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Abstract. We construct an invariant measure µ for the Surface Quasi-Geostrophic (SQG) equation and

show that almost all functions in the support of µ are initial conditions of global, unique solutions of
SQG, that depend continuously on the initial data. In addition, we show that the support of µ is infinite

dimensional, meaning that it is not locally a subset of any compact set with finite Hausdorff dimension.
Also, there are global solutions that have arbitrarily large initial condition. The measures µ is obtained via

fluctuation-dissipation method, that is, as a limit of invariant measures for stochastic SQG with a carefully

chosen dissipation and random forcing.
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1. Introduction

The goal of the present manuscript is to construct an invariant measure µ for the Surface Quasi-Geostrophic
(SQG) equation

(1.1) θt + u · ∇θ = 0

and to prove µ almost sure global well posedness of (1.1). First, we establish the existence of invariant
measures (µα)α>0 for the stochastic SQG

(1.2) dθ + u · ∇θdt = −α∆2θdt+ α∇(|∇θ|2∇θ) +
√
αdη on T2 × (0,∞) ,

and then we construct µ as a limit of µα as α→ 0+. In addition, we prove that all functions in the support
of µ are initial conditions of global, regular solutions, and the support of µ is infinite dimensional. Before
we precisely formulate our main results, let us fix the notation and provide a motivation for our study.

To avoid unnecessary technicalities associated with boundary conditions, we work on two dimensional
flat torus T2, however most of our techniques could be applied to domains with boundary. Unless indicated
otherwise, we always assume that θ has zero mean for all times, that is,∫

T2

θ(x, t) dx = 0 t ≥ 0 .

We assume that θ : R+×T2 → R has sufficient regularity (as detailed below), and u = (−∂y, ∂x)(−∆)−
1
2 θ =

R⊥θ is the Riesz transform of θ, that is,

u = F−1

(
−i ξ
|ξ|
F (θ)

)
,

where F and F−1 denote respectively Fourier and inverse Fourier transform. As usual, we work with
cylindrical Weiner process defined on a filtered probability space (Ω,F ,Ft≥0,P) and our stochastic forcing
has the form

(1.3) η(t, x) =

∞∑
j=1

ajej(x)Wj(t) ,
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where ej are eigenfunctions of −∆ on the torus T2, ordered such that the corresponding eigenvalues λj > 0
form a non-decreasing sequence, and (aj) is a sequence of real numbers such that

A0 =

∞∑
j=1

a2
j <∞ .

Finally, we complement (1.2) with appropriate initial condition specified below.
The SQG equation (1.1) appears as a model for the temperature of stratified atmosphere on the rapidly

rotating planet or as a model of ocean dynamics on certain scales [6] (for derivation, applications to ocean
and atmosphere dynamics, and more references see [54] or a more recent survey [43]). From mathematical
perspective, the SQG equation attracted a lot of attention due to many similarities with three dimensional
Euler equation. Most nobably, the vector ∇⊥θ satsifies an analogue of the Euler equation in the vorticity
form. In particular, both equations contain vortex stretching term and a divergence free drift term, however
one is posed in 2D whereas the other one in 3D and the constitutive laws are different, see the seminal work
by Constantin, Majda, and Tabak [17] for more discussion.

Although the local existence and uniqueness of smooth solutions of (1.1) was already resolved in [17],
despite many efforts, the global existence of solutions on a torus remains open. The blow-up scenario
proposed in [13] was ruled out by precise numerical simulations in [53] and analytically in [18, 20, 21].
Another mechanism of gradient blow up based on the propagation of small instabilities in thin filaments was
proposed in [59]. We remark that blow-up was constructed in [13] for infinite energy initial conditions on
R2.

In [35], Kiselev and Nazarov showed that there exists a solution with initial condition having arbitrarily
small initial conditions that attains arbitrary big norms in finite time. Later, motivated by a construction
for the Euler equation [66], it was shown in [32] that there are solutions of (1.1) with W 2,∞ norm growing
exponentially (along sub-sequence) as time goes to infinity

(1.4) sup
t≤T
‖∇2θ(·, t)‖L∞ ≥ eγT for some γ > 0 .

Also, very little is known about non-equilibrium global smooth solutions for SQG. In fact the only example
was given in [14], where with a rigorous, computer assisted proof the authors proved a global existence for
initial conditions on one dimensional bifurcation branch close to a specific radial equilibrium.

We just briefly remark that one can also consider weak solutions of (1.1), which are known to be global
[50, 56]. However, the uniqueness of weak solution was an challenging open problem [24] that was solved
by establishing non-uniqueness in [11], see also [3, 58]. Also, several regularized models (e.g. additional
dissipation, or smoother constitutive law) were introduced for which one can prove global well posedness of
solutions, see [12, 19, 36] and [16].

In the present manuscript we utilize fluctuation-dissipation method to construct global solutions of (1.1).
The idea is to add a regularizing higher order differential terms, which guarantee global well posedness, and
a stochastic forcing that keeps the energy balance in (1.2). Note that the strength of the forcing and the
coefficients of the smoothing operators are carefully balanced. We prove that the stochastic SQG equation
possesses an invariant measure supported on appropriate Sobolev spaces and by passing to the limit, we
obtain an invariant measure µ for the deterministic SQG (1.1). Then, we investigate properties of µ.

Let us describe known results for problems close to (1.2). Well posedness of stochastic SQG with either
additive or multiplicative noise and additional sub-critical smoothing (dissipation of the form (−∆)β , β > 1

2 )
was studied in [57]. The authors proved that the problem is pathwise globally well posed and under additional
assumptions they showed that there exists a unique invariant measure, which is ergodic, and attracts all
distributions at an algebraic rate. Later large deviation principles for stochastic SQG were proved in [48].
Note that stochastic Quasi-geostrophic (which contains additional Laplacian compared to SQG) was earlier
studied in [8, 33]. A regularization of (1.1) with help of the random diffusion was proved in [10] for sufficiently
small smooth initial conditions.

Below, we first investigate the pathwise global well posedness of (1.2) and then we prove for each α > 0
the existence of invariant measure µα supported on H2. The choice of bi-Laplacian in (1.1) rather than
Laplacian, stems from the fact, that we need µα to be supported on H2 rather than H1. Otherwise, after
passing α→ 0, we would obtain a measure supported on H1 which is not sufficient for the proof of uniqueness
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of solutions of (1.1) (see below). Our first main result is stated in the following theorem, for more precise
formulation see Theorems 2.1 and 4.1 below.

Theorem 1.1. Assuming A0 <∞ and appropriate moment bounds on the initial distribution (see Theorem
2.1 below), almost surely there exists a pathwise global solution to (1.2). Furthermore, (1.2) admits at least
one stationary measure µα supported on H2(T2) ∩W 1,4(T2).

The proof of global pathwise, well posedness follows from a standard framework – Galerkin approximation
and passage to the limit. Since we were not able to locate a suitable result in the literature, we provide
sketch of the proof with appropriate references. Then, the existence of the invariant measure follows from
moment bounds on solutions and Kryloff-Bogoliouboff theorem [37], see also [23]. Note that using standard
coupling techniques, one can prove that µα is in fact a unique invariant measure. For proofs in settings close
to ours, we refer to [9, 22, 26–28, 31, 42]

Before discussing convergence properties of measures constructed in Theorem 1.1, let us summarize known
results. Passing α→ 0 and consecutive analysis of limiting measure µ was done for Euler equation in [40] and
[30], where it was proved that µ is supported on H1 ∩ L∞. Moreover, it was proved that for any compact
set S with finite Hausdorff dimension, one has µ(S) = 0, that is, µ is infinite dimensional. The crucial
property that allowed to prove the infinite dimensionality was the existence of infinitely many conservation
laws. Also, it was shown that the support of µ contains solutions with large energy. Analogous results were
obtained for KdV, Benjamin-Ono, Klein-Gordon, and Schrödinger equation in [41, 61, 63] (see also references
therein). It is important to notice that in all previous examples the proof of the invariance of the limiting
measure µ was based on the well posedness of the underlying deterministic equation, which is not known
for SQG equation. Observe that the proof of invariance for Euler equation [42] does not require global well
posedness of the deterministic equation, nevertheless the 2D Euler equation is significantly simpler than SQG
(which resembles 3D Euler equation). The construction of global solutions for septic NLS [62] (not know to
be globally well posed), utilizes a different strategy: the fluctuation-dissipation is used only for Galerking
approximations and the main obstacle is passage to the limit (based on an argument of Bourgain [7]).

On the other hand, different construction based on Gibbs measures was used to construct global solutions
and invariant measures for various, possibly globally ill posed, Hamiltonian systems (see e.g [7, 52, 64] and
references therein). However, the authors of [51] identified a serious obstruction that prevent a ‘traditional
way’ (e.g. as for 2D Euler [1]) of building a Gibbs measure based on the conservation of L2 norm for the
SQG equation. Indeed, for functions in the support of such measure, the nonlinearity of SQG (one degree
less regular than Euler) cannot be defined in the sense of distributions.

The main novelty of the paper is the proof that the set of measures (µα) from Theorem 1.1 has an
accumulation point µ which is an invariant measure for (1.1). The invariance is understood with respect to
the dynamics induced by the stochastic equation (1.2) and a passage α → 0. Furthermore, we prove that
if the initial condition belongs to the support of µ, the corresponding solution of (1.1) is global. Hence, it
is important to estimate the size of the support of µ. Althought the SQG is similar to 3D Euler equation,
a notable difference is the existence of infinitely many conserved quantities, that allows us to prove that
µ(K) = 0 for any compact set K with finite Hausdorff dimension. Also, we show that µ is not supported

only on small functions, meaning that the support of µ must contain functions with arbitrarily large H
3
2

norm. The last statement follows from the fact, that we can choose the noise in the fluctuation dissipation
method and obtain µ with large moments (see Corollary 1.3 below).

Before we proceed denote

(1.5) As :=

∞∑
j=1

λsja
2
j .

and recall that regular solutions of SQG equation admit, the following set of conservation laws

E−1
2

(θ) =
1

2

∫
T2

|(−∆)
−1
4 θ|dx ,

M(θ) =
1

2

∫
T2

θ2dx.

The next theorem contains our main results, for more general assertions see Theorems 5.1, 6.1, and 6.2
below.
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Theorem 1.2. Assume A0 < ∞. As α → 0, there is an accumulation point µ for the sequence (µα)
satisfying the following properties

(1) µ is a probability measure concentrated on the Sobolev space H2(T2), that is,

µ(H2(T2)) = 1.

(2) For µ almost all data θ0, there is a unique function θ ∈ C(R+, H1) ∩ L2
loc(R+, H2) satisfying the

equation (1.1) with θ(0, x) = θ0(x). Define a flow ρ for (1.1) as ρt(θ0) = θ(·, t; θ0).
(3) The flow ρt is continuous on H1.
(4) µ is invariant under ρt.
(5) µ satisfies the estimates∫

L2

(
‖θ‖2

H
3
2
−
∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

)
µ(dθ) =

A−1
2

2
,∫

L2

(‖θ‖2H2 + ‖θ‖4W 1,4)µ(dθ) <∞.

(6) µ is infinite-dimensional in the sense that it vanishes on finite-dimensional compact sets.
(7) The conservation laws of random variables M(θ) and E−1

2
(θ) are absolutely continuous with respect

to the Lebesgue measure on R.

The regularity of functions in the support of µ (being H2 by Theorem 1.2, 1.) is a direct consequence of
the support of µα, which follows from the regularizing term ∆2. Note that L2H2 is a minimal smoothness
required to prove uniqueness of solutions, that is, well posedness claimed in Theorem 1.2 part (2). Replacing
∆2 by ∆β with β < 2, yields the existence of (µα) and µ supported on Hβ , but solutions of (1.1) with initial
conditions in the support of µ are too weak to establish uniqueness.

On the other hand the choice of ∆2 instead of ∆ brings several obstacles. For example, for the proof
of part (6) in Theorem 1.2 we needed to introduce additional smoothing term ∆4θ := ∇(|∇θ|2∇θ) into
(1.2) (∆pθ := ∇(|∇θ|p−2∇θ) is called p-Laplacian). The reason is that the expression 〈∆2θ, f(θ)〉 is neither
positive nor bounded from below for all θ, and for large set of functions f , a minimal requirement for the
general framework, see details in Section 6. The addition of ∆4 guarantees that (µα), and consequently µ
are supported also on W 1,4 with forth order moment bounds. Then, we can bound 〈∆2θ −∆4θ, f(θ)〉 from
below for any f that has bounded derivatives up to fourth order, which suffices for our purposes.

