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Abstract

We consider the three-dimensional magnetohydrodynamics (MHD) equations in the presence of a
spatially degenerate stochastic forcing as a model for magnetostrophic turbulence in the Earth’s fluid core.
We examine the multi-parameter singular limit of vanishing Rossby number ε and magnetic Reynold’s
number δ, and establish that: (i) the limiting stochastically driven active scalar equation (with ε = δ = 0)
possesses a unique ergodic invariant measure, and (ii) any suitable sequence of statistically invariant
states of the full MHD system converge weakly, as ε, δ → 0, to the unique invariant measure of the limit
equation. This latter convergence result does not require any conditions on the relative rates at which
ε, δ decay.

Our analysis of the limit equation relies on a recently developed theory of hypo-ellipticity for infinite-
dimensional stochastic dynamical systems. We carry out a detailed study of the interactions between the
nonlinear and stochastic terms to demonstrate that a Hörmander bracket condition is satisfied, which
yields a contraction property for the limit equation in a suitable Wasserstein metric. This contraction
property reduces the convergence of invariant states in the multi-parameter limit to the convergence of
solutions at finite times. However, in view of the phase space mismatch between the small parameter
system and the limit equation, and due to the multi-parameter nature of the problem, further analysis
is required to establish the singular limit. In particular, we develop methods to lift the contraction for
the limit equation to the extended phase space, including the velocity and magnetic fields. Moreover, for
the convergence of solutions at finite times we make use of a probabilistic modification of the Grönwall
inequality, relying on a delicate stopping time argument.
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1 Introduction

It has long been appreciated that invariant measures of the equations of fluid dynamics provide a math-
ematically consistent framework for studying robust statistical quantities in turbulent flows. An ongoing
challenge is therefore to investigate properties of these states such as the existence, uniqueness, ergodicity,
and dependence on parameters in a variety of specific contexts. While one may certainly pose these questions
for deterministic equations (cf. [FMRT01]), the stochastic setting, apart from its physical relevance, can be
more accessible due to the regularizing effect of noise on the associated probability distribution functions.

In this article we will analyze a stochastically forced system of equations from magnetohydrodynamics
that was presented by Moffat and Loper [ML94] as a model for magnetostrophic turbulence in the Earth’s
fluid core. The stochastic forcing terms are to be interpreted as a source of heat which “continuously
regenerates the statistically stationary temperature distribution throughout the core”; cf. [Mof08]. Our
analysis will focus on the convergence of such statistically stationary states in a certain singular parameter
limit suggested by [ML94] and which bears some formal similarities to a large Prandtl limit considered in
our recent work [FGHR15]. See also [Wan04, Wan05, Wan07, Wan08, Par10] for other formally analogous
limits considered within a deterministic framework.

The Stochastic Magnetohydrodynamics (MHD) Equations

The three-dimensional MHD equations govern the motion of a rotating, density stratified, electrically con-
ducting fluid under the Boussinesq approximation. See e.g. [Mof78, Dav01]. In a rotating frame of reference
these equations are written in terms of dimensionless variables as

ε(∂tU + U · ∇U) + Ω̂× U = −∇P + B̂0 · ∇B + δB · ∇B −Θĝ + ν∆U, ∇ · U = 0, (1.1)

δ(∂tB + U · ∇B −B · ∇U) = B̂0 · ∇U + ∆B, ∇ ·B = 0, (1.2)

dΘ + U · ∇Θdt = κ∆Θ dt+ σdW. (1.3)

The unknowns are U = U(x, t) the velocity, B = B(x, t) the magnetic field (both vector-valued) and
Θ = Θ(x, t) the temperature (a scalar) of the fluid. Here Ω̂ denotes a unit vector along the axis of rotation
of a sphere, ĝ is a unit vector in the local direction of gravity, which points radially inwards to the sphere,
and B̂0 denotes a unit vector in the direction of a constant “applied” underlying magnetic field. We will
work in Cartesian coordinates centered on a local tangent plane to the sphere at a co-latitude angle λ. We
choose the Cartesian frame {ê1, ê2, ê3} such that ĝ = −ê3 and Ω̂ = cosλê3 − sinλê2.

The physical forces governing this system are the Coriolis force, Lorentz force, and gravity acting via
buoyancy, while the equation for the temperature Θ is driven by a white-in-time, spatially correlated, Gaus-
sian noise σdW . Specifically we consider

σdW =
∑
k∈Z3

0

m∈{0,1}

αk,mσ
m
k dW

k,m , (1.4)

where {σmk } is a basis of L2(T3) consisting of eigenfunctions of Laplacian on the cubic torus, namely σ0
k(x) :=

cos(k · x), σ1
k(x) := sin(k · x), αk ∈ R are amplitudes, and {W k,m} is a collection of independent standard,

1D Brownian motions. We are mainly interested in the situation when (1.4) is ‘degenerate’ in the sense that
only a few selected amplitudes αk are non-zero. Nevertheless many of the results established below remain
true (and in some cases are easier to prove) if infinitely many frequencies are activated (αk 6= 0) so long as
the amplitudes decay sufficiently rapidly.

The non-dimensional parameters in (1.1)–(1.3) are ε the Rossby number, δ the magnetic Reynolds num-
ber, ν a (non-dimensional) viscosity and κ a (non-dimensional) thermal diffusivity. The orders of magnitude
of the non-dimensional parameters are motivated by the physical postulates of the Moffatt and Loper model.
In particular, the parameters ε, δ, ν, and κ are all small. Note that the ratio of the Coriolis to Lorentz forces
in the model we are studying is of order 1, so for notational simplicity we have set this parameter, denoted
by N2 in [ML94], equal to 1.
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For mathematical tractability we consider both (1.1)–(1.3) and (1.5)–(1.7) below on the periodic domain
T3, with all of the fields being mean free, a condition which is preserved by the equation.1 Notice that we
have followed the usual convention of including the divergence-free condition on the magnetic field B in (1.2).
This is really a condition on the initial data, ∇ ·B|t=0 = 0, as this property is preserved by the dynamics of
(1.1)–(1.3).

The analysis in Moffat and Loper [ML94] and Moffat [Mof08] assumes that the statistics of the temper-
ature field Θ, averaged over scales characteristic of the turbulent regions, are prescribed. Further simpli-
fications are made in [ML94, Mof08] based on the assumption that ε and δ are both small, and for their
purposes can be neglected. In our work we carry the analysis to a higher level of complexity and examine
the three-dimensional coupled system (1.1)–(1.3) in which a back reaction of the temperature field on the
flow is allowed. We give a rigorous justification of the reduction of the full evolution system in the limit
ε, δ → 0 to a stochastically driven active scalar equation by deriving suitable asymptotics in ε and δ at both
finite and infinite time. The limit system when ε = δ = 0 is the following active scalar equation:

dθ + u · ∇θ dt = κ∆θ dt+ σdW , (1.5)

where u, b are related to θ via

Ω̂× u = −∇p+ B̂0 · ∇b+ θê3 + ν∆u, ∇ · u = 0, (1.6)

0 = B̂0 · ∇u+ ∆b . (1.7)

Observe that the vector fields u and b are computed from the temperature θ and are not prescribed
independent initial conditions. Using (1.6)–(1.7) we can define a linear operator M = (Mu,Mb) with
(u, b) = (Mu(θ),Mb(θ)) and it is crucially important in our analysis below that M produces two degrees of
smoothing in space. Vector manipulations as in [ML94, FS15], taking the curl of (1.6) three times and using
∇ · u = 0 = ∇ · b, yield the expression:

{[ν∆2 − (B̂0 · ∇)2]2 + (Ω̂ · ∇)2∆}u = −[ν∆2 − (B̂0 · ∇)2]∇× (ê3 ×∇θ) + (Ω̂ · ∇)∆(ê3 ×∇θ) . (1.8)

Hence the explicit expression for the Fourier multiplier symbolsMu(k) andMb(k) as functions of the Fourier
variable k = (k1, k2, k3) ∈ Z3 are

Mu(k) =
1

D(k)

(
(ν|k|4 + (B̂0 · k)2)(k × (ê3 × k)) + (Ω̂ · k)|k|2(ê3 × k)

)
, Mb(k) =

iB̂0 · k
|k|2

Mu(k) , (1.9)

where

D(k) = |k|2(Ω̂ · k)2 + ((B̂0 · k)2 + ν|k|4)2 . (1.10)

Since D is of order |k|8 whereas the numerator ofMu is of order |k|6, the two degrees of smoothing of M is
evident from (1.9)–(1.10).

It is worth emphasizing that the singular limit of (1.1)–(1.3) to (1.5)–(1.7) in this work bears some
significant formal similarities to the infinite Prandtl limit for the stochastic Boussinesq equations which we
have recently considered in [FGHR15]. Here however our problem involves multiple small parameters and
both the linear and non-linear structure structure of the governing equations is quite different. On the
other hand the parameters ν, κ in (1.1)–(1.3) are also small in practice suggesting other challenging singular
perturbations problems of interest cf. [FRV14, FS15, FV11a, FV11b, FV12]. Moreover a variety of other
interesting singular limit problems arise from (1.1)–(1.3) but most of the rigorous work so far is restricted
to a deterministic setting. See e.g. [Wu97, DDG99, Mas07, CDGG06, CW11, FMRR14, CJTA15].

1To verify this property, one first confirms that the mean zero condition is preserved in the Θ and B component, (1.3), as
a straightforward consequence of Gauss’ theorem, noting that σ is taken to be mean free in (1.4). Then, by integrating (1.1)
and using Gauss’ theorem, recalling that the buoyancy term has zero mean as derived already, one is left with the equation
d
dt
V = Ω̂ × V , where V =

∫
T3 U dx. But this ODE has only the trivial solution for initial condition V (0) = 0, yielding the

preservation of the mean free condition for U .
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Summary of Main Results

We now give a preview of the main results of this work. Precise statements are given below in the body of
the work.

(i) Consider any initial conditions Uε,δ(0), Bε,δ(0),Θε,δ(0), where Uε,δ(0), Bε,δ(0) are uniformly bounded
in L2(T3) independently of ε, δ > 0 and

‖Θε,δ(0)− θ(0)‖ → 0, as ε, δ → 0, (1.11)

for some θ(0) ∈ L2(T3). Here and in all that follows ‖ · ‖ denotes the usual L2-norm. Suppose that
(Uε,δ, Bε,δ,Θε,δ) and θ are corresponding solutions of (1.1)–(1.3) and (1.5) respectively. Then for any
t > 0, there exists a sufficiently small γ > 0 such that for p > γ,

E sup
s∈[0,t]

‖Θε,δ(s)− θ(s)‖p ≤ C(‖Θε,δ(0)− θ(0)‖+ ε+ δ)γ → 0, as ε, δ → 0, (1.12)

for a constant C > 0, where γ and C are both independent of ε, δ and E denotes the expected value
(statistical mean). Furthermore we show that, for any t > 0,

E
∫ t

0

‖(Uε,δ(s), Bε,δ(s))−M(θ)(s)‖2ds ≤ C(‖Θε,δ(0)− θ(0)‖+ ε+ δ)γ → 0, as ε, δ → 0. (1.13)

For the precise statement see Theorem 3.1 below.

