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We investigate the stability of a statistically stationary conductive state for Rayleigh-
Bénard convection between stress-free plates that arises due to a bulk stochastic internal
heating. This setup may be seen as a generalization to a stochastic setting of the
seminal 1916 study of Lord Rayleigh. Our results indicate that stochastic forcing at
small magnitude has a stabilizing effect, while strong stochastic forcing has a destabilizing
effect. The methodology put forth in this article, which combines rigorous analysis with
careful computation, also provides an approach to hydrodynamic stability for a variety
of systems subject to a large scale stochastic forcing.
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1. Introduction

Rayleigh Bénard convection, the buoyancy driven motion of a fluid under the influence
of a gravitational field, is ubiquitous in nature. It is one of the driving forces in a variety
of situations ranging from boiling a pot of water, to geophysical processes, to pattern
formation in stellar dynamics. Yet, despite remarkable advances in mathematical, compu-
tational, and experimental analysis, fundamental aspects of Rayleigh-Bénard convection
remain poorly understood (Ahlers et al. 2009; Chillà & Schumacher 2012).

The seminal work of Lord Rayleigh (1916), inspired by the experiments of Bénard
(1900), quantified the onset of convection in terms of the instability of purely conductive
solutions of the Boussinesq equations. This work established that, when the Rayleigh
number Ra (a dimensionless parameter proportional to the boundary heating) is less
than a critical value Rac, then the purely conductive state is globally attractive.

Various modifications to Rayleigh’s original model, including alternative boundary
conditions and different sources of heat (see Goluskin (2015a) for example) have been
considered in the past century. In particular it is natural to extend Rayleigh’s stability
analysis to convective flows driven by stochastic forcing. Indeed, many sources of heat in
physical models are inherently noisy. For example, in the earth’s mantle, radioactive decay
is an important source of heating, and in large stars thermonuclear reactions destabilize
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the density gradient of convective cells; both of these processes are inherently stochastic
Schubert et al. (2001); Kippenhahn & Weigert (1994).

This work develops a methodology to investigate hydrodynamic stability for stochas-
tically driven models of Rayleigh Bénard convection in the spirit of Rayleigh’s original
analysis. Our approach relies on a combination of energy stability methods, ergodic
theory, and numerical computation. We focus here on a Boussinesq system with horizon-
tally stratified stochastic heating. Nevertheless our approach applies to a larger class of
randomly forced convective models with various physical interpretations which we will
address in future studies. The work presented here is also closely related to a line of
research by the authors on the ergodic theory and dynamical properties of stochastically
driven models for Rayleigh-Bénard convection (Földes et al. (2015); Földes et al. (2015,
2016)).

While our framework is new to the best of our knowledge, significant previous efforts
have been made to incorporate random perturbations into models of convection. In an
effort to understand the influence of thermal fluctuations, Swift & Hohenberg (1977);
Ahlers et al. (1981) considered the Boussinesq system modulated by a singular (i.e.
active at spatial frequencies) small noise in the bulk, and derived a reduced model for
describing flow statistics. This model leads to accurate predictions of the rate of heat
transfer near the onset of convection (Hohenberg & Swift (1992)), but requires stochastic
forcing stronger than the predicted thermal fluctuations.

One significant difficulty in the approach initiated in Swift & Hohenberg (1977) is
that the presence of a generic stochastic source eliminates the existence of a traditionally
defined conductive state for which the velocity field is zero. See Swift & Hohenberg
(1977); Ahlers et al. (1981); Meyer et al. (1991); Hohenberg & Swift (1992) and containing
references. For example, Venturi et al. (2012) considered the 2-dimensional Boussinesq
equations with stochastic horizontal boundary conditions, and identified a substitute
“quasi-conductive regime”, for which the velocity of solutions is non-zero but small.
Through numerical analysis, they identified that these quasi-conductive states maintain
stability for Ra ∼ 0− 4000 thus reaching beyond the classical bifurcation point of Rac =
2585.02 for the deterministic Boussinesq system with this geometry.†.

It is interesting to compare these numerical stability results with the theoretical devel-
opment of rigorous ergodic theorems for stochastically forced Navier-Stokes equations,
and related systems. For example, Hairer & Mattingly (2006, 2008) have established
that for periodic 2-dimensional Navier-Stokes equations with bulk stochastic forcing,
the system possesses a unique ergodic invariant measure provided the stochastically
forced modes satisfy a modest geometric constraint. Moreover, these results have been
extended to stochastic Boussinesq equations by the authors with various boundary
conditions and parameter constraints (Földes et al. (2015); Földes et al. (2015, 2016)).
In these contexts, the unique invariant measure is almost surely globally attractive in a
statistical sense, but when stochastic forcing is more degenerate, e.g. restricted to a single
spatial direction (horizontally stratified), and when the Rayleigh number Ra is large, the
longtime statistics are much less clear.

