume λ0(e1) ≥
|λ−

0 (e1)| (otherwise replace u(x, t) by u(x0,e1 , t)).
By Lemma 4.7, |Ω∗

λ0(e1),e1
| > δ/2 and since |Ω0,e1 \

Ωλ0(e1),e1 | ≤ δ/2, one has Pλ0(e1),e1(Ω
∗
λ0(e1),e1

) 6⊂
Ω0,e1 \ Ωλ0(e1),e1 . Thus, there exist a connected
component U of Ω∗

λ0(e1),e1
, and y∗ ∈ ∂U such that

x∗
1 < 0, where x∗ = (x∗

1, (x
∗)′) := Pλ0(e1),e1y

∗ (see
figure). Moreover, since U ⊂ Ω∗

λ0(e1),e1
, there is z ∈ ω(u) with zλ0(e1),e1 ≡ 0

and z > 0 in U . In particular

z(x∗) = 0 and z(x1, (x
∗)′) > 0 (x1 ∈ (x∗

1, 0]) . (4.13)

Denote by U− the connected component of Ω−
λ−
0

:= {x ∈ Ω : x1 < λ−
0 }

that contains P0,e1(U). Since λ0(e1) ≥ |λ−
0 (e1)|, x∗ ∈ U−∪Pλ−

0 (e1),e1
(U−) and

consequently Lemma 4.3 (ii) and (iii) with λ̃ = −λ0(e1) (with x1 changed to
−x1) yields z ≡ 0 in U− ∪ Pλ−

0 (e1),e1
(U−). In particular z(x1, (x

∗)′) = 0 for

all x1 ∈ (x∗
1, 0], a contradiction to (4.13).

Hence, in all cases we found a contradiction. Therefore λ0(e1) = 0 and
we are done.

5 Proofs of Lemma 4.5 and Lemma 4.6

The assumptions in this section are the same as in Section 4 and Proposition
4.4. In particular we assume that Ω satisfies (D1) and (D2) and the non-
linearity F satisfies (N1) – (N3). We consider a classical solution u of (1.1)
satisfying (2.1) and (2.2). We also return to Convention 3.1, that is, we do
not indicate the dependence of sets or functions on e1. About λ0 defined in
(4.2) we assume λ0 > 0. Recall the notation Uλ0 , U∗

λ0
and Uλ from the proof

of Proposition 4.4 (see the paragraph containing (4.5)).

Proof of Lemma 4.5. Let δ > 0 be such that Lemma 3.5 holds with k = 1,
and fix ε0 > 0 such that λ0 > ε0 and |Ωλ0−ε0 \ Ωλ0 | < δ. We show that
the conclusion of the lemma holds true for all λ ∈ (λ0 − ε0, λ0). For a
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contradiction assume that there is λ ∈ (λ0 − ε0, λ0), Cλ > 0 and a sequence
(xj, tj)j∈N ⊂ Uλ × (0,∞) with tj → ∞ as j → ∞ and wλ(xj, tj) ≤ −Cλ.

By b) and (2.3)
lim
t→∞

‖u(·, t)‖L∞(U∗
λ0

) = 0 , (5.1)

and in particular there is T > 0 such that ‖u(·, t)‖L∞(U∗
λ0

) ≤ Cλ

4
for any

t ≥ T . Consequently wλ(x, t) ≥ −Cλ

4
for all (x, t) ∈ U∗

λ0
× (T,∞), and

therefore xj ∈ Uλ \ U∗
λ0

, j ∈ N. Now, (5.1) and an application of Lemma 3.5
with k = 1 on the set (Uλ \U∗

λ0
)× (T, tj) yields for all sufficiently large j ∈ N

Cλ ≤ (wλ)−(xj, tj) ≤ ‖(wλ)−(·, tj)‖L∞(Uλ\U∗
λ0

)

≤ 2 max

(
‖(wλ)−(·, T )‖L∞(Uλ\U∗

λ0
)e

T−tj ,
Cλ

4

)
.

Since wλ is bounded and T is fixed, the right hand side is less than Cλ

2
for

sufficiently large j, a contradiction.

Proof of Lemma 4.6. We proceed by a contradiction, that is we assume λ0 >
0, (4.4), and the condition c). For a domain D ⊂ Ω, we define the inner
radius of D to be

inrad(D) := {ρ > 0 : B(x0, ρ) ⊂ D for some x0 ∈ D} ,

and if D is an open set, we let inrad(D) stand for the infimum of inner radii
of all connected components of D.