(ii) Regarding the active scalar equation (1.5) we show that, provided

αe1,m, αe2,m, and αe3,m are non-zero for each m ∈ {0, 1}, (1.14)

then (1.5) satisfies a form of the Hörmander bracket condition. See (4.4) and Theorem 4.3 below.2

Invoking recent results of Hairer and Mattingly [HM08, HM11] (see also [HM06, FGHRT15]) we infer
that, in a suitably chosen Wasserstein metric W,

W(µ1Pt, µ
2Pt) ≤ Ce−γ

′tW(µ1, µ2), for t ≥ 0, (1.15)

for any probability measures µ1, µ2, where the constants C, γ′ are independent of t ≥ 0 and µ1, µ2.
Here Pt is the Markov semigroup associated to (1.5) so that µiPt represents the law of solutions to (1.5)
at time t ≥ 0 initially distributed as µi. In particular (1.15) immediately implies that, under the given
condition (1.14), the equation (1.5) has a unique statistically stationary state µ. See Theorem 4.1 for
further details.

(iii) Assume the noise satisfies (1.14). We prove that, for every ε, δ > 0, the system (1.1)–(1.3) possesses
at least one statistically stationary state µε,δ which satisfies certain exponential moment bounds in-
dependently of ε, δ. Moreover, we show that any such collection µε,δ converges to µ in the limit as
ε, δ → 0, at an algebraic rate, in a suitable Wasserstein metric; see Theorem 5.1 below for the precise
statement. In particular, this implies that for any sufficiently regular observable φ,∣∣∣∣∫ φ(U,B,Θ)dµε,δ −

∫
φ(M(θ), θ)dµ

∣∣∣∣→ 0, in the limit as ε, δ → 0. (1.16)

We now sketch our method of proof for the results described in (i)–(iii), highlighting some of the particular
challenges we encountered. Observe that the convergence to the formal limit (1.5) as ε, δ → 0 is singular
in the sense that there is a phase space mismatch. It is therefore apparent that our analysis must involve
multiple time scales: an initial ‘layer’, that is, short times depending on ε and δ influenced by the difference
in initial conditions, an intermediate time scale, and finally a large time scale where the loss of nonlinear

2While we provide complete details only under the assumption (1.14), in principle many other noise configurations could be
addressed with our methods.
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terms in the momentum and magnetic equations is especially apparent. This long time scale is embodied in
the statistically stationary states of (1.1)–(1.3) and of (1.5) which are the primary focus of this work.

Our analysis builds on a method developed recently in [FGHR15], which draws on a simple but powerful
observation from [HM08]: if one can establish a contraction property for the limit equation as in (1.15), then
the question of convergence of statistically stationary states can be reduced to the convergence of solutions
on finite time scales (cf. (1.12)–(1.13)). Nevertheless proving the results herein requires significant novel
developments. This is due in part to the specific structural challenges inherent in (1.1)–(1.3). However, in
the course of our work here, we develop general techniques to tackle multi-parameter problems as well as
methods for lifting the convergence of statistics to an extended phase space.

As a first step we establish the convergence of solutions on finite time scales without imposing any relative
rates for which ε, δ vanish. To the best of our knowledge, such convergence results are new for the MHD
system, even in the deterministic setting, where our methods apply with straight-forward modifications.
Here one of our key observations is that a difference in initial conditions for the velocity and magnetic
components has a negligible effect on the temperature, namely of an algebraic order of ε + δ. We also use
non-trivial cancelations in the nonlinear terms to take advantage of the improved regularity properties of
the limit equation; cf. (3.20) in Section 3.

Additional challenges arise due to the probabilistic nature of (1.1)–(1.3) and (1.4). For example, we find
that estimates on the difference of solutions to the temperature equation lead to an integral inequality that
requires certain almost sure bounds. This leads us to develop a probabilistic modification of the Grönwall
inequality which relies on a delicate stopping time argument. See (3.22) and Lemma 3.4 below. In particular
this approach leads to algebraic rates of convergence in temperature, as in (1.12). We are then able to
transfer these algebraic rates to the convergence of the velocity and magnetic fields, see (1.13). Note that,
due to the existence of the initial layer, one should not expect the convergence as ε, δ → 0 to be uniform in
the U and B components up to the initial time.

In order to obtain more precise asymptotics, one could seek to extend classical approaches involving
multiple time scales to our setting; see for example [O’M74, KP03]. Such an approach would yield a ‘correc-
tor’, or in our multi-parameter case a series of correctors, whose structure depends on the relative sizes of ε
and δ. These correctors provide well-posed effective dynamics which accurately approximate the full system
(1.1)–(1.3) up to time zero when ε and δ are small. See Remark 3.5 below. While the accuracy of these
correctors can be rigorously established with estimates similar to those carried out in detail in Section 3, our
approach, which is focused on the convergence of long time statistics, does not require such ‘intermediate’
systems, so we omit these details. For results in a similar setting see [FGHR15] and e.g. [Wan04] for an
analogous situation in a deterministic context.

Having established suitable finite time convergence results we turn to analyze the limit equation (1.5)
in pursuit of (1.15). Here we underline that a proof of the estimate (1.15) becomes tractable by including
a stochastic forcing. The estimate (1.15) immediately implies that statistically invariant states of (1.5) are
unique and ergodic, providing a rigorous foundation for some basic assumptions in statistical theories of
turbulence; cf. [Fri95] or [Mof08] in our geophysical setting. Such considerations from turbulence motivate
the study of unique ergodicity in a variety of infinite-dimensional stochastic systems arising in fluids; see e.g.
[FM95, HM06, BDP07, Deb11, KS12, FGHRT15, CGHV13, FGHV14] and references therein.

Motivated by the fundamental postulates of turbulence where energy cascades from large to small spatial
scales, we consider (1.5) driven by a ‘spectrally degenerate’ stochastic forcing, namely where the noise
acts through a narrow range of frequencies. While this degenerate setting may be attractive physically, it
makes the analysis leading to (1.15) substantially more difficult compared to the case when noise is active
on all spatial scales. To tackle this situation we implement a strategy from the recent groundbreaking
works of Hairer and Mattingly [HM06, HM08, HM11]. These works develop a theory of hypo-ellipticity for
infinite-dimensional systems which allows one to establish unique ergodicity and contractivity for certain
semilinear stochastic PDEs with spectrally degenerate stochastic forcing. Application of this theory requires
demonstrating that the stochastic excitation can propagate to higher frequencies through the nonlinearity.
This is done by verifying that a Hörmander bracket condition is satisfied by the set of activated modes.
Such an analysis requires a detailed understanding of the nonlinear structure in the governing equations, as
observed in previous works [EM01, Rom04, HM06, HM11, FGHRT15, FGHV14]. In our setting we rely on
the explicit formulation of M in (1.9)–(1.10) and a non-trivial construction to avoid degeneracies in frequency
space.
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The final stage of our analysis demonstrates that the unique invariant statistics for the limit equation (1.5)
approximate any reasonable invariant statistics for the original system (1.1)–(1.3) for ε, δ small. Indeed, as we
already identified above, the bounds (1.12)–(1.13) and (1.15) provide a means to transfer the algebraic rates
in (1.12) to the convergence of invariant states in a suitable Wasserstein metric following [HM08, FGHR15].
In particular, such Wasserstein metrics are closely related to the topology of weak convergence and hence
our results imply that observations from a reasonable class of invariant states for (1.1)–(1.3) converge to
observations relative to the unique invariant measure for (1.5) in the limit as ε, δ → 0; see main result (iii)
above.

It should be emphasized that in our previous work [FGHR15] on the stochastic Boussinesq system,
convergence of statistically invariant states on the temperature component (in the infinite Prandtl number
limit) was established by taking a similar approach. In contrast, in this current work we prove convergence
of invariant states on the extended phase space, including the velocity and magnetic fields, which requires us
to overcome a novel challenge arising due to the phase space mismatch between the small parameter system
(1.1)–(1.3) and the limit equation (1.5). This is accomplished by exploiting the structure of a Wasserstein
distance and estimates on the constitutive law (1.9)–(1.10) in order to ’lift’ the contractive property for (1.5)
to the extended phase space. This strategy should prove useful for other systems with analagous singular
limits, in particular for the Boussinesq system.

Organization of the Paper

The rest of the manuscript is organized as follows. In Section 2 we establish our notational conventions and
recall some mathematical foundations of the equations (1.1)–(1.3) and (1.5); existence and uniqueness of
solutions, and the associated Markovian framework. In Section 3 we prove the finite time convergence of
solutions to (1.1)–(1.3) to those of (1.5) in the limit as ε, δ → 0, as described in point (i) above. Section
4 contains some background on Wasserstein metrics, provides a proof of the contractive property (1.15) as
discussed in point (ii), and the uniqueness of statistically stationary states for (1.5) follows as a consequence.
To prove (1.15) we carry out the relevant infinite-dimensional Lie bracket analysis to demonstrate that a form
of the Hörmander condition is satisfied. The proof of weak convergence of statistically stationary states,
as described in point (iii) above, is given in Section 5. Finally, we include an appendix with parameter
independent exponential moment bounds which will be utilized throughout the manuscript.

2 Preliminaries

We begin by recalling some details about the functional setting of (1.1)–(1.3) and the formal limit equation
(1.5).

The main function spaces are

H :=

{
U ∈ L2(T3)3 : ∇ · U = 0,

∫
T3

U dx = 0

}
×
{
B ∈ L2(T3)3 : ∇ ·B = 0,

∫
T3

B dx = 0

}
×
{

Θ ∈ L2(T3) :

∫
T3

Θ dx = 0

}
,

and

V := H
⋂{

U ∈ H1(T3)3
}
×
{
B ∈ H1(T3)3

}
×
{

Θ ∈ H1(T3)
}
,

where Hs(T3) are the usual Sobolev spaces. For the limit problem (1.5) we take H ′ = L2(T3) and V ′ =
H1(T3) with the mean free condition imposed. We denote by ‖ · ‖ and 〈·, ·〉 the usual L2-norm and inner
product, respectively. For any p ≥ 2 we set

‖σ‖pLp :=

∫
T2

( ∑
k∈Z3

0,
m=0,1

|αk,mσmk (x)|2
)p/2

dx ,
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so that ‖σ‖L2 = ‖σ‖ reduces to the usual Hilbert-Schmidt norm. Note that ‖σ‖ is controlled by ‖σ‖Lp for
every p ≥ 2.