In contrast to the approaches described above, we observe that when the stochastic
forcing is horizontally stratified there is still a well-defined statistically stationary con-
ductive state. The existence of this state provides the starting point of our work, and our
primary goal is to investigate the onset of convection as a bifurcation from this conductive
profile. As in Rayleigh (1916), we consider only stress-free velocity boundary conditions
and fixed temperatures at the top and bottom plates. In this article we will focus only

† Note however that this is not the same framework that was considered in Rayleigh (1916).
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on a bulk stochastic heat source, but the methodology is applicable to other situations,
particularly when the stochastic perturbation appears in the boundary conditions as we
will illustrate in future work.

Our approach to this problem may be summarized as follows. We begin by observing
that the conductive state τ(t, z) (a random process dependent on the vertical spatial
variable) satisfies a linear stochastic partial differential equation for which the unique
stationary distribution can be computed explicitly. From an evolution equation for the
fluctuations about τ(t, z) we derive a constrained optimization problem which provides a
sufficient condition for decay of the fluctuations at an explicit random rate, denoted
by λ(τ(t)), which depends on the conductive state. In this way we adapted energy
method from hydrodynamic stability (Drazin & Reid 2004) to our setting, and analyze
the stability of the conductive state by solving a stochastic eigenvalue problem.

A crucial simplification both analytically an computationally follows from the
observation that the system is stable about the conductive state provided that
lim inft→∞

1
t

∫ t
0
λ(τ(s))ds > 0, almost surely. However since τ is an ergodic process

this expression is equivalent to integration of λ against the stationary law of τ . Fixing
the non-dimensional stochastic heating strength H, through the use of the Dedalus
computational package (Burns et al. 2017), we identify a critical Rayleigh number Rac
such that the above holds for any Ra 6 Rac.

Our work demonstrates that for small H the critical Rayleigh number is comparable in
value to the number obtained in Rayleigh (1916). However, we identify a rapid transition
when the non-dimensional strength of the stochastic heating H is O(1), where the critical
Rayleigh number Rac quickly decays to zero, and hence the stability of the conductive
state is no longer guaranteed for any value of Ra when H is sufficiently large.

The results are presented as follows: section 2 introduces the equations of motion, their
non-dimensionalization and while section 3 sketches the derivation of the nonlineary
stability. Section 4 discusses the numerical and algorithmic implementation of this
calculation including convergence checks and criteria. Section 5 contains the results
including sample distributions of the critical horizontal wave number. Finally in section
6 we draw some broad conclusions and discuss the potential extension of our method to
further problems where stochasticity is present in a hydrodynamic setting.

2. Equations of motion

We are interested in the three-dimensional Boussinesq equations driven by a bulk
stochastic forcing in the temperature equation:

∂ũ

∂t̃
+ ũ · ∇ũ +

1

ρ
∇p̃ = gαkT̃ + ν∆ũ, ∇ · ũ = 0 (2.1)

dT̃ +
(
ũ · ∇T̃ − κ∆T̃

)
dt̃ = γ

M∑
k=1

σkdW
k, (2.2)

where ũ = (ũ, ṽ, w̃)T is the three-dimensional velocity vector field, p̃ is the pressure, and
T̃ is the temperature field. In this model the parameters are ρ a reference density, g the
gravitational constant, α the thermal expansion coefficient, κ the thermal diffusivity, and
ν the kinematic viscosity. We are interested in a horizontally periodic box D of height

h, complemented with stress-free conditions for ũ, that is ũ ·n = 0 and ∂ũH

∂n = 0 on the
top and bottom plates where ũH is the horizontal components of the velocity parallel to
the top and bottom plates, and a prescribed temperature difference: T̃ (z = 0) = T1 > 0
and T̃ (z = h) = 0.
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The parameter γ is the strength of a mean zero stochastic term that consists of M
independent Brownian motions W k acting on M spatially orthogonal directions (in the
L2 norm) given by {σk}. Details on the mathematical setting of (2.1)-(2.2) can be found
in Földes et al. (2016) (see Da Prato & Zabczyk (1992); Kuksin & Shirikyan (2012) as
well). The limit M →∞ represents noise at all the spatial scales of the system which is
very roughly speaking the setting considered in Swift & Hohenberg (1977); Ahlers et al.
(1981); Meyer et al. (1991); Hohenberg & Swift (1992). Generically, we are interested in
stochastic forcing on physically relevant spatial scales, i.e. we will not consider forcing at
scales below a given cutoff length scale. As discussed in the introduction, we restrict the
σk to depend on the vertical coordinate z only.

