EXISTENCE OF TRAVELING WAVES FOR A FOURTH ORDER
SCHRODINGER EQUATION WITH MIXED DISPERSION IN
THE HELMHOLTZ REGIME
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ABsTRACT. In this paper, we study the existence of traveling waves for a
fourth order Schrédinger equations with mixed dispersion, that is, solutions to
A%y + BAU+iVVu + au = |u|p72u, inRY, N> 2.

‘We consider this equation in the Helmholtz regime, when the Fourier symbol P
of our operator is strictly negative at some point. Under suitable assumptions,
we prove the existence of solution using the dual method of Evequoz and
Weth provided that p € (p1,2N/(N — 4)1). The real number p; depends on
the number of principal curvature of M staying bounded away from 0, where
M is the hypersurface defined by the roots of P. We also obtain estimates on
the Green function of our operator and a LP — L7 resolvent estimate which
can be of independent interest and can be extended to other operators.

1. INTRODUCTION

In this paper, we construct non-trivial complex valued solution to a fourth order
nonlinear equation

(1.1) A?u 4 BAu+ iV VU + au = |u|P~2u, in RN, N>2,

where o, 3 € R, V € RN, and p > 2. The equation (1.1) characterizes the profile
of traveling wave solutions ¢(t,z) = e‘“*u(x — vt) of the fourth order nonlinear
Schrédinger equation with mixed dispersions

(12)  idp — A% — BAp + [P 20 =0, ¢(0,2) = ¢o(z), (t,z) € R x RY.

The fourth order term in equation (1.2) has been introduced by Karpman and
Shagalov [21] and it allows to regularize and stabilize solutions to the classical
Schrodinger equation as observed through numerical simulations by Fibich, Ilan,
and Papanicolaou [15]. Since the techniques for (1.2) are different compared the
equation without AZ, let us only mention selected results for (1.2).

Well-posedness for (1.2) has been established by Pausader [30] (using the dis-
persive estimates of [3]) as well as some scattering results (we also refer to [26]).
Recently, Boulenger and Lenzmann obtained (in)finite time blowing-up results in
[9]. In the last few years, solitary waves solutions to (1.2), that is, solutions of the
form (t,z) = e*“'u(z), have been quite intensively studied. The profile of such
waves satisfies (1.1) with V' = 0 and we refer to [4, 5, 6, 8, 14] for several results con-
cerning the existence of ground states and normalized solutions as well as some of
their qualitative properties. Notice that for the second order Schrédinger equation
it is possible to remove the drift term iV Vu by a suitable transformation. Such
technique does not work for the fourth order equation, and therefore (1.1) with
V £ 0 should be studied separately.
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under the grant NSF-DMS-1816408.
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There are very few results for (1.1) in the literature. The first author in [11]
showed the existence of normalized solutions, that is, solutions with fixed mass
and the existence of solutions with fixed mass and momentum. If the mass (and
momentum) is fixed, the parameter o (or the parameters o and V') appears as a
Lagrange multiplier. Hence, compared to our setup the solution found in [11] solve
(1.1) with  (and V') which is determined by mass (or momentum) constraint.

If the symbol of the operator on the left hand side to is positive, then solu-
tions can be found by standard techniques as global minimizers of appropriate
functionals. More precisely, in [20] (see also [10]) the authors investigated an ana-
logue of (1.1) for more general operator of the form Py (D) = P(D) +iV'V, where
P(D) is a self-adjoint, constant coefficient pseudo-differential operator defined by

(@u)(f) = p(&)a(§), 4 being the Fourier transform u. The existence of ground
states was obtained provided 2 < p < 2N/(N — 2s); and Py (D) has a positive
symbol (this is the case if for instance « > 0 is large enough). Qualitative properties
of these solutions were also investigated.

The main goal of the present manuscript is to obtain solutions to (1.1) when the
symbol of the operator changes sign. In such case, the natural energy functional
is not bounded from below, and therefore the grounds states do not exist. Also,
it is not expected that the solutions belong to L?(R”Y), so they cannot be found
as critical points of the energy. To solve this obstacle, we use the dual variational
method due to Evequoz and Weth [13], who used it for the second order Helmholtz
equation. Since for the second order equations one can remove the drift, the problem
analyzed in [13] was radially symmetric, which greatly simplifies analysis compared
to our situation. The differences are not only of technical nature, but we had to
develop new approach to investigate mapping properties of the resolvent operator
R, that is, the inverse of

L=A24+B8A+iVV +a.

The main challenge stems from the fact that 0 is contained in the essential spectrum
of L.
To be more precise, as in [13] we look for solution to

(1.3) R(v) = |v[F' 2w, in RV,

where v = [u[P~2u, p’ = p/(p—1) and R = (A2 + BA+iVV +a)~ ! is a resolvent-
type operator constructed by a limiting absorption principle. The advantage of
(1.3) is that it has variational structure in L* (RN) and one can use a mountain
pass theorem to construct a non-trivial solution to (1.1). Our main result is the
following.

Theorem 1.1. Let P be the Fourier symbol of the differential operator in (1.1)
without the drift term, that is, P(x) = z* — B2% + o and let

M= {¢ e RV : P(lg]) — €V = 0}.

Assume that :

(A1) there exists € € RN such that P(|€]) — £V < 0.
(A2) P'(|E)) g —V #0, for all§ € M.
(A3) If P([§]) = 0, then P([¢]) — [V]|¢] # 0.

Let p1 <p <2N/(N —4)4, where 1/0 =: 0o and

. {235_*11) if 8B|V|2 < (82 — 4a)? and B* — 4o # 3|V|¥/3,

% if 88|V |? > (8% — 4a)? or B2 — 4a = 3|V[*/3.
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Then, there exists a nontrivial solution u € WH4(RN) 0 C3*(RN) N LP(RY), for
all g € [p,o0), a € (0,1) of
A?u+ BAU+ iV VU + au = |u|P~2u, in RN,

Let us make a few comments on this theorem. First note that our problem is
rotationally symmetric with the axis of rotation parallel to V', and assumptions
(A2) and (A3) are connected with the behavior on the axis of rotation. We refer to
Remark 2.1 for necessary and sufficient conditions on «, 8, and V' that are equivalent
to (A1), (A2), and (A3).