We have the following existence results for (1.1)–(1.3):

Proposition 2.1 (Martingale solutions for the full system). Consider (1.1)–(1.3) with any ε, δ > 0 and where
(1.4) holds with only finitely many αk,m 6= 0 (or where the αk,m decay sufficiently rapidly as |k| → ∞),

(i) Given any initial probability distribution µ ∈ Pr(H) there exists a stochastic basis S = (Ω,F ,P, {Ft}t≥0,W )3

and a corresponding stochastic process (U,B,Θ) with

(U,B,Θ) ∈ L2(Ω;L∞loc([0,∞), H) ∩ L2
loc([0,∞), V )),

which is weakly continuous, adapted to the filtration provided by the stochastic basis, (weakly) solves
(1.1)–(1.3), and such that Law(U(0), B(0),Θ(0)) = µ. We say that (S, (U,B,Θ)) is a Martingale
solution of (1.1)–(1.3).

(ii) Moreover, for every ε, δ > 0, there exists a stationary Martingale solution (S, (US , BS ,ΘS)) such that
this family of solutions satisfies the uniform moment bound

sup
ε,δ∈(0,N ]

E exp(η(ε‖US‖2 + δ‖BS‖2 + ‖ΘS‖2L3)) ≤ CN <∞, (2.1)

for every N > 0, where η, CN > 0 are independent of ε, δ > 0.

Proposition 2.1, (i) can be established in a similar manner as for the 3D Navier stokes equations, namely
through a Galerkin regularization procedure, see e.g. [AFS08]. Regarding the existence of stationary Mar-
tingale solutions, Proposition 2.1, (ii), the proof proceeds exactly as in [FGHRW15] using Lemmas A.1,
A.6 in the Appendix below. Here again the existence of stationary solutions follows as a limit of invariant
states of a regularization of the governing equations following [AFS08], but with an additional twist. The
idea is to consider a Galerkin truncation only in the velocity and magnetic components of (1.1)–(1.3) (cf.
[FGHRW15]). This allows the regularization procedure to preserve the advection-diffusion structure in (1.3)
which in turn permits the ε, δ-uniform bound on L3(T3) norms of Θ in (2.1) (or for that matter on Lp(T3)
for any p ≥ 2). This uniform bound is needed for Theorems 3.1 and 5.1 below.

The formal limit equation is much more tractable analytically, and possesses unique, pathwise solutions.

Proposition 2.2 (Well-Posedness for the limit equation). Consider (1.5) supplemented with (1.6), (1.7)
and subject to the same condition on σ given by (1.4) as in Proposition 2.1.

(i) Fix a stochastic basis S and any initial condition θ0 ∈ L2(Ω;H ′) which is F0 measurable. Then there
exists a unique

θ ∈ L2(Ω;C([0,∞), H ′) ∩ L2
loc([0,∞), V ′))

which is Ft-adapted, solves (1.5) and satisfies the initial condition θ(0) = θ0. We say that θ is a
Pathwise solution of (1.5).

(ii) Writing θ(t, θ0) for the solution with initial condition θ0 ∈ H ′ at time t ≥ 0, we have for any t ≥ 0

θ(t, θn0 )→ θ(t, θ0) a.s. in H ′ whenever θn0 → θ0 in H ′.

(iii) Pathwise solutions θ of (1.5) satisfy the exponential moment bounds (A.1)–(A.3).

This well-posedness result for (1.5) is again a straightforward extension of known results in the deterministic
case, cf. [FS15], particularly since we are working with an additive noise. For discussion of the exponential
moment bounds, see Lemma A.1 in the Appendix.

3Recall that a stochastic basis consists of a probability space, a right-continuous, complete filtration {Ft}t≥0 along with a

collection W = {Wk,m} of independent, identically distributed 1d Brownian motions adapted to this filtration.
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We finally recall the Markovian setting of (1.5) as follows. Denote by Pr(H ′) the space of Borel probability
measures on H ′. Also denote by Mb(H

′) and Cb(H
′) the bounded measurable and bounded continuous (real

valued) functions on H ′, respectively. The Markov transition functions are defined by

Pt(θ0, A) = P(θ(t, θ0) ∈ A) for any t ≥ 0, θ0 ∈ H ′, A ∈ B(H ′),

where B(H ′) is the set of Borel subsets of H ′ and the associated semigroup {Pt}t≥0 acts on ‘observables’
φ ∈Mb(H

′) according to

Ptφ(θ0) :=

∫
H′
φ(θ)Pt(θ0, dθ) = Eφ(θ(t, θ0)),

and on ‘initial distributions’ µ ∈ Pr(H ′) by

µPt(A) :=

∫
H′
Pt(θ,A)dµ(θ).

Recall that µ ∈ Pr(H ′) is an invariant measure for Pt, i.e. an invariant measure for (1.5), if µPt = µ for all
t ≥ 0. Since θ0 7→ θ(t, θ0) is continuous by Proposition 2.2 for each t ≥ 0, we have that Pt is Feller, mapping
Cb(H

′) to itself.
Recall that the Krylov-Bogolyubov procedure and the compact embedding of H1 into L2 immediately

produce the existence of an invariant measure for (1.5)–(1.7), while the uniqueness, a much more delicate
issue, is addressed below in Section 4. Using the moment bound (A.3) we infer that, for any invariant
measure and any p ≥ 2 ∫

‖θ‖Lpdµ(θ) ≤ C <∞, (2.2)

where the constant C is as in (2.1) above.

3 Finite Time Convergence Analysis

In this section we establish the finite time convergence of solutions of (1.1)–(1.3) to solutions of (1.5) in the
limit as ε, δ → 0, see (i) in the summary of our main results. We again emphasize that no relative rates
between ε and δ are required here. In Section 5 these results will be used to establish the convergence of
stationary solutions (see Theorem 5.1 below). The section concludes with some remarks concerning ‘corrector
systems’ which provide a different well-posed approximation to (1.1)–(1.3), namely an approximation that
is accurate up to time zero.

Note that we are working only with zero mean functions and vector fields. This restriction justifies the
use of the Poincaré inequality which we apply below without further comment.

Theorem 3.1. For every ε, δ ∈ (0, 1] let (U,B,Θ) be a Martingale solution of (1.1)–(1.3) in the sense of
Proposition 2.1 and let θ be a solution of (1.5) as in Proposition 2.2. Suppose that there is η0 > 0 such that

sup
ε,δ∈(0,1]

E exp(η0(ε‖U(0)‖2 + δ‖B(0)‖2 + ‖Θ(0)‖2L3 + ‖θ(0)‖2L3)) ≤ C0 <∞. (3.1)

Then there exists η1 = η1(η0, ν, κ, C0) such that for each T > 0, η ∈ (0, η1], γ ∈ (0, η/(η + CT )], and p > γ,
there is a constant C = C(p, η0, ν, κ, C0) such that

E sup
t∈[0,T ]

‖Θ(t)− θ(t)‖p (3.2)

≤ C exp(ηT‖σ‖2L3)
(

(ε+ δ)γ +
(
E‖Θ(0)− θ(0)‖2 + ε‖U(0)−Mu(θ)(0)‖2 + δ‖B(0)−Mb(θ)(0)‖2

)γ)1/2

,

and

E
∫ T

0

(
‖U(t)−Mu(θ)(t)‖2H1 + ‖B(t)−Mb(θ)(t)‖2H1

)
dt (3.3)

≤ CT exp(ηT‖σ‖2L3)
(

(ε+ δ)γ +
(
E‖Θ(0)− θ(0)‖2 + ε‖U(0)−Mu(θ)(0)‖2 + δ‖B(0)−Mb(θ)(0)‖2

)γ)1/2

.
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Remark 3.2. As identified in Proposition 2.1, (3.1) holds for a collection of stationary Martingale solutions
of (1.1)–(1.3). The bound (3.1) holds for the unique stationary state of (1.5) due to (2.2). These observations
will play a crucial role below in Section 5.

Before proceeding to the proof we set notations for several operators that are used extensively. We denote
the Coriolis-Stokes operator by A which acts on sufficiently smooth, divergence free vector fields according
to

Au := −ν∆u+ P Ω̂× u , (3.4)

where P is the Leray projector onto divergence free vector fields. Note that P commutes with ∆, and
therefore we omit P in front of the Laplacian term in (3.4). Since u 7→ Ω̂× u is a skew symmetric operator,
then 〈P Ω̂× u, u〉 = 〈Ω̂× u, u〉 = 0, and therefore A is positive definite on zero mean functions with

〈Au, u〉 = ν‖∇u‖2 , for all u ∈ H1(T3)3 with ∇ · u = 0 (3.5)

which we use below without further comment. We also make use of the operator Q defined as

Qu := Au− (−∆)−1(B̂0 · ∇)2u , (3.6)

where (−∆)−1 has the range of zero mean functions. Note that

〈Qu, u〉 ≥ 〈Au, u〉 = ν‖∇u‖2, for all u ∈ H1(T3)3 with ∇ · u = 0,

so that, in particular, Q is positive definite. Thus A and Q are invertible operators, and we may rewrite the
limit equation (1.6)–(1.7) as

u = Q−1P ê3θ , b = (−∆)−1(B̂0 · ∇u) . (3.7)

Remark 3.3. Notice that by (3.7), u and b are respectively two and three degrees smoother than θ. By this
we mean that for any s ∈ R if θ ∈ Hs, then u ∈ Hs+2 and b ∈ Hs+3, as can be seen from corresponding
symbols given explicitly in (1.9).

Proof of Theorem 3.1. In what follows C denotes any constant which depends on κ, ν, and C0, but which is
independent of ε, δ, K, σ, and t > 0.