2.1. Non-dimensionalization

As usual it is useful to consider (2.1)-(2.2) in dimensionless units. We non-
dimensionalize by h spatially, ν/h2 temporally, and T1 for the temperature. This
gives the following equivalent system (we use the same labels for the non-dimensional
system, modulo the “tilde”):

1

Pr

(
∂u

∂t
+ u · ∇u

)
+∇p = RakT +∆u, ∇ · u = 0, (2.3)

dT + (u · ∇T −∆T ) dt = H

M∑
k=1

σkdW
k, (2.4)

where the non-dimensional parameters are the Prandtl number Pr = ν
κ a kinematic

property of the fluid, the Rayleigh number Ra = αgT1h
3

νκ and the heating parameter
H = γ

T1

√
κh

. In these units the temperature on the bottom and the top of the box are

T (z = 0) = 1 and T (z = 1) = 0. The stress-free boundaries on the fluid velocity are as
described above namely w = ∂u

∂z = ∂v
∂z = 0 on the top and bottom boundaries.†

The Prandtl number varies greatly depending on the material properties of the fluid.
For instance in air Pr ≈ 0.7, for water Pr ≈ 7, and analysis of the earth’s mantle indicates
that Pr ≈ 1024 which is well approximated as infinity (Wang 2004, 2005, 2007, 2008;
Földes et al. 2015). The Rayleigh number, representing the strength of the boundary
driven forcing, has a wide range in applications. In particular the Rayleigh numbers of
key geophysical and astrophysical interest range from 106 to 1020.

The heating parameter H is the relative impact of the stochastic internal heating
to the boundary driven heating, weighted appropriately by the cell height and thermal
diffusivity. The parameter H also has a significant range of physically relevant values,
although not as much as the other two parameters of interest. Clearly H ∼ 0 is
realized when the boundary forcing dominates the internal stochastic heating (or γ = 0),
regardless of the cell height and thermal diffusivity of the fluid. Thus we are interested
in determining which positive, large values of H are physically viable. It is difficult to
physically compare γ relative to T1, but we do expect that the stochastic effects will be
less significant (Hohenberg & Swift (1992)), i.e. we assume that the most influential

† In our recent related works we used a different non-dimensionalization that emphasized
the role of the bulk stochastic heating over the deterministic boundary forcing. The current
non-dimensionalization is more consistent with traditional studies of Rayleigh-Bénard convection
in that H = 0 exactly recovers the original deterministic system proposed by Rayleigh (1916).

In Földes et al. (2016) we consider two ‘Rayleigh parameters’ Ra and R̃a whose product yield

the Rayleigh number in this manuscript. The reciprocal of R̃a from Földes et al. (2016) recovers
the stochastic heating number H considered here.
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Physical Setting h (m) κ (m2/s) maximal H
Earth’s mantle 106 10−7 3
Earth’s oceans 103 10−7 10

entire troposphere (Earth’s atmosphere) 104 10−5 3
convective updraft (Earth’s atmosphere) 102 10−5 3

convective zone in the sun 108 10−3 0.003

Table 1. The relevant parameters used to determine the maximal value of H, the stochastic
internal heating parameter, assuming that γ

T1
∼ 0.1 at maximum. The physically motivated

situations here are by no means exhaustive, but they do indicate a relative maximal value of H
that we may motivate physically.

noise can be is on the order of γ
T1
∼ 0.1, however this assumption is not required

of our mathematical analysis. The other two quantities κ and h are properties of the
system. Table 1 displays these values for several different physically relevant situations
wherein Rayleigh-Bénard convection is used as a first order model. The given value of
H is computed assuming that γ/T1 = 0.1, and thus may be adjusted, dependent on the
relative strengths of the stochastic forcing to the boundary forcing. From this table we
can see that H is justifiably in the range from 0 to O(10).

