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Abstract. In this note we establish existence and uniqueness of weak solutions of linear elliptic
equation div[A(x)∇u] = divF(x), where the matrix A is just measurable and its skew-symmetric
part can be unbounded. Global reverse Hölder’s regularity estimates for gradients of weak solu-
tions are also obtained. Most importantly, we show, by providing an example, that boundedness
and ellipticity of A is not sufficient for higher integrability estimates even when the symmetric part
of A is the identity matrix. In addition, the example also shows the necessity of the dependence
of α in the Hölder Cα-regularity theory on the BMO-semi norm of the skew-symmetric part of
A. The paper is an extension of classical results obtained by N. G. Meyers (1963) in which the
skew-symmetric part of A is assumed to be zero.

1. Introduction

Let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary ∂Ω. Let A : Ω → Rn×n be
a given measurable matrix, and F : Ω → Rn be a given measurable vector field. In this note, we
study the linear elliptic problem

(1.1)
{ div[A(x)∇u(x)] = div F(x), in Ω,

u = 0, on ∂Ω ,

where the coefficient matrix A(x) could be non-symmetric and singular. Specifically, we write
A(x) = a(x) + d(x), where a = (ai j)n×n is a symmetric and d = (di j)n×n a skew-symmetric part of
A, that is, ai j = a ji and di j = −d ji for all i, j ∈ {1, 2, · · · , n}. We assume that a is uniformly elliptic
and bounded, meaning that there exists a constant Λ > 0 such that

(1.2) Λ|ξ|2 ≤ 〈a(x)ξ, ξ〉, |a(x)| ≤ Λ−1, ∀ ξ ∈ Rn, for a.e. x ∈ Ω.

However, the skew-symmetric part d : Rn → Rn×n is only in the Jonh-Nirenberg BMO-space, and
therefore d can be unbounded. Precisely, we assume that

(1.3) [[d]]BMO = sup
?

Bρ(x)
|d(y) − dBρ(x)|dy, x ∈ Rn, ρ > 0

 < ∞,
where

(1.4) dBρ(x) =

?
Bρ(x)

d(y)dy

is the average of d over the ball Bρ(x). Observe that the differential equations in (1.1) can be
formally written as an elliptic equation with drift (or advection term)

(1.5) div[a(x)∇u] + b · ∇u = div[F(x)],
1
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where the vector field b is defined by

bk(x) =

n∑
l=1

∂dkl(x)
∂xl

.

Since (dkl) is skew-symmetric, the vector field b is divergence-free. Due to the interests from
many problems in fluid mechanics, biology, and probability, the class of equation (1.5) has at-
tracted great attention, see for example [3, 9, 10, 11, 14, 15, 16, 17, 18].

The first result of this paper extends the classical results established in [13] to the equations
(1.1) and (1.5).

Theorem 1.1. Let Λ > 0 and assume that A satisfies (1.2)-(1.3). Then, for every F ∈ L2(Ω), there
exists a unique weak solution u ∈ W1,2

0 (Ω) of (1.1), that satisfies

(1.6)
∫

Ω

|∇u(x)|2dx ≤ C(Λ, [[d]]BMO)
∫

Ω

|F(x)|2dx.

Moreover, there exists ε0 > 0 depending only on Λ, n,Ω, and [[d]]BMO such that if u is a weak
solution of (1.1) and F ∈ Lp(Ω) for some p ∈ [2, 2 + ε0], then

(1.7) ‖∇u‖Lp(Ω) ≤ C(Λ, n,Ω, p, [[d]]BMO) ‖F‖Lp(Ω) .

Our result is new, since coefficients of A can be unbounded as the skew-symmetric part d is
only assumed to be in the John-Nirenberg BMO space. Note that the type of estimate (1.7) is
usually called reverse Hölder’s estimate and is very important in may contexts, see e.g. [5, 6, 7, 8,
17]. The bound (1.7) was first established in [13] for elliptic and bounded matrix A, i.e. d is also
bounded. Our result is a natural extension of [13], which covers an important class of equation
(1.5). Note also that in [17] were proved interior estimates analogous to (1.7) for a parabolic
version of (1.5). See also [3] and [10] for other similar and related results regarding the equations
(1.1) and (1.5). In comparison our result also yields bounds up to the boundary and with nontrivial
right hand side.

