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Abstract

The goal of this paper is to show that Serrin’s result on overdetermined

problems holds true for symmetric non-smooth domains. Specifically, we

show that if a non-smooth domain D satisfies appropriate symmetry and

convexity assumptions, and there exists a positive solution to a general

overdetermined problem on D, then D must be a ball. As an application,

we improve results on symmetry of non-negative solutions of Dirichlet

problems.

1 Introduction

In this paper we consider the overdetermined fully nonlinear radially symmetric
problem

F (∆u, uxi
uxixj

uxj
, |∇u|2, u) = 0 , x ∈ D , (1.1)

u = 0 , |∇u| = c , x ∈ ∂D , (1.2)

u > 0 , x ∈ D . (1.3)

Here, and also in the rest of the paper we use the summation convention, that
is, when an index appears twice in a single term, then we are summing over all
its possible values.

In a celebrated paper [27], Serrin showed that if the problem is quasilinear.
Specifically, if u satisfies conditions (1.2), (1.3), and the equation

a(u, |∇u|2)∆u + h(u, |∇u|2)uxi
uxixj

uxj
+ f(u, |∇u|2) = 0, (1.4)

for some a, h, f ∈ C1
loc(R

2), D satisfies the interior sphere condition, and u ∈
C2(D̄), then D is a ball. The proof uses the strong maximum principle, the cor-
ner point lemma, and the method of moving hyperplanes introduced by Alexan-
drov [1] for problems in geometry. Some of these techniques rely on sufficient
regularity of D and on the smoothness of u in the closure of D. We also remark
that quasilinear structure was essential for the proof.
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There is a vast literature that uses Serrin’s framework and generalizes the
symmetry results in various directions, such as systems of quasilinear equations,
exterior domains, ring shaped domains, other boundary conditions etc. Most of
these extensions (the others are discussed below) require quasilinear structure,
smoothness of ∂D, and u ∈ C2(D̄), or an additional regularity on F , usually
analyticity. For references, we direct the interested reader to the survey [26].

Another fruitful direction for proving the symmetry of D for overdetermined
problems was given in the paper of Weinberger [30]. His method, based on in-
tegral estimates, does not require either regularity of D or u ∈ C2(D̄); however,
it was applied only to equation

∆u = −1 .

To generalize Weinberger’s result one can replace the Laplacian operator by a
possibly degenerate elliptic operator, generalize the domain, or boundary con-
dition, but the constant right hand side seems to be essential for the method.
We again refer the reader to the survey [26].

There are other approaches showing that D is a ball if u solves certain
overdetermined problem. These, as the Serrin’s and Weinberger’s method, usu-
ally depend either on the regularity of D and smoothness of u on D̄, or they
require a special structure of the equation.

Quasilinear overdetermined problem (1.4), (1.2), (1.3) on nonsmooth do-
mains was already studied by Vogel [29] in the case c > 0. As a result he
showed that D is a ball, provided F ∈ C1

loc(R) and u ∈ C2(Ω) satisfies (1.1),
where the boundary conditions (1.2) are satisfied in the following sense:

u → 0 , and |∇u| → c , uniformly as x → ∂D . (1.5)

However, the very important case c = 0, for non-smooth domains, was not
discussed in [29]. First, note that if c = 0 and u ∈ C1(D)∩C(D̄), then (1.5) and
the mean value theorem imply u ∈ C1(D̄). To illustrate the relevance of the
case c = 0, assume that D is a planar domain and there exist a point A ∈ ∂D

and two smooth curves γi : [0, 1] → ∂D, (i = 1, 2) such that γi(0) = A, and
tangent vectors τi := γ′

i(0) at A are linearly independent. Since u ∈ C1(D̄)
and u = 0 on ∂D it is easy to show that ∇u(A) · τi = 0, and consequently the
linear independence of τ1 and τ2 yields |∇u(A)| = c = 0. This example can be
easily generalized to other domains with non-smooth boundaries and domains
in higher dimensions.

We remark that Sirakov [28, Remark 1] claimed the Serrin’s result for u ∈
C1(Ω̄) and smooth Ω under implicit geometrical conditions on Ω; however, the
proof or precise assumptions were not provided.

Our first goal is to show that if c = 0, Serrin’s result holds for the overdeter-
mined problem (1.1)–(1.3) on symmetric nonsmooth domains. This will gener-
alize Serrin’s result to fully nonlinear problems on non-smooth domains.

We remark that one can assume that u is not C1 on D̄, or that the Neumann
condition in (1.2) is not satisfied everywhere. Such quasilinear problem was
studied by Prajapat [25], when D is not smooth at a single point and u does
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not satisfy a Neumann condition at that point. Other results when u satisfies
semilinear problem and either Dirichlet or Neumann boundary conditions are
assumed only on a part of the boundary were obtained by Fragalà et al. [10, 11].