If one wishes to construct invariant measures for (1.1) on smoother spaces, for example Hβ for β > 2,
and prove infinite dimensionality of such measure, then one has to correct the smoothing operator ∆β

by appropriate quasilinear positive definite operator such as p-Laplacian. Since the proofs are technically
involved we decided not to present them here.

Concerning the support of µ, by part (6) of Theorem 1.2, it cannot be contained in any compact set of
finite Hausdorff dimension. Moreover, (7) implies, that the support of µ is not merely a countable union of
level sets of the conservation laws. Also, the following corollary asserts that there are arbitrarily large initial
data that give rise to global solutions.

Corollary 1.3. Given any constant K, denote SK = {θ : ‖θ‖4W 1,4 + ‖θ‖2
H

3
2
≥ K}. Then there is θ0 ∈ SK

such that the solution of (1.1) with θ(0) = θ0 is global. More generally, there exists a sequence (aj) (see the
definition of the noise (1.3)) such that for the measure µ constructed in Theorem 1.2 one has µ(SK) > 0.

Proof of Corollary 1.3. Choose the sequence (aj) such that A− 1
2

= 4CK and A0 <∞, where C is a constant

depending only on the size of T2. If µ(SK) = 0, then, by Theorem 1.2, (5) one has by Hölder and Poincaré
inequalities

2CK =
A− 1

2

2
≤
∫
L2

(
‖θ‖2

H
3
2

+

∫
T2

|∇θ|3|∇(−∆)
1
2 θ|dx

)
µ(dθ) ≤

∫
L2

‖θ‖2
H

3
2

+ ‖∇θ‖3W 1,4‖θ‖L4µ(dθ)

≤ C
∫
L2

‖θ‖2
H

3
2

+ ‖∇θ‖4W 1,4µ(dθ) = C

∫
L2\SK

‖θ‖2
H

3
2

+ ‖∇θ‖4W 1,4µ(dθ) ≤ CK ,

a contradiction. The first statement follows from the second one and Theorem 1.2 parts (1), (2). �

Another consequence of Theorem 1.2 follows from the Poincaré recurrence theorem.
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Corollary 1.4. For µ-almost every u0 ∈ H2, there is a sequence (tk)k increasing to ∞ such that

lim
k→∞

‖ρtku0 − u0‖2 = 0.

Corollary (1.4) could be the reason why the estimate (1.4) requires
∑
t≤T , that is, the solution increases

only along the sequence of times (solutions might return infinitely many times to a neighbourhood of the
initial condition).

A natural question is whether the set of solutions constructed in Theorem 1.2 is a subset of equilibria to
(1.1). This seems to be a very non-trivial question to which we do not have a definitive answer. However,
we have the following alternative:

(a) The support of µ is not a subset of the equilibria of (1.1), and then the flow ρt constructed in
Theorem 1.2, part (2) yields non-trivial global solutions.

(b) The support of µ coincides with the equilibria of (1.1), for any choice of (sufficiently regular) noise.
In that case, we would have a remarkable stability property of the equilibria for both (1.1) and (1.2)
with small α.

Recall that the linear stability of equilibria of (1.1) were studied in [29].
Let us remark that in the context of equations having only discrete set of equilibria, for instance the case

of some power type nonlinearities, (6) and (7) of Theorem 1.2 imply that the alternative (a) above occurs.
Also, we propose in the appendix a general example of a finite-dimensional system having continuous set of
equilibria, but the support of the inviscid measure not being subset of equilibria.

Organization of the paper. In Section 2, we prove probabilistic global well-posedness for the stochastic
equation (1.2). Moment bounds for such solutions are given in Section 3 and based on moment bounds we
construct stationary measures for any α > 0 in Section 4. Section 5 contains principal results of the paper,
and we prove there the existence of invariant measure for (1.1), and global well posedness on its support.
In Section 6, we combine the probabilistic estimates and Krylov lemma to establish qualitative properties
(infinite dimensionality of the support). Finally, Appendix A include details about the invariant measures
for finite dimensional Hamiltonian systems and in Appendices B and C we respectively recall Itô formula in
infinite dimensions and a proof of a parabolic embedding.

1.1. General notations. The following notation is used throughout the paper.

∗ C∞0 (R) is the space of functions f : R→ R that are infinitely differentiable and compactly supported.
∗ For any 1 ≤ p ≤ ∞ and s ∈ R, we denote Lp(T2) and W s,p(T2) the usual Lebesgue respectively

Sobolev spaces. We also set Hs(T2) = W s,p(T2). Often for the clarity of presentation we do not
indicate the domain T2 and we write Lp, W k,p, and Hk.

∗ When a fixed T > 0 is clear from context, for any Banach space X define the spaces CX =
C([0, T ], X), LpX = Lp([0, T ], X), and W s,pX = W s,p([0, T ], X). Sometime if needed, we indicate
the variable of the space as a subscript, for example CtH

s
x. The spaces are equipped with usual

parabolic norms denoted for example ‖ · ‖CX .
∗ We write ‖ · ‖ instead of ‖ · ‖L2(T2).
∗ ClocX denotes the space of functions that are locally continuous in time with values in X. Analo-

gously we define LplocX and W s,p
locX.

∗ We denote p(X) the set of Borel probability measures on X.
∗ The non-decreasing sequence (λm)m≥1 contains all eigenvalues of −∆ on T2 and with corresponding

normalized eigenvectors (em)m≥1.
∗ For a probability measure µ on X, we denote by Eµ(f), the average of f with respect to µ:∫

X

f(x)µ(dx).

∗ The Riesz transform of θ is given denoted R⊥θ = (−∂y, ∂x)(−∆)−
1
2 θ. Note that Riesz transform

satisfies (see [60]), for any p ∈ [1,∞)

(1.6) ‖R⊥v‖Lp ≤ C‖v‖Lp .
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2. Global solutions for the stochastic SQG

In this section we establish the path-wise global well posedness of solutions of (1.2), and therefore prove the
first part of Theorem 1.1. Although the proof follows from a framework used several times in the literature,
we were unable to locate the precise reference that would cover our situation. Rather than providing all
details, we show how to satisfy assumptions of [46, Theorem 1.3] and explain how the proof in [46] needs to
be modified.

Theorem 2.1. Fix any α > 0, any T > 0, and any p ≥ 1. Also, fix any F0 measurable (see filtration for our
Brownian motion random variable θ0 with E‖θ0‖pL2 < ∞, and any noise η of the form (1.3) with A0 < ∞.
Then, there exists a unique adapted solution θ of (1.2) satisfying θ(0) = θ0 and almost surely

θ ∈ C([0, T ], L2(T2)) ∩ L2([0, T ], H2(T2)) ∩ L4([0, T ],W 1,4(T2)) .

Furthermore,

(2.1) E sup
t∈[0,T ]

‖θ(t)‖2p + αE
∫ T

0

‖θ‖2p−2(‖θ‖2H2 + ‖θ‖4W 1,4)ds ≤ C(T, α, p, ‖θ0‖) .

Proof. The proof closely follows the proof of [46, Theorem 1.3], see also [47]. However, since our differential
operators have different scalings, we have to slightly modify the arguments. We only highlight differences.
For easier comparison, we use the notation form [46].

Recall that (en)n≥1 is an orthonormal basis of L2 and denote Hn = span{e1, · · · , en}. Let Pn : H−2 → Hn

be the orthogonal projection defined by

Pny =

n∑
i=1

〈y, ei〉ei, y ∈ H−2 .

For each n ≥ 1 consider the stochastic equation on Hn

(2.2) dX(n) = Pn(AX(n))dt+
√
αdηn , X

(n)
0 = Pnθ0

where

AX = −α∆2X + α∇(|∇X|∇X)− Y∇X, Y = R⊥X

and

ηn(x, t) =

n∑
j=1

ajej(x)Wj(t) .

The existence and uniqueness of solutions of (2.2) is classical and follows from [39, Section 1], see also [55,
Theorem 3.1.1].

We have the following a priori estimates for X(n).

Lemma 2.2. For every T > 0 there exists CT depending on A0, p and α, but independent of n such that
for each n ≥ 1

E sup
t∈[0,T ]

‖X(n)(t)‖2pL2 +

∫ t

0

‖X(n)(t)‖2p−2
L2 (‖X(n)‖2H2 + ‖X(n)‖4W 1,4)ds ≤ CT (E‖X(n)(0)‖2pL2 + 1) .

Proof of Lemma 2.2. The proof follows from [46, Lemma 2.2], see also proof of (3.2) below for the idea of
the proof. �

Define the spaces

Y1 := L2([0, T ]× Ω, H2) Y2 := L4([0, T ]× Ω,W 1,4)

and

K = Y1 ∩ Y2

and the dual of K

K∗ = Y ∗1 + Y ∗2
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equipped with the usual intersection and sum norms

(2.3) ‖X‖K = max{‖X‖Y1 , ‖X‖Y2}, ‖X‖K∗ = inf{‖X1‖Y1 + ‖X2‖Y2 , X1 +X2 = X} .

Note that

Y ∗1 := L2([0, T ]× Ω, H−2) Y ∗2 := L
4
3 ([0, T ]× Ω,W−1, 43 )

Since

‖AX(n)‖K∗ ≤ α‖∆2X(n)‖Y ∗1 + α‖∇(|∇X(n)|∇X(n))‖Y ∗2 + ‖Y (n)∇X(n)‖Y ∗1

and

‖∆2X(n)‖Y ∗1 = E‖X(n)‖2L2H2

‖∇(|∇X(n)|2∇X(n))‖Y ∗2 = E‖|∇X(n)|3‖
L

4
3 L

4
3

= E‖∇X(n)‖3L4L4 ≤ C
(
E‖X(n)‖4L4W 1,4

) 3
4

,

‖Y (n)∇X(n)‖2Y ∗1 ≤ CE‖|Y
(n)|X(n)‖2L2L2 ≤ CE‖Y (n)‖2L4L4‖X(n)‖2L4L4 ≤ CE‖X(n)‖4L4W 1,4 .

Thus, from Lemma 2.2 follows that

(2.4) ‖AX(n)‖K∗ ≤ C

with C independent of n, because EM(X0) ≤ E‖θ0‖2 <∞.
The continuity of the map (assumption (H1) in [46]) s 7→ 〈A(X1 + sX2), X〉, i = 1, 2 is easy to verify for

any X1, X2, X ∈ H2. Also, the local monotonicity assumption ((H2) in [46])

(2.5) 〈A(X1)−A(X2), X1 −X2〉 ≤ (K + κ(X2))‖X1 −X2‖2L2

is valid for our operator A. Indeed, note that p-Laplacian is monotone operator (see e.g. [65, Proposition
30.10]), thus (2.5) holds true for AX = ∇(|∇X|2∇X) with f = ρ = κ ≡ 0. Since Y1 is divergence free, (1.6),
L∞ ↪→ H2, and Hölder and Young inequalities yield

〈A(X1)−A(X2), X1 −X2〉 ≤ −α‖X1 −X2‖2H2 + 〈Y2∇X2 − Y1∇X1, X1 −X2〉
= −α‖X1 −X2‖2H2 + 〈Y2∇X2 − Y1∇X2, X1 −X2〉
= −α‖X1 −X2‖2H2 + 〈(Y2 − Y1)∇X2, X1 −X2〉
≤ −α‖X1 −X2‖2H2 + ‖Y2 − Y1‖L2‖∇X2‖L2‖X1 −X2‖L∞

≤ Cα‖X2 −X1‖2L2‖∇X2‖2L2 ,

where we used that

Y1∇X1 = Y1∇(X1 −X2) + Y1∇X2

and that, by an integration by part and the property ∇ · Y2 = 0,

−〈Y1∇(X1 −X2), X1 −X2〉 = 〈∇ · Y1,
1

2
(X1 −X2)2〉 = 0.