2.2. The conductive state in the presence of a stochastic heat source

The conductive state for (2.3)-(2.4) occurs when u = 0, but we must retain time
dependence of the temperature profile in order to modulate the forcing term. Moreover,
to maintain u = 0 the temperature field cannot be a function of the horizontal variables,
since the buoyancy term in (2.3) needs to be absorbed into the pressure gradient. Hence,

we seek a temperature field τ(z, t) that is a solution of dτ − ∂2τ

∂z2
dt = H

M∑
k=1

σkdW
k, and

satisfies the non-homogeneous boundary condition τ(z = 0) = 1 and τ(z = 1) = 0. To
completely determine the solution to the above equation, we first need to specify σk. For
the current investigation, we select σk to be the vertically dependent eigenfunctions of
the Laplace operator on the domain D, i.e. σk(z) =

√
2 sin(πkz). This specification is

convenient as it provides an ideal method to identify length scales in the forcing itself,
as given by the vertical wave-number k.

With this choice of σk, the conductive state is easily found by breaking the stochastic
partial differential equation above into its component spatial frequencies. The solution is
the sum of Orhnstein-Uhlenbeck processes:

τ(z, t) = 1− z +

∞∑
k=1

e−k
2π2tτk(0)σk(z) +H

M∑
k=1

[∫ t

0

e−k
2π2(t−s)dW k(s)

]
σk(z), (2.5)

where τk(0) is the kth coefficient of the sine series of the initial condition τ(z, 0). The
stationary distribution (see Da Prato & Zabczyk (1996)) for this conductive state is

τ̃(z) = 1− z +

M∑
k=1

γkσk(z), where the γk are normally distributed with mean 0 and

variance H2

2k2π2 , i.e. γk ∼ N
(

0, H2

2k2π2

)
. We first note that this simple solution is ergodic,

and in fact the stationary distribution of the conductive profile is simply the deterministic
conductive state plus mean zero stochastic fluctuations.
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3. Nonlinear stability of the conductive state

As the conductive state in this context is time dependent, we will not consider linear
stability but will focus entirely on nonlinear stability via the energy method (see Drazin
& Reid (2004) and Goluskin (2015a,b) for example). To this end we decompose the
temperature field as T (x, y, z, t) = τ(z, t) + θ(x, y, z, t) so that (2.3)–(2.4) becomes

1

Pr

(
∂u

∂t
+ u · ∇u

)
+∇p̃ = Rakθ +∆u,

∂θ

∂t
+ u · ∇θ + w

∂τ

∂z
= ∆θ,

where the pressure term p̃ has been modified to absorb the buoyancy term from the
conductive profile τ . Note that this system is stochastic only through the presence of τ .
We compute the evolution of the energy (L2 norm of θ and u) as

1

2

d

dt

(
‖θ‖2 +

1

Pr Ra
‖u‖2

)
= −Q(u, θ, τ), (3.1)

where Q(u, θ, τ) = ‖∇θ‖2 +
1

Ra
‖∇u‖2 +

∫
D
wθ

(
∂τ

∂z
− 1

)
dx, (3.2)

and we define the L2 norm as ‖f‖2 =
∫
D |f |

2dx.
For fixed τ , Q is a quadratic form in u and θ, and following the energy stability method

(Drazin & Reid 2004) we consider λ(τ) = min
u,θ

Q(u, θ, τ)

‖θ‖2 + (PrRa)−1‖u‖2
, which is a random

quantity depending on the parameters Pr, Ra, and H. The evolution of the energy (3.1)
then shows that τ̃ from the stationary distribution is the unique statistically steady state
of (2.3)-(2.4) provided lim inft→∞

1
t

∫ t
0
λ(τ(s))ds > 0 almost surely, independent of the

initial condition. Invoking geometric ergodicity (Da Prato & Zabczyk 1996) we have that

limt→∞
1
t

∫ t
0
λ(τ(s))ds = Eλ(τ̃), where τ̃ is the stationary distribution of the conductive

state and E denotes the statistical mean.
We will consider a range of physically plausible values of H and for each value,

determine a ‘critical’ Ra so that Eλ(τ̃) = 0. Any Ra below this critical value will guarantee
stability of the system as we will demonstrate rigorously in future work.

3.1. Comparison to a deterministic system

As a rough comparison of the effect of stochastic and deterministic forcing, we will
contrast the calculated critical Rayleigh number Rac with one that arises from in-
serting a deterministic forcing of the same magnitude. That is, we replace (2.4) with

∂T

∂t
+ u · ∇T −∆T = H̃

M∑
k=1

σk, where H̃ = γ
√
h

T1κ
is the proper non-dimensional measure

of a deterministic bulk heating. In what follows, we use only these non-dimensional
versions of the deterministic and stochastic problems, and make a comparison as if
H = H̃.