Recently Poláčik [24] showed the importance of the case c = 0 for the proof
of symmetry of solutions satisfying Dirichlet problems. Before we describe
Poláčik’s idea let us mention older results on the reflectional symmetry.

Using the method of moving hyperplanes, Gidas et. al. [12] proved the
symmetry of positive solutions on symmetric domains. Specifically, if Ω ⊂ RN

is a bounded, smooth domain, convex in x1, and symmetric with respect to the
hyperplane

H0 := {x ∈ RN : x1 = 0} ,

and f is a Lipschitz function, then a positive classical solution u of

∆u + f(u) = 0, x ∈ Ω , (1.6)

u = 0, x ∈ ∂Ω , (1.7)

is even in x1 and nonincreasing in the set

Ω0 := {x ∈ Ω : x1 > 0} .

Later, the results of Gidas et al. were generalized by Li [19] to fully nonlinear
problems. Berestycki and Nirenberg [4], and Dancer [8] extended the symmetry
results to nonsmooth domains. We refer the reader to the surveys [3, 20, 23] for
more results, references, and generalizations.

The situation is more interesting if we merely assume that u is non-negative.
If Ω ∈ RN is convex in x1 and symmetric with respect to H0, then the symmetry
and monotonicity result of [12] is equivalent to the statement:

If u ≥ 0 in Ω, then either u ≡ 0 or u > 0 in Ω. (1.8)

If N = 1, then (1.8) does not hold true as shown in [12]. Indeed, the function
u = 1 − cos x satisfies u′′ + u − 1 = 0 on Ω = (−2π, 2π) with the Dirichlet
boundary condition. Although u is symmetric, it is not decreasing for x > 0.

If N ≥ 2, we were not able to locate in the literature any example that would
contradict (1.8) for solutions of (1.6), (1.7). In this paper we show that if such
an example exists for symmetric Ω, then Ω must have very special shape. We
remark that Poláčik [21, 22] constructed several counterexamples to (1.8) on
various domains if f depends on u and also on x′ := (x2, x2, · · · , xN ). For such
general problem one might investigate symmetry of non-monotonic solutions as
in [21].

If u satisfies (1.6), (1.7) and f(0) ≥ 0, then the maximum principle implies
(1.8). For general f , (1.8) was proved by Castro and Shivaji [6] when Ω is a ball,
and more general conditions were given by Hess and Poláčik [14], Damascelli et
al. [7], and the present author [9].

Recently Poláčik [24] showed (1.8), provided Ω is a C2 domain which is con-
vex in x1 and symmetric about H0, and u ∈ C2(Ω̄) satisfies (1.4) and Dirichlet
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boundary conditions. The proof in [24] is of our interest since it connects sym-
metry and monotonicity properties of solutions to certain overdetermined prob-
lems. Let us briefly describe the idea of the proof, more details are mentioned
in the proofs below. If a non-negative u is not symmetric or monotonic, then
by a use of the method of moving hyperplanes one obtains an overdetermined
problem (1.1) with c = 0 on a subdomain D ⊂ Ω which is convex in x1 and
symmetric with respect to a hyperplane Hλ := {x ∈ RN : x1 = λ} for some
λ > 0. Using that Ω is of class C2 and u ∈ C2(Ω̄), one proves that D is a
smooth domain, and consequently by Serrin’s result D, must be a ball. Finally,
the unique continuation argument yields that u ≡ 0.

Motivated by [24] we first focus on the problem (1.1) with c = 0 and D having
an additional reflectional symmetry and convexity. Since Ω is not smooth, it is
not natural to assume u ∈ C2(D̄); however, to satisfy the boundary conditions
in (1.1) we assume (1.5) with c = 0, which yields u ∈ C1(D̄). Note that this
assumption is satisfied for irregular domains as well (see Remark 1.11 below).

Let us formulate assumptions on the nonlinearity F : (d, q, p, u) ∈ R4 → R.

(N1) (Regularity.) Assume F is locally Lipschitz continuous in (p, u) and C1 in
(d, q).

(N2) (Ellipticity.) There is α0 > 0 such that

Fd(d, q, |p|2, u) + Fq(d, q, |p|2, u)(piξi)
2 ≥ α0 > 0

((d, q, u) ∈ R3, p, ξ ∈ RN , |ξ| = 1) . (1.9)

Before we state our first main result, denote S := {1, 2, · · · , N} and let
(ei)i∈S be the standard basis of RN .