Assumption (Al) guarantees that we are in the Helmholtz case, that is, the
symbol of the operator L changes sign, thus if removed, our main result is already
covered in the literature. Assumption (A2) implies that M is a smooth manifold,
and it is a mandatory condition for our method to work. Otherwise, P(z) has a
double root and then even the definition of the resolvent type operator would be
problematic. We remark that if (A2) is not satisfied, then either M is a single
point, or a union of two manifolds intersecting at the axis of rotation, see Figure
1 below. Note that these two manifolds might not be smooth at the intersection
point, and therefore we cannot treat them separately with our techniques. On the
other hand, (A2) is merely a point-wise condition and is satisfied generically.

The assumption (A3) allows us to control the number of non-vanishing curvatures
of M located on the axis of rotation (see the case h(t) = 0 in the proof of Proposition
2.1 below). In particular, if (A3) is not satisfied, then all principal curvatures vanish
at the axis of rotation, which leads to insufficient estimates for our purposes. Again,
(A3) is a point-wise condition, and therefore it is satisfied generically.

The upper bound ﬁ on p is related to Sobolev embedding and is natural
for our type problems. The lower bound p; is linked to the number & of principal
curvatures of M staying bounded from 0, which in turn dictates the decay of the
Green function. An interesting feature of our problem is that, depending on the
coefficients of P, k is either N — 1 (similar to the "classical" situation, where M is
a (N —1)-sphere) or N — 2. Let us remark that our method can be applied to more
general, constant coeflicient operators. More precisely, assume that the Fourier
symbol P of the operator L is real and M = {z € RY : P(x) = 0} is a non-empty,
regular, compact hypersurface with k principal curvature bounded away from 0.
Then,

L(u) = |ulP~%u in RV, N>2

admits non-trivial solution provided 2(k + 2)/k < p < 2N/(N — s)4, where s > 0
is the order of the operator. We remark that we expect our solution to decay
as |z|~%/2? at infinity, in analogy with the situation for the nonlinear Helmholtz
equation (see [24]).

Let us make some comments on the proof of Theorem 1.1. The main challenge
is to construct the resolvent type operator R = L' and to analyze its mapping
properties. To proceed, we follow the approach of Gutierrez [17], which relies on
two main ingredients. The first one is the decay of the Green function of the
operator L, which is connected with k. This can be already seen from the classical
Fourier restriction result of Littman [22] (see Theorem 2.1). To prove the decay,
we follow the framework of Mandel [23], that was developed for a periodic, second
order differential equation of Helmholtz type.

The second main ingredient is the Stein-Tomas Theorem (see Theorem 3.1 below
proved in [2]), that enables us to prove L>(F+2)/(:+49(RN) — L2(RN) estimate
on R (see Theorem 3.2 below). In the literature, this bound is achieved with
help of dyadic radial decomposition of the physical space which has radial Fourier
image (analogous to Littlewood-Paley decomposition). However, our problem is not
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radially symmetric, and to have our results applicable to more general problems,
we opted not to use rotational symmetry either.

Since in the non-symmetric case the technical difficulties arise either in physical
or Fourier space, we again chose radial dyadic decomposition in the physical space.
After applying the Stein-Tomas Theorem, we need an estimate on

3c1/4 )
1.4 max (|GL(€)|?)dr < C27 ,
(1.4 IR CERE

where G% is roughly the Green function cut-off on to the annulus Byj+1\Bgj-1.
This approach was employed in [17] and [7], in the radial case, where the dyadic
decomposition has the same symmetry as M = SV 1. In the radial case, one obtains
the left hand side of (1.4) without max, and then an application of Plancherel
Theorem led to the desired result. However, in our non-radial case, the situation is
more complicated and the Plancherel theorem, or Bernstein type inequality yields
only insufficient bound by C2™7. To prove (1.4), we work directly in the Fourier
space and we use a non-trivial cancellation properties that originate from the non-
degeneracy assumption (A2). We stress that our final bound is the same as in the
radial case, although we worked in more general setting.

To obtain the the bounds on fR as an operator between LP spaces, we use duality,
interpolation, and Riesz-Thorin theorem. Here, we observed that the radial case,
or more generally the case k = N — 1, is very degenerate, and many calculations
are simplified (see Theorem 3.3 below). Since for our main results we needed
L? — LY mapping properties of R for p’ = ¢, we focus on such case and as a
byproduct we obtained bounds on a bigger range. We also remark that the mapping
properties of R for p’ = ¢ are independent of the dimension NV, that is, they depend
only on k. Soon after posting our manuscript online, the authors of [25], posted
related Bochner-Riesz bounds for larger range of parameters p and ¢, which however
coincides with ours in the case p = ¢/. Also, the assumption on the degeneracy of
the manifold was not needed in [25]|, however it still does not seem to remove
assumption (A2) below, since M would not be a manifold.

For the proof of non-trivial solutions of (1.1) we follow the framework from
[13] and find mountain pass solutions using the dual variational formulation of
(1.3). Some caution should be exercised, since we are working with complex valued
functions, whereas [13] deals with real valued ones. With bounds on R proved in
the other sections, we can easily modify methods from the literature.

The plan of this paper is the following: in Section 2, we study the properties of
M. In particular, we give conditions on the coefficients of our equation implying
that the number of principal curvatures of M bounded away from 0 is either N — 1
or N — 2. Then, we use these properties to study the decay of the Green function
of our operator. In Section 3, we study the mapping property of the resolvent type
operator R = (A2 + BA+ivV +a)~t. Finally, we use them to construct non-trivial
solutions to (1.1) using the dual variational method.

Acknowledgement : We would like to thank Rainer Mandel and Gennady Uraltsev

for very useful and inspiring discussions.