Thus, assumption (H2) in [46] holds with K = 0 and ρ(X) = ‖X‖2H1 . Next, the assumption (H3) in [46]:

2〈A(X), X〉+ δ‖X‖γH2 ≤ K‖X‖2L2 + f(t)

holds in our case, due to cancellation in the non-linear term, for δ < 2α, f ≡ 0, and γ = 2.
Finally, as stated in [46, Remark 3.2, (4)] the growth assumption in [46, (H4)] is only needed to prove

that E‖A(X(n))‖2K∗ is uniformly bounded in n, which was already established in (2.4).
The rest of the proof follows line by line the same as in [46, proof of Theorem 1.1]. �
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3. Probabilistic estimates for the stochastic flow

In this section, we derive moment bounds on solutions of (1.2), that were constructed in Section 2. Our
choice of norms is dictated by the conserved quantities of (1.1), and it is essential to keep track of dependencies
of constants on α. The proofs are based on energy estimates and Itô lemma recalled in Appendix B.

For A0 defined in (1.5), observe that for any p > 0∫
T2

 ∞∑
j=1

a2
j (ej(x))2


p
2

dx ≤ 1

(2π)p

∫
T2

 ∞∑
j=1

a2
j


p
2

dx = (2π)2−pA
p
2
0 <∞

and recall the notation

M(θ) =
1

2

∫
T2

θ2dx .

Theorem 3.1. Assume A0 < ∞. Then, the solution θ constructed in Theorem 2.1 satisfies the following
properties:

(1) If E‖θ(0)‖2
H−1/2 <∞, then for any t ≥ 0

(3.1) E‖θ(t)‖2
H−

1
2

+ 2αE
∫ t

0

‖θ(s)‖2
H

3
2
ds+ 2αE

∫ t

0

∫
T2

|∇θ(s)|2∇θ · ∇(−∆−
1
2 )θdxds

= E‖θ0‖2
H−

1
2

+ αA−1t.

(2) If EMq(θ(0)) <∞ for some q ≥ 1, then for any t ≥ 0

(3.2) EMq(θ(t)) + 2αqE
∫ t

0

Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)ds

= EMq(θ(0)) + αqE
∫ t

0

A0M
q−1(θ)ds+ 2(q − 1)Mq−2(θ)

∞∑
j=1

a2
j

(∫
T2

ejθdx

)2

ds .

In particular, when q = 1, we have for any t ≥ 0

E‖θ(t)‖2 + 2α

∫ t

0

E(‖θ(s)‖2H2 + ‖θ(s)‖4W 1,4)ds = E‖θ0‖2 + αA0t.(3.3)

Proof. We proceed in the following steps.
Proof of (3.1). We use that H−

1
2 is conserved for the SQG equation (1.1) (see (3.4) below). Clearly, the

function θ 7→ ‖θ‖2
H−1/2 = ‖∆−1/4θ‖2 satisfies assumptions (B.1) and (B.2) of Theorem B.1 with s = − 1

2 . To
satisfy (B.3), notice that

∞∑
j=1

a2
j

∫ t

0

E
(∫

T2

(−∆)−
1
4 θ(−∆)−

1
4 ejdx

)2

ds =

∞∑
j=1

a2
j

∫ t

0

E
(∫

T2

θ(−∆)−
1
2 ejdx

)2

ds

=

∞∑
j=1

a2
j

λj

∫ t

0

E
(∫

T2

θejdx

)2

ds

≤ C
∞∑
j=1

a2
j

λj

∫ t

0

E
∫
T2

θ2dxds

= CA−1E
∫ t

0

‖θ‖2ds <∞ ,

where the last inequality follows from (2.1). Thus, Theorem B.1 yields

E‖θ(t)‖2H−1/2 = E‖θ(0)‖2H−1/2 + 2E
∫ t

0

∫
T2

(−∆)−
1
4 θ(−∆)−

1
4 (−α∆2θ + α∇(|∇θ|2∇θ)− u∇θ)

+ α

∞∑
j=1

a2
j ((−∆)−

1
4 ej)

2 dxds .
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Using that u = ∇⊥(−∆)
1
2 θ is divergence free, we obtain

(3.4)

∫
T2

(−∆)−
1
4 θ(−∆)−

1
4 (u∇θ) dx =

∫
T2

(−∆)−
1
2 θu∇θ dx

= −
∫
T2

(∇(−∆)−
1
2 θ · ∇⊥(−∆)−

1
2 θ)θ dx = 0 .

Hence, using integration by parts and Fourier representation of fractional Laplacian we obtain

E‖θ(t)‖2H−1/2 = E‖θ(0)‖2H−1/2 + 2αE
∫ t

0

∫
T2

(−∆)−
1
4 θ(−∆)−

1
4 (−∆2θ +∇(|∇θ|2∇θ)) dxds+ α

∞∑
j=1

a2
j

λj
t

= E‖θ(0)‖2H−1/2 − 2αE
∫ t

0

‖θ‖23
2
ds− 2αE

∫ t

0

∫
T2

(−∆)−
1
2∇θ|∇θ|2∇θ dxds+ αA−1t

and (3.1) follows.
Estimate for Mq(θ).. Next, we turn our attention to the moment bounds for Mq with q ≥ 1. Clearly, the
function θ 7→ Mq(θ) = 1

2‖θ‖
2q satisfies assumptions (B.1) and (B.2) of Theorem (B.1) with s = 0. In order

to obtain (B.3), we need to estimate the quadratic variation of the martingale term. Since (ej) are bounded,

∞∑
j=1

a2
jE
∫ t

0

(
‖θ‖q−1

∫
T2

θej(x)dx

)2

ds ≤ CA0E
∫ t

0

‖θ‖2q−2

∫
T2

|θ|2dxds = CA0E
∫ t

0

‖θ‖2qds <∞ ,

where the last inequality follows from (2.1). Hence, by Theorem B.1 we obtain for any q ≥ 1

EMq(θ(t)) = EMq(θ(0)) + qE
∫ t

0

Mq−1(θ)

∫
T2

2θ(−α∆2θ + α∇(|∇θ|2∇θ)− u∇θ) + α

∞∑
j=1

a2
je

2
j dxds

+ 2α(q − 1)Mq−2(θ)

∞∑
j=1

a2
j

(∫
T2

ejθdx

)2

ds .

An integration by parts and the property ∇ · u = 0 imply that
∫
T2 θu∇θdx = 0, and (3.2) follows after

integration by parts. �

4. Stationary measures for the stochastic SQG

In this section we construct invariant measures for the stochastic SQG equation (1.2) and establish its
moment bounds, which finishes the second part of Theorem 1.1. As above, it is necessary to keep track of
the parameter α, since below we pass α to zero. Also note that the moment estimates are equalities, which
will be important in the proof of non-degeneracy of the limiting measure. The proof of existence of invariant
measures is based on the Kryloff-Bogoliouboff theorem, and the moment bounds follow from bounds on
solutions established in Section 3.

4.1. Construction and basic estimates.

Theorem 4.1. Assume A0 < ∞. For any α ∈ (0, 1), the equation (1.2) admits at least one stationary
measure µα supported on L2 and satisfying the following properties:∫

L2

(
‖θ‖2

H
3
2
−
∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

)
µα(dθ) =

A−1
2

2
,(4.1) ∫

L2

(‖θ‖2H2 + ‖θ‖4W 1,4)µα(dθ) =
A0

2
.(4.2)

More generally, for any q ≥ 1,

(4.3)

∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)µα(dθ)

=

∫
L2

A0

2
Mq−1(θ) + (q − 1)Mq−2(θ)

∞∑
j=1

a2
j

(∫
T2

ejθdx

)2

µα(dθ) .
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In particular, µα(H2) = 1, any α > 0, and any q ≥ 1 there is C independent of α such that

(4.4)

∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)µα(dθ) ≤ C .

Proof. Tightness and existence of stationary measures. Let θα be the solution of (1.2) with θα(0) = 0
almost surely, that is θα(0) is distributed as the Dirac measure concentrated at 0. Then, by (3.3), one has

2αE
∫ t

0

‖θ‖2H2ds ≤ αA0t ,

and consequently

1

t
E
∫ t

0

‖θ‖2H2ds ≤ C .

For each t > 0 define the Borel probability measure on L2(T2) as

µtα(A) =
1

t

∫ t

0

P(θα(s) ∈ A) ds ,

where A is any Borel set in H2(T2) . Then,

(4.5)

∫
L2(T2)

‖θ‖2H2µtα(dθ) =
1

t
E
∫ t

0

‖θα(s)‖2H2ds ≤ C.

In particular, if BR is a ball in H2 of radius R centered at 0 and BcR = H2\BR, then by Chebyshev inequality
and (4.5) one has

µtα(BcR) =
1

t

∫ t

0

P(‖θα(s)‖H2 ≥ R) ds ≤ 1

t

∫ t

0

E‖θ(s)‖2H2

R2
ds ≤ C

R2
.

Since BR is compact in H2−δ, δ > 0, then for each α > 0, the set of measures (µtα)t>0 is tight, and therefore
by Pokhorov theorem it is compact. For any sequence (tn) with tn → ∞, one has that µtnα has a weakly
convergent subsequence converging to µ∗α. The Bogoliubov-Krylov argument (see e.g. [23]) implies that µ∗α
is stationary for (1.2).

Also, by using (3.2) with θ(0) = 0, we obtain for any q ≥ 1∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)µtα(dθ) ≤ C
∫
L2

Mq−1(θ)µtα(dθ)

= C

∫
‖θ‖2

H2≥R
Mq−1(θ)

‖θ‖2H2

‖θ‖2H2

µtα(dθ) + C

∫
‖θ‖2

H2<R

Mq−1(θ)µtα(dθ)

≤ C

R

∫
‖θ‖2

H2≥R
Mq−1(θ)‖θ‖2H2µtα(dθ) + C

∫
‖θ‖2

H2<R

Mq−1(θ)µtα(dθ) .

Choosing R = 2C and using M(θ) ≤ C‖θ‖H2 we have∫
L2

Mq−1(θ)(‖θ‖2H2 + ‖θ(s)‖4W 1,4)µtα(dθ) ≤ C
∫
‖θ‖2

H2<2C

Mq−1(θ)µtα(dθ) ≤ C

were C is independent of t. Then, by the Portmanteau theorem, the same inequality holds true with µtα
replaced by µα and (4.4) follows.

Estimates for the stationary measures. Denote by µα any invariant measure constructed by the
above procedure. Let θα0 be a random variable with the law µα and let θα be the solution of (1.2) with initial
condition θα0 . Then, by (4.4) one has E‖θα0 ‖q−1 <∞ and E‖θα0 ‖2

H−
1
2
<∞ for any q ≥ 1.

Also, the invariance of µα implies E‖θα(t)‖2X = E‖θα0 ‖2X for X being L2, W 1,4, or H2, and consequently
by (3.3)

t

∫
L2

‖θ‖2H2 + ‖θ‖4W 1,4µα(dθ) = E
∫ t

0

‖θα(s)‖2H2 + ‖θα(s)‖4W 1,4ds = t
A0

2

and (4.2) follows.
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Similarly, in (3.1) and (3.2), using E‖θα(t)‖2
H
−1
2

= E‖θα0 ‖2
H
−1
2

and EMq(θ(t)) = EMq(θ(0)) (by the

invariance of µα) we obtain respectively (4.1) and (4.3). Recall that (4.4) was already proved. �

5. Inviscid limit

This section contains proofs of essential assertions of the manuscript detailed in Theorem 1.2 parts 1–5. In
particular, we prove prove convergence of measures µα constructed in Theorem 4.1 to an invariant measure
µ for the deterministic SQG equation. Furthermore we show that almost all points in the support of µ are
initial conditions for regular global solutions.

Theorem 5.1. If A0 <∞, there exists a measure µ supported on H2 with the following properties:

(1) For almost every θ0 ∈ supp(µ), there exists a unique, global (existing for all positive times) solution
θ of (1.1) with θ ∈ CtH1

x ∩L2
tH

2. Furthermore, for any t ≥ 0, the mas θ0 7→ θ(t, θ0) is a continuous
on H1.

(2) The measure µ is invariant for (1.1), meaning that for every Borel set A in H2, one has µ{θ0 :
θ(t, θ0) ∈ A} = µ(A).

(3) For any q ≥ 1 we have the moment bounds∫
L2

(
‖θ‖2

H
3
2
−
∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

)
µ(dθ) =

A−1
2

2
,(5.1) ∫

L2

Mq−1(θ)(‖θ‖2H2 + ‖θ‖4W 1,4)µ(dθ) ≤ C.(5.2)

Before providing details of the proof, let us first sketch the general strategy.