Working from (3.7), (1.5) we have

du = Q−1P ê3dθ = Q−1P ê3(κ∆θ − u · ∇θ)dt+Q−1P ê3σdW . (3.8)

Observe (1.6) takes the form Au = PB̂0 · ∇b+ P ê3θ and adding it to an ε multiple of (3.8) we obtain

εdu+Audt = (PB̂0 · ∇b+ P ê3θ)dt+ εQ−1P ê3(κ∆θ − u · ∇θ)dt+ εQ−1P ê3σdW . (3.9)

Next, we derive an evolution equation for b. From (3.7), (1.5) we obtain that

db = (−∆)−1B̂0 · ∇du = R(κ∆θ − u · ∇θ)dt+RσdW , (3.10)

where
R := (−∆)−1(B̂0 · ∇)Q−1P ê3 . (3.11)

Adding a δ-multiple of (3.10) to (1.7) yields

δdb−∆bdt = (B̂0 · ∇u)dt+ δR(κ∆θ − u · ∇θ)dt+ δRσdW . (3.12)

Set

v := U − u, f := B − b, φ := Θ− θ, (3.13)

where (U,B,Θ) is solution of (1.1)–(1.3). Comparing (3.9) and (1.1) we obtain

εdv+Avdt = (PB̂0·∇f+P ê3φ)dt+P (δB·∇B−εU ·∇U)dt−εQ−1P ê3(κ∆θ−u·∇θ)dt−εQ−1P ê3σdW . (3.14)
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Similarly by substracting (3.12) from (1.2) we have

δdf −∆fdt = B̂0 · ∇vdt− δ(U · ∇B −B · ∇U)dt− δR(κ∆θ − u · ∇θ)dt− δRσdW. (3.15)

Next, comparing (1.3) and (1.5) we obtain

∂tφ− κ∆φ = −U · ∇φ− v · ∇θ . (3.16)

Applying the Itō formula to (3.14) and recalling (3.5) yields

ε

2
d‖v‖2 + ν‖∇v‖2dt =

(
〈B̂0 · ∇f, v〉+ 〈ê3φ, v〉

)
dt− ε〈U · ∇U, v〉dt+ δ〈B · ∇B, v〉dt

− ε〈Q−1P ê3(κ∆θ − u · ∇θ), v〉dt+
ε

2
‖Q−1P ê3σ‖2dt− ε〈Q−1P ê3σ, v〉dW . (3.17)

Similarly (3.15) yields

δ

2
d‖f‖2 + ‖∇f‖2dt = 〈B̂0 · ∇v, f〉dt− δ〈U · ∇B −B · ∇U, f〉dt− δ〈R(κ∆θ − u · ∇θ), f〉dt

+
δ

2
‖Rσ‖2dt− δ〈Rσ, f〉dW . (3.18)

Finally from (3.16) and the fact that ∇ · v = ∇ · U = 0,

1

2

d

dt
‖φ‖2 + κ‖∇φ‖2 = 〈v · ∇φ, θ〉 . (3.19)

Addition of (3.17) and (3.18), and integration in time up to t ∧ τ , where τ is any stopping time, gives

1

2
(ε‖v(t ∧ τ)‖2 + δ‖f(t ∧ τ)‖2) +

∫ t∧τ

0

(ν‖∇v‖2 + ‖∇f‖2) ds =
1

2
(ε‖v(0)‖2 + δ‖f(0)‖2)

+

∫ t∧τ

0

〈ê3φ, v〉 ds− ε
∫ t∧τ

0

〈U · ∇U, v〉 ds+ δ

∫ t∧τ

0

(〈B · ∇B, v〉 − 〈U · ∇B −B · ∇U, f〉) ds

+ ε

∫ t∧τ

0

(
1

2
‖Q−1P ê3σ‖2 − 〈Q−1P ê3(κ∆θ − u · ∇θ), v〉

)
ds

+ δ

∫ t∧τ

0

(
1

2
‖Rσ‖2 − 〈R(κ∆θ − u · ∇θ), f〉

)
ds−

∫ t∧τ

0

(
ε〈Q−1P ê3σ, v〉+ δ〈Rσ, f〉

)
dW .

Here we note that W is the same process in both (3.17), (3.18), and we have used that (B̂0 · ∇) is anti-
symmetric to cancel terms. Next, we estimate terms on the right hand side. First,

|〈ê3φ, v〉| ≤ ‖φ‖‖v‖ ≤
ν

8
‖∇v‖2 +

C

ν
‖φ‖2 .

Since 〈U · ∇v, v〉 = 0, u is two degrees smoother than θ (by (3.7)), and using the embedding H2 ↪→ L∞, we
have

|〈U · ∇U, v〉| = |〈U · ∇u, v〉| = |〈U · ∇v, u〉| ≤ ‖U‖‖∇v‖‖u‖L∞ ≤ C‖U‖‖∇v‖‖u‖H2 ≤ C‖U‖‖∇v‖‖θ‖

≤ ν

8ε
‖∇v‖2 +

Cε

ν
‖U‖2‖θ‖2 . (3.20)

Next observe, again using (3.13) and that all of the vector field are divergence free,

〈B · ∇B, v〉 − 〈U · ∇B −B · ∇U, f〉 = 〈B · ∇f, v〉+ 〈B · ∇b, v〉 − 〈U · ∇b−B · ∇v −B · ∇u, f〉
= 〈B · ∇b, v〉 − 〈U · ∇b−B · ∇u, f〉
= −〈B · ∇v, b〉+ 〈U · ∇f, b〉 − 〈B · ∇f, u〉 ,
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and consequently, using again that both u and b are two degrees smoother than θ, similarly to (3.20), we
have

|〈B · ∇B, v〉 − 〈U · ∇B −B · ∇U, f〉| ≤ C(‖B‖‖∇v‖‖b‖H2 + ‖U‖‖∇f‖‖b‖H2 + ‖B‖‖∇f‖‖u‖H2)

≤ C(‖B‖‖∇v‖‖θ‖+ ‖U‖‖∇f‖‖θ‖+ ‖B‖‖∇f‖‖θ‖)

≤ 1

8δ
(ν‖∇v‖2 + ‖∇f‖2) +

Cδ

ν ∧ 1
‖θ‖2(‖U‖2 + ‖B‖2) .

Next observe that the range of Q−1 consists of divergence free vector fields, and consequently

〈Q−1P ê3(u · ∇θ), v〉 = 〈u · ∇θ, ê3 ·Q−1v〉 = −〈u · ∇(ê3 ·Q−1v), θ〉

Recalling that Q−1 provides two degrees of smoothing, and using again H2 ↪→ L∞, we thus obtain

|〈Q−1P ê3(κ∆θ − u · ∇θ), v〉| ≤ C‖θ‖‖v‖+ C‖v‖‖θ‖‖u‖H2 ≤ ν

8ε
‖∇v‖2 +

Cε

ν
(‖θ‖2 + ‖θ‖4) .

Analogously since R has also two (in fact three, cf. (3.11)) degrees of smoothing,

|〈R(κ∆θ − u · ∇θ), f〉| ≤ C‖θ‖‖f‖+ C‖f‖‖θ‖‖u‖H2 ≤ 1

8δ
‖∇f‖2 + Cδ(‖θ‖2 + ‖θ‖4) .

Finally, we trivially have

‖Rσ‖2 ≤ C‖σ‖2, ‖Q−1P ê3σ‖2 ≤ C‖σ‖2 .

Combining all of the preceding estimates we infer

1

2

∫ t∧τ

0

(ν‖∇v‖2 + ‖∇f‖2) ds ≤ 1

2
(ε‖v(0)‖2 + δ‖f(0)‖2) +

C

ν

∫ t∧τ

0

‖φ‖2 ds

+ C(ε2 + δ2)

(
1 +

1

ν

)∫ t∧τ

0

‖θ‖2(‖U‖2 + ‖B‖2 + ‖θ‖2 + 1) ds+
t ∧ τ

2
‖σ‖2(ε+ δ) +Mt∧τ , (3.21)

where Mt represents a Martingale term. Working from (3.19) we have

1

2

d

dt
‖φ‖2 + κ‖∇φ‖2 ≤ ‖v‖L6‖∇φ‖‖θ‖L3 ≤ κ‖∇φ‖2 +

C

κ
‖∇v‖2‖θ‖2L3 ,

and therefore

sup
s∈[0,t∧τ ]

‖φ(s)‖2 ≤ ‖φ(0)‖2 +
C

κ

(
sup

s∈[0,t∧τ ]

‖θ(s)‖2L3

)∫ t∧τ

0

‖∇v‖2 ds . (3.22)

We will now implement a probabilistic modification of the Grönwall inequality.

Lemma 3.4. Assume that an Ft-adapted stochastic process (X (t))t≥0 satisfies, for each K > 0,

EX (t ∧ τK) ≤ KT + CK

∫ t

0

EX (s ∧ τK) ds+K2C(ε+ δ)(1 + ‖σ‖2t) , (3.23)

where T , ε, δ > 0 are constants, and {τK} is a collection of stopping times which satisfies

P(τK ≤ t) ≤ C ′e−ηK ,

for some η > 0. Then for any t > 0 and γ ≤ η
η+Ct one has

E(X (t))γ ≤ C1(T γ + (ε+ δ)γ) , (3.24)

where C1 = C1(C ′, t, ‖σ‖, γ) > 0.
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We postpone the proof of Lemma 3.4 to the end of this section. To implement Lemma 3.4, we define the
stopping times

τK := inf
s≥0
{‖θ(s)‖2L3 ≥ K} , (3.25)

for any K > 0. Note that for each t > 0, and sufficiently small 0 < η ≤ η1(κ, ‖σ‖L3 , η0), one finds by the
Markov inequality, (A.1) and the assumption (3.1),

P(τK ≤ t) = P( sup
s∈[0,t]

‖θ(s)‖2L3 ≥ K) ≤ e−ηKE exp
(
η sup
s∈[0,t]

‖θ(s)‖2L3

)
≤ Ce−ηK exp(ηt‖σ‖2L3).

With τ = τK , standard energy estimates, (A.2), (A.9), and the assumption (3.1), we can estimate a term on
the right hand side of (3.21) as

E
∫ t∧τK

0

‖θ‖2
(
‖U‖2 + ‖B‖2 + ‖θ‖2

)
ds ≤ CKE

∫ t

0

(
‖∇U‖2 + ‖∇B‖2 + ‖θ‖2

)
ds

≤ CKE
(
ε

2
‖U(0)‖2 +

δ

2
‖B(0)‖2 +

C

κν
‖Θ(0)‖2 +

1

2κ
‖θ(0)‖2

)
+ CK‖σ‖2t

≤ CK(1 + ‖σ‖2t) . (3.26)

Hence, by combining (3.21) with (3.22) and using (3.26) we find for each K ≥ 1, the estimate (3.23) is
satisfied, where

X (t) := sup
s∈[0,t]

‖φ(s)‖2 , T := E
(
‖φ(0)‖2 + C(ε‖v(0)‖2 + δ‖f(0)‖2)

)
. (3.27)

By Lemma 3.4 the estimate (3.24) is satisfied with such X (t) and T .
We can now prove (3.2) by combining (3.24), (A.2), Corollary A.5, and the assumption (3.1). For any

p > γ, we find

E sup
s∈[0,t]

‖φ(s)‖p ≤ CE sup
s∈[0,t]

‖φ(s)‖γ(‖Θ(s)‖p−γ + ‖θ(s)‖p−γ)

≤ C
(
E
(

sup
s∈[0,t]

‖φ(s)‖2γ
))1/2

[(
E sup
s∈[0,t]

‖Θ(s)‖2(p−γ)
)1/2

+
(
E sup
s∈[0,t]

‖θ(s)‖2(p−γ)
)1/2

]

≤ C
(
E
(

sup
s∈[0,t]

‖φ(s)‖2γ
))1/2

[(
E exp

(
η sup
s∈[0,t]

‖Θ(s)‖2
))1/2

+
(
E exp

(
η sup
s∈[0,t]

‖θ(s)‖2
))1/2

]

≤ C exp
(
ηt‖σ‖2L3

)[
T γ + (ε+ δ)γ

]1/2
. (3.28)

Having established (3.2), it remains to prove (3.3). Note that from (3.21) we have

E
∫ t

0

(ν‖∇v‖2+‖∇f‖2)ds ≤ E(ε‖v(0)‖2 + δ‖f(0)‖2) + CtE sup
s∈[0,t]

‖φ(s)‖2

+ C(ε2 + δ2)
(
E
(

sup
s∈[0,t]

‖θ(s)‖2
)2)1/2

(
E
(∫ t

0

(‖U‖2 + ‖B‖2 + ‖θ‖2)ds
)2
)1/2

+ C(ε2 + δ2)E
∫ t

0

‖θ‖2ds+ (ε+ δ)C‖σ‖2t. (3.29)

Combining (3.2) and (3.29), and once more invoking (A.2), Corollary A.5, and (3.1), we find

E
∫ t

0

(ν‖∇v‖2 + ‖∇f‖2)ds ≤ E(ε‖v(0)‖2 + δ‖f(0)‖2) + Ct exp
(
ηt‖σ‖2L3

)
[T γ + (ε+ δ)γ ]

1/2

+ C(ε2 + δ2) exp
(
ηt‖σ‖2

)
+ C(ε+ δ)‖σ‖2t, (3.30)

completing the proof of (3.3), and thus of Theorem 3.1.