2. DECAY ESTIMATE OF THE GREEN FUNCTION

The aim of this section is to analyse the decay of the Green function G of the
operator A% 4+ BA 4 iVV + «, that is,

A%G + BAG +iVVG + aG = &y, in RY,
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where J is the Dirac measure located at the origin. Observe that formally, applying
the Fourier transform to the previous equation, we obtain

Gle) = /RN Plen—ev"

where P(z) = 2* — B2 +a. This integral is not well defined for general P; however,
due to our assumptions on P(|¢|) — &v, we show non-trivial cancellation properties,
which allow us to prove that G is well defined and decays at infinity. As usual for
this kind of problem, we apply the "limiting absorption principle". Specifically, we
define G as a limit of approximating Green functions G, € # 0 associated with the
operator A% + BA +iVV + (a — ig), that is,

1
60 = | =

Notice that the denominator in the integral does not vanish for any ¢ # 0. It is
well-known that the decay of this integral depends only on the set of points where
P(€])—€&V = 0. More precisely, we prove that it depends on the number of non-zero
principal curvatures M. Our first result gives optimal conditions on the coefficients
of P so that the principal curvatures of M are strictly positive.

et de.

Proposition 2.1. Let P(x) = 2* — 822 + a and
M= {¢ € RY : P(lg]) — €V = 0}.
If (A1), (A2), and (A3) hold, then the following assertions are true.
[ If
(2.1) 86|V |2 < (8% — 4a)? and B% — 4o # 3|V |*/3,
then M is a regular, compact hypersurface with all principal curvatures

bounded away from 0.
o If
(2.2) 8BIV|* > (8% — 4a)? or B? — da = 3|V[*/3,
then exactly one of the principal curvature of M wvanishes on a N — 2-

dimensional set.

Remark 2.1. In this remark, we find necessary and sufficient conditions on the
coefficients of our operator to satisfy assumptions (A1), (A2), and (A3). Let
us begin with (A2). Assume by contradiction that there exists & € M such that
P’(|§\)é—‘ —V = 0. Therefore £ is a multiple of V so we set £ = %q and obtain
that q satisfies P'(q) — |V| =0, or equivalently
(2.3) 4¢° —2Bq — |V| = 0.
Since § = %q € M, then |£]* — BIE)> + a — VE = 0 and in addition to (2.3) we
have

4 2 _

¢ =B +a—|V|g=0.
Using the Fuclidean algorithm for finding the greatest common divisor of these two
polynomials, we obtain that they have a common root if and only if
(2.4) 25602 — 1280232 + 463V |2 — 27|V |* 4 16a(B* — 98|V |?) = 0.

Although, technically complicated, it is easy to verify if a given set of parameters
satisfies (2.4). Also, notice that (2.4) is a quadratic equation for |V |2.

To satisfy assumption (A1), we need P(|€]) — VE < 0 for some &, and therefore
we minimize the left hand side by choosing & = ‘—“fl|£|

[€1* = Bl + o < [V]Ig].-
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So our problem is equivalent to

4 2
[V]| > min g ofrta min g(z) .
x>0 x x>0

If a <0, then g(x) = —o0 as x — 0, and (A1) is trivially satisfied for any |V|. If
a =0, then g(0) =0, and (A1) is satisfied for any V # 0.

Finally, if o > 0, then g(x) — oo for x — oo or x — 0, then the global minimum
is also a local minimum.

Evaluating ¢'(x) = 0, we find that the mininum is attained at x solving

3zt — B2’ — «

2 =0,

T

that is, at since x > 0

B++/62+ 12

T4+ = 6

Again, since a > 0, then the only admissible root is x. Thus for a > 0 after using
3z — B2? — a =0, we find (A1) holds if and only if

V| > xi—ﬂxi—&—a _ g—xi—i—Qa.
3 Ty
Finally, (A3) holds if and only if
2 B
a#0 and —Z+a:|:|V|§7éO.

Proof of Proposition 2.1. Since P’(|§|)|§—| —V #0, for all £ € M, and P has a
superlinear growth, the implicit function theorem implies that M = {z : P(|z|) —
Vz = 0} is a smooth compact manifold. To simplify notation, we choose our
coordinate axes such that V = |V|e; and parametrize M as a surface of revolution
by € = (£1,€) € R x RN71. Since (&1,€) € M satisfy P((& +[€*)2) — [V]& =0,

by solving for ||, we obtain h (&) = |€] with h(z) = \/(P£1(|V|z))2 — 22 and

(P = PRV A2
+ 9 :

Before we proceed, let us clarify some details. Note that we choose h instead
of —h, since || > 0. Also, in general P~'(z) has four solutions, but since P is
even, they come in pairs differing by the sign. However, we only need to look
(P~1)2. Therefore it suffices to consider the two positive roots. Since we are
looking at local properties (curvatures) we can treat two connected components
(corresponding to hy and h_) separately unless they touch. This happens only
when a root of P(|¢]) — V¢ is degenerate, since otherwise M is a smooth manifold
(see Figure 1).

Since P(z) ~ z* for x large and P is bounded from below, we obtain that
P~1 ~ z'/* for z large and P~ is defined only for z > Q for some @ € R. Since
Pi'(z) > |z| for any z in the domain of h, we get that the domain of A is of the
form [Ay, By] for some Ay, By € R. Note that one or both branches might not
exist in the situations where M is connected or empty.

Thus, we can parametrize M as

My = {(t,he(t)w) :w e SV, Ay <t < Bi},
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(A) Cross section of M with one (B) Visualization of M in 3D

component
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(c¢) Degenerate case (D) M with two components

FIGURE 1. Figures (A), (C), (D) are cross sections of M with dif-
ferent parameters. Figure (B) is surface of revolution correspond-

ing to (A)
and then the principal curvatures ;, i = 1,...,N — 1, of M are given (up to a
sign) by
! 1 N -2
TN a5 t=1,... — 4
Kit) = h(t)\/hluz;)h/(t)z‘

W =N —1

Y IODECA. ’
where h stands for hy. Observe that k;, ¢ = 1,..., N — 2, are non-zero whenever
h(t) # 0.