Theorem 1.1. Let D ⊂ RN be a bounded domain, symmetric with respect to
the hyperplane H1

0 := {x ∈ RN : x1 = 0} and convex in x1 and F satisfy (N1)
and (N2). If u ∈ C1(Ω̄)∩C2(Ω) satisfies (1.1), (1.2), (1.3) with c = 0, and one
of the assumptions

(a) u ∈ C2(D̄),

(b) |∇u|2 is Lipschitz in Ω̄ and ∇F (·, q, p, u) is globally bounded,

(c) F is independent of q and ∇F (·, q, p, u) is globally bounded,

then D is a ball, and u is radially symmetric and radially decreasing.

Since the equation (1.1) is radially symmetric and translational invariant,
we can replace the assumption on the convexity and symmetry in x1 by any
direction. As we are only interested in the behavior of F on the range of u (and
its derivatives), it suffices to assume local Lipschitz continuity in p and u, and
if (a) is assumed, then we only require F to be locally Lipschitz. Similarly one
can weaken ellipticity condition (1.9) and boundedness assumption on ∇F in
(b) and (c).
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Since |∇u| = 0 on ∂Ω, the assumption on the Lipschitz continuity of |∇u|2

is weaker than the boundedness of D2u. As mentioned above, the assumption
u ∈ C1(Ω̄) can be replaced by u ∈ C(Ω̄) and (1.5). If u satisfies quasilinear
problem (1.4), by combining Theorem 1.1 with the Vogel’s result one can remove
the assumption c = 0.

The case (a) is a direct improvement of Serrin’s result (if c = 0) to the fully
nonlinear problems on non-smooth, symmetric domains. Cases (b) and (c) show
that the C2(Ω̄) regularity of u can be weakened as well. If the equation (1.1)
is semilinear, that is, F (d, q, |p|2), u) = d + f(|p|2, u), then (c) is automatically
satisfied.

Remark 1.2. From the proof, immediately follows that if F also depends
on x̃ := (x3, x4, · · · , xN ), and the remaining assumptions are considered to be
uniform in x̃, then u and Ω are rotationally symmetric with respect to rotations
rotating e1, e2 only.

Remark 1.3. If Fd and Fq are Lipschitz in R4 and uxixj
is Lipschitz on Ω,

then instead of (1.3) one can only assume that u is non-negative, nontrivial
function (u 6≡ 0); if the problem is quasilinear (see (1.4)) then we do not have
to assume Lipschitz continuity of uxixj

. Indeed, by [21, Theorem 2.2], there
are finitely many disjoint sets Gi ⊂ Ω such that Ω̄ = ∪Ḡi, each Gi is convex
in x1 and symmetric with respect to a hyperplane with the normal vector e1.
Moreover, for each i, u > 0 in Gi and u = 0 on ∂Gi.

Since u ≥ 0 in Ω, any x ∈ ∂Gi ∩ Ω is a local minimum of u, and therefore
∇u(x) = 0. Also by (1.2), ∇u(x) = 0 for each x ∈ ∂Gi \ Ω ⊂ ∂Ω. Clearly
u ∈ C1(Ḡi) and if one of (a)–(c) in Theorem 1.1 is true then it also holds true
for u restricted to Gi. Therefore we can use Theorem 1.1 with Ω replaced by
Gi and conclude that Gi is a ball. However, since Ω convex in x1, it cannot be
a union of finitely many balls unless Ω is a ball.

Remark 1.4. Notice that the overdetermined problem (1.1), (1.2), (1.3) has
a solution if D is a ball and c = 0. For example if J0 is the Bessel function of
the first kind, then ∆J0(|x|) = µJ0(|x|) for appropriate µ. Let ξ be the first
positive zero of J ′

0. Then u(x) = J0(|x|)−J0(ξ) satisfies ∆u = µ(u+J0(ξ)) and
u(x) = ∇u(x) = 0 for |x| = ξ. Also, since J0 decreases on (0, ξ), one has u > 0.

If the domain is not symmetric and convex in x1 (or in any other direction),
then we show Serrin’s result only for quasilinear problem and Ω which is not
smooth on a lower dimensional set. Analogously as above we say that (1.4) is
elliptic if

a(u, |p|2) + h(u, |p|2)(piξi)
2 ≥ α0 > 0, (u ∈ R, p, ξ ∈ RN , |ξ| = 1) . (1.10)

Proposition 1.5. Let D ⊂ RN be a bounded domain such that ∂D \ X is of
class C2 for X ⊂ H1

0 . If there exist locally Lipschitz functions a, h satisfying
(1.10), and u ∈ C1(D̄) ∩ C2(D̄ \ X) satisfying (1.4), (1.2), (1.3), then D is a
ball.
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As above we can replace the assumption X ⊂ H1
0 by X ⊂ H, where H is

any hyperplane in RN . Also ellipticity condition (1.10) can be considered only
on the range of u and ∇u.

As in [24] we apply Theorem 1.1, to the study of symmetry of nonnegative
solutions on reflectional symmetric domains and we improve the main result
of [24] to a wide range of non-smooth domains and fully nonlinear equations.
From a private communication the author learned that P. Poláčik proved more
general independent results for two dimensional, nonsmooth domains.