Remark 5.2. Compared to the known results we face different challenges since it is not known whether the
equation (1.1) is globally well posed. This poses several challenges. After verifying the tightness of measures
(µα) and passing µα → µ as α → 0, we obtain moment bounds for µ, however we cannot immediately con-
clude that almost all functions in the support are initial conditions of global solutions. This problem is not
solved even if we prove that µ is invariant. For example, there can be a set Mt of measure zero that contain
functions that cease to exist at time t. Since (Mt)t>0 form an uncountable family, we cannot conclude that
the union ∪Mt has zero measure.
For that reason we use the “lifted” measures να supported on solutions of (1.2) rather than on initial condi-
tions. To pass α → 0 and conclude that the limiting measure ν is supported on solutions of (1.1), we have
to obtain compactness (tightness) of (να) in spaces of time dependent functions. This follows from improved
temporal bounds for the solutions of (1.2). Also, these bounds imply that the restriction of the measure ν at
the initial time is µ.
Using the Skorokhod theorem we find stationary random variables θα distributed as να that converge almost
surely to θ, which solves (1.1). In addition, θ(0) is distributed as µ.
To prove the uniqueness of t 7→ θ(t) we crucially use that the operator in the fluctuation-dissipation method
is bi-Laplacian instead of Laplacian, and therefore θ is supported on L2H2, a regularity space sufficient to
guarantee uniqueness and continuous dependence on initial conditions.

Proof. Proof of Theorem 5.1 The proof is divided into several parts. Proof of 1. follows from Proposition
5.11, part 2 follows from Lemma 5.10 and the proof of 3 follows from Proposition 5.12. �

If θα is a solution of (1.2) with θα(0) distributed as µα (see Theorem 4.1), then due to the invariance,
θα(t) is distributed as of µα for any t ≥ 0. We can either view t 7→ θα(t) as a random process with range in
a space of x dependent functions or alternatively, we can view θα as a random variable on a space of (x, t)
dependent functions in L2

loc(R+, H
2) (see (4.5)).

Denote να the distribution of θα and by the invariance of µα one has P(θα(t0) ∈ A) = µα(A) for any
t0 ≥ 0, and any Borel set A in H−δ, δ ∈ [0, 1). Observe that µα is supported on H2 and we can trivially (by
zero) extend it to the larger space H−δ. Hence,∫

χA×{t0}dνα = να(A× {t0}) = P(θα(t0) ∈ A) = µα(A) =

∫
A

χAdµα ,
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where χZ denotes the characteristic function of a set Z. The linearity of integrals and the dominated
convergence theorem also implies

(5.3)

∫
CtH

−δ
x

g(θ(t0))dνα(θ) =

∫
H−δx

g(θ)dµα(θ)

for any bounded continuous function g : H−δx → R.
Fix T > 0 and define I = (0, T ) ⊂ R.

Remark 5.3. In this section we implicitly assume that all spaces are defined on the time interval I. For
example, L2H2 = L2(I,H2(T2)) or H1

t L
4
x = H1(I, L4(T2)). We use the notation, say L4 (single space), to

denote L4(T2), that is, we do not specify regularity in time.
Also, θα denotes the solution of (1.2), that is, a function depending on x and t, whereas θ denotes the
integration variable, that is, a function depending on x only.

By (4.4), and the invariance of µα for any q ≥ 0

C ≥
∫ T

0

∫
L2
x

‖θ‖q‖θ‖2H2dµα(θ)ds =

∫ T

0

E‖θα(s)‖q‖θα(s)‖2H2ds = E‖θα‖q‖θα‖2L2H2(5.4)

=

∫
L2
t,x

‖θ‖q‖θ‖2L2H2dνα(θ) ,

where here and below C is allowed to implicitly depend on T . To gain the temporal compactness in time,
we prove the regularity of θα in time.

Lemma 5.4. Set X = H1L2 + H1H−2 + W 1, 43W−1, 43 + Wκ,4L2 with κ ∈ (1/4, 1/2) equipped with the
standard sum norm (cf. (2.3)). Then

C ≥ E‖θα‖
4
3

X =

∫
L2
t,x

‖θ‖
4
3

Xdνα(θ) ,

Proof. Observe that

θα(t) = θα(0)−
∫ t

0

u · ∇θαds︸ ︷︷ ︸
I

−α
∫ t

0

∆2θαds︸ ︷︷ ︸
II

+α

∫ t

0

∇(|∇θα|2∇θα)ds︸ ︷︷ ︸
III

+
√
α

∫ t

0

dη︸ ︷︷ ︸
IV

.(5.5)

First, by interpolation, (1.6), and embeddings we have (spatial norm)

‖u · ∇θ‖L2
x
≤ C‖u‖L4‖∇θ‖L4 ≤ C‖θ‖

H
1
2
‖θ‖

H
3
2
≤ C‖θ‖‖θ‖H2 ,

and by (4.2) and (4.4) with q = 3

E‖I‖2H1
tL

2
x
≤ 2

(
E‖θα(0)‖2L2

x
+ E‖u · ∇θα‖2L2

t,x

)
≤ C .

Second, using (4.2), we have

E‖II‖2
H1
tH
−2
x
≤ CE

∫ T

0

‖∆2θ‖2H−2dt = E
∫ T

0

‖θ‖2H2 ≤ CT.(5.6)

Moreover,

‖∇(|∇θ|2∇θ)‖
W−1, 4

3
≤ C‖|∇θ|3‖

L
4
3

= C‖∇θ‖3L4 = C‖θ‖3W 1,4 ,

and therefore, by (4.4)

E‖III‖
4
3

W
1, 4

3
t W

−1, 4
3

x

≤ E‖∇(|∇θα|2∇θα)‖
4
3

L
4
3W−1, 4

3
≤ CE

∫ T

0

‖θα‖4W 1,4 ≤ C .(5.7)
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Finally, since for any m and 0 ≤ s ≤ t, Wm(t)−Wm(s) ∼ N (0, t− s), we have E|Wm(t)−Wm(s)|2 = t− s
and E|Wm(t)−Wm(s)|4 = 3(t− s)2. By the independence of Wj and Wk for j 6= k, one has

E‖IV (t)− IV (s)‖4 = E

 ∞∑
j=1

a2
j |Wj(t)−Wj(s)|2

2

= E
∞∑

j,k=1

a2
ja

2
k|Wj(t)−Wj(s)|2|Wk(t)−Wk(s)|2

= 3|t− s|2
∞∑

j,k=1

a2
ja

2
k(1 + 2δjk) ≤ 9|t− s|2

∞∑
j,k=1

a2
ja

2
k ≤ 9|t− s|2A2

0 ,

where δij = 0 if i 6= j and δii = 1. Consequently, if κ < 1
2

E‖IV ‖4Wκ,4L2 = E
∫ T

0

‖IV ‖4L2
x
dt+ E

∫ T

0

∫ T

0

‖IV (t)− IV (s)‖4

|t− s|1+4κ
dtds

≤ C
∫ T

0

t2dt+ C

∫ T

0

∫ T

0

|t− s|1−4κdtds ≤ C(T ).

Overall,

E‖θα‖
4
3
χ ≤ E‖I‖2H1L2 + α‖II‖2H1H−2 + α‖III‖

4
3

W 1, 4
3W−1, 4

3
+ E‖IV ‖4Wκ,4L2 ≤ C,

where C is independent of α ∈ (0, 1) and the result follows. �

Proposition 5.5. For any δ > 0 denote Yδ = L2H2−δ ∩ CH−δ. Let X be as in Lemma 5.4 for some
κ ∈ ( 1

4 ,
1
2 ). Then, for any q ≥ 0 there is a constant C independent of α such that∫

‖θ‖
4
3

Xdνα = E‖θα‖
4
3

X ≤ C ,(5.8) ∫
‖θ‖q‖θ‖2L2H2dνα = E‖θα‖q‖θα‖2L2H2 ≤ C.(5.9)

Moreover, for any δ > 1
3 the set of measures (να)α is tight in Yδ. Consequently, there is a sequence

(νk) := (ναk) with αk → 0 as k →∞, and a measure ν supported on Yδ such that νk converges weakly to ν
as k →∞.

Proof. The estimates (5.8) and (5.9) follow from Lemma 5.4 and (5.4) respectively.
We claim that Yδ is compactly embedded in X ∩ L2H2 for any δ > 1

3 . Indeed, by [44, Theorem 5.1 and

5.2], for any δ > 0, L2H2 ∩ X is compactly embedded in L2H2−δ. Also, for any δ > 0, [45, Theorem 3.1],
[38, Lemma II.2.4], and standard Sobolev embedding imply that L2H2 ∩H1H−2 and L2H2 ∩Wκ,4L2 are

compactly embedded in CH−δ. Finally, by Appendix C, for any δ > 1
3 , L2H2 ∩W 1, 43W−1, 43 is compactly

embedded in CH−δ, and the claim follows.
Let BR be the ball in X ∩ L2H2 of radius R centered at the origin. By the just proved compactness, BR

is compact in Yδ. Furthermore, by Chebyshev inequality

να(BcR) = P(‖θα‖X∩L2H2 ≥ R) ≤
E‖θα‖

4
3

X∩L2H2

R
4
3

≤ C

R
4
3

and therefore the set of measures (να)α is tight in Yδ. The existence of appropriate sequence follows from
Prokhorov theorem. �

Lemma 5.6. Let νk → ν in be as in Proposition 5.5. Then, there is a probability space (Ω̃, P̃), on which is

defined a sequence of random variables (θ̃k) and a random variable θ̃ having the following properties:

(1) The law of θ̃ is ν and for every k, the law of θ̃k is νk.

(2) For any δ > 1
3 , the sequence θ̃k converges to θ̃ almost surely, that is, for P̃ almost every ω ∈ Ω̃ one

has ‖θ̃k(ω)− θ̃(ω)‖Yδ → 0 as k →∞.

(3) For each k, θ̃k satisfies (5.5).
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Furthermore, by passing to a sub-sequence if necessary, θ̃k converges weakly to θ̃ in L
4
3 (Ω̃,X )∩L2(Ω̃, L2H2)

and for any q ≥ 0 ∫
‖θ‖

4
3

Xdν(θ) = E‖θ̃‖
4
3

X ≤ lim inf
k→∞

E‖θ̃k‖
4
3

X ≤ CT ,(5.10) ∫
‖θ‖q‖θ‖2L2H2dν(θ) = E‖θ̃‖q‖θ̃‖2L2H2 ≤ lim inf

k→∞
E‖θ̃k‖q‖θ̃k‖

4
3

L2H2 ≤ CT .(5.11)

Proof. Since Yδ with δ ∈ ( 1
3 ,

1
2 ) is a separable metric space, Skorokhod theorem (see [25, Theorem 11.7.2])

implies (1) and (2). Moreover, (3) follows analogously as in [4, Section 4.3.4].

By Proposition 5.5, (θ̃k) is uniformly bounded in Z = L
4
3 (Ω̃,X ∩ L2H2), and therefore, up to a subse-

quence, (θ̃k) weakly converges in Z to some θ̂. Due to compactness of the embedding X ∩ L2H2 ↪→ Yδ and

since weak convergence implies convergence almost surely (up to subsequence), one has that (θ̃k) converges

almost surely in Yδ to θ̂. Uniqueness of the limit implies that θ̃ = θ̂, and in particular (θ̃k) weakly converges

in Z to some θ̂.
Finally, (5.10) and (5.11) follows from the weak lower semi-continuity of norms and (5.8), (5.9) respectively.

�

Next, we prove that θ̃ satisfies (1.1) almost surely. Before proceeding, we prove the following auxiliary
result.

Lemma 5.7. Fix δ ∈ ( 1
3 ,

2
3 ) and recall Yδ = CtH

−δ ∩ L2
tH

2−δ. For any sufficiently smooth θ ∈ Yδ one has

‖R⊥θ · ∇θ‖L2
tH
−1 ≤ C‖θ‖2Yδ .(5.12)

Also, the map B : Yδ → L2
tH
−1
x defined as B(θ) = R⊥θ · ∇θ is continuous.

Proof. It suffices to prove the assertion for smooth functions and then use a standard argument to pass to
the limit.