Before discussing «n_1, let us treat the case where t is such that h(t) = 0. By
the rotational symmetry of M, we obtain that, at (£1, |€]) = (¢, h(t)) = (t,0), all
principal curvatures are the same. Therefore it suffices to prove that one of them
is non-zero. Choose a smooth curve v(&2) = (£1(£2),€2,0) € M, & € (—¢,¢) with
& (0) = 0. Such a curve exists by the rotational symmetry. If £&(0) = 0, then
~(0) € M yields P(0) — 0|V| = 0 and since P is even P’(0) = 0, a contradiction to
(A3). So, we assume &1(0) # 0.

To prove that v has nonzero curvature at 0, and therefore M has a nonzero
curvature at (£1,0), it suffices to prove that £/'(0) # 0. However, since vy C M, we
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have

P(‘(£1(€2)7£270)|) - |V|§1(§2) =0.

Differentiating implicitly twice the previous equality and substituting & = 0,
£1(0) = 0, we obtain

e , non 610 L
[VIE©) + P16 ONE Oz gy + P IO g =0
Since & (0) # 0 and V = [V]e1, we deduce from (A2) that
, £1(0) _ _
PO gy~ VI =19 - ve| _ o

Finally, since by (A3), P'(|¢1(0)]) = 0 implies P(|£1(0)]) — |V |£1(0) # 0, that is,
(£1(0),0) € M, we obtain that £/(0) # 0. Thus M has N — 1 non-vanishing
curvatures at any point (£1,0) € M.

In the rest of the proof we assume h(t) # 0. To treat ky_1, recall that

o) \/Bi NG TV ..

First, hy is a square root of a sum of two concave functions, at least one of them
strictly concave, and therefore h”(z) < 0 whenever defined. In particular we obtain
(k4)N—1 # 0.

To treat h_, we set z = |V|'/3w, e = |V|72/33, and k = (8? — 4a)|V|~*/? and
(noticing that h_ > 0 when it is defined)

VW) = VTP ho (V] Pw)
_ \/e—\/k+4w w2
— .

Recall h_(z) > 0 and notice that h” (z) = 0 if and only if
(f'(w))? = 2f" (w) f (w) ,

or equivalently

(1 +2 >2 o 2 2 fw)
w = — w).
Vk + 4w (k + 4w)3
Observe that k+ 4w = 0 corresponds to the case h(t) = 0 treated separately above.
Using the change of variables y = (k + 4w)1/ 2. the previous equality becomes

29 (228 s =a6 - (e;y - (%j’“))

Since the left hand side of (2.5) is non-negative and f(w) > 0, there are no solutions
if y > 1. Next, for g =

2 . . .
— ’1“—6, the factorization of (2.5) gives

2
3 k2 3 3k 1
—+——-y—=-——=4g9|—=-1).
211 gy g<y3 )
A multiplication by 4y? yields
16

124 Ky* = 3y" — 6ky = g (1-v°) |

and therefore

(2.6) (ky —3)?+3(1—y°) = %g(l —°).
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Hence, if g < 0 or equivalently when 83V?2 < (82 —4a)?, then (2.6) has no solution
y < 0 since the left hand side is positive and the right hand side is non-positive.
Finally when y = 1, (2.6) has a solution only if k = 3, that is, 82 — 4a = 3V*/3,
Overall, we have proved that h” # 0 provided that

(2.7) 86V2 < (B2 —40)?  and (2 —da #3VY5,

Let us remark that if (2.7) does not hold, then (2.5) has a solution. Indeed, if
(% —4a = 3V*3 then k = 3 and y = 1 is a solution of (2.5). A direct substitution
yields that f > 0 in such point if and only if e > % Also, if g > 0, then the right
hand side of (2.5) is of order g/y> and the left hand side is of order 1/y* around
zero. Let yo be the smallest positive root of the right hand side of (2.5) and notice
that yo < 1. Since the left hand side is always non-negative, by the intermediate
value theorem, there is a solution y* of (2.5). In addition, since yo < 1 was the first
zero, we have that f(w*) > 0 with w* corresponding to y*, and consequently there
is a point on M with vanishing curvature.

Finally notice that (2.6) is equivalent to a polynomial of at most fourth degree,
and therefore for any set of parameters, the set of points on M with one principal

curvature vanishing, consists of a union of at most four N — 2 dimensional surfaces.
O

Proposition (2.1) allows us to use the following Fourier restriction result proved
in [22] and [19]. We refer to [19] if k = N — 1 and [22] if f = 1.

Theorem 2.1. Let M C RN be a smooth compact and closed hypersurface with k
principal curvatures bounded away from 0. Then, for any smooth f in a neighbour-
hood of M, one has

'/M eixﬁf(f)d”HNl(f)‘ <O+ |z])°5.

Instead of considering the integral over RY, we restrict the integration domain
to M, := {& € RN : F(¢) = P(|¢]) — €V = 7}, for |7] < p sufficiently small.
Specifically, we define a cut-off function x € C§°(R) such that 0 < x < 1, supp(x) C
[—p,p] and x =1 on (—p/2, p/2). Define x(§) = x(F(£)) and consider separately

vy [ P XE) e
Gf(x)*/w Py —cv —i’

X(&) ;
G%(2) = A
W= o PUED -V 52
First, we observe that G} is the Fourier transform of a function @, with the property
that DQ € L'(RY) for any sufficiently large |y, where ~ is a multi-index. Thus,
|GL(z)| < C,|z|~! for large |7|, and therefore G! has arbitrarily (polynomial) fast
decay at infinity. To estimate G2 we use the coarea formula

e = [ XL ([ |v€;(€g)|dHNl(£)> ar = [ Mo, (ryar,

—p

where
eiw£

az(7) = ———dHN(¢).
o (7) /M,|VF<£>|dH (©)

Then, (A2) yields VF(§) # 0 for & € My. Therefore by continuity, decreasing p > 0
if necessary, we can assume that VF(¢) # 0 for any £ € My and || < p. Since F

< (C, for all ¥ > 0 and & € (0,1).
Cv&(U)

VFE(¢)

is smooth, we have in addition
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Hence, from Proposition 2.1 and Theorem 2.1, it follows that

(2:8) laa(0)] < C(1 + )%,

with

(2.9) b — N—l,%f@leM&
N —2, if (2.2) holds.