First we state the result for fully nonlinear equations on smooth domains.

Corollary 1.6. Assume that Ω ⊂ RN is a bounded C2 which is convex in x1

and symmetric with respect to H0. Let F : R4 → R be a C1 function satisfying
(1.9). If u ∈ C3(Ω̄) is a nonnegative solution of

F (∆u, uxi
uxixj

uxj
, |u|2, u) = 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

then either u ≡ 0, or u > 0.

The proof of Corollary 1.6 is an straightforward modification of the proof
[24, Theorem 1.1], where we use Theorem 1.1 instead of Serrin’s result [27]. The
C3 regularity of u is merely assumed because of the unique continuation method
that requires Lipschitz continuity of leading coefficients (cp. [16]).

The assumption u ∈ C3(Ω̄) (and even u ∈ C3(Ω̄)) is usually too restrictive
for problems on non-smooth domains. Under natural assumption u ∈ C(Ω̄),
we will state our results for semilinear problems only. Interested reader can
formulate analogous results for quasilinear or fully nonlinear problems under
stronger regularity assumptions on u. Denote Ωλ := {x ∈ Ω : x1 > λ} and let
Pλ(x1, x

′) := (2λ − x1, x
′) be the reflection with respect to the hyperplane Hλ,

where x′ = (x2, · · · , xN ).

Definition 1.7. We say that a bounded domain Ω ⊂ RN satisfies condition (A)
if the following holds. If there is A ∈ ∂Ω and ε > 0 such that A − te1 ∈ ∂Ω for
any t ∈ [0, ε], then either

(a) ∂Ω is of class C2,β at A for some β > 0, or

(b) for any connected component D of ΩA1
with A ∈ D̄, there exists X ∈ ∂D

with X1 > A1 such that PA1
X ∈ Ω and Ω is not C2,α at X for some

0 ≤ α < 1.

The definition asserts that if ∂Ω contains a segment in direction e1, then
either ∂Ω is smooth along the segment, or ∂Ω has a point of nonsmoothness
to the right of the segment. Of course Ω trivially satisfies (A) if ∂Ω does not
contain any such segment.

Definition 1.8. Assume D is a connected component of Ωλ (λ > 0) and M :=
∂D ∩ {x : x1 > λ} is of class C2. We say that u satisfies condition (B) if
∇u = 0 on M implies u ∈ C1(D̄).
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We will discuss sufficient condition (B) in Remark 1.11. We are ready to
state the next main result.

Theorem 1.9. Let f ∈ C
1,α
loc

(R) for some α ∈ (0, 1) and let Ω ⊂ RN be a
bounded domain, which is convex in x1, symmetric with respect to H0 := {x :
x1 = 0}, and satisfies the condition (A). Assume that a non-negative function
u ∈ C(Ω̄) satisfies (1.6), (1.7), and the assumption (B). Then u is even in x1,
and either u ≡ 0, or u > 0 and ux1

(x) < 0 for x ∈ Ω with x1 > 0.

Remark 1.10. We mainly assume f ∈ C
1,α
loc

(RN ), instead of f ∈ Liploc(R
N )

because of Schauder’s boundary estimates on smooth domains.
Without additional assumptions on u or Ω, we can generalize Theorem 1.9

to quasi-linear equations of the form

∆u + F (u, |∇u|2) = 0 , (1.11)

assuming F ∈ C1,α. The proof is analogous, but more technical.
It is not known whether the assumption (A) is technical or not. We remark

that if the problem is semilinear, then one can replace C2,α in Definition 1.7 (b)
by C3,α, as mentioned in the proof.

Remark 1.11. Standard interior Schauder estimates imply u ∈ C1(D) and
since M ∈ C1,α (α < 1), [17, 18] yield that u ∈ C1(D ∪ M). Hence assumption
(B) really requires u to be C1 on ∂D ∩ ∂Ω ∩ Hλ.

If D does not have the relevant part of the boundary of class C2, then (B)
is trivially satisfied. In particular (B) is satisfied if ∂Ω is not of class C2 (in
fact C2,α for some α < 1, as seen from the proof) at y for all y = (y1, y

′) ∈ ∂Ω
with y1 = ℓ := sup{x1 : x ∈ Ω}. In this case (A) is trivially satisfied as well.
Moreover, it suffices to assume that such y exists with ℓ− y1 < δ for sufficiently
small δ (see Lemma 2.4).

If ∂Ω is of class C1,α, then again [17, 18] imply u ∈ C1(Ω̄) and in particular
u ∈ C1(D̄).

If ∂Ω is not of class C1,α we have the following result.

Corollary 1.12. If Ω is piecewise C2,α domain, then Theorem 1.9 holds true
without assumption (B).