Asymptotic Analysis for Randomly Forced MHD 13

Proof of Lemma 3.4. For fixed K > 0, applying the Grönwall lemma to (3.23), we have

E
(
X (t)1τK>t

)
≤ EX (t ∧ τK) ≤

(
KT + CK2(ε+ δ)(1 + ‖σ‖2t)

)
exp(CKt). (3.31)

Then, for any 0 < γ < 1,

E(X (t))γ =

∞∑
k=1

E
(

(X (t))γ1τk>t1τk−1≤t

)
≤
∞∑
k=1

(
E
(
X (t)1τk>t

))γ
(P(τk−1 ≤ t))1−γ

≤ (C ′)1−γ
∞∑
k=1

[
kT + Ck2(ε+ δ)(1 + ‖σ‖2t)

]γ
exp(γCtk − (1− γ)ηk)

≤ C1(T γ + (ε+ δ)γ) , (3.32)

where we have assumed in the last line γ < η
η+Ct to guarantee convergence of the series.

Remark 3.5. We note that the formal limit system (1.5)–(1.7) does not well approximate (1.1)–(1.3) in
its velocity and magnetic components at time t = 0. This is due to the singular nature of the limit as
ε, δ → 0 and is reflected in the phase space mismatch between the two systems. Such considerations are
behind the derivation and analysis of the so called ‘corrector systems’ for analogous singular perturbation
problems arising in large Prandtl number convection carried out in [Wan04, FGHR15].

To obtain a more accurate approximation for (1.1)–(1.3) in our situation we may expand solutions in
formal asymptotic series involving multiple time scales for instance following the method of inner and outer
expansions as in e.g. [O’M74, KP03]. If δ � ε� 1 this leads to a two stage approximation. By first treating
δ ≈ 0 in comparison to ε we obtain

uε = e−tQ/εU(0) +Q−1ê3θε(t)− e−tQ/εQ−1ê3Θ(0),

bε = (−∆)−1(B̂0 · ∇)uε,

dθε = (−uε · ∇θε + κ∆θε)dt+ σdW.

By next treating ε ∼ 1, in comparison to δ we find

ε(∂tuε,δ + uε · ∇uε,δ) = −Auε,δ + B̂0 · ∇bε,δ + ê3θε,δ (3.33)

bε,δ(t) = et∆/δB(0) + (−∆)−1B̂0 · ∇uε,δ(t)− et∆/δ(−∆)−1B̂0 · ∇U(0), (3.34)

dθε,δ = (−uε,δ · ∇θε,δ + κ∆θε,δ)dt+ σdW. (3.35)

This collection of equations provides a well posed approximation of (1.1)–(1.3). The accuracy of these
approximations can be rigorously established using variations on the analysis carried out in the proof of
Theorem 3.1 (and see also [FGHR15]). Note also that analogous approximate systems can be found in the
cases ε� δ � 1 and when ε ∼ δ. In any case such approximate equations are not required for our analysis
below which focuses on long time asymptotics, and we omit further details.

4 Analysis of the Markovian Dynamics of the Formal Limit Sys-
tem

In this section we establish conditions guaranteeing the contractive property (1.15), see point (ii) in the
summary of main results. Recall that (1.15) implies that the limit equation (1.5) has at most one invariant
measure which is thus ergodic. Moreover, this contractive property plays a crucial role in Section 5, where
it is used to establish the convergence of statistically stationary states for (1.1)–(1.3) as ε, δ → 0.

As we have already noted in the introduction associating the contraction (1.15) with a version of the
Hörmander bracket condition does not require any significant new ideas in comparison to [HM08]. Rather
our contribution here is to show that Hörmander’s condition holds for (1.5) with some specific noise config-
urations. Indeed, in view of the complex nature of the constitutive law (1.9)–(1.10) this verification requires
a non-trivial analysis.

Before proceeding to the main results in the section, we first recall some preliminaries related to the
Hörmander bracket condition and to Wasserstein metrics.
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Hörmander’s Condition

In our setting and in view of [HM06, HM08] (see also [Doo48, Kha60]), the proof of (1.15) reduces to
establishing smoothing properties of the Markov semigroup {Pt}t≥0 associated to (1.5). Following [HM06]
and in the sprit of [H6̈7] this leads to a Hörmander-type bracket condition as follows.

Define, for each k ∈ Z3 and x ∈ T3,

σ0
k(x) := cos(k · x), σ1

k(x) := sin(k · x),

to be the eigenfunctions of the Laplacian T3, and recall that

σdW =
∑

k∈Z3
+,m∈{0,1}

αk,mσ
m
k dW

k,m ,

where Z3
+ = {k = (k1, k2, k3) ∈ Z3 : k 6= 0, k1 ≥ 0} is the integer lattice half-space and αk,m ∈ R. Let

W0 := span{σmj : αj,m 6= 0},

Wn := span
{
{[[F,ψ], σ] = Mu(ψ) · ∇σ +Mu(σ) · ∇ψ : ψ ∈ Wn−1, σ ∈ W0} ∪Wn−1

}
, (4.1)

where
F (θ) = −κ∆θ +Mu(θ) · ∇θ, (4.2)

and where, for any Fréchet differentiable functions (vector fields) E1, E2 : H → H, one defines the Lie
bracket [E1, E2] : H → H as

[E1, E2](θ) = ∇E2(θ)E1(θ)−∇E1(θ)E2(θ) . (4.3)

The Hörmander-type condition is now stated as follows:

For every N > 0 there exists an n = n(N) such that Wn ⊇ HN , (4.4)

where HN = span{σmk : k ∈ Z3
+, |k| ≤ N,m ∈ {0, 1}}.

Wasserstein Metrics

In order to clarify how (4.4) implies contractivity in the Markovian dynamics associated to (1.5), we proceed
to discuss a few generalities about Wasserstein metrics. Recall that, given a metric space (X,m), the
associated Wasserstein distance Wm on Pr(X) is defined by the following equivalent formulations:

Wm(µ, ν) = inf
Γ∈C(µ,ν)

∫
m(u, v)dΓ(u, v) = sup

‖φ‖Lip,m≤1

∣∣∣∣∫ φdµ−
∫
φdν

∣∣∣∣ . (4.5)

See e.g. [Vil08]. Here C(µ, ν) denotes the set of couplings between µ and ν, namely

C(µ, ν) = {Γ ∈ Pr(X ×X) : Γ(A×X) = µ(A),Γ(X ×B) = ν(B) for any A,B ∈ B(X)},

and

‖φ‖Lip,m = sup
u6=v

|φ(u)− φ(v)|
m(u, v)

, (4.6)

is the Lipschitz semi-norm corresponding to (X,m).
In our setting we consider the metric ρ = ρη on the phase space H ′ = L2(T3) as

ρ(θ, ψ) = inf
p∈P (θ,ψ)

∫ 1

0

exp(η‖p‖2)‖p′‖dt (4.7)

for a suitable η > 0, where P (θ, ψ) = {p ∈ C1([0, 1], H ′) : p(0) = θ, p(1) = ψ}. Notice that

‖θ − ψ‖ ≤ ρ(θ, ψ) ≤ exp(2η(‖θ‖2 + ‖ψ‖2))‖θ − ψ‖. (4.8)
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Criteria for Contractivity

Invoking the abstract machinery developed in [HM08, HM11], we now establish contractivity for the Marko-
vian dynamics whenever Hörmander’s condition (4.4) is satisfied.

Theorem 4.1. Let {Pt}t≥0 be the Markov semigroup associated to (1.5) and assume that the Hörmander
condition (4.4) holds. Then {Pt}t≥0 is contractive in Wρ:

Wρ(µ1Pt, µ2Pt) ≤ Ce−γ
′tWρ(µ1, µ2) for every t ≥ 0 , (4.9)

and hence {Pt}t≥0 possesses a unique ergodic invariant measure. Here the metric ρ is defined relative to an
0 < η ≤ η0(‖σ‖, κ, ν). This number η0 and the constants C = C(‖σ‖, κ, ν) > 0, γ′ = γ′(‖σ‖, κ, ν) > are all
independent of t ≥ 0 and µ1, µ2.

Remark 4.2. Under the conditions of Theorem 4.1 the unique invariant measure µ satisfies certain ad-
ditional attraction properties: µ is exponentially mixing, and it obeys a strong law of large numbers and a
central limit theorem. See e.g. [FGHV14] for more precise analogous statements.

Proof. The proof essentially follows ideas for the 2D Navier-Stokes equations in vorticity formulation de-
veloped in [HM06, HM08, HM11], so we will be sparing in details. Indeed, while we are working in 3D,
the constitutive law in (1.5)–(1.7) (that is, the functional M , cf. (1.9)) has two degrees of smoothing as
compared to the one degree in the Biot-Sawart law.

The bound (4.9) follows directly from [HM08, Theorem 3.4] which requires us to verify three conditions.
The first condition, and the most difficult step in our setting, is a bound for ∇Ptφ(u) closely related to
the asymptotic strong Feller condition and is thus a form of smoothing. This property follows from [HM11,
Theorem 8.4] by invoking (4.4) along with the Lemmata A.1–A.3 established below. Note that this is the
only point in the argument where we make use of (4.4).