Since U∗
λ0

has finitely many connected components, inrad (U∗
λ0

) = 2r0 =
2r0(λ0, Ω) > 0, and we can fix z̃ ∈ ω(u) such that Vλ0 z̃ > 0 holds on the
largest number of connected components of U∗

λ0
.

Let γ = γ(r0, α0, β0, N) and hr0 be as in Lemma 3.7 corresponding to
r = r0 and choose δ = δ(r0, α0, β0, N) > 0 such that the conclusion of Lemma
3.5 holds true for k = γ + 1. Let ε0 > 0 be such that |Uλ0−ε0 \ U∗

λ0
| < δ/2

and for each λ ∈ (λ0 − ε0, λ0), Uλ contains the same number of connected
components of Ωλ0 as U∗

λ0
.

Fix an open set D ⊂⊂ U∗
λ0

satisfying |U∗
λ0
\D| < δ/2 such that inrad (D) ≥

r0 and D ∩ V is a domain for any connected component V of U∗
λ0

. Then
|Uλ0−ε0 \ D| < δ.

For already fixed z̃ denote by U+, U0 the set of connected components
V of U∗

λ0
such that z̃λ0 > 0, z̃ ≡ 0 in V , respectively. Then, by (4.4) and
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c), U+, U0 is a partition of the set of connected components of U∗
λ0

and U+,
U0 6= ∅.

Next, fix an increasing sequence (tk)k∈N converging to ∞, with u(·, tk) → z̃
in C(Ω̄) as k → ∞. By the definition of U+, there is q > 0 such that for all
sufficiently large n

wλ0(x, tn) ≥ 2q (x ∈ D ∩ V, V ∈ U+) .

Then by the equicontinuity, with possibly decreased ε0, there is ϑ > 0 inde-
pendent of n such that for all λ ∈ [λ0 − ε0, λ0]

wλ(x, t) ≥ q ((x, t) ∈ (D ∩ V ) × [tn, tn + 4ϑ], V ∈ U+) . (5.2)

Also, by the definition of U0

lim
n→∞

‖u(·, tn)‖L∞(V ) = 0 (V ∈ U0) . (5.3)

Let κ1, p be constants depending on r0, ϑ, α0, β0, N, diamΩ and dist (D, ∂U∗
λ0

)
such that Lemma 3.9 holds true for (D, U, θ) = (D ∩ V, V, ϑ) where V is any
connected component of U∗

λ0
. Notice that neither κ1 nor p depend on ε0 or

n. Let c̃r0 be as in Corollary 3.8 and set

ν :=
1

4

κ2
1c̃r0σ

2
r0

κ1c̃r0σr0 + e4β0ϑ
where σr0 :=

(
|B r0

2
|

|D|

) 1
p

≤ 1 . (5.4)

A continuity argument, with possibly decreased ε0 (see for example [23, Proof
of Lemma 4.3]) implies for sufficiently large n

‖(wλ)−(·, tn)‖L∞(Uλ) ≤ ν[wλ]p,(D∩V )×[tn+ϑ,tn+2ϑ]

(V ∈ U+, λ ∈ (λ0 − ε0, λ0)) . (5.5)

If necessary, decrease ε0 again to obtain PλD ⊂ Pλ0U
∗
λ0

for each λ ∈ (λ0 −
ε0, λ0). Now, fix any λ ∈ (λ0 − ε0, λ0).

Since Uλ is a domain, we can choose a domain D̃ with D̃ ⊂⊂ Uλ and
D ⊂ D̃. Let κ̃1, p̃ be constants depending on r0, ϑ, α0, β0, N, diamΩ and
dist (D̃, ∂Uλ) such that Lemma 3.9 holds true for (D,U, θ) = (D̃, Uλ, ϑ).
Finally, choose T such that

eT ≥ 2
κ1

κ̃1

and T > 4ϑ . (5.6)
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Define

Tn := sup{τ : wλ(x, t) > 0, (x, t) ∈ V̄ × [tn, tn + τ), V ∈ U+} (n ∈ N) .
(5.7)

From (5.2), we have Tn ≥ 4ϑ.
Since inrad (D) ≥ r0, then for each V ∈ U+ there is xV