Proceeding for instance as in [23] (see [23, (43)] ), one can also show that if ¢ > 0
is small enough, then for some b > 0,

(2.10) g (t) — ap(0)] < Cto(1 + |z])~F/2.

Observe that we already obtained in (2.8) the decay of a, as a function of x. The
Holder continuity in time ¢ follows by trivial modifications from [23].
Next, we to use the following proposition

Proposition 2.2. [23, Proposition 7] Fiz A € R and p € (0,00] and assume that
a: [A=p, A+ p] = R is measurable such that |a(XA + t) — a(N)| < w(|t]) where
t — w(t)/t is integrable over (0,p). Then, for any e > 0,

Atp Ap
/ L),Ch - p.v./ a(7) dr Fira(\)
Aep T—AFic Amp T—A

&dt + (77 — 2arctan (g)) la(N)],

<[ ="
§27r</0pw§t>dt+a()\)>.

Ap
/ 7a(7') —dr
\—p T—ATFic
We have all ingredients to estimate the decay of G.

and

—p

Proposition 2.3. Assume that (A1), (A2) and (A3) hold. Let k be as in (2.9),
that is, k is the number of principal curvatures of M staying bounded away from 0.
Then, for |z| > 1,

(2.11) |G(2)] < C(1+ |z])~*2,
and, for |z| <1,

2|~ V=D i N > 4,
(2.12) |G(z)] < C( |log x|, if N =4,
1, if N < 4.

Proof. The estimate (2.12) is classical (see for example [31, Theorem 5.7]) so we
focus on (2.11), where we follow the framework from [23, Proof of Proposition 3.

By (2.10), we obtain that ya, satisfies |(xa,)(t) — (xaz)(0)| < w,(t) = Ct*(1 +
|z[)*/2 with integrable ¢ — w,(t)/t on (0, p). If we define

G%(x) = p.v. /P @am(T)dT +ima,(0),
-p
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then Proposition 2.2 with a = xa,, € =1, A =0 and (2.8), yield

Gl < |62 - [ 2| 4| [ 2
<C (/Op %t( )t + aI(0|>

o
< 0(1+\m|)*k/2/ Lt + (1 + |a]) /2
0

C(1+ |z|)~*/2.
Also, assuming that ¢ > 0, the first estimate of Proposition 2.2, and (2.8) imply

-G () < /Op \/%th(t) dt + (77 — 2arctan (g)) |a,(0)]

< C(1 4 |z])~+/?

G2 ()

2¢e
— "Mt C(1 + |2]) TR
/ —— (1-+ o) /22

< CeP(1 4 |z|)7H/?

and analogous inequality for ¢ < 0 after replacing Gi by G?. Therefore, since
b > 0, we deduce that G? converges pointwise to G2 when & — 0%.
Overall, we get

|G(2)| = limsup |G (w)| < limsup |G ()] + |GZ ()]
e—0 e—0

< limsup |G (2)] +|G2(2) = G| + |G| < C(1+ |z|) /2,
+

e—0

as desired. O

3. RESOLVENT ESTIMATE AND APPLICATION TO THE NONLINEAR HELMHOLTZ
EQUATION

In this section we investigate the boundedness of the resolvent R” =" (AZ2+3A+
iVV 4+ a)~1 as an operator from LP(RY) to L4(RY). The obtained estimates are
crucially used in the construction of solution to the nonlinear Helmholtz equation.
As in previous sections, we define R, by the limit absorption principle, that is,

Rf = lim R, f,
e—0t

where

1 ; f(&)

Rif)(x) := e'¢ —.

o) = s [ R 4 Ve T
To study the mapping properties of R, we use ideas from [17, Proof of Theorem 6]
(see also [12, Theorem 2.1] and [7, Theorem 3.3]). Our proof relies on the decay
properties of the Green function established in the previous section and on the
Stein-Tomas Theorem, which was proved in [2] and improves [29, 27]. We also refer
to [18] for an example proving that the used results are sharp in some sense.
Theorem 3.1. [2] Let 1 < p < Q(k:f and M be a smooth, closed and compact
manifold with k non-null principal curvatures. Then, there is a C > 0 such that
for all g € S(RN) the following inequality holds:

. ) 1/2
([ 19@)Pdo) " < Clgllume).
M
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Before we proceed, let us introduce some notation. Let 1) € S(RY) be a function
such that ¢ € C°(RY) satisfies 0 < 1) < 1 and

~o )1, ifdist(¢, M) < e,
W& = {0, if dist(¢, M) > 2¢4,

for some ¢; small enough detailed below. As above, define G; := (1 — ) x G and
Go:=v G and R;f = G; = f for i = 1,2. First, we obtain estimates for fR;.

Proposition 3.1. For every ¢; > 0, any p,q € (1,00) with ¢ > p and

L1 <1 ifN <4,
(3.1) S_{<1 ifN=4
Poflcs N>y

the operator Ry extends to a bounded linear operator R : LP(RN) — LI(RYN), that
is, there exists C' = C,, , such that

IR fze@yy < Cllfllr@yy -

Proof. By Proposition 2.3, we have

C min{|z[*~N, |z|~N} it N >4,
(3.2) |G1(z)| < { Cmin{l + |log |z||, |=| N} if N =4, for all x € RN\ {0} .
C min{1, |z| =N} if N <4,

1
>

Since ¢ > p, then r € <17 ﬁ), where we set a/0 = oco. Since G belongs to

Fix p,q € (1,00) as in (3.1) and assume%—%< ~ if N > 4. Set%zl—&—%—

the weak Lebsegue space L™ (RY), the Young’s convolution inequality for weak
Lebesgue spaces, (see [16, Theorem 1.4.24]) gives us

1G1* fllLaeyy < NGillprw @) fllor@yy < Cllfllr@yy

as desired. If N > 4, and % — % = %, then r < co and we proceed as above. O

In the next result we establish the crucial bound on fRs. Since v in the definition
of Gy is a Schwartz function such that ) € C>°(RY), then its convolution yields a
bounded function, and by Proposition 2.3,