The second and third conditions needed for [HM08, Theorem 3.4] are a form of irreducibility and certain
exponential moment bounds. The irreducibility condition is straightforward in our setting due essentially to
the fact that zero is a stable fixed point of the unforced dynamics. See e.g. [EM01, CGHV13] for further
details. The second moment condition holds due to the Lemmata A.1–A.3 below. With (4.9) verified, we
immediately infer the uniqueness and ergodicity of invariant measures. A standard application of the Krylov-
Bogoliubov averaging procedure and compactness yields the existence of invariant measures and thus the
proof is now complete.

Lie Bracket Computations

We now demonstrate one situation in which (4.4) is satisfied, but a variety of other configurations can be
handled with the approach given below.

Theorem 4.3. The Hörmander bracket condition (4.4) holds if σmk ∈ W0, or equivalently αk,m 6= 0 for all
k ∈ {ê1, ê2, ê3}, m ∈ {0, 1}.

A preliminary step in the proof of Theorem 4.3 is to establish an iterative process for producing new
directions that generates the subspaces Wn specified by (4.1).

Lemma 4.4.

(i) Suppose that σm
′

j ∈ W0 and σmk ∈ Wn for some j, k ∈ Z3
+ and all m,m′ ∈ {0, 1}. Then σmk+j , σ

m
k−j ∈

Wn+1 for m ∈ {0, 1} whenever

|Mu(k) · j| 6= |Mu(j) · k|. (4.10)

(ii) Assume that σmê1 ∈ W0 and σm
′

k ∈ Wn for some k = (k1, k2, k3) ∈ Z3
+ and all m,m′ ∈ {0, 1}. Then

σmk±ê1 ∈ Wn+1 for m ∈ {0, 1}, provided

|k2(Ω̂ · k)|k|2 + k1k3((B̂0 · k)2 + ν|k|4)| 6= |k3|D(k)

ν + (B̂0)2
1

(4.11)
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(iii) Similarly if σmê2 ∈ W0 and σm
′

k ∈ Wn for m,m′ ∈ {0, 1} then σm
′

k±ê2 ∈ Wn+1 for m′ ∈ {0, 1} if

| − k1(Ω̂ · k)|k|2 + k2k3((B̂0 · k)2 + ν|k|4)| 6= D(k)

(ν + (B̂0)2
2)2 + Ω̂2

2

|(ν + (B̂0)2
2)k3 − Ω̂2k1| (4.12)

(iv) Finally whenever σmê3 ∈ W0 and σm
′

k ∈ Wn for m,m′ ∈ {0, 1}, then σm
′

k±ê3 ∈ Wn+1 for m′ ∈ {0, 1} as
long as

k2
1 + k2

2 6= 0. (4.13)

Proof. Observe that from (1.8) and the definition of the operator M one obtains for each k ∈ Z3
+ and

m ∈ {0, 1},

Mu(σmk ) =Mu(k)σmk , (4.14)

whereMu is defined in (1.9) and is independent of m. To simplify notation we drop the subscripts u of Mu,
Mu and instead write M , M for the remainder of the proof.

For the first item, (i), observe that by definition [[F, σmk ], σm
′

j ] ∈ Wn+1 for the specified j, k and m,m′ ∈
{0, 1}. Here recall that the superscript in σmk is understood modulo 2, and F and the Lie bracket are defined
by (4.2), (4.3). With (4.14) we observe that:

[[F, σmk ], σm
′

j ] = M(σmk ) · ∇σm
′

j +M(σm
′

j ) · ∇σmk
= (−1)m

′+1(M(k) · j)σmk σm
′+1

j + (−1)m+1(M(j) · k)σm+1
k σm

′

j , (4.15)

Using standard trigonometric identities we have

σnkσ
n′

j =
1

2

(
(−1)nn

′
σn+n′

k+j + (−1)(n+1)n′σn+n′

k−j

)
,

and consequently (4.15) implies

[[F, σmk ], σm
′

j ]

=
1

2

(
(−1)(m+1)(m′+1)(M(k) · j+M(j) · k)σm+m′+1

k+j +(−1)m(m′+1)(M(k) · j−M(j) · k)σm+m′+1
k−j

)
. (4.16)

Then with m,m′ ∈ {0, 1} replaced by m+ 1, m′ + 1,

[[F, σm+1
k ], σm

′+1
j ]

=
1

2

(
(−1)mm

′
(M(k) · j +M(j) · k)σm+m′+1

k+j + (−1)(m+1)m′(M(k) · j −M(j) · k)σm+m′+1
k−j

)
. (4.17)

Combining (4.16), (4.17) we find that σm+m′+1
k+j , σm+m′+1

k−j ∈ Wn+1, provided that the matrix(
(−1)(m+1)(m′+1)(M(k) · j +M(j) · k) (−1)mm

′
(M(k) · j +M(j) · k)

(−1)m(m′+1)(M(k) · j −M(j) · k) (−1)(m+1)m′(M(k) · j −M(j) · k)

)
(4.18)

is invertible, which is true exactly when (4.10) holds, and (i) follows.
The remaining items (ii)–(iv) now follow from (i) and (1.9)–(1.10) after some direct computations. Here

in particular note (4.11) uses the fact that Ω̂1 = 0. The proof of Lemma 4.4 is complete.

Proof of Theorem 4.3. We begin by making the preliminary observation that

∀N > 0,∃K = K(N, ν, Ω̂) such that (4.11), (4.12) both hold whenever |k1|, |k2| ≤ N, k3 ≥ K. (4.19)

Indeed, for any fixed |k1|, |k2| ≤ N , the left hand side of (4.11), (4.12) grows as k5
3 while the right hand side

grows as k9
3 as k3 →∞.
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We proceed to establish the desired result by showing that

for any N > 0 there is an n such that σmk ∈ Wn for any |k1|, |k2|, |k3| ≤ N and any m ∈ {0, 1}. (4.20)

Fix N > 0. Starting from k = (1, 0, 0) and repeatedly applying Lemma 4.4, (iv), we obtain an n1 such that
σmk ∈ Wn1

for k = (1, 0,K) and each of m ∈ {0, 1}. Here, K > 0 is as in (4.19) corresponding to the given
N > 0.

Next, by Lemma 4.4, (ii) and (iii), we obtain an n2 > n1 such that σmk ∈ Wn2
for every k = (k1, k2,K)

with |k1|, |k2| ≤ N and k3 = K. From here, applying Lemma 4.4, (iv), we obtain n3 > n2 so that σmk ∈ Wn3 ,
whenever |k1|, |k2|, |k3| ≤ N , m ∈ {0, 1} and k 6∈ span{ê3}.

Finally, to obtain the directions corresponding to span{ê3}, consider, for any l ∈ Z \ {0}, elements
σmk ∈ Wn3

of the form k = (±1, 0, l) with m = 0, 1. For any such k, noting that k2 = 0, the condition (4.11)
reduces to

(B̂0 · k)2 + ν|k|4 6= D(k)

ν + (B̂0)2
1

. (4.21)

Now observe that the sign in k1 may be chosen such that (B̂0)2
1 ≤ (B̂0 · k)2. Indeed, one may take k1 so that

sign(k1(B̂0)1) = sign(k3(B̂0)3) or, in the case that either (B̂0)1 = 0 or (B̂0)3 = 0, one may choose any sign
for k1. With this choice, (4.21) holds since

(B̂0 · k)2 + ν|k|4 < 1

ν + (B̂0)2
1

((B̂0 · k)2 + ν|k|4)2 ≤ 1

ν + (B̂0)2
1

D(k) .

Thus, we obtain an n ≥ n3 such that (4.20) holds for the given N . The proof of Theorem 4.3 is complete.

5 Convergence of Statistically Steady States

In this final section we combine the finite time bounds obtained from Section 3 with the contraction estimate
(4.9) of Section 4, to establish the convergence of statistically invariant states for (1.1)–(1.3) to the unique
invariant measure of (1.5) (see (iv) in the summary of main results). As we discussed in the introduction,
one of the novelties here is that our convergence analysis applies to the extend phase space H, not just to
the temperature component, as was the case in our previous work [FGHR15].

In order to precisely state the main result of this section we introduce some notation. Recall that the
metric ρ on L2(T3) is defined in (4.7). Here the parameter η > 0 appearing in (4.7) is taken to be a suitably
small value so that (4.9) applies. Using ρ we define a new distance on H according to

ρ̃((U,B,Θ), (Ũ, B̃, Θ̃)) = ‖U − Ũ‖H1 + ‖B − B̃‖H1 + ρ(Θ, Θ̃).

Following the notation in (4.5), ρ̃ induces a Wasserstein metric on H which we denote by Wρ̃.
In what follows it will be useful to consider the set of ‘observables’

V (H) = Vη(H) :=
{
φ ∈ C1(H) : [φ]η <∞

}
, (5.1)

where [·]η denotes

[φ]η := sup
(u,b,θ)∈(H1)2×H′

[
sup

ζ1∈H1,‖ζ1‖H1=1

|∇uφ(u, b, θ) · ζ1|+ sup
ζ2∈H1,‖ζ2‖H1=1

|∇bφ(u, b, θ) · ζ2|

+ exp(−η‖θ‖) sup
ξ∈H′,‖ξ‖=1

|∇θφ(u, b, θ) · ξ|

]
.

It can be verified with a straight-forward proof (see [HM08, Proposition 4.1]) that, for any φ ∈ C1(H),

‖φ‖Lip,ρ̃ ≤ C[φ]η. (5.2)
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This bound is useful for translating the convergence of measures relative to Wρ̃ to the convergence of
observables from V (H). See (5.4) below.

Let L : H ′ → H be the extension operator associated to (1.6)–(1.7) given by

L(θ) = (M(θ), θ).

Also, the projection operator Π : H → H ′ will associate elements in H to their θ component,

Π(u, b, θ) = θ.

Recall that for any measure µ and function F , the push-forward of µ under F is given by F#µ = µ ◦ F−1.
To simplify notation, for a measure µ1 on H ′, we will use Lµ1 = L#µ1 to denote the extended measure on
H, and similarly for µ2 on H we will write Πµ2 = Π#µ2 for the projected measure on H ′ (i.e. its marginal
in the θ component).

Theorem 5.1. Suppose that the conditions imposed in Theorem 4.1 are satisfied. For any ε, δ > 0, let µε,δ
be a statistically invariant state of (1.1)–(1.3) satisfying the uniform moment condition (2.1) and let µ0 be
the unique invariant measure of (1.5). Then, there exists γ̃ = γ̃(ν, κ, ‖σ‖), C = C(C0, ν, κ, ‖σ‖) which are
independent of ε, δ > 0, such that

Wρ̃(µε,δ, Lµ0) ≤ C(ε+ δ)γ̃ (5.3)

for every ε, δ > 0. This implies that for statistically invariant states (U,B,Θ) and θ distributed respectively
as µε,δ and µ0,

|E(φ(U,B,Θ)− φ(Lθ))| ≤ C[φ]η(ε+ δ)γ̃ (5.4)

for any φ ∈ V (H).