4. Algorithmic description

The computation of the marginally stable parameters is performed in the following
fashion. This is a root-finding problem where the Prandtl Pr and stochastic heating
H numbers are fixed parameters, and the Rayleigh number Ra is the independent
variable. We approximate Eλ(τ̃) from a sample mean, and seek Rac so that λ̂(Rac) = 0,
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where λ̂(Ra) = 1
N
∑N
i=1 λ(τ̃k), and each τ̃k is drawn from the independent, identically

distributed distribution defined by the stationary distribution of the conductive state.
The number of samples N is a parameter at the discretion of the user. Due to numerical
considerations, we seek Rac such that |λ̂(Rac)| 6 ε, where ε is an additional user
prescribed parameter.

For each realization τ̃k of the stationary distribution, we consider the Euler-Lagrange
equations for the minimization principle of λ(τ) and identify λ(τ̃k) as the solution of a
one-dimensional eigenvalue problem which is solved numerically via the Dedalus software
package (Burns et al. 2017). Starting with the Euler-Lagrange equations for λ(τ), we take
the curl of the corresponding momentum equation twice, and apply the horizontal Fourier
transform to arrive at the system of equations

− λ

Pr Ra

(
∂2zz −m2

)
ŵm =

1

Ra

(
∂2zz −m2

)2
ŵm +

1

2
(∂zτ − 1)m2θ̂m, (4.1)

λθ̂m = −
(
∂2zz −m2

)
θ̂m +

1

2
(∂zτ − 1) ŵm, (4.2)

where the ·̂m denotes the Fourier terms corresponding to the horizontal wavenumber with
magnitude m. The system also satisfies the boundary conditions:

ŵm(0) = ŵm(1) = ∂2zzŵm(0) = ∂2zzŵm(1) = 0, θ̂m(0) = θ̂m(1) = 0, (4.3)

for stress-free boundaries.
The numerical implementation of this calculation uses the bisection root finding

method on λ̂ to locate Rac for each specified value of Pr and H, taking previously
computed values as an initial guess. This leads to the following parameters in the
algorithm that must be selected.

(i) Forced modes. We chose M = 8 for the reported results meaning that the first 8
vertical modes are forced stochastically. Although not shown here, these results qualita-
tively compare with cases where the forcing is selected as a subset of the first 8 modes.

(ii) Sample size. We choose N = 192 Monte Carlo generated samples to compute λ̂.
As a control, similar calculations were carried out for N = 384, but the change in Rac
was less than 5% in all cases.

(iii) Level of discretization. We chose to discretize the eigenvalue problem with Nz = 64
vertical Chebyshev modes. Results held true up to 6 significant digits for Nz = 128 as
long as the highest forced mode was less than 8, i.e. M 6 8.

(iv) Absolute error. As the algorithm is searching for the root of a highly nonlinear
function, we must specify a tolerance for finding that root. Using ε = 10−3 allows for
a determination of Rac at H = 0 that is accurate up to 8 significant digits. We select
ε = 10−3 for the results reported here. Using ε = 10−2 resulted in differences of Rac of
less than 10%.

5. Results

The value of the critical Rayleigh number for the stochastic and deterministic systems,
normalized by the critical Rayleigh number Ra∗c for (2.4) with H = 0, are plotted in
Figure 1. Note that for H small, Rac is larger than the critical Rayleigh number in
the deterministic case, indicating that the stochastic forcing has a stabilizing effect at
small values of H. In contrast, once H exceeds O(1), Rac quickly drops to zero, and
the stochastic term is destabilizing. For H > O(10) the conductive state is completely
destabilized. Qualitatively the same picture emerges when a different number of modes
are forced or the Prandtl number is varied. More details will appear in a future study.
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Figure 1. The normalized (by the critical value
when H = 0) critical Rayleigh number for
a prescribed relative strength of the internal
heating H for both a purely deterministic
(supposing that H̃ = H), and a stochastic
setting. The Prandtl number is 1 here, and
the first 8 vertical modes are forced in both
the deterministic and stochastic problems. In
addition, N = 192 samples are used for the
stochastic problem, Nz = 64 Chebyshev modes
are used in the eigenvalue solver, and the
tolerance is set to ε = 10−3.