For any smooth θ1, θ2, with help of (1.6), Agmon’s inequality, and interpolation, one has

‖B(θ1)−B(θ2)‖H−1
x
≤ ‖R⊥(θ1 − θ2) · ∇θ1‖H−1

x
+ ‖R⊥θ2 · ∇(θ1 − θ2)‖H−1

x

≤ ‖|R⊥(θ1 − θ2)|θ1‖+ ‖|R⊥θ2|(θ1 − θ2)‖

≤ C(‖R⊥(θ1 − θ2)‖‖θ1‖L∞x + ‖R⊥θ2‖L∞x ‖(θ1 − θ2)‖)

≤ C‖θ1 − θ2‖(‖θ1‖
1
2−

δ
4

H−δx
‖θ1‖

1
2 + δ

4

H2−δ
x

+ ‖R⊥θ2‖
1
2−

δ
4

H−δx
‖R⊥θ2‖

1
2 + δ

4

H2−δ
x

)

≤ C‖θ1 − θ2‖
1− δ2
H−δx
‖θ1 − θ2‖

δ
2

H2−δ
x

(‖θ1‖
1
2−

δ
4

H−δx
‖θ1‖

1
2 + δ

4

H2−δ
x

+ ‖θ2‖
1
2−

δ
4

H−δx
‖θ2‖

1
2 + δ

4

H2−δ
x

) .

To prove (5.12) we set θ2 ≡ 0, θ1 = θ. After integration in time and an application of Jensen’s inequality we
obtain for δ ∈ (0, 2

3 )∫ T

0

‖B(θ)‖2
H−1
x
ds ≤ C

∫ T

0

‖θ‖3−
3δ
2

H−δx
‖θ‖1+ 3δ

2

H2−δ
x

ds ≤ CT ‖θ‖
3− 3δ

2

L∞t H
−δ
x
‖θ‖1+ 3δ

2

L2
tH

2−δ
x
≤ CT ‖θ‖4Yδ .

To prove continuity of B we observe that for δ ∈ (0, 2
3 )∫ T

0

‖θ1 − θ2‖2−δH−δx
‖θ1 − θ2‖δH2−δ

x
‖θ1‖

1− δ2
H−δx
‖θ1‖

1+ δ
2

H2−δ
x

ds

≤ ‖θ1 − θ2‖2−δL∞t H
−δ
x
‖θ1‖

1− δ2
L∞t H

−δ
x

∫ T

0

‖θ1 − θ2‖δH2−δ
x
‖θ1‖

1+ δ
2

H2−δ
x

ds

≤ CT ‖θ1 − θ2‖
2− δ2
L∞t H

−δ
x
‖θ1‖

1− δ2
L∞t H

−δ
x
‖θ1 − θ2‖δL2

tH
2−δ
x
‖θ1‖

1+ δ
2

L2
tH

2−δ
x

≤ CT ‖θ1 − θ2‖2Yδ‖θ1‖2Yδ .
Thus,

‖B(θ1)−B(θ2)‖L2
tH
−1
x
≤ CT ‖θ1 − θ2‖Yδ(‖θ1‖Yδ + ‖θ1‖Yδ)

as desired. �
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Lemma 5.8. For θ̃ defined in Lemma 5.6 one has almost surely θ̃ ∈ CtH1
x ∩ L2

tH
2
x ∩H1

t L
2
x locally in time.

Furthermore, θ̃ almost surely satisfies

θ̃(t) = θ̃(0)−
∫ t

0

u · ∇θ̃ds t ≥ 0 ,

that is, θ̃ is a strong solution of (1.1) on [0, T ].

Proof. Let (αk) be as in Proposition 5.5. Replacing α by αk in (5.5) and setting θ̃k = θ̃αk (see property
Lemma 5.6 part (3)), we have

θ̃k(t) = θ̃k(0)−
∫ t

0

uk · ∇θ̃kds+ αk

∫ t

0

∇(|∇θ̃k|2∇θ̃k)−∆2θ̃kds+
√
αkζ = I + αkII +

√
αkIII .

By Proposition 5.5 (cf. (5.6) and (5.7))

αkII,
√
αkIII → 0(5.13)

where the convergence is in L
4
3 (Ω̃,X ). Then, by Chebyshev inequality, (5.13) holds in probability and by

passing to a sub-sequence, we can assume that (5.13) holds almost surely in X . Since X ↪→ CtH
−2
x , (5.13)

holds almost surely in CtH
−2
x .

If δ ∈ ( 1
3 ,

2
3 ), then Lemma 5.7 yields that θ̃ 7→ R⊥θ̃ · ∇θ̃ is continuous as map from Yδ into L2(I,H−1

x ).
Hence, as k →∞ ∫ t

0

uk · ∇θ̃kds→
∫ t

0

u · ∇θ̃ds in H1
tH
−1
x a.s.

From Lemma 5.6, part (2) follows almost surely

θ̃k → θ̃, in CtH
−δ
x .

Overall, almost surely we have for any t ∈ I

θ̃(t) = θ̃(0)−
∫ t

0

u · ∇θ̃ds in CtH
−2
x .

To obtain the regularity of θ̃, observe that (5.11) implies almost surely θ̃ ∈ L2H2. Also, by interpolation,
properties of Riesz transform, and Agmon’s inequality

‖u · ∇θ̃‖L2
x
≤ ‖u‖L∞x ‖∇θ̃‖L2

x
≤ C‖u‖

1
2

L2
x
‖u‖

1
2

H2
x
‖θ‖

1
2

L2
x
‖θ‖

1
2

H2
x
≤ C‖θ‖L2

x
‖θ‖H2

x
.

Consequently, by (5.11)

E‖u · ∇θ̃‖2L2
x,t
≤ CE‖θ‖2L2

t,x
‖θ‖2L2

tH
2
x
≤ C ,

and therefore almost surely ∂tθ̃ ∈ L2
t,x. Then, the Lions-Magenes lemma (see [45, Theorem 3.1]) yields that

θ̃ belongs a.s. locally to CtH
1
x ∩ L2

tH
2
x ∩H1

t L
2
x. �

The proved regularity is exactly a borderline case for the proof of uniqueness. As such we cannot use
direct energy estimates, but we have to employ more subtle argument of Judovich, who used it for Euler
equation, see [34, 49]. In particular, we need a precise estimates on the Sobolev embedding constants.

Lemma 5.9. Solution of (1.1) with θ(0) = θ0 ∈ H1 that belongs to CtH
1 ∩ L2

tH
2 ∩H1

t L
2
x is unique.

Proof. Let θi ∈ CtH1∩L2
tH

2∩H1
t L

2
x, i = 1, 2 be two solution of (1.1) with θ1(0) = θ2(0). Then, w = θ1−θ2

satisfies

wt = −R⊥w · ∇θ1 −R⊥θ1 · ∇w.(5.14)

Testing with w and using (1.6) yield

d

dt
‖w‖2 ≤ 2|(w,R⊥w · ∇θ1)| ≤ C‖w‖‖w‖L2p‖∇θ1‖

L
2p
p−1

.
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By interpolation, we have for any p ∈ (1, 2)

‖w‖L2p ≤ ‖w‖2−p‖w‖p−1

L
2p
p−1

.(5.15)

Using Hölder inequality, p < 2, and Sobolev inequality with precise constant (see e.g. [15, Remark 1.5]), we
obtain

d

dt
‖w‖2 ≤ C‖w‖3−p‖w‖p−1

L
2p
p−1

‖∇θ1‖
L

2p
p−1
≤ C

√
2p

p− 1
‖w‖2δ(‖θ1‖2H2 + ‖θ2‖2H2)

p
2

≤ C√
1− δ

‖w‖2δ(1 + ‖θ1‖2H2 + ‖θ2‖2H2) ,

where δ = 3−p
2 < 1 and p ∈ (1, 2). Then, after recalling that w(0) = 0 we have

1

1− δ
‖w(t)‖2(1−δ) ≤ C√

1− δ

∫ t

0

(
1 + ‖θ1‖2H2 + ‖θ2‖2H2

)
ds ,

and consequently

‖w(t)‖2 ≤ C
(√

1− δ
∫ t

0

(
1 + ‖θ1‖2H2 + ‖θ2‖2H2

)
ds

) 1
1−δ

.

Since θi ∈ L2
tH

2, then for any t0 ≥ 0 one has
√

1− δ
∫ t0

0

(1+‖θ1‖2H2 +‖θ2‖2H2)ds < 1 for any δ < 1 sufficiently

close to 1. Passing p→ 1 (or equivalently δ → 1), we arrive at

‖w(t)‖ = 0 for any t ≤ t0.

Since t0 was arbitrary, ‖w(t)‖ = 0 for any t ≥ 0, as desired. �

Lemma 5.10. The law of θ̃(t) is independent of t and is equal to µ. Here, µ is a weak limit of (a sub-
sequence) (µα) as α → 0 in the space H2−γ , γ > 0, where µα was defined in Theorem 4.1. Furthermore, µ
is concentrated on H2.

Proof. From Chebyshev inequality and (4.4) follows

(5.16) µα(BcR) ≤ 1

R2

∫
L2

‖θ‖2H2dµα(θ) ≤ C

R2
,

where BR is a ball of radius R in H2 and C is independent of α. Since H2 is compactly embedded in H2−γ ,
γ > 0, the Prokhorov theorem implies that there exists a weakly convergent sequence (µαk) in H2−γ to µ.
To prove that µ is supported on H2 note that by (5.16)

(5.17) µα(BR) ≥ 1− C

R2

and by Portmanteau theorem, (5.17) holds with µα replaced by µ. Passing R→∞, one obtain µ(H2) = 1.
Fix τ ∈ [0, T ) and a bounded continuous function g : H−δ → R and define G(θ) = g(θ(τ)). We claim that

for any δ ∈ ( 1
3 ,

1
2 ), G : Yδ → R is bounded continuous. Indeed, if ‖θ1−θ2‖Yδ < ε, then ‖θ1(τ)−θ2(τ)‖H−δ < ε

and

|G(θ1)−G(θ2)| = |g(θ1(τ))− g(θ2(τ))| ,

and the boundedness and continuity of G follows from the boundedness and continuity of g.
By Proposition 5.5

lim
k→∞

∫
Yδ
G(θ)dνk(θ) =

∫
Yδ
G(θ)dν(θ)

and by using (5.3), weak converges of (νk) and (µk) one obtains

Eg(θ̃(τ)) =

∫
Yδ
g(θ(τ))dν(θ) = lim

k→∞

∫
Yδ
g(θ(τ))dνk(θ) = lim

k→∞

∫
H−δ

g(θ)dµk(θ) =

∫
H−δ

g(θ)dµ(θ) .

Thus for any τ the law of θ̃ is µ as desired. �
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Proposition 5.11. For θ̃ defined in Lemma 5.6 one has almost surely θ̃ ∈ C(R+, H
1
x) ∩ L2(R+, H

2
x) ∩

H1(R+, L
2
x) and θ̃ satisfies (1.1). Furthermore, t 7→ θ̃(t) is unique, and θ̃ depends continuously on initial

conditions, that is,

(5.18) lim
‖θ1(T0)−θ2(T0)‖H1

x
→0

sup
t∈[T0,T1]

‖θ1(t)− θ2(t)‖H1
x

= 0 .

We remark that by changing t to −t, we can define solutions for all times, positive or negative.

Proof. By Lemmas 5.8 and 5.9, for each integer N > 0 there exists almost surely a unique strong solution
θ̃N of (1.1) on interval [0, N). Since (1.1) is a deterministic equation, by almost surely we mean for µ almost

every initial condition θ̃(0) (see Lemma 5.10). Thus for each integer N > 0 there exists a set MN , with

µ(MN ) = 1 such that for each θ̃0 ∈MN , there exists a unique solution of (1.1) on [0, N) with θ̃(0) = θ̃0.

If we denote M = ∩NMN , then µ(M) = 1 and for each θ̃0 ∈ M, and each N , there exists a unique
solution of (1.1) on [0, N) (see Lemma 5.9), and global existence follows.

By slightly modifying the argument of Lemma 5.9, we could prove (5.18) withH1 replaced by L2. However,
we need to modify the argument to obtain continuity with respect to the H1 topology.