Since the investigation of the regularity of solutions on nonsmooth domains is
not primary goal of this paper, we leave formulation of other sufficient conditions
that guarantee (B) to an interested reader.

2 Proofs of main results

In this section we use the notation and definitions from the introduction and
the following one from [13].
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Definition 2.1. Given k ∈ {0, 1, · · · }, 0 ≤ α ≤ 1, we say that a bounded
domain Ω in RN is Ck,α at x0 ∈ ∂Ω, if there exist a ball B centered at x0 and
a one-to-one mapping Ψ of B onto D ⊂ RN such that

(i)Ψ(B∩Ω) ⊂ RN
+ ; (ii)Ψ(B∩∂Ω) ⊂ ∂RN

+ ; (iii)Ψ ∈ Ck,α(B),Ψ−1 ∈ Ck,α(D).

Here, Ck,α denotes the standard space of Hölder continuous functions (see [13]).
We say that a bounded domain Ω in RN is of class Ck,α, if it is of class Ck,α

at any x0 ∈ ∂Ω.

Remark 2.2. Note that if Ω is of class Ck,α at x0 ∈ ∂Ω, then it is of class
Ck,α at any x ∈ ∂Ω ∩ B, where B is as in Definition 2.1.

2.1 Proofs for overdetermined problems

Proof of Theorem 1.1. Since D is symmetric with respect to H1
0 and convex in

x1, the symmetry result of [4] implies that u is even in x1 and ux1
< 0 on

D+ := {x ∈ D : x1 > 0}. Also, the symmetry implies ux1
= 0 on H1

0 ∩ D.
If we differentiate (1.1) with respect to x1, and we use the Neumann bound-

ary conditions from (1.2), then v := ux1
satisfies

aij(x)vxixj
+ bi(x)vxi

+ c(x)v = λv , x ∈ D ,

v = 0 , x ∈ ∂D ,
(2.1)

where λ = 0,

aij := Fd[u]δij + Fq[u]uxi
uxj

bi(x) := Fq[u](|∇u|2)xi
+ Fp[u]uxi

,

c(x) := Fu[u],

Fh[u] := Fh(∆u, uxi
uxixj

uxj
, |u|2, u), h = d, q, p, or u

As usual δij = 1 if i = j and δij = 0 otherwise. Since F is C1 in d and q, aij

are continuous functions. Moreover, (1.9) guarantees ellipticity of (2.1).
If (a) holds, that is, if u ∈ C2(Ω̄), then the argument of F is bounded, and

therefore local Lipschitz continuity implies the boundedness of aij , bi, and c.
If (b) holds true, then uxi

uxixj
uxj

= 1

2
∇u · ∇(|∇u|2), and therefore the

arguments of F in variables q, p, and u are bounded. Now, boundedness of ∇F

in d and local Lipschitz continuity yield the boundedness of the coefficients aij ,
bi, and c.

If (c) holds true, then the boundedness of aij , bi, and c is immediate.

Also, v ∈ C1(Ω) ∩ C(Ω̄), and therefore v ∈ W
1,2
loc

(Ω) ∩ C(Ω̄). By standard

interior regularity theory v ∈ W
2,p
loc

(Ω) ∩ C(Ω̄) for each p > 1.
Since ux1

= 0 on H1
0 ∩ D, λ = 0 is the first eigenvalue of (2.1), with D

replaced by D+, corresponding to the principal (negative) eigenfunction ux1
.

Fix arbitrary j ∈ {2, · · · , N}, denote ∂φ := xj∂x1
− x1∂xj

and w := ∂φu. Then

2∇u∇(∂φu) − ∂φ(|∇u|2) = 2uxk
(δjkux1

− δ1kuxj
) = 0

∆(∂φu) − ∂φ(∆u) = 2(δkj∂x1xk
u − δk1∂xjxk

u) = 0 ,
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and

wxk
uxkxl

uxl
+ uxk

uxkxl
wxl

+ uxk
wxkxl

uxl
− ∂φ[uxk

uxkxl
uxl

]

= [δjkux1
− δ1kuxj

]uxkxl
uxl

+ [δjlux1
− δ1luxj

]uxk
uxkxl

+ [(δjkux1
− δ1kuxj

)xl
+ (δjlux1

− δ1luxj
)xk

]uxk
uxl

= 0 .

Hence, after differentiating (1.1) with respect to ∂φ we obtain that w(x) :=
xjux1

(x) − x1uxj
(x) also satisfies (2.1) with λ = 0. Since ux1

= 0 on H1
0 ∩ D

one has w(x) = 0 for each x ∈ H1
0∩D, and therefore w(x) = 0 for each x ∈ ∂D+

k .
Thus, by [5, Corollary 2.2], w is a constant multiple of a principal eigen-

function, that is, w = cjux1
for some cj ∈ R. Equivalently (xj − cj)ux1

(x) −
x1uxj

(x) = 0.
Solving this first order partial differential equation by the method of charac-

teristics, one obtains that u, instead of x1, xj , depends only on x2
1 + (xj − cj)

2.
After translation by cj in xj (which does not change the form of the problem
(1.1)) we obtain that u is rotationally symmetric with respect to rotations that
rotate the plane spanned by e1 and ej only.