Remark 5.2. The estimate (5.4) indicates that, at statistical equilibrium, observations of Θ are well approx-
imated by observations of θ, which in turn provide good estimates on observations of (U,B) through M(θ).
That is, using (5.4) we can approximate (U,B) using observations of Θ from statistically stationary states.

The proof of Theorem 5.1 makes use of a second metric on L2(T3) defined as

ρ∗(θ, θ̃) = ρ̃(L(θ), L(θ̃)),

and its associated Wasserstein distance Wρ∗ .

Lemma 5.3. The metric ρ∗ is equivalent to ρ and hence Wρ∗ and Wρ are also equivalent. Moreover,

Wρ̃(Lµ1, Lµ2) ≤Wρ∗(µ1, µ2) ≤ CWρ̃(Lµ1, Lµ2), (5.5)

for any µ1, µ2 ∈ Pr(L2(T3)).

Proof of Lemma 5.3. Invoking the smoothing properties of the constitutive law M = (Mu,Mb) along with
(4.8), we find

ρ(θ, θ̃) ≤ ρ∗(θ, θ̃) = ‖Mu(θ − θ̃)‖H1 + ‖Mb(θ − θ̃)‖H1 + ρ(θ, θ̃) ≤ C‖θ − θ̃‖+ ρ(θ, θ̃) ≤ Cρ(θ, θ̃). (5.6)

It follows directly from the definition that the corresponding Wasserstein distances Wρ and Wρ∗ are equiv-
alent as well; cf. (4.5).

To establish (5.5) for each k > 0, we consider

T k1 := {φ : L2(T3)→ R : ‖φ‖Lip,ρ∗ ≤ k},
T k2 := {φ : L2(T3)→ R : φ(θ) = ψ(Lθ) for some ψ : H → R with ‖ψ‖Lip,ρ̃ ≤ k}.

We claim that for each k > 0 one has T k2 ⊂ T k1 ⊂ TCk2 , where C is as in (5.6). Indeed, if φ ∈ T k2 , then

|φ(θ)− φ(θ̃)|
ρ∗(θ, θ̃)

=
|ψ(L(θ))− ψ(L(θ̃))|

ρ̃(L(θ), L(θ̃))
≤ k, for each θ 6= θ̃ ,
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and therefore φ ∈ T k1 . On the other hand if φ ∈ T k1 we define ψ := φ ◦Π (clearly φ = ψ ◦ L) and calculate

|ψ(u, b, θ)− ψ(ũ, b̃, θ̃)|
ρ̃((u, b, θ), (ũ, b̃, θ̃))

=
|φ(θ)− φ(θ̃)|

ρ̃((u, b, θ), (ũ, b̃, θ̃))
≤ |φ(θ)− φ(θ̃)|

ρ(θ, θ̃)
≤ C |φ(θ)− φ(θ̃)|

ρ∗(θ, θ̃)
= Ck,

and we showed φ ∈ TCk2 . Finally, for any µ1, µ2 ∈ Pr(L2(T3)),

Wρ̃(Lµ1, Lµ2) = sup
‖ψ‖Lip,ρ̃≤1

∣∣∣∣∫ ψ(Lθ)dµ1(θ)−
∫
ψ(Lθ)dµ2(θ)

∣∣∣∣
= sup
φ∈T 1

2

∣∣∣∣∫ φ(θ)dµ1(θ)−
∫
φ(θ)dµ2(θ)

∣∣∣∣ ≤ sup
φ∈T 1

1

∣∣∣∣∫ φ(θ)dµ1(θ)−
∫
φ(θ)dµ2(θ)

∣∣∣∣ = Wρ∗(µ1, µ2),

and

Wρ∗(µ1, µ2) = sup
φ∈T 1

1

∣∣∣∣∫ φ(θ)dµ1(θ)−
∫
φ(θ)dµ2(θ)

∣∣∣∣ ≤ sup
φ̃∈TC2

∣∣∣∣∫ φ̃(θ)dµ1(θ)−
∫
φ̃(θ)dµ2(θ)

∣∣∣∣
= C sup

φ̃∈T 1
2

∣∣∣∣∫ φ̃(θ)dµ1(θ)−
∫
φ̃(θ)dµ2(θ)

∣∣∣∣ = CWρ̃(Lµ1, Lµ2),

as desired.

By combining Lemma 5.3 with Theorem 4.1 we obtain the following ‘lifted’ contraction property.

Corollary 5.4. Let {Pt}t≥0 be the Markov semigroup associated to (1.5) and assume that the Hörmander
condition (4.4) holds. Then {Pt}t≥0 is satisfies the following contractive property in Wρ̃:

Wρ̃(L(µ1Pt), L(µ2Pt)) ≤ Ce−γ
′tWρ̃(Lµ1, Lµ2) for every t ≥ 0, (5.7)

where the constants C = C(‖σ‖, κ, ν) > 0, η = η(‖σ‖, κ, ν) > 0, γ′ = γ′(‖σ‖, κ, ν) > 0 are all independent of
t ≥ 0 and µ1, µ2.

Proof of Corollary 5.4. By combining Lemma 5.3 with (4.9), we find that

Wρ̃(L(µ1Pt), L(µ2Pt)) ≤ CWρ∗(µ1Pt, µ2Pt) ≤ CWρ(µ1Pt, µ2Pt)

≤ Ce−γ
′tWρ(µ1, µ2) ≤ Ce−γ

′tWρ∗(µ1, µ2) ≤ Ce−γ
′tWρ̃(Lµ1, Lµ2),

for any µ1, µ2 ∈ Pr(L2(T3)), where C is independent of t and µ1, µ2.

We now proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. We invoke the invariance of µ0 under Pt and apply (5.7) to infer for any t, t0 ≥ 0,

Wρ̃(µε,δ, Lµ0) = Wρ̃(µε,δ, L(µ0Pt+t0))

≤Wρ̃(µε,δ, L((Πµε,δ)Pt+t0)) + Wρ̃(L((Πµε,δ)Pt+t0), L(µ0Pt+t0))

≤Wρ̃(µε,δ, L((Πµε,δ)Pt+t0)) + Ce−γ
′t0Wρ̃(L((Πµε,δ)Pt), L(µ0Pt))

≤Wρ̃(µε,δ, L((Πµε,δ)Pt+t0)) + Ce−γ
′t0 [Wρ̃(µε,δ, L((Πµε,δ)Pt)) + Wρ̃(µε,δ, Lµ0)] .

By taking t0 = t0(‖σ‖, κ, ν) large enough such that Ce−γ
′t0 = 1

2 , we find that for t ≥ 0,

Wρ̃(µε,δ, Lµ0) ≤ 2Wρ̃(µε,δ, L((Πµε,δ)Pt+t0)) + CWρ̃(µε,δ, L((Πµε,δ)Pt)). (5.8)

Using the coupling definition of the Wasserstein metric in (4.5) it follows that for any s ≥ 0,

Wρ̃(µε,δ, L((Πµε,δ)Ps)) ≤ Eρ̃((U,B,Θ)(s), L(θ(s)))

= E(‖U(s)−Mu(θ(s))‖H1 + ‖B(s)−Mb(θ(s))‖H1)︸ ︷︷ ︸
I1(s)

+Eρ(Θ(s), θ(s))︸ ︷︷ ︸
I2(s)

, (5.9)
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where (U,B,Θ) ∼ µε,δ denotes the stationary solution to (1.1)–(1.3) provided by Proposition 2.1, and
θ denotes the solution to (1.5) with initial condition distributed according to the stationary state Θ =
Θ(ε, δ) ∼ Πµε,δ. By combining the estimates (5.8)–(5.9) and integrating in t over the interval [0, t0] we infer
that

Wρ̃(µε,δ, Lµ0) ≤ C

t0

∫ t0

0

(I1(t+ t0) + I2(t+ t0) + I1(t) + I2(t)) dt = C

∫ 2t0

0

(I1(t) + I2(t)) dt . (5.10)

where we have absorbed t0 into the constant C = C(‖σ‖, κ, ν) in the last line. Applying the Cauchy-Schwarz
inequality, (3.3) with θ(0) distributed as Θ(0), and (2.1), we obtain a bound for I1 as∫ 2t0

0

I1(t) dt ≤ C
(
E
∫ 2t0

0

(
‖U(t)−Mu(θ(t))‖2H1 + ‖B(t)−Mb(θ(t))‖2H1

)
dt

)1/2

≤ C exp(ηt0‖σ‖2L3)
(

(ε+ δ)γ +
(
E(ε‖U(0)−Mu(θ(0))‖2 + δ‖B(0)−Mb(θ(0))‖2)

)γ)1/4

≤ C exp(ηt0‖σ‖2L3)(ε+ δ)γ/4
(
E(‖U(0)‖2 + ‖B(0)‖2 + ‖Θ(0)‖2 + 1)

)γ/4
≤ C exp(ηt0‖σ‖2L3)(ε+ δ)γ/4 , (5.11)

where C in the last line depends on C0 given in (3.1), but is independent of t, ε, and δ. Similarly, using a
property of the metric ρ, (4.8), and the bounds (3.2), (2.1) we have∫ 2t0

0

I2(t) dt ≤ CE
∫ 2t0

0

exp(2η(‖Θ(t)‖2 + ‖θ(t)‖2))‖Θ(t)− θ(t)‖dt

≤ C

(
E exp

(
4η sup

t∈[0,2t0]

(‖Θ(t)‖2 + ‖θ(t)‖2)
))1/2(

E sup
t∈[0,2t0]

‖Θ(t)− θ(t)‖2
)1/2

≤ C exp(10ηt0‖σ‖2L3)(ε+ δ)γ/4
(
E(‖U(0)‖2 + ‖B(0)‖2 + ‖Θ(0)‖2)

)γ/4
≤ C exp(10ηt0‖σ‖2L3)(ε+ δ)γ/4, (5.12)

where the constant C depends on C0, but is independent of t0, ε, and δ. Combining (5.10) with (5.11)–(5.12)
yields (5.3). The convergence of observables as in (5.4) follows from (5.3) by using the definition of Wρ̃ (see
(4.5)) and applying (5.2).

A Uniform Moment Bounds

This section collects various moment bounds related to the full system (1.1)–(1.3) as well as the limit active
scalar equation (1.5) which we use repeatedly in the analysis above.

We begin with some Lp-bounds on the limit equation.