Test (5.14) by ∆w, and let us first focus on the right hand side (using summation convention)

(∂2
iiw,u

j∂jθ1) + (∂2
iiw,u

j
1∂jw) = (1) + (2) ,

where u = R⊥(w) and u1 = R⊥(θ1). To estimate (2), we use an integration by parts and ∇·u = 0 to obtain

(∂2
iiw,u

j
1∂jw) = −(∂iw, ∂iu

j
1∂jw)− (∂iw,u

j
1∂

2
ijw) = −(∂iw, ∂iu

j
1∂jw)− 1

2
(∂j(∂iw)2,uj1)

= −(∂iw, ∂iu
j
1∂jw) ,

and consequently for any p ∈ (1, 2)

|(∂iw, ∂jw∂iuj1)| ≤ ‖w‖H1‖Du1‖
L

2p
p−1
‖Dw‖L2p .(5.19)

Using (5.15), (1.6), and precise constant of embedding as in the proof of Lemma 5.9, one has

|(2)| = |(∂iw, ∂jw∂iuj1)| ≤ C‖w‖3−pH2 ‖Dw‖p−1

L
2p
p−1

‖Du1‖
L

2p
p−1
≤ C

(p− 1)
p
2

‖w‖3−pH1 (‖θ1‖H2 + ‖θ2‖H2)
p
.(5.20)

On the other hand,

|(1)| ≤ |(∂iw, ∂iuj∂jθ1)|+ |(∂iw,uj∂2
ijθ1)| = |(3)|+ |(4)|.

As in (5.19) and (5.20) we obtain

|(3)| = |(∂iw, ∂iuj∂jθ1)| ≤ C

(p− 1)
p
2

‖w‖3−pH1 (‖θ1‖H2 + ‖θ2‖H2)
p
.

To estimate (4), the embedding Lq ↪→ H1 (with precise constant [15, Remark 1.5]), (1.6) and (5.15) imply

|(4)| = |(∂iw,uj∂2
ijθ1)| ≤ ‖θ1‖H2‖Dw‖L2p‖u‖

L
2p
p−1
≤ ‖θ1‖H2‖Dw‖L2p‖w‖

L
2p
p−1

≤ C‖θ1‖H2‖w‖2−pH1 ‖Dw‖p−1

L
2p
p−1

‖w‖
L

2p
p−1
≤ C

(p− 1)
p
2

‖w‖3−pH1 (‖θ1‖H2 + ‖θ2‖H2)
p
,

where C is independent of p. Combining all the estimates, and using that p < 2, we have

d

dt
‖w(t)‖2H1 ≤

C

(p− 1)
p
2

‖w(t)‖2δH1(1 + ‖θ1‖2H2 + ‖θ2‖2H2),

where δ = 3−p
2 and p ∈ (1, 2). Thus, for any T0 < T1

sup
t∈[T0,T1]

‖w(t)‖2H1 ≤

(
‖w(T0)‖2(1−δ)

H1 + C(1− δ)δ− 1
2

∫ T1

T0

(1 + ‖θ1‖2H2 + ‖θ2‖2H2)ds

) 1
1−δ

.

Passing ‖w(T0)‖1 → 0 implies for any δ ∈ (0, 1)

lim
‖w(T0)‖→0

sup
t∈[T0,T1]

‖w(t)‖21 ≤

(
C(1− δ)δ− 1

2

∫ T1

T0

(1 + ‖θ1‖22 + ‖θ2‖22)ds

) 1
1−δ

.
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and finally letting δ → 1+, or equivalently p→ 1+, we arrive at

lim
‖w(T0)‖1→0

sup
t∈[T0,T1]

‖w(t)‖1 = 0,

as desired. �

Proposition 5.12. Under the assumption of Theorem 5.1, the relations (5.1) and (5.2).

Proof. Recall that by Lemma 5.10 µk → µ as measures on H2−γ , γ > 0 and µ is supported on H2.
The inequality (5.2) follows from (4.4) and Portmanteau theorem, since C in (4.4) is independent of α.
To establish (5.1), frix R ≥ 1 and let ψR : R→ [0, 1] be a C∞ cut off function with ψR(r) = 1 for |r| ≤ R

and ψR(r) = 0 for |r| ≥ R+1 . Denote BR the ball in L2 centred at 0 with radius R, and BcR the complement
of BR in L2 and define

(5.21) I(θ) = ‖θ‖23
2
−
∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx .

Then, by (4.1)

A−1
2

2
−
∫
BcR

|I(θ)|µk(dθ) ≤
∫
L2

ψR(I(θ))I(θ)µk(dθ) ≤
A−1

2

2
+

∫
BcR

|I(θ)|µk(dθ) .

Also, Hölder’s inequality, interpolation, (5.16), and (4.4) imply∫
BcR

‖θ‖23
2
µk(dθ) ≤

(∫
L2

‖θ‖
8
3
3
2

µk(dθ)

) 3
4

(µk(BcR))
1
4 ≤

(∫
L2

‖θ‖ 2
3 ‖θ‖22µk(dθ)

) 3
4

(µk(BcR))
1
4 ≤ C

R
1
2

and by Hölder’s and Gagliardo-Nirenberg inequalities∣∣∣∣∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

∣∣∣∣ ≤ ‖|∇θ|2∇θ‖L 4
3
‖∇(−∆)−

1
2 θ‖L4 ≤ C‖∇θ‖3L4‖θ‖L4(5.22)

≤ C‖∇θ‖
10
3

L4‖θ‖
2
3

L2 .

Hence, by the (4.4) and (5.16)∫
BcR

∣∣∣∣∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

∣∣∣∣µk(dθ) ≤ C
∫
BcR

‖∇θ‖
10
3

L4‖θ‖
2
3

L2µk(dθ)

≤ C
(∫

L2

‖∇θ‖4L4‖θ‖
4
5

L2µk(dθ)

) 5
6

(µk(BcR))
1
6 ≤ C

R
1
3

.

Thus,

A− 1
2

2
− C

(
1

R
1
2

+
1

R
1
3

)
≤
∫
L2

ψR(I(θ))I(θ)µk(dθ) ≤
A− 1

2

2
+ C

(
1

R
1
2

+
1

R
1
3

)
.(5.23)

Furthermore, Hölder inequality and Sobolev embedding imply∣∣∣∣∫
T2

|∇θ|2∇θ · ∇(−∆)−
1
2 θdx

∣∣∣∣ ≤ ‖|∇θ|2∇θ‖L 7
6
‖∇(−∆)−

1
2 θ‖L7 ≤ C‖∇θ‖3

L
7
2
‖θ‖L7

≤ C‖θ‖3
H

10
7
‖θ‖L7 .

Therefore, I : H
10
7 → R, and by passing k → ∞ in (5.23) and using of weak convergence µk → µ on H

10
7

(see Lemma 5.10) and the boundedness of ψR(I(θ))I(θ) we obtain

A− 1
2

2
− C

(
1

R
2
5

+
1

R
1
6

)
≤
∫
L2

ψR(I(θ))I(θ)µ(dθ) ≤
A− 1

2

2
+ C

(
1

R
2
5

+
1

R
1
6

)
.(5.24)

Finally, by (5.22) one has

(5.25) |ψR(I(θ))I(θ)| ≤ |I(θ)| ≤ C(‖∇θ‖
10
3

L4‖θ‖
2
3

L2 + ‖θ‖23
2
)

and by (5.2) the right hand side is µ integrable. Since ψR(I(θ))I(θ) → I(θ) everywhere as R → ∞, by the
dominated convergence theorem, and (5.24) implies (5.1). �
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6. Qualitative properties

In this section we complete the proof of the main result, Theorem 1.2 by showing that parts 6 and 7 holds
true.

In particular, we show that the the distributions via µ of the functionals below admit densities with
respect to the Lebesgue measure on R.

E− 1
2
(θ) =

1

2
‖θ‖2

H
−1
2
,

M(θ) =
1

2
‖θ‖2.

Also, using other conservation laws of the SQG equation, we show the infinite-dimensional nature of the
measure µ. The proofs follow general framework developed for analogous problems, however the adaptation
is not straightforward. Since our smoothing operator is not Laplacian, but bi-Laplacian, we lost several
important properties. For example, unlike 〈−∆θ, f(θ)〉 ≥ 0 for any increasing function f , it is not clear that
〈∆2θ, f(θ)〉 is bounded from below for any θ ∈ H2 and for sufficiently many functions f . This obstacle was
solved by introducing the p-Laplacian to the equation, that lead to stronger moment bounds, see Theorem
5.1. In such case, after nontrivial integration by parts we can show that 〈∆2θ, f(θ)〉 is bounded from below if
f has bounded derivative up to fourth order. Also, compared to Euler equation we have to choose differently
the set of functions f . Let us provide details.

Theorem 6.1. Assume A0 < ∞. The laws of the functionals M(θ) and E− 1
2
(θ) under µ are absolutely

continuous with respect to the Lebesgue measure on (0,∞).

Analogous statement can be proved for other invariants, but it is more technically involved, and we decided
to skip it for the clarity of presentation.

To obtain the following result in a cleaner form, we redefine the measure µ constructed in Theorem 5.1
so that it does not have an atom at the origin.

By (5.1) and A− 1
2
6= 0 one has µ({0}) < 1, and therefore S := µ(H2 \ {0}) > 0. Define the probability

measure

µ̃(A) =
µ(A \ {0})

S
.

The SQG equation preserves the L2 norm of solutions, and therefore it preserves the set supp(µ) \ {0}. The
invariance of µ̃ comes readily from the invariance of µ.

Theorem 6.2. If A0 < ∞, then he measure µ̃ is infinite-dimensional in the sense that if K ⊂ H1 is a
compact set of finite Hausdorff dimension, then µ(K) = 0.

Proof of Theorem 6.1. Let F (θ) be eitherM(θ) or E−1
2

(θ). Thanks to the Portmanteau theorem, it suffices to

prove the theorem for measures µα with bounds that are uniform in α. Also, according to the non-negativity
of F , our analysis shall be reduced to the interval [0,∞).
Step 1 : The pilot relation. Fix any f ∈ C∞0 and define

Φδ(x) =
1√
2δ

∫ ∞
−∞

f(y)e−|x−y|
√

2δdy =
1√
2δ

(∫ x

−∞
f(y)e−(x−y)

√
2δdy +

∫ ∞
x

f(y)e(x−y)
√

2δdy

)
.

and then

Φ′δ(x) =

∫ ∞
x

f(y)e(x−y)
√

2δdy −
∫ x

−∞
f(y)e−(x−y)

√
2δdy.

Computing the second derivative of Φδ, we obtain that

1

2
Φ′′δ + f = δΦδ.

Since Φδ is bounded uniformly in δ (as f is compactly supported), for every x, δΦδ(x)→ 0 as δ → 0 and

Φ′δ(x)→
∫ ∞
x

f(y)dy −
∫ x

−∞
f(y)dy as δ → 0,

Φ′′δ (x)→ −2f(x) as δ → 0.
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Assume that θ is a solution of (1.2) with θ(0) distributed as µα, and therefore θ(t) is distributed as µα for
any t ≥ 0. Note that by Theorem 2.1, θ is a global solution and to simply the notation, we will not indicate
explicitly the dependence of θ on α. Denote Eµα to integral with respect to the measure µα(dθ).

Let us apply the Itô formula to Φδ(F (θ)), take the expectation, and use∇θF (θ;u·∇θ) = 0 and stationarity
of θ(t) to obtain

(6.1) Eµα

(
Φ′δ(F (θ))

[
∇θF (θ; ∆2θ −∇(|∇θ|2∇θ)) +

1

2

∑
m

a2
m∇2

θF (θ; em, em)

])

+
1

2
Eµα

(
Φ′′δ (θ)

∑
m

a2
m(∇θF (θ, em))2

)
= 0.

If F (θ) = M(θ), then

∇θF (θ; ∆2θ −∇(|∇θ|2∇θ)) = ‖θ‖2H2 + ‖θ‖4W 1,4

and if F (θ) = E−1
2

(θ), then

∇θF (θ; ∆2θ −∇(|∇θ|2∇θ)) = I(θ)

where I is defined by (5.21).
By (3.3), µα is supported on H2. Since f ∈ C∞0 , |Φ′δ|, |Φ′′δ | are bounded independently of δ, we can use

the Lebesgue dominated convergence theorem to pass δ → 0 in (6.1) and obtain for F = M

(6.2) Eµα

([∫ ∞
F (θ)

f(y)dy −
∫ F (θ)

−∞
f(y)dy

][
‖θ‖2H2 + ‖θ‖4W 1,4 +

1

2

∑
m

a2
m∇2

θF (θ; em, em)

])

− Eµα

(
f(F (θ))

∑
m

a2
m|∇θF (θ, em)|2

)
= 0.

and for F = E− 1
2

we just replace ‖θ‖2H2 + ‖θ‖4W 1,4 by I(θ).