Using the rotation of the e1, eN plane, we obtain

u(x) = u(
√

x2
1 + x2

N , x2, · · · , xN−1, 0) .

Next, using the rotation of the e1, eN−1 plane (which does not change xN co-

ordinate), we have u(x1, · · · , xN ) = u(
√

x2
1 + x2

N + x2
N−1

, x2, · · · , xN−2, 0, 0).

Proceeding by induction we conclude u(x) = u(
√

x2
1 + · · · + x2

N , 0, · · · , 0), and
therefore u is radially symmetric.

Positivity of u in D and Dirichlet boundary conditions imply that D is
radially symmetric as well. Monotonicity of u in r follow from [4].

Proof of Proposition 1.5. Let us assume that D is not a ball.
To prove the statement we use the method of moving hyperplanes in the

same way as in [27] (notice that [27] also discusses quasilinear equations (1.4)).
The hyperplanes are Hλ := {x ∈ RN : x1 = λ} and we start with λ ≫ 1.

Denote Dλ := {x ∈ D : x1 > λ} and let D′

λ be the reflection of Dλ with respect
to Hλ.

We decrease λ until either λ = 0, or λ > 0 and one of the following events
occurs:

(i) Hλ is orthogonal to ∂D at some point (since ∂D is smooth at any x ∈ ∂D

with x1 > 0, orthogonality is defined by ν1(x) = 0, where ν(x) is a unit
normal vector to ∂D at x),

(ii) D′

λ is internally tangent to the boundary of D at some point P 6∈ Hλ, and
P 6∈ X,
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(iii) D′

λ is internally tangent to the boundary of D at P ∈ X.

Assume λ > 0. Since ∂D \ X is smooth, Dλ 6= ∅. Now, (i) and (ii),
analogously as in [27] (relevant parts of ∂D are smooth and u is C2 there), yield
that D is symmetric with respect to Hλ. Since λ > 0 this means that D is
smooth everywhere. In particular D satisfies an interior sphere condition at any
point of X, and by [27, Theorem 1], D is a ball.

If (iii) occurs, then D satisfies an interior sphere condition at P , namely the
interior sphere touching ∂D′

λ at X. Now, Hopf’s boundary lemma implies, in
the same way as in [27], that D is symmetric with respect to Hλ, and we again
conclude that D is a ball.

Assume λ = 0. Then D′

λ ⊂ D̄ for each λ ≥ 0, and therefore D0 is convex in
x1 and D′

0 ⊂ D̄. By analogous arguments, if the method of moving hyperplanes
starts from λ′ ≪ −1 (from left), then we obtain that D−

0 := {x ∈ D : x1 < 0}
is convex in x1 and P0D

−

0 ⊂ D̄. Hence, P0D
−

0 ⊂ D̄0 and P0D0 ⊂ D̄−

0 , and
therefore D is symmetric with respect to H0.

Finally, Theorem 1.1 implies that D is a ball.

2.2 Proofs for Dirichlet problem

Proof of Theorem 1.9. If u ≡ 0, the statement of Theorem 1.9 is trivial. Hence,
for the rest of the proof assume u 6≡ 0. Since u is bounded in Ω̄, f ′ is bounded
by a constant β0 on the range of u. We split the proof of the theorem into
several lemmas.

Lemma 2.3. The statement of Theorem 1.9 holds true if we in addition assume
f(0) ≥ 0.

Proof. By a standard application of the maximum principle, we obtain u ≡ 0
or u > 0 in Ω. If u ≡ 0, Theorem 1.9 is trivial, otherwise it follows from [4].

Define

ℓ := sup{x1 : x = (x1, x
′) ∈ Ω} ,

Hλ := {x ∈ RN : x1 = λ} (λ ∈ R) ,

xλ := (2λ − x1, x
′) (x = (x1, x

′) ∈ RN , λ ∈ R) ,

Ωλ := {x ∈ Ω : x1 > λ} (λ ∈ [0, ℓ)) ,

wλ(x) := u(xλ) − u(x) (x ∈ Ωλ, λ ∈ [0, ℓ)) .

Moreover, let Pλ : RN → RN be the reflection about Hλ, that is, Pλ(x) := xλ.
Since Ω is symmetric and convex in x1, wλ is well defined on Ωλ for λ ∈ [0, ℓ).
By Hadamard’s formula and non-negativity of u in Ω, wλ satisfies

∆wλ = cλ(x)wλ, x ∈ Ωλ (2.2)

and
wλ ≥ 0 , x ∈ ∂Ωλ , (2.3)
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where

cλ(x) :=

∫ 1

0

f ′(su(xλ) + (1 − s)u(x)) ds

is a measurable function, bounded by β0.