Lemma A.1. Let θ be a solution of (1.5) with F0 adapted initial condition θ0. Then, for any p ≥ 2 there
exists constants η0 = η0(p, κ, ‖σ‖Lp) > 0, C = C(p, κ) and α = α(p, κ), such that for each η ≤ η0

E exp

(
η sup
s∈[0,t]

‖θ‖2Lp + η

∫ t

0

‖θ‖2Lpds

)
≤ CE exp(η(‖θ0‖2Lp + t‖σ‖2Lp)). (A.1)

Moreover,

E exp

(
η

(
sup
s∈[0,t]

‖θ‖2 + κ

∫ t

0

‖∇θ‖2ds

))
≤ CE exp(η(‖θ0‖2 + t‖σ‖2)). (A.2)

Finally, for any t ≥ 0

E exp
(
η‖θ(t)‖2Lp

)
≤ CE exp(η(e−αt‖θ0‖2Lp + C‖σ‖2Lp)). (A.3)
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The Lp-estimates (A.1) and (A.3) are established in [FGHRW15, Proposition 3.1] for a more general
divergence-free drift diffusion equation supplemented with mixed Dirichlet-periodic boundary conditions.
Indeed, recall that ξ = θ satisfies

dξ + (v · ∇ξ − κ∆ξ)dt = σdW, ξ(0) = ξ0 , (A.4)

with ‖v‖H2 ≤ C‖ξ‖ (see (1.9)). Then (A.1) and (A.3) follow precisely as in the proof of [FGHRW15,
Proposition 3.1] with R̃a = 0, making obvious adjustments to work on the domain D = T3.

Similarly, an estimate of the form (A.2) follows immediately from [FGHRW15, Proposition 3.3] for the
active scalar equation obtained in the infinite Prandtl limit of the Boussinesq system. This equation bears
structural similarity to (1.5), and the proof of (A.2) for (1.5) can be obtained with essentially the same
argument, under a simplifying assumption that R̃a = 0, and with obvious changes for the domain D = T3.

Next, we need an estimate for the first variation Js,tξ of (1.5). That is, for the solution of

∂tζ +Mu(ζ) · ∇θ +Mu(θ) · ∇ζ − κ∆ζ = 0, ζ(s) = ξ , (A.5)

where ξ ∈ L2(T3), s < t, and Mu being as above (see (1.9)).

Lemma A.2. For each p > 0 and η > 0 there exists C such that

E sup
s,t∈[0,1]

‖Js,tξ‖p ≤ C exp(η‖θ0‖2)‖ξ‖p .

We also need a similar estimate for the second variation J2
s,t(ξ, ξ

′) of (1.5), that is, for the solution of the
problem

∂tζ +Mu(ζ) · ∇θ +Mu(θ)∇ζ +Mu(J0,tξ) · ∇J0,tξ
′ +Mu(J0,tξ

′) · ∇J0,tξ − κ∆ζ = 0, ζ(s) = 0 , (A.6)

where ξ, ξ′ ∈ L2(T3) and s < t.

Lemma A.3. For each p > 0 and η > 0 there exists C such that

E sup
s,t∈[0,1]

‖J (2)
s,t (ξ, ξ′)‖p ≤ C exp(η‖θ0‖2)‖ξ‖p‖ξ′‖p .

The proofs of Lemma A.2 and Lemma A.3 follow ideas developed for the 2D Navier-Stokes equations
in vorticity formulation (see e.g. [HM06]). The difference here is that we work in 3D, but have superior
smoothing properties of the constitutive law (1.9). The required modifications are straightforward, and we
omit details.

Next, we prove for the system (1.1)–(1.3) analogous results to those in Lemma A.1.

Lemma A.4. For any γ ≤ κ2ν/(4C‖σ‖2) and K > 0,

P
(

sup
t≥0

(
ε

2
‖U(t)‖2 +

δ

2
‖B(t)‖2 +

C

2κν
‖Θ(t)‖2 +

∫ t

0

ν

2
‖∇U‖2 + ‖∇B‖2 +

C

2ν
‖∇Θ‖2 ds

− ε

2
‖U(0)‖2 − δ

2
‖B(0)‖2 − C

κν
‖Θ(0)‖2 − C‖σ‖2

κν
t ≥ K

∣∣∣∣F0

)
≤ e−γK ,

where C = C(T3).

We have the following corollary as an immediate consequence:

Corollary A.5. For any T ≥ 0, δ, ε ≤ 1 and γ, C as in Lemma A.4, there exists η0 = η0(κ, ν, ‖σ‖) such
that for any 0 < η < η0 and any F0 measurable U(0), B(0),Θ(0) one has

E exp

(
η sup
t∈[0,T ]

(
ε

2
‖U(t)‖2 +

δ

2
‖B(t)‖2 +

C

2κν
‖Θ(t)‖2

)
+ η

∫ T

0

ν

2
‖∇U‖2 + ‖∇B‖2 +

C

2ν
‖∇Θ‖2 ds

)

≤ CE exp

(
η

(
ε

2
‖U(0)‖2 +

δ

2
‖B(0)‖2 +

C

κν
‖Θ(0)‖2 +

C‖σ‖2

κν
T

))
.
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Proof of Lemma A.4. Testing (1.1), (1.2) by U and B respectively and adding them we obtain

d

dt

(
ε

2
‖U‖2 +

δ

2
‖B‖2

)
+ ν‖∇U‖2 + ‖∇B‖2 = 〈Θ, U3〉 ≤

ν

2
‖∇U‖2 +

C

ν
‖∇Θ‖2 . (A.7)

Itō formula applied to (1.3) yields

1

2
d‖Θ‖2 + κ‖∇Θ‖2dt =

1

2
‖σ‖2dt+ 〈σ,Θ〉dW . (A.8)

By adding 2C/(κν) multiple of (A.8) to (A.7) we obtain

d

(
ε

2
‖U‖2 +

δ

2
‖B‖2 +

C

κν
‖Θ‖2

)
+
ν

2
‖∇U‖2 + ‖∇B‖2 +

C

ν
‖∇Θ‖2 ≤ C

κν
‖σ‖2dt+

2C

κν
〈σ,Θ〉dW . (A.9)

Using that for every γ ≤ κ2ν/(4C‖σ‖2) one has for the quadratic variation of the Martingale

γ

2

4C2

κ2ν2
|〈σ,Θ〉|2 ≤ γ

2

4C2

κ2ν2
‖σ‖2‖Θ‖2 ≤ C

2ν
‖∇Θ‖2 ,

and consequently the following exponential Martingale inequality: given a continuous Martingale N = N(t),
for any K ≥ 0,

P
(

sup
t≥0

(
N(t)− γ

2
〈N(t)〉

)
≥ K

∣∣∣F0

)
≤ exp(−γK) , (A.10)

where 〈N〉 is the quadratic variation of N implies the desired result.

Lemma A.6. Let α := ν
2ε ∧

1
δ and β := κ/C (where C = C(T3) will be determined below). There exists

η1 = η1(κ, ν, ‖σ‖) such that for any 0 < η < η1, T > 0, and 0 < ε, δ ≤ c0(κ, ν,T3),

E exp
(
η
(ε

2
‖U(T )‖2 +

δ

2
‖B(T )‖2 +

C

κν
‖Θ(T )‖2

+ exp(−αT )

∫ T

0

(ν
2
‖∇U‖2 + ‖∇B‖2

)
ds+ exp(−βT )

C

2ν

∫ T

0

‖∇Θ‖2 ds
))

≤ CE exp

(
η

(
ε

2
exp(−αT )‖U(0)‖2 +

δ

2
exp(−αT )‖B(0)‖2 +

C

κν
exp(−βT )‖Θ(0)‖2 +

C‖σ‖2

βκν

))
.

Proof. Fix T ≥ 0 and for any real r denote mr(t) := exp(r(t− T )). Then from (A.7) we obtain

d

dt

(
ε

2
mα‖U‖2 +

δ

2
mα‖B‖2

)
+ νmα‖∇U‖2 +mα‖∇B‖2 = mα〈Θ, U3〉+

εα

2
mα‖U‖2 +

δα

2
mα‖B‖2

≤ ν

2
mα‖∇U‖2 +

1

2
mα‖∇B‖2 +

C

ν
mα‖∇Θ‖2 . (A.11)

Also, from (A.8) with β = κ/C with C = C(T3) we obtain

1

2
d(mβ‖Θ‖2) + κmβ‖∇Θ‖2dt =

1

2
mβ‖σ‖2dt+

β

2
mβ‖Θ‖2dt+mβ〈σ,Θ〉dW

≤ 1

2
mβ‖σ‖2dt+

κ

2
mβ‖∇Θ‖2dt+mβ〈σ,Θ〉dW . (A.12)

If ε, δ � 1, then β ≤ α and mβ ≥ mα on (−∞, T ]. Then adding 2C/(κν) multiple of (A.12) to (A.11) we

find for any γ ≤ C(T3)κ2ν
2‖σ‖2 ,

d

(
ε

2
mα‖U‖2 +

δ

2
mα‖B‖2 +

C

κν
mβ‖Θ‖2

)
+

(
ν

2
mα‖∇U‖2 +

1

2
mα‖∇B‖2 +

C

2ν
mβ‖∇Θ‖2

)
dt

≤ C

κν
mβ‖σ‖2dt+

2

νκ
mβ〈σ,Θ〉dW −

γ

2

4

ν2κ2
m2
β |〈σ,Θ〉|2dt . (A.13)
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By the exponential Martingale inequality (A.10), for any K > 0,

P

(
ε

2
‖U(T )‖2 +

δ

2
‖B(T )‖2 +

C

κν
‖Θ(T )‖2

+ exp(−αT )

∫ T

0

(ν
2
‖∇U‖2 + ‖∇B‖2

)
ds+ exp(−αT )

C

2ν

∫ T

0

‖∇Θ‖2 ds

− ε

2
exp(−αT )‖U(0)‖2 − δ

2
exp(−αT )‖B(0)‖2 − C

κν
exp(−βT )‖Θ(0)‖2 − C‖σ‖2

βκν
≥ K

∣∣∣∣∣F0

)
≤ e−γK .

The proof follows by combining this estimate with the layer cake formula E(|X|) =
∫∞

0
P(|X| ≥ L) dL for

any random variable X.
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flow, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques (2014), (to appear).

[FRV14] S. Friedlander, W. Rusin, and V. Vicol, The magneto-geostrophic equations: a survey, Proc. of the St. Petersburg
Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations (2014).

[FS15] S. Friedlander and A. Suen, Existence, uniqueness, regularity and instability results for the viscous magneto-
geostrophic equation, Nonlinearity 28 (2015), no. 9, 3193.

[FV11a] S. Friedlander and V. Vicol, Global well-posedness for an advection–diffusion equation arising in magneto-
geostrophic dynamics, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 28, Elsevier, 2011,
pp. 283–301.

[FV11b] , On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations, Nonlinearity
24 (2011), no. 11, 3019.
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Deparment of Mathematics
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