By a standard approximation argument combined with the Lebesgue dominated convergence theorem, we
can extend (6.2) to f = χΓ being the characteristic function of a Borel set Γ ⊂ R. Then, F ≥ 0 and (4.4)
imply that there is C independent of α and Γ such that

Eµα

([∫ ∞
F (θ)

χΓ(y)dy −
∫ F (θ)

−∞
χΓ(y)dy

][
‖θ‖2H2 + ‖θ‖4W 1,4 +

1

2

∑
m

a2
m∇2

θF (θ; em, em)

])

≤
(∫ ∞

0

χΓ(y)dy

)
Eµα

[
‖θ‖2H2 + ‖θ‖4W 1,4 +

1

2

∑
m

a2
m

]

≤ C
∫ ∞
−∞

χΓ(y)dy ≤ C`(Γ) ,

where `(Γ) denotes the Lebesgue measure of Γ. If F = E− 1
2
, one obtains a similar bound by using (5.25)

and (4.4).
By (6.2),

(6.3) Eµα

(
χΓ(F (θ))

∑
m

a2
m|∇θF (θ, em)|2

)
≤ C`(Γ).

In the remaining part of the proof, we estimate the left hand side from below.
Step 2: Absolute continuity on (0,∞). Recall that F is either E−1

2
(θ) or M(θ), then ∇θF (θ; em) is

respectively

λ−1
m (θ, em) or (θ, em).

First, focus on F (θ) = E−1
2

(θ). For any δ > 0 denote Γδ = {‖θ‖2−1 ≥ δ} ∩ {‖θ‖2 ≤ 1/δ}.
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Let āN = min{|am|, 1 ≤ |m| ≤ N} and recall that 0 < λ1 ≤ λ2 ≤ · · · ≤ λN ≤ · · · are eigenvalues of
(−∆). Let PN be the projection on the space spanned by the first N eigenfunctions of the Laplacian. Then,
by the inverse Poincaré inequality, for any θ ∈ Γδ one has∑

m

a2
mλ
−2
m (θ, em)2 =

∑
|m|≤N

a2
mλ
−2
m (θ, em)2 +

∑
|m|>N

a2
mλ
−2
m (θ, em)2

≥ ā2
Nλ
−1
N ‖PNθ‖

2
−1 ≥ ā2

Nλ
−1
N (‖θ‖2−1 − λ−1

N ‖(I − PN )θ‖2)

≥ ā2
Nλ
−1
N

(
δ − 1

δλN

)
.

Fix any δ̄ > 0 and any Borel set Γ∗ ⊂ (δ̄,∞). For any δ ∈ (0, δ̄), using (6.2) the left hand side of (6.3) can
be estimated as

Eµα

(
χΓ∗(F (θ))

∑
m

a2
m|∇θF (θ, em)|2

)
≥ ā2

Nλ
−1
N

(
δ − 1

δλN

)
µα(F−1(Γ∗) ∩ Γδ).

Since the sequence λN increases to infinity, we can find N such that δ − 1
δλN

> 0, and therefore by (6.3)

µα(F−1(Γ∗) ∩ Γδ) ≤
CλN

ā2
N

(
δ − 1

δλN

)`(Γ∗).
Using the Portmanteau theorem, we pass to the limit α→ 0 and obtain

µ(F−1(Γ∗) ∩ Γδ) ≤
CλN

ā2
N

(
δ − 1

δλN

)`(Γ∗).
Consequently, if `(Γ∗) = 0, then for any δ ∈ (0, δ̄)

µ(F−1(Γ∗) ∩ Γδ) = 0.

Since
⋃
δ∈(0,δ̄) Γδ = L2 \ {0} and 0 6∈ F−1(Γ∗), one obtains

µα(F−1(Γ∗)) = µα(F−1(Γ∗) \ {0})) = 0

and the claimed continuity follows.
Next, we focus on F (θ) = M(θ). By the Cauchy-Schwartz inequality,

‖θ‖2 = (θ, θ) =
∑
m

(θ, em)2 =
∑
|m|≤N

(θ, em)2 +
∑
|m|>N

(θ, em)2

≤ ‖θ‖
āN

 ∑
|m|≤N

a2
m(θ, em)2

 1
2

+ ‖θ‖

 ∑
|m|>N

(θ, em)2

 1
2

.

Also, ∑
|m|>N

(θ, em)2 ≤ 1

λ2
N

‖θ‖21 ,

and therefore

aN

(
‖θ‖ − 1

λN
‖θ‖1

)
≤

(∑
m

a2
m(θ, em)2

) 1
2

.

For any ε > 0 denote Iε = {‖θ‖ ≥ ε, ‖θ‖1 ≤ 1
ε }. Then, for any θ ∈ Iε

aN

(
ε− 1

λ̄Nε

)
≤

(∑
m

a2
m(θ, em)2

) 1
2

.(6.4)
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Fix ε̄ > 0 and a Borel set Γ ⊂ [ε̄,∞). Since θ is distributed as µα, and M(θ) ∈ Γ implies ‖θ‖ ≥ ε̄, then for
any ε ∈ (0, ε̄)

µα(M−1(Γ)) = µα({M(θ) ∈ Γ} ∩ {θ ∈ Iε}) + µα

(
{M(θ) ∈ Γ} ∩

{
‖θ‖1 ≥

1

ε

})
= I + II.

Using the Chebyshev inequality and (4.4), we obtain

II ≤ CA0

2
ε2.

Since λN →∞ as N →∞, we can suppose that (ε− 1
ελN

) > 0. By (6.3) and (6.4),

I ≤ C

āN (ε− 1
λNε

)
`(Γ) .

Consequently Portmanteau theorem yields

µ(M−1(Γ)) ≤ C

āN (ε− 1
ελN

)
`(Γ) +

A0

2
ε2

and the rest of the proof follows as in the previous case. �

Next, let us turn to the proof of Theorem 6.2.

Proof of Theorem 6.2. For any positive integer k denote

Fk(θ) =
1

|T2|

∫
T2

fk(θ(x))dx,

where fk is a smooth function on R. Then, by ∇ · u = 0, we have for any θ ∈ H2

(6.5) (f ′k(θ),u · ∇θ) = 0.

Therefore, the functionals Fk are conservation laws for (1.1). Fix n and functions (fk)nk=1 on R such that

(i) There is a constant C independent of k such that |f (p)(z)| ≤ C for p ∈ {0, · · · , 4}, that is, the
sequence (fk) has uniformly (in k) bounded derivatives up to fourth order. Note that the bound can
depend on n.

(ii) fk(0) = 0 for each k.
(iii) f1 ≥ 0 and f1 > 0 on (−δ∗, δ∗) \ {0} for some δ∗ > 0.
(iv) If for some v ∈ Rn and some continuous function m : T2 → R with zero mean one has

n∑
i=1

vif
′
i(m(x)) = Const, for all x ∈ T2 , then vi = 0 for each i, or m ≡ 0.(6.6)

For any n ≥ 1, such (fk)nk=1 indeed exists. For example let fk be smooth functions, compactly supported
on [−2, 2] and fk(z) = zk+1 on (−1, 1). In addition, we assume that f1 ≥ 0. Clearly (i)–(iii) holds and it
remains to verify (iv). Fix any zero mean continuous function m 6≡ 0. Then the image of m contains the
interval (−δ, δ) for some δ > 0 and consequently

n∑
i=1

cif
′
i(z) = Const for all z ∈ (−δ, δ) .

Since f ′k are non-constant polynomials on (−1, 1) one obtains that vi = 0 for each i as desired.
Since the second order derivatives of fk are bounded, then for any solution θ of (1.1) we can use Theorem

B.1 and (6.5) to obtain

EFk(θ(t)) + αE
∫ t

0

(f ′k(θ),∆2θ −∇(|∇θ|2∇θ))ds = EFk(θ0) +
α

2

∞∑
m=1

a2
mE

∫ t

0

(f ′′k (θ; em, em))ds.

Next, with a use of summation convention

(f ′k(θ), ∂2
ii∂

2
jjθ) = −(f ′′k (θ), ∂iθ∂i∂

2
jjθ) = (f ′′k (θ), ∂2

iiθ∂
2
jjθ) + (f

(3)
k (θ), (∂iθ)

2∂2
jjθ) =: (1) + (2).
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On the other hand,

(f ′k(θ), ∂2
ii∂

2
jjθ) = −(f ′′k (θ), ∂iθ∂i∂

2
jjθ) = (f ′′k (θ), (∂2

ijθ)
2) + (f

(3)
k (θ), ∂iθ∂jθ∂

2
ijθ) =: (3) + (4).

Furthermore,

(2) = −(f
(4)
k (θ), (∂iθ)

2(∂jθ)
2)− 2(f

(3)
k (θ), ∂iθ∂jθ∂

2
ijθ).

We obtain

(f ′k(θ), ∂2
ii∂

2
jjθ) =

1

3
[(1) + (2)] +

2

3
[(3) + (4)] =

1

3

(
(f ′′k (θ), ∂2

iiθ∂
2
jjθ + 2(∂2

ijθ)
2)− (f

(4)
k (θ), (∂iθ)

2(∂jθ)
2)
)
,

and consequently

(f ′k(θ),∆2θ −∇(|∇θ|2∇θ)) =
1

3

(
(f ′′k (θ), (∆θ)2 + 2(D2θ)2) + (f ′′k (θ)− f (4)

k (θ), |∇θ|4)
)

=: Ak(θ).(6.7)

For any positive integer n, denote

Vn(θ) =


F1(θ)
F2(θ)

...
Fn(θ)

 .(6.8)

By the Itô formula and (6.5),

Vn(θ) = Vn(θ0) +

∫ t

0

xsds+
√
α
∑
m

∫ t

0

ym(s)dWm(s),

and with Ak defined in (6.7) one has

xs = −α


A1(θ)
A2(θ)

...
An(θ)

+
α

2

∑
m

a2
m


∇2
θF1(θ; em, em)
∇2
θF2(θ; em, em)

...
∇2
θFn(θ; em, em)



= −α


A1(θ)
A2(θ)

...
An(θ)

+
α

2

∑
m

a2
m


(f ′′1 (θ); em, em)
(f ′′2 (θ); em, em)

...
(f ′′n (θ); em, em)

 =: −αA(θ) +
α

2
B(θ),

ym = am


(f ′1(θ), em)
(f ′2(θ), em)

...
(f ′n(θ), em)

 .

Let yim = am(f ′i(θ), em) be the ith component of ym. Denote by M the n× n matrix with entries

Mi,j =
∑
m

yimy
j
m =

∑
m

a2
m(f ′i(θ), em)(f ′j(θ), em)

and note that M depends on t, but is independent of x.

Since f ′k, f ′′k , and f
(4)
k are bounded, by (6.7) and (4.4) one has for any α ∈ (0, 1)

(6.9) E
∫ t

0

|xs|+ α

∞∑
m=1

|ym(s)|2ds ≤ CαE
n∑
k=1

∫ t

0

‖θ‖2H2 + ‖∇θ‖4 + 1 +

∞∑
m=1

a2
mds ≤ C ,

where C is independent of α. Then, [42, Theorem 7.9.1] and (6.9) (bound on |xs|) imply for any bounded
measurable function g the Krylov’s estimate

Eµα
∫ 1

0

(detM)1/ng(Vn)dt ≤ Cn‖g‖Ln .
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Let B ⊂ Rn be a Borel set and denote g = χB the indicator function of B. Then, since µα is an invariant
measure

(6.10)

∫
(detM(θ̄))1/nχB(Vn(θ̄))dµα(θ̄) = Eµα

∫ 1

0

(detM(θ(s)))1/nχB(Vn(θ(s)))ds ≤ CnA0(`n(B))
1
n .

For any integer k > 0 denote Bk = B ∩ Bck, where Bk ⊂ Rn is a ball of radius 1
k centred at the origin, and

Bck is its complement. Note that B = {0} ∪
⋃
k Bk and by (6.10) for any k > 0

(6.11)

∫
(detM(θ̄))1/nχBk(Vn(θ̄))dµα(θ̄) ≤ CnA0(`n(B))

1
n .

Estimate on detM. The matrix M is clearly a non-negative symmetric n × n matrix. We show that for
any ε > 0, M is positively bounded from below outside the ball in H1 of radius ε > 0 centered at the origin.
Observe that M is an infinite sum of non-negative matrices Mm with coefficients

Mm
i,j = a2

m(f ′i(θ), em)(f ′j(θ), em).