0 ∈ D with BV
r0

:=
B(xV

0 , r0) ⊂ D ∩ V . An application of Corollary 3.8 with (r, v) = (r0, w
λ0)

and (5.2) imply

wλ0(x, t) ≥ c̃r0qe
−γ(t−tn) ((x, t) ∈ BV

r0
2
× [tn, tn + Tn], V ∈ U+) . (5.8)

Next, we show that for T̃n := min{Tn, T}

lim
n→∞

sup
t∈[tn,tn+T̃n]

‖wλ(·, t)‖L∞(V ∩D) = 0 (V ∈ U0) . (5.9)

Otherwise, by compactness, there exists V̂ ∈ U0, d0 > 0, and a sequence
(ym, sm)m∈N with (ym, sm) ∈ (D∩ V̂ )× [tnm , tnm + T̃nm ], sm → ∞ as m → ∞
such that

|wλ(y0, sm)| > d0 .

Passing to a subsequence we may assume u(·, sm) → ẑ in C(Ω̄) and ym →
y0 ∈ D̄ ∩ V̂ as m → ∞ for some ẑ ∈ ω(u). Consequently

|Vλẑ(y0)| ≥ d0 . (5.10)

Moreover, for each V ∈ U+, (5.8) yields Vλ0 ẑ ≥ c̃r0qe
−γT on BV

r0
2

and therefore

by Lemma 4.3 i), Vλ0 ẑ > 0 on V .
Hence Vλ0 ẑ > 0 on V for each V ∈ U+. But since Vλ0 z̃ > 0 was true on

the largest number of connected components of U∗
λ0

, Vλ0 ẑ 6> 0 in any V ∈ U0.
Then (4.4) implies ẑ ≡ 0 for each V ∈ U0 and by Lemma 4.3 iii) also Vλ0 ẑ ≡ 0
on V for each V ∈ U0. Therefore in particular ẑ ≡ 0 on V̂ ∪ Pλ0V̂ . Since
PλD ⊂ Pλ0U

∗
λ0

, one has Vλẑ ≡ 0 on D̄ ∩ V̂ , a contradiction to (5.10).
Thus (5.9) holds, and in particular there exists n0 such that

‖(wλ)−‖L∞((D∩V )×[tn,tn+T̃n]) ≤
κ1c̃r0σr0q

8e4β0ϑ
e−(γ+1)T (V ∈ U0, n ≥ n0) .

(5.11)
Let us denote

Γn
0 := ‖(wλ)−(·, tn)‖L∞(Uλ) (n ∈ N) .
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An application of Lemma 3.5 on the set (Uλ \ D) × (tn, tn + T̃n) and (5.11)
yield

‖(wλ)−(·, t)‖L∞(Uλ) ≤ 2 max{e−(γ+1)(t−tn)Γn
0 , e

−(γ+1)T κ1c̃r0σr0q

8e4β0ϑ
}

≤ 2e−(γ+1)(t−tn)

(
Γn

0 +
κ1c̃r0σr0q

8e4β0ϑ

)
(t ∈ [tn, tn + T̃n], n ≥ n0) .

(5.12)

Next, since c̃r0 ≤ 1, Lemma 3.9 with (D,U, θ) = (D ∩ V, Uλ, ϑ), V ∈ U+ and
(5.2), (5.5), (5.12) imply

wλ(x, t) ≥ κ1[w
λ]p,(D∩V )×[tn+ϑ,tn+2ϑ] − e4β0ϑ sup

∂P (Uλ×(tn,tn+4ϑ))

(wλ)−

=
κ1

2
[wλ]p,(D∩V )×[tn+ϑ,tn+2ϑ] +

κ1

2
[wλ]p,(D∩V )×[tn+ϑ,tn+2ϑ]

− e4β0ϑ sup
∂P (Uλ×(tn,tn+4ϑ))

(wλ)−

≥ κ1σr0

1

2

(
Γn

0

ν
+ q

)
− 2e4β0ϑ

(
Γn

0 +
κ1c̃r0σr0q

8e4β0ϑ

)
≥ Γn

0

(κ1σr0

2ν
− 2e4β0ϑ

)
:= Γn

1

((x, t) ∈ D ∩ V × (tn + 3ϑ, tn + 4ϑ), n ≥ n0) .