To fully investigate the transition
from the conductive to the convective
regime, we consider the distribution of
the growth factors λ from the 192
samples for each value of H at the
transitional value of Ra = Rac. A few
representative histograms demonstrating
this information are presented in Figure
2. We have chosen these particular values
of H as they represent different qualitative
regions in Figure 1. We prove in a follow
up study that the maximal positive value
of λ is bounded above uniformly in H,
and that the variance of λ is increasing
with H for fixed Ra. For H . 2.5, the
variance is small and the distribution of
λ is approximately Gaussian. For H ∈
(2.5, 6) with Ra fixed, as the variance
of λ increases, there is a noticeable
transition where a significant bulk of the
distribution nears the upper bound, which
is independent of H. This causes the mean of λ to decrease, and results in a negatively
skewed distribution. This skew is clearly visible in the lower plots of Figure 2. In order
to maintain the mean zero stability condition, Rac must be lowered, becoming negligibly
small for large values of H. This transition is more pronounced in the stochastic setting
than in the deterministic case due to this particular distribution of the growth factor λ.
In the deterministic case, the solution to the eigenvalue problem reveals that λ decreases
steadily with H for fixed Ra, and the corresponding decrease in Ra to maintain λ = 0 is
similarly steady.

A linear stability analysis of the deterministic system shows that there is a gap between
the onset of instability and guaranteed nonlinear stability, indicating the potential
for subcritical convection (see Busse (2014) for example) to occur in this parameter
regime. Although linear stability is not available for (2.4), preliminary direct numerical
simulations indicate that a similar gap appears between the guaranteed stability region,
and the onset of convection in the stochastic system. These simulations indicate that the
linear instability occurs for Ra > Rac, but we have not yet verified whether subcriticality
arises in this setting.

6. Conclusions and stability of generic stochastically driven
hydrodynamic systems

We have investigated the nonlinear stability of a convective system with additive
stochastic white noise on the first 8 vertical modes of the system. When the stochas-
tic heating is weak, it has a relatively stabilizing effect, then transitions to strongly
destabilizing as the strength of the noise increases. This is an effect of the distribution
of the growth factor λ and its dependence on the strength of the stochastic heating.

The results discussed above have demonstrated the need to better quantify the role
that stochasticity plays in physically relevant fluid systems. If the internal heat source
were modeled as a deterministic bulk forcing, then as described above, the stability of the
resultant conductive state would be very different, particularly for the physically relevant
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setting of H = o(1). This implies that at least in this idealized convective setting, if there
is an inherently noisy source, we will miss some of the fundamental physics by modeling
the system in a purely deterministic fashion. We are not claiming here that the precise
nature of the noise we have chosen is the ‘best’ way to model noisy convection, but we do
insist that accounting for noise in such physical systems is necessary to achieve physically
realistic results.
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Figure 2. Histograms of the growth factor
λ from which the critical Rayleigh number
is calculated at H = 1.761, Rac = 650.08
(top left), H = 2.6017, Rac = 591.9 (top
middle), H = 3.555, Rac = 497.27 (top right),
H = 4.493, Rac = 353.06 (bottom left),
H = 6.1395, Rac = 162.787 (bottom middle),
and H = 9.0704, Rac = 36.664 (bottom right).
Note that the differences in scale for each of
these histograms. This data is collected for
Pr = 1 and M = 8.

Further considerations of the onset of
convection in such stochastic settings are
natural extensions of the current work. For
instance, is there an analogue of the finite
amplitude equations in this context, and if
so, is their derivation and application the
same or similar? Do coherent structures
such as the roll-states present in low
Rayleigh number deterministic convection
exist in the stochastic setting, and if so are
they defined only in a mean sense? If such
structures exist, can similar statements be
made regarding their stability, or does the
stochastic nature of the problem preclude
the utility of such investigations? Further
analysis and computation is required to
answer these questions, and ascertain the
influence that noise can play in fully
developed turbulent convection.

The methodology developed in this
article applies not only to Rayleigh-
Bénard convection under these constraints (stress-free boundaries etc.) considered here,
but is applicable to any hydrodynamic system driven by a stochastic forcing where a
basic (time dependent) state still exists. In particular, we can extend this approach
to convection in the presence of a stochastically forced boundary condition on the
temperature and to Couette shear flow, both of which will appear in a forthcoming
article.
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10 J. Földes, N. Glatt-Holtz, G. Richards and J. P. Whitehead

Bénard, H. 1900 Les Tourbillons cellulaires dans une nappe liquide. Revue génórale des Sciences
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