Then, for any vector v = (v1, ..., vn) ∈ Rn, we have

(v,Mv) =
∑
m≥0

(v,Mmv) =
∑
m≥0

∑
1≤i,j≤n

Mm
i,jvivj

=
∑
m≥0

a2
m

∑
1≤i,j≤n

vivj(f
′
i(θ(x)), em(x))(f ′j(θ(x)), em(x))

=
∑
m≥0

a2
m

 n∑
j=1

vj(f
′
j(θ(x)), em(x))

2

=
∑
m≥0

a2
m

 n∑
j=1

vjf
′
j(θ(x)), em

2

.

Suppose that (v,Mv) = 0 for some v 6= 0, since am 6= 0 for all m, n∑
j=1

vjf
′
j(θ), em

 = 0 for all m ≥ 0.

Hence, the function x 7→
∑n
j=1 vjf

′
j(θ(x)) is constant, that is, there is C such that

n∑
j=1

vjf
′
j(θ(x)) = C for all x ∈ T2.

By the independence property (6.6), either vk = 0 for each k or θ ≡ C. Since v 6= 0, the latter property
holds and since θ has zero mean we have θ ≡ 0.

Therefore if θ 6≡ 0, then det(M) > 0. Next, denote Iε = {‖θ‖ ≥ ε, ‖θ‖H1 ≤ 1
ε }, and note that Iε is

compact in L2. Indeed, if (θj)j ⊂ Iε, then ‖θj‖H1 ≤ 1
ε , and therefore there exists subsequence, still denoted

(θj)j , converging to θ∞ weakly in H1 and strongly in L2. Weak lower semi-continuity, and strong continuity
of norms yield θ ∈ Iε as desired.

By smoothness of fk, uniform boundedness of f ′, and A0 < ∞, the map θ 7→ M(θ) : H1 → Rn×n is
continuous, and consequently θ 7→ detM(θ) : H1 → [0,∞) is continuous as well. Since detM > 0 on the
compact set Iε, then detM(θ) ≥ cε > 0 on Iε.
Conclusion. For the Borel set Bk fixed in (6.11), and Vn defined in (6.8) one has for any k

µα({Vn(θ) ∈ Bk}) ≤ µα({Vn(θ) ∈ Bk} ∩ {θ ∈ Iε}) + µα ({Vn(θ) ∈ Bk} ∩ {θ ∈ Icε}) = I + II.

Since detM(θ) ≥ cε, on Iε, (6.11) yields

I ≤ A0Cnc
− 1
n

ε (`n(B))
1
n .

Next, since (fk) are uniformly, globally Lipschitz and fk(0) = 0, there exists L ≥ 0 such that |fk(z)| ≤ L|z|
for any k and any z ∈ R. Then, for any θ with Vn(θ) ∈ Bk one has |Vn(θ)| ≥ 1

k , and therefore

1

k
≤ C max

j
|Fj(θ)| ≤ C max

j

∫
T2

|fj(θ(x))|dx ≤ C‖θ‖ ,
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where we used Jensen’s inequality in the last estimate. Without loss of generality assume C ≥ 1. Thus, by
(4.4) and the Chebyshev inequality, if ε < 1

Ck , then

II ≤ µα
(
{Vn(θ) ∈ Bk} ∩

{
‖θ‖H1 ≥ 1

ε

})
+ µα ({Vn(θ) ∈ Bk} ∩ {‖θ‖ ≤ ε})︸ ︷︷ ︸

=0

≤ µα
({
‖θ‖H1 ≥ 1

ε

})
≤ A0

2
ε2.

Gathering these estimates, we arrive at

µα({Vn(θ) ∈ Bk}) ≤
A0

2
ε2 + Cnc

− 1
n

ε (`n(B))
1
n

and by Portmanteau theorem, (6) is valid with µα replaced by the limiting measure µ. If `n(B) = 0, then
since ε > 0 is arbitrary, we obtain µ({Vn(θ) ∈ Bk}) = 0 for any k > 0. Taking the countable union in integer
k > 0, we arrive to µ({Vn(θ) ∈ B \ {0}}) = 0.

Since f1 is non-negative and f1 > 0 in a punctured neighbourhood of zero, then for any continuous, zero
mean function θ 6≡ 0 one has F1(θ) 6= 0. Hence,

µ({Vn(θ) ∈ B} \ {0}) = µ({Vn(θ) ∈ B \ {0}}) = 0 .

By the definition of µ̃,

(6.12) µ̃({Vn(θ) ∈ B}) =
µ({Vn(θ) ∈ B} \ {0})

S
= 0

for any B with `n(B) = 0.
Finally, we prove that µ̃ is infinite dimensional. Let K ⊂ L2 be a compact set with finite Hausdorff

dimension dimH(K) =: h and fix an integer n > h. We claim that Vn defined in (6.8) is differentiable on L2.
Indeed, each component Fk of Vn satisfies

|F ′′k (θ;u, v)| = 1

|T2|

∣∣∣∣∫
T2

f ′′k (θ)uvdx

∣∣∣∣ ≤ C ∫
T2

|uv|dx ≤ C‖u‖‖v‖ ,

where we used that f ′′k is bounded. In particular, Vn is locally Lipschitz. Since locally Lipschitz maps do
not increase the Hausdorff dimension, dimH(V) ≤ h < n, where V := Vn(K) ∈ Rn, and therefore `n(V) = 0.
Then, by (6.12)

µ̃(K) ≤ µ̃({Vn(θ) ∈ V}) = 0

as desired. �

Appendix A. Some facts on the fluctuation-dissipation approach for finite-dimensional
Hamiltonian systems

In this section we elaborate on the question that was raised in the introduction: Do the constructed
invariant measure µ for (1.1) concentrates on the equilibria? Although we proved that the support of µ is
infinite dimensional, it also known that the set of equilibria is also infinite dimensional: any solution of the
equation

(−∆)
1
2 Φ = F (Φ)

is an equilibrium of (1.1). Since every equilibrium is trivially a global solution, there is a possibility that µ
concentrates on the set of equilibria, and we did not construct any new solution. As mentioned above, we
don’t have a definite answer to this question, however we provide an example of a general system for which
the measure arising from fluctuation dissipation method is not supported on equilibria.

Since the SQG equation has a Hamiltonian structure, we will focus only on the Hamiltonian systems.
There are several trivial examples in which the equilibria form a discrete set, and therefore are of measure
zero, for instance the cubic defocusing Schrödinger equation with only one equilibrium. The example closest
to SQG is 2D Euler equation, which has infinite dimensional manifold of equilibria with similar structure.
However, whether the invariant measures for 2D Euler equation concentrate on equilibria is an open question,
hence regularizing the problem might not help.
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Let us turn our attention to finite dimensional systems. Consider a 2n-dimensional Hamiltonian system

ẋ = −∂yH(x, y), ẏ = ∂xH(x, y),(A.1)

where H : Rn × Rn → R is a smooth Hamiltonian function. It is well known that f(H)dxdy is an invariant
measure for the system, for any integrable smooth function f . We consider now the following fluctuation-
dissipation model

dx = (−∂yH(x, y)− α∂xH(x, y))dt+
√

2αdβ1, dy = (∂xH(x, y)− α∂yH(x, y))dt+
√

2αdβ2,(A.2)

where β1, β2 are independent Brownian motions. Then, e−H(x,y) is a density of an invariant measure for
(A.2), since e−H(x,y) is solution of the Fokker-Plank equation

Lρ = α∆ρ−∇ ·
[
(∂yH(x, y) + α∂xH(x, y),−∂xH(x, y) + α∂yH(x, y))T ρ

]
= 0.

Thus µ(dxdy) = T−1e−H(x,y)dxdy is an invariant probability measure of (A.2), were we denote T =∫
Rn×Rn e

−H(x,y)dxdy to be a partition function (normalization). Note that T is finite if H has appro-
priate increase at infinity. Observe that µ does not depend on α, thus by passing α→ 0, we see that µ is an
invariant measure of (A.1).

If H is constant on the unit ball of Rn × Rn, then any point in that ball is an equilibrium of (A.1), and
therefore we have an open set of equilibria. On the other hand, µ has positive density everywhere and in
particular its support coincides with the whole space. There might be a possibility to apply this reasoning
to infinite dimensional systems, but there are serious difficulties with coercivity of the dissipation. We leave
this question open.

Appendix B. Itô formula

For reader’s convenience we recall the Itô formula in infinite dimensions, which used several times in the
proofs of main results. We say that the equation (1.2) has the Itô property on the triple (Hs−1, Hs, Hs+1) if

(1) for some T > 0, (1.2) has a unique solution on [0, T ) for any data in Hs;
(2) the process h := −α(∆2θ −∇(|∇θ|2∇θ))− u · ∇θ is Ft-adapted and

P
(∫ t

0

(‖θ(r)‖2s+1 + ‖h(r)‖2s−1)dr <∞, ∀ t > 0

)
= 1,

∑
m>0

a2
mλ

s
m <∞.

We have the following version of the Itô’s lemma proved in [42, Section A.7].

Theorem B.1 ([42]). Let F ∈ C2(Hs,R) be a functional which is locally uniformly continuous, together
with its first two derivatives, on Hs. Suppose that (1.2) satisfies the Itô property on (Hs−1, Hs, Hs+1) and
that F satisfies the following conditions:

(1) There is a function K : R+ → R+ such that

(B.1) |F ′(θ; v)| ≤ K(‖θ‖s)‖θ‖s+1‖v‖s−1, θ ∈ Hs+1, v ∈ Hs−1.

(2) For any sequence {wk} ⊂ Hs+1 converging toward w ∈ Hs+1 and any v ∈ Hs−1, we have

(B.2) F ′(wk; v)→ F ′(w; v), as k →∞.

(3) The solution θ of (1.2) satisfies

(B.3)
∑
m

a2
mE

∫ t

0

|F ′(θ; em)|2ds <∞ for all t > 0.

Then we have

F (θ(t)) = F (θ(0)) +

∫ t

0

(
F ′(θ(s);h(s)) +

α

2

∑
m

a2
mF
′′(θ(s); em, em)

)
ds

+
√
α
∑
m

am

∫ t

0

F ′(θ(s); em)dWm(s).
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In particular,

EF (θ(t)) = EF (θ(0)) +

∫ t

0

E

(
F ′(θ(s);h(s)) +

α

2

∑
m

a2
mF
′′(θ(s); em, em)

)
ds.

If one omits (B.3), then we have the formula (B.1) where t is replaced by the stopping time t ∧ τn, with

τn = inf{t ≥ 0, ‖θ(t)‖s > n}, n ≥ 0,

with the convention inf ∅ = +∞.

Appendix C. Embedding L2H2 ∩W 1, 43W−1, 43 ↪→ CH−δ

Although the parabolic embedding L2H2 ∩W 1, 43W−1, 43 ↪→ CH−δ follows from standard arguments we
were not able to locate the proof in the literature. Hence, we outline the main steps in this appendix.

By [2, Theorem 5.2], we have for any θ > 2
3

L2H2 ∩W 1, 43W−1, 43 ↪→ C(H2,W−1, 43 )θ,pθ ,

where (H2,W−1, 43 )θ,pθ is the real interpolation space and pθ satisfies

1

pθ
=

1− θ
2

+
θ
4
3

However, by [2, (3.5)] for any ε ∈ (0, 1) one has

(H2,W−1, 43 )θ,pθ ↪→ (H2−ε,W−1−ε, 43 )θ,pθ = (B2−ε
2,2 , B

−1−ε
4
3 ,

4
3

)θ,pθ ,

where Bsp,q is a Bessov space. From [5, Theorem 6.4.5, (3)] and [2, (3.5)] follows

(B2−ε
2,2 , B

−1−ε
4
3 ,

4
3

)θ,pθ = B
(−3+ε)θ+(2−ε)

4
2+θ ,

4
2+θ

= W (−3+ε)θ+(2−ε), 4
2+θ .

Finally, by Sobolev embeddings

W (−3+ε)θ+(2−ε), 4
2+θ ↪→W−δ,2 ,

where δ ≤ 5
3 − ε + (3 − ε)θ. Since θ > 2

3 and ε > 0 can be chosen arbitrarily close to 2
3 and 0 respectively,

one obtains

L2H2 ∩W 1, 43W−1, 43 ↪→ CW−δ,2

for any δ > 1
3 as desired.
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[34] V. I. Judovič. Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz.,
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