(3.3) IGo(z)| < C(1+ |z|)~2 forall z € RV,

Let n € C2°(RY) be a cut-off function such that n(z) = 1 for |z| <1 and n(z) =0
if |z| > 2. For j € N we define n;(x) := n(z/27) —n(x/2?~') and no := n. Therefore,
by (3.3),

(34) Ga =) G} with G} :=Ganj so that |G5(x)| < C277% 21551 g5 (J2]),
=0

and
Goxf=> Ghxf.
j=0

Theorem 3.2. Assume that (A1), (A2), and (A3) hold and k is as in Theorem
3.1. Then, for any sufficiently small ¢; > 0 there is C > 0 such that

(3.5) G, * fllaeyy < C2772|| fll pacesas cera (mevy,
for any j > 1 and f € L2*+2)/(k+4)(RN),
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Proof. Using Plancherel’s Theorem and the coarea formula, we obtain, for f €
S(RM),

16« sy < [ max(GOP) [ ESsdotyar

Since F' is a smooth function Wlth VF # 0 on My, then by making ¢; smaller if
necessary, we may assume VF # 0 on M, for |7| < 3c;. Then, & — |[VF(£)]7! is
also smooth on M, for |7] < 3¢y and since M., for |7| sufficiently small, is smooth
closed and compact manifold with & principal curvatures bounded away from 0, the
Stein-Tomas Theorem (see Theorem 3.1) implies

) 2¢cq
1G] » £y < O swsmvisoery [ g (GO P

The coarea formula, yields

(j—1)N D(s)i (271 — 5))
Gh(g) =20~ /261 NEG) do(s)dr .

Let us define the map ¢, : M, — MO such that ¢, (w) = w + 7m(7)v(w), where
v(w) is the unit exterior normal vector to My at w and m is the smallest number
such that ¢, (w) € M,. Since M, is a level surface of F, then VF(w) = v(w), and
by Taylor theorem, for any sufficiently small c;, there is a constant ¢y such that
eyt <m(r) < cgand |m/(7)| < ¢y for any |7| < 3¢;. Thus, ¢, is a smooth bijection,
and therefore we can introduce the change of variables s = ¢,(w) and obtain

2c ~ i—1
J o(i—1N 1 1/} (@7 (W) (227 (€ = 97 (w))) wW)do (w)dr
el L. VEG ] e

where |J;(w)]| is the Jacob1an of the transformation ¢,. Using the oddness of the
function 7 — 1/7, we have

2c n R 1
Siey = oo [ L [ (G ()P~ b ()
Ga(§) =2 /0 . CEG(w)) | T (w))|
DG ()i (2 €= b (@)
VE(6_, (w))] |+ (w)|do(w)d

Next, write G; as
. . 2c1 1
Gy(6) =207D% / = / (I+ 11+ III +1V)do(w)dr
Mo

where, after omitting the argument w,

W) (6 ))in (271 (E ~ ¢r))

VF (6] Tz,
(o) (PHE — dr)) — (2L (E — 9_r)))
II = SFG)] |71,
11 = o6~ o) (e~ ra) o
and . o
IV = w(¢—f)nl(2jil(€ - ¢—T)) (|J7—| o |J—TD

IVE(¢—7)|

First we estimate I. Since 1[1 is smooth and m is bounded, by the mean value
theorem

(¢ (w)) = P(d—r (w))| < Clr (w) = $—r(w)| = Clrm(r) + Tm(~7)| < O,



14 CASTERAS, AND FOLDES

and consequently the boundedness of [VF|~! and a return to the original variables
imply

261
Z(jfl)N/ 1/ Ido(w)dr
o T JM,

N 2 N oj—1(¢ w |- (w))] o(w)dr
<o [ /M0|m(2 (€= 6 (W) 5 o (w)d

(2 — )
— 2N
=C / / |VF I = " do(s)dr

< CcPN / (2771 (€ = 2))|dz = C27N / (2771 2)|d=
RN RN
<C,

where in the last step we used that 7; is a Schwartz function and in particular
integrable.

To estimate I11 we use that |[VF|~! is smooth, and therefore we get
1
IVE(¢r(w))| IVF(
and the estimate for 711 follows as above.
Also, since ¢ is smooth and non-degenerate, then J; (proportional to V¢) is
smooth and |J(w)| > ¢ > 0 for any |7| < 3¢;. Therefore,
17 (w)| = |7 ()| < C7|J7(w)]

and the estimate for IV follows as above.
Finally, for 7, by the mean value theorem, we have

|‘<CT

(2= 600) €= o) = [ L@~ b))

1
= /71 Vi (277HE = ¢pr(w))v(w) (tm(rr) + r72m/ (r7))dr .

Then, since |m|,|m’| < C and |J;+| > ¢ > 0 for |7| < 2¢; and any |r| < 1, by
following steps above we obtain

. 201 1
2<J*1>N/ f/ IVdo(w)dr
o T JM,

<cov [ 11 / /MO V(271 € = or (w))ldor(w)drdr

1 201
JN A (93 1(e w w)|do(w)drdr
<c2 // /M V1 (2 (E — brr ()| () do (w)drd
= i N e H (29716 — s o(s)drdr
_ o // /MTTIVm(Q (€ - ))|do(s)drd

< CQJN/ / |V (2771 (€ = 2))|dzdr
—1 ]RN

< oIV /RN Vin (21 — 2))|d=

and the rest of the proof follows analogously as above with 7 replaced by V.
Overall, we showed

1G3 * fHQLZ(RN) < CQj||f\|iz<k+2>/<k+4>(RN)~
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and the proof is finished. O

Theorem 3.3. Assume that (A1), (A2), and (A3) hold and k is as in Theorem
3.1. Then, for any sufficiently small ¢y > 0 there is C = C(p,q) > 0 such that

G2 * fllLamny < Cllflle@n)
provided p and q satisfy

112
p q 24k’
1 kE+2)(N—-k—-1)1 AN + 2kN — 4 — 6k — k2
(3.6) Ly ket 2) )1 4N+ 6 ,
q kN P 2kN
9 11—
(F+2)(N-1-k1 1_ k
kN q D 2N

If p= ¢, then (3.6) reduces to q¢ > 2(k+2)
Proof. Using (3.4), for any p, 4, r € [1, 00| such that 1—1—% = %—i— %, Young inequality
gives

G * fllLary < NG3lLr @ | Fll o)
(3.7) < 2| oy

= CQJ(7§+N+%7%)”JCHL5(RN) .