This, (5.2) and Corollary 3.8 with r = r0 and q replaced by 1
2
(q + Γn

1 ) imply

wλ(x, t) ≥ c̃r0

2
(q + Γn

1 )e−γ(t−tn−4ϑ)

((x, t) ∈ BV
r0
2
× [tn + 4ϑ, tn + T̃n], V ∈ U+, n ≥ n0) . (5.13)

To obtain a contradiction, and finish the proof of the lemma, we show that
neither Tn ≤ T nor Tn > T is possible for infinitely many n.

Case 1. There exist an infinite subset S of positive integers such that
T̃n = Tn ≤ T for all n ∈ S. Then for any V ∈ U+, Lemma 3.9 with
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(D, U, θ) = (D ∩ V, Uλ, ϑ), (5.13), (5.12) and (5.4) yield

wλ(x, tn + Tn)

≥ κ1[w
λ]p,(D∩V )×[tn+Tn−3ϑ,tn+Tn−2ϑ] − e4β0ϑ sup

∂P (Uλ×(tn+Tn−4ϑ,tn+Tn))

(wλ)−

≥ κ1c̃r0σr0

2
e−γTn(Γn

1 + q) − 2e4β0ϑe−(γ+1)Tn

(
Γn

0 +
κ1c̃r0σr0q

8e4β0ϑ

)
≥ e−γTnΓn

0

(
κ2

1c̃r0σ
2
r0

2ν
− 2κ1c̃r0σr0e

4β0ϑ − 2e4β0ϑ

)
+

κ1

4
e−γTn q̃σr0

> 0 (x ∈ (D̄ ∩ V ), n ≥ n0) ,

a contradiction to (5.7).
Case 2. For all sufficiently large n, T̃n = T < Tn. By a similar argument

as in Case 1, Lemma 3.9 with (D,U, θ) = (D̃, Uλ, ϑ), (5.13), (5.12), (5.6) and
(5.4) yield

wλ(x, tn + T )

≥ κ̃1[w
λ]p,(D∩V )×[tn+T−3ϑ,tn+T−2ϑ] − e4β0ϑ sup

∂P (Uλ×(tn+T−4ϑ,tn+T ))

(wλ)−

≥ κ̃1c̃r0σr0

2
e−γT (Γn

1 + q) − 2e4β0ϑe−(γ+1)T

(
Γn

0 +
κ1c̃r0σr0q

8e4β0ϑ

)
≥ e−(γ+1)T Γn

0

(
κ2

1c̃r0σ
2
r0

2ν
− 2κ1c̃r0σr0e

4β0ϑ − 2e4β0ϑ

)
+

κ1c̃r0σr0q

4
e−(γ+1)T

≥ κ1c̃r0σr0q

4
e−(γ+1)T (x ∈ D̃, n ≥ n0)

(5.14)

Passing to a subsequence we may assume u(·, tn +T ) → ẑ in C(Ω̄) as n → ∞
for some ẑ ∈ ω(u). Then, by the same arguments as before ((5.8) and
maximality property of z̃) we obtain ẑ, ẑλ0 ≡ 0 in V for all V ∈ U0. But,
since PλD ⊂ Pλ0U

∗
λ0

, one has ẑλ ≡ 0 in D ∩ V ⊂ D̃, V ∈ U0, a contradiction
to (5.14).

This finishes the proof.
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[12] J. Földes and P.Poláčik. Symmetry properties of asymptotically sym-
metric parabolic equations in bounded domains. in preparation.

[13] B. Gidas, W.-M. Ni, and L. Nirenberg. Symmetry and related properties
via the maximum principle. Comm. Math. Phys., 68:209–243, 1979.

[14] M. Gruber. Harnack inequalities for solutions of general second order
parabolic equations and estimates of their hölder constants. Math. Z.,
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[23] P. Poláčik. Estimates of solutions and asymptotic symmetry for
parabolic equations on bounded domains. Arch. Rational Mech. Anal.,
183:59–91, 2007.

[24] J. Serrin. A symmetry problem in potential theory. Arch. Rational
Mech. Anal., 43:304–318, 1971.

[25] K. Tso. On an Aleksandrov-Bakel′man type maximum principle for
second-order parabolic equations. Comm. Partial Differential Equations,
10(5):543–553, 1985.

39