Lemma 2.4. There exists δ = δ(β0,Ω) > 0 such that wλ(x) ≥ 0 for each
x ∈ Ωλ and λ ∈ (ℓ − δ, ℓ).

Proof. The lemma immediately follows from the maximum principle on small
domains (see [4]).

Define

λ∞ := inf{µ > 0 : wλ(x) ≥ 0 for each x ∈ Ωλ, λ ∈ [µ, ℓ)} . (2.4)

Lemma 2.5. If λ∞ > 0, then there exists a connected component D of Ωλ∞

such that wλ∞ ≡ 0 in D and wλ > 0 in Ωλ for each λ ∈ (λ∞, ℓ). Moreover,
u > 0 in Ωλ∞

.

Proof. This is a well known result (see [4, 9, 24]).

Lemma 2.6. Assume λ∞ > 0 and let D be as in Lemma 2.5. Then there is
y∗ ∈ ∂D ∩ ∂Ω such that ∂Ω is not C2,α at y∗ for any α ∈ (0, 1).

Proof. For a contradiction assume λ∞ > 0 and for each y ∈ ∂Ω ∩ ∂D there is
α ∈ (0, 1) such that ∂Ω is C2,α at y. By Remark 2.2, being C2,α at a point is an
open property, and since ∂Ω∩∂D is compact, there exists α > 0 such that ∂Ω is
C2,α at any point y ∈ ∂Ω with dist(y, ∂D) < ε, where ε > 0 is sufficiently small.
Now, by standard Schauder estimates, u ∈ C2(D̄) and we obtain a contradiction
in a similar way as in [24, proof of Theorem 1.1], since the relevant part of ∂Ω
is smooth.

Lemma 2.7. Assume λ∞ > 0 and let D be as in Lemma 2.5. Then for any
y∗ ∈ ∂D \ Hλ∞

with y∗

1 > λ∞ there is β > 0 such that ∂Ω is C2,β at y∗.

Proof. For any fixed y∗ ∈ ∂D\Hλ∞
, the convexity of Ω in x1 yields (y∗)λ∞ ∈ Ω̄.

First assume z := (y∗)λ∞ ∈ Ω, and denote Γ := Pλ∞
(∂D \ Hλ∞

) ∩ Ω a set
containing z. Then, wλ∞ ≡ 0 in D yield u(x) = 0 for any x ∈ Γ. Since u ≥ 0 in
Ω, any x ∈ Γ is a local minimum of u, and therefore ∇u(x) = 0 for each x ∈ Γ.

If uxixi
(z) = 0 for each i ∈ {1, · · · , N}, then 0 = ∆u(z) = f(u(z)) = f(0)

and Lemma 2.3 implies λ∞ = 0, a contradiction. Otherwise, uxixi
(z) 6= 0 for

some i ∈ S. Fix such i and denote v := uxi
. Then v(z) = 0, ∇v(z) 6= 0, and v

solves
∆v = V (x)v, x ∈ Ω ,

where V (x) := f ′(u(x)) belongs to Cα(Ω). Now, by [15, Theorem 2], the nodal
set N := {x ∈ Ω : v(x) = 0} of v is a C3,α hypersurface in a neighborhood U of
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z. We remark that if u is a solution of the quasi-linear problem (1.11), then v

satisfies
∆v = b(x1, x2) · ∇v + V (x1, x2)v, (x1, x2) ∈ Ω , (2.5)

with b ∈ Cα(Ω, RN ), V ∈ Cα(Ω), and we need to replace [15, Theorem 2] by
Schauder’s estimates which imply Γ ∈ C2,α. Higher regularity of Γ for (2.5) was
announced in [15], but we were not able to locate it in the literature.

Let Γ∗ := Γ ∩ V ∗ and N ∗ := N ∩ V ∗ where V ∗ ⊂ Ω \ Ω̄λ∞
is sufficiently

small neighborhood of z such that V ∗ \ N ∗ has two connected components.
This choice is possible since N is smooth. We finish the proof by showing that
Γ∗ = N ∗. Then Γ∗ is of class C3,α and by the definition of Γ∗, ∂Ω is of class
C3,α in a neighborhood of y∗.