Fixg>21<p< (k+2) ,and p < p, ¢ > q, and 6 € [0, 1] such that

l_g (1-6)(k+4) 1_Q+1—9

p P 2k+2) 7 ¢ ¢ 2
By substituting p = 1 and § = oo, we observe that such choice is possible if and
only if 1 > 6 > max{1 — %, %j)p(k“‘)}. Then, from the Riesz-Thorin theorem,
(3.5) and (3.7), it follows that

1G5 * flloqey) < C2j(%+9N(1_ﬁ+l_l))Hf”LP(JRN (J € Z),

which after substitution for p and ¢ becomes

1G % fll ey < o (BB 45— +9N(%—%—%))Hf||m(m) (jEZ).
Denote
2N +2+k 3 k+1 k+4
T 2N(k+2) :(2_ 2N _2(k:+2)>

Since the factor of  is positive, to make the exponent negative, we need to choose
0 as small as possible and such 6 exists if and only if

1 1 2 2 4
(3.8) A+—+(1—>B<O andA+—+( (k+2) k+ )B<O.
q p q P kp k

Then, (3.8) guarantee that

|G * fllamyy < CllfllLe @y -
To visualize (3.8) we substitute x = 1/p and y = 1/q and get

2(k +2 k+4
(k+2) +)B<O‘

T —
k k

Therefore the admissible region I' in zy-plane lies between two lines and inside the
square [0, 1] x [0, 1], see Figure 2 for sample regions.

A+y—z+(1-2y)B <0, andA+y—:v+(
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1'0j — 1.0F

0 8} — 0.8

0‘6} — 0.6

0.4} 0.4

0.2} — 0.2

0 O: — 0.0 i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(A) N =34, k=33 (B) N=34, k=29

1.0F 1.0F;

0.8 H 0.8

0.6 H 0.6

0.4 § 0.4

0.2 H 0.2

0.0 H 0.0 H
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(c) N=34, k=14 (D) N=34, k=4

FI1GURE 2. The region I' in dimension N = 34 with selected values of k

Since Gs is real, the convolution with G is self-adjoint operator, and we obtain
an estimate for the adjoint

[|G2 * f”LP/(]RN) < C“f”LQ’(RN)

whenever p < 2(:7:42) and ¢ > 2 satisfy (3.8). Noticing that if (p,q) is admissible,
then (¢/, p') is admissible as well. Equivalently, if (x, y) is admissible, then (1—y,1—
x) is admissible as well. Thus, since I" is an admissible region, then the reflection of
T, denoted I, with respect to the line z +y = 1 that lies inside the unit square is
also an admissible region. By the Riesz-Thorin theorem, we can interpolate, which
in the zy-plane means that the convex hull of I' UT” is also an admissible region.

Let us provide quantitative calculations. Using that A+ B = 1 — % and
calculating the intersections of lines, we obtain that he region I' is the quadrilateral
(see Figure 3) with the vertices

. k 4 + 6k + k? k
pP= <12N,0),Q(1,0),R (LQN)’S (4+6k+2k2’2(k+1)> '

Perhaps surprisingly S is independent of N. Since the P and R are symmetric with
respect to the line z + y = 1, then I' is a quadrilateral bounded by the vertices
P, Q,R and

;o k+2 k?
C\2(k+1)44+6k+2k2)
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0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 3. Admissible region for N = 24 and k = 12

Finally, the convex hull of ' UT” is a pentagon with the vertices P, Q, R, S, S’. The
sides of this pentagon lie on the lines

2 2 4
y =0, =1, A+y—x+( (k+2) _k+ )B:o

ET Tk
2(k +2) 2

Transforming back to p and ¢ and omitting trivial conditions p > 1 and ¢ < oo, we
obtain that

G2 * fllLamny < Cll fllLe@n)

if (3.6) is valid.

Finally, p = ¢/, is equivalent to x = 1 — y, which is the axis of symmetry of
T'UT’. Thus, any point on axis of symmetry that lies inside the square [0, 1] x [0, 1]
satisfying = —y > Hik belongs to the convex hull of ' UT”, and the last assertion
follows.

O

Finally, we use Theorem 3.2 to prove the existence of solution to the nonlinear
Helmholtz equation using the dual variational method of Evequoz and Weth [13].
The main idea of the method is to rewrite (1.1) as u = R(Ju|P~2u) and after the
substitution v = |u[?~2u, we are looking for a function v € L? (RN) satisfying

(3.9) R(v) = v 20,  inRY,
2(k+2) 2N 1,01 . . .
for == < p < 7(]\[ ) and ;7 =L Equation (3.9) admits a varia
— %)+

tional structure and solutions can be found as critical points of the functional
J e CY(LP (RN),R) defined by
1 / 1 _
J(v):H/RN |v|pdx—§/RNviRvdx,

where v is the complex conjugate of v. Note that J is real valued since G is real,
and therefore by the Plancherel theorem

/ mvdxz/ ééﬁdgz/ Glof?de .
RN RN RN

Proof of Theorem 1.1. Since p > 2, then p’ < 2 and by a standard scaling argument
(see e.g. [13, Lemma 4.2]), one can show that J has the mountain pass geometry,
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and therefore

= inf J(y(t)) > 0,
¢= inf max (v(?)

where P = {y € C([0,1], L (RY)) : ~(0) = 0 and J(y(1)) < 0} Moreover, there
exists a Palais-Smale sequence (v,) C LP (RN), that is, (v,) satisfies sup,, |J (v, )| <
oo and J'(v,) — 0in LP (RN). Since p’ < 2 as in [13, Lemma 4.2] we have that (v,,)
is bounded in L*’ (RM). In addition, since G is real, the convolution is a self-adjoint
operator, and therefore

(3.10) (;, — ;) /RN U (G * vp)dx = J(vy,) — ]%J’(vn)[vn] —c as n—oo.