Observe, that we already showed Γ∗ ⊂ N ∗. Assume N ∗ 6⊂ Γ∗. Since
Γ∗ ( N ∗, one has that V ∗ \Γ∗ ⊂ Ω is connected, and therefore Pλ∞

(V ∗ \Γ∗) is
connected as well. Since Pλ∞

(V ∗\Γ∗) ⊂ RN \∂Ω, one has Pλ∞
(V ∗\Γ∗) ⊂ Ωλ∞

.
Using wλ∞ ≡ 0, we obtain u(x) = 0 for each x ∈ Pλ∞

(N ∗ \ Γ∗) ⊂ Ωλ∞
, a

contradiction to Lemma 2.5.
Next, assume z = (y∗)λ∞ ∈ ∂Ω, then λ∞ > 0 and the convexity of Ω in x1

yield that either z1 ≥ 0 and then the segment connecting y∗ and z lies in ∂Ω,
or z1 < 0 and then the segment connecting y∗ and P0Pλ∞

(y∗) lies in ∂Ω. In
either case, Ω satisfies condition (A) with y∗ = A.

If (a) in Definition 1.7 holds true, then ∂Ω is of class C2,β at y∗. If (b)
holds true, we obtain a contradiction with the first part of the proof, when y∗ is
replaced by X ∈ ∂D, defined in Definition 1.7 (b) (observe that Pλ∞

X ∈ Ω).

Lemma 2.8. λ∞ = 0.

Proof. For a contradiction assume λ∞ > 0. Let D be as in Lemma 2.5. Denote
D∗ := Int(D̄ ∪ Pλ∞

(D̄)) and ∂0D := ∂D \ Hλ∞
.

First, D∗ is by definition convex in x1 and symmetric with respect to Hλ∞
.

Next, u ∈ C(Ω̄) solves (1.6) in D∗ and, by the definition of D, u = 0 on ∂D∗.
Theorem 1.1 implies that D∗ is a ball, if we show that u ∈ C1(D̄∗) and ∇u = 0
on ∂D∗.

By Lemma 2.7 and Schauder estimates we obtain u ∈ C2(D∗ ∪ ∂0D), and
∂0D∗ ∈ C2. Then, by [24, Claim 3.6 (i)], one has ν1(x) > 0 for each x ∈ ∂0D.
Note that the proof of [24, Claim 3.6 (i)] requires u ∈ C2(D∗ ∪ ∂0D) and
∂0D ∈ C2 only.

Since ν1(x) > 0 for each x ∈ ∂D∗ with x1 > λ∞ > 0, the convexity of Ω in
x1 gives ∂D∗ ∩ {x : x1 < λ∞} ⊂ Ω. Then similarly as in the proof of Lemma
2.7, one has u ∈ C1(D̄∗ \ Hλ∞

) and ∇u = 0 on ∂D̄∗ \ Hλ∞
.

Consequently, by Definition 1.8 (property (B)), one has u ∈ C1(D̄∗).
Finally, Theorem 1.1 yields that D∗ is a ball and u is radially symmetric on

D∗. Using the unique continuation method as in [24, Proof of Theorem 1.1], we
obtain u ≡ 0, a contradiction.

Now, we finish the proof of Theorem 1.9. From Lemma 2.8 and the definition
of λ∞ follows that u is nonincreasing in Ω0 and w0 ≥ 0. In particular, u ≡ 0 or
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u > 0 in Ω. In the first case Theorem 1.9 is trivial, in the second one it follows
from [4, Theorem 1.3].

Proof of Corollary 1.12. By Lemma 2.8, λ := λ∞ > 0 only if u ∈ C2(D∗) ∩
C(D̄∗) satisfies the problem

∆u + F (|∇u|2, u) = 0 , x ∈ D∗ ,

u = 0 , x ∈ ∂D∗ ,

u > 0 , x ∈ D∗ ,

where D∗ is a bounded, symmetric domain, convex in x1, and ∂D∗ \ Hλ ∈ C2.
To obtain a contradiction (to the assumption λ > 0), as in Lemma 2.8, it suffices
to show u ∈ C1(D̄∗).

Fix x ∈ ∂D∗ ∩ Hλ such that ∂D∗ is not C1,α at x (otherwise trivially u is
C1 at x and ∇u(x) = 0). Since ∂Ω is piecewise C2,α, the limit

lim
y→x

y1>x1

ν(y) =: µ ∈ RN

exists, where ν(y) is the outer unit normal to ∂Ω at y. Moreover, µ1 ≥ 0 by the
convexity of Ω in x1. Assume µ1 = 0. Since ∂Ω is piecewise C2, then as in [24,
Claim 3.7] one obtains that ∂D is of class C2 at x, a contradiction.

Otherwise µ1 > 0. Then we straighten ∂Ω by a smooth map such that in
a neighborhood of x, ∂Ω transforms to part of two hyperplanes with angle less
than π (cp. [2, Proof of Theorem 1]). Then [2, Theorem 2] applies and we
conclude that u is C1 at x as desired.

Therefore u ∈ C1(D̄∗) and Corollary 1.12 follows from Theorem 1.9.
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