Next, we show a non-vanishing property. More precisely, we prove that there
exist R > 0, ¢ > 0, and a sequence (1,,), C R such that, up to a subsequence

(3.11) / lon|? dz > ¢ for all n.
Br(zn)

First, notice that it is sufficient to prove (3.11) for sequence v,, belonging to S(RY)
the class of Schwartz function. Otherwise, we replace v, by ¥, € S(RY) with
[lon, = Onllp» < =. Arguing as in [13, proof of Theorem 3.1], we obtain that (3.10)

1
— n
holds true with v,, and ¢ replaced respectively by ¢, and ¢/2, and (3.11) holds for
vy, if we prove it for v,,. We proceed by contradiction and assume that

(3.12) lim | sup / \vn|p/d:c =0forall p>0.
B, (y)

n—oo ZJERN

The same decomposition as in the proof of Theorem 3.2 yields

(3.13) / Up Ry, = / U, G1 * vy dx +/ Uy Ga * vy d.
RN RN RN

Using the estimate (3.2) for Gy, we proceed exactly as in [13, Lemma 3.2], just
replacing N — 2 by N — 4 to show that

(3.14) / Un[G1 * vp)dz — 0 as n — oo.
RN
For fixed R =2M > 0 specified below, denote M = RN\BR and decompose
/ B0 [Ga % v = / Bul(1p, Ga) * vp]dz +/ Bnl(1a1, Ga) % U] dz.
RN RN RN

By the second half of [13, Proof of Lemma 3.4] which only uses the boundedness of
G5, we obtain

(3.15) lim Un[(1p,G2) * vy)dx =0 forany R >0.

n—oo RN

To estimate f]RN Un[(1a1,G2) * vp]dx, denote Pr = 157, G2, R > 4 and for 7; as in
the proof of Theorem 3.2, define

Pj(z) = Pg(z)n;(z), j €N, and therefore Pg = Z PI.
j=[log, R]
Notice that P/ =0 for j < M — 1 and P’ = Gg for j > M + 1, where Gg = Ganj
was defined in the proof of Theorem 3.2. Since PM can be treated as 1,7, G2 above,
we only need to estimate P/ = G for j > M + 1. By (3.3),

(3.16) P9 || poo vy < C277%2 for any  j > M +1.
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Fix any j > M and denote d = 2(}61@_:;2). Then, from (3.5) follows

1P7 % vl 2@ny < 2972 onl| La@m),
and by duality (convolution with kernel that has real fourier transform is self-
adjoint),

[P? * v || par gavy < 2j/2||UnHL2(]RN)~

Since

1—71_94—? imliesl—il_a o

s b c P s o
if 6 = %, we obtain that for (b,¢) = (d,2) that s = 2(::12). Consequently, the
Riesz-Thorin theorem yields

127 % vn| Loy < C2972|vg|

L' (RN)*
On the other hand, from Young’s inequality and (3.16) follows
|1P7 % | oo vy < C27752 || 1.z -

Since

1 1-0 6 ... 1 1-0 0
- = + — implies — = + -
P S 00 p s' 1

we obtain from the Riesz-Thorin theorem that, for any p > s and j > M,
; (k2 _k
| P *vn”LP(RN) < c21 2)HUn||Lp’(JRN)~
Notice that, by assumption, % — g < 0, so a summation with respect to j > M
implies

= k2 E
(102 G2) * vnlloeny < Cllvnll o @ry >, 2707 %)
j=M+1

Ktz g
<M 2)||Un||LP’(]RN)a

and consequently
(3.17) sup / Un[(1ar, G2) * vy ]dx z) sup ||vn\|%p/(RN) —0
neN [JRN neN

as R — oo. Thus, we have proved that if (3.12) holds then, using (3.13), (3.14),
(3.15), and (3.17),

(k+2) K
P

< c2M(

/ v RV dr — 0, as n — 0.
RN

This contradicts (3.10), and therefore (3.11) holds. Thus, denoting u,(x) = v, (x —
Zn), (up) is a bounded Palais-Smale sequence of J which weakly converges to some
u € LP (RN). By proceeding as for instance in |7, Theorem 4.1], for any R > 0 any
any smooth ¢ compactly supported in Bgr one has

‘/ (|Un,|p/72un - |um|p,72um)g0d:c
RN

T )] = T )l + [ m<un—um>¢'

< (I @)l + 17 ) DNl o vy + 1132 R (un = ) [ Lo @) |l Lo govy -

Since p < ﬁ, W' s compactly embedded in LP, and by local regularity
results (see [1, Theorem 14.1']) one has

1B Rw| e @®y) < ClllarRwllyar @yy < Crllwll L (5,
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Therefore, by compactness (R (wy, — U ))m,n converges strongly to zero as m,n — 0o
in LP. In addition, both ||J'(u,)|| and ||J’ (u.m)|| converge to zero as n,m — 0. Thus
|tn|P" ~2u,, strongly converges to |uP’~2u locally in LP. By (3.11), we have

< Up, / xr = U, ' T = U, - Uy Up AT — U ' x
< Pd P P2 d P
Br(zn) Br Br Br

as n — 0o, were we used that [u, [P ~2u, — |ul?’ ~2u strongly in LP(Bg) and u, — u
weakly in L¥' (RY). By standard arguments (see for example |7, Theorem 4.1]), we
obtain that u € L?’ (RN) is a non-trivial critical point of J. Also, by [1, Theorem
14.1'], see for example [7, Proposition 5.1]), we obtain that u € Wli’f(RN), and
therefore by (3.11), w is a nontrivial (strong) solution of (1.1).

To obtain the global estimates, we proceed as in [7, Proposition 5.2 and Theorem
5.1]. By a bootstrap argument and using again that p < ﬁ, we obtain that

u is bounded (by a function of |[ul| g~y < oo, which is bounded), for details

see |7, proof of Theorem 5.1], and consequently by interpolation, u € L?(R™M)
for any ¢ € [p,oc]. Finally, by using [28, Corollary on page 559], we obtain that
u € WH4(RN) for any ¢ € [p, o) and the Holder regularity follows from embeddings
of Sobolev into Hélder spaces.

This concludes the proof. O
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