Our next theorem is the main contribution of this paper. This theorem shows that the depen-
dence of ε0 defined in Theorem 1.1 on [[d]]BMO is in general necessary. Moreover, this theorem
also shows the nonlinear dependence of α on [[d]]BMO in the Cα-regularity estimates established
in [17].

Theorem 1.2. Let µ ∈ (0, 1), there exists a measurable function d : R2 → R with ‖d‖L∞(R2) =
π(1−µ2)

2µ , and there is a weak solution u ∈ W1,2(B1) of

div[A(x)∇u] = 0, in B1

such that ∇u < Lp(B1/2) for p ≥ 2
1−µ and u < Cα(B1/2) for α ≥ µ, where

A(x) =

(
1 0
0 1

)
+

(
0 d(x)
−d(x) 0

)
, x ∈ R2,

and Bρ ⊂ R2 denotes the ball of radius ρ > 0 centered at the origin.

We emphasize again that Theorem 1.2 also shows the nonlinear dependence of ε0 defined in
Theorem 1.1 on the [[d]]BMO. In particular, Theorem 1.2 shows that the regularity estimate (1.7)
fails to hold for arbitrary large p > 2, even when the symmetric part of A is the identity matrix
and the skew-symmetric part is bounded. In addition, Theorem 1.2 also shows that local Cα-norm
of the solution is not bounded for any α > 0 if [[d]]BMO is sufficiently large, showing that the
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dependence of α on [[d]]BMO cannot be in general removed in [17, Lemma 2.9]. Observe that
an analogous example is also provided in [13], for non-smooth bounded symmetric part of A
and trival skew-symmetric part. In comparison our example deals with problems with smooth
diffusion and singular, divergence free drifts. The two examples demonstrate that both [[d]]BMO
and [[a]]BMO of [[A]]BMO are have to be sufficiently small for establishing Calderón-Zydmund
type estimates for weak solutions of (1.1) and (1.5), see [15, 16].

In the rest of the paper we prove Theorems 1.1-1.2. The proof of theorem 1.1 is given in
Section 2, and the proof of Theorem 1.2 is provided in Section 3.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is quite standard and it could be known by experts. We provide it
here for completeness. We need several lemmas. We first recall two classical analysis lemmas
that are needed in the proof. The first lemma is a Poincaré-Sobolev inequality, whose proof can
be found in [1, p. 13].

Lemma 2.1 (Poincaré-Sobolev inequality). Let Ω ⊂ Rn be a Lipschitz domain, µ ∈ [1, 2], and let
λ > 0 be such that

n
(

1
λ
−

1
µ

)
+ 1 ≥ 0.

If u ∈ W1,2
0 (Ω), then for every r > 0, x0 ∈ Ω(∫

Ωr(x0)
|u(x) − (u)Br(x0)|

λ

)1/λ

≤ C(n)rn
(

1
λ−

1
µ

)
+1

(∫
Ω4r/3(x0)

|∇u|µdx
)1/µ

,

where

(2.1) (u)Br(x) =

{ >
Br(x) u(y)dy, if Br(x) ⊂ Ω,

0 if Br(x) ∩ (Rn \Ω) , ∅.

In the next lemma, we denote Qr(x0) a cube in Rn with edge of length 2r > 0, centered x0 ∈ R
n.

The following Gehring-type estimate is due to M. Giaquinta and G. Modica [6] and the following
statement is proved in [1, Theorem 1.10, p. 25], see also [5, Proposition 1.1, p. 122].

Lemma 2.2 (Gehring type estimate). Fix Q a bounded cube in Rn, 1 < q < l, and let f , g be
non-negative functions such that g ∈ Lq(Q) and f ∈ Ll(Q). Assume that there exists b > 1 such
that ?

Qr(x0)
gqdx ≤ b

[(?
Q2r(x0)

gdx
)q

+

?
Q2r(x0)

f qdx
]

for each Qr(x0) so that Q2r(x0) ⊂ Q. Then, there exists ε = ε(q, n, b) > 0 such that for every
p ∈ [q, q + min{l − q, ε}), there is C = C(q, n, b, p) such that(?

Qr

gpdx
)1/p

≤ C

(?
Q2r

gqdx
)1/q

+

(?
Q2r

f pdx
)1/p ,

for each cube Qr satisfying Q2r ⊂ Q.

Next, for each x ∈ Ω, and each r > 0, we write Br(x) the open ball in Rn with radius r and
centered at x. Moreover, we write

Ωr(x) = Br(x) ∩Ω.

In the next lemma, we establish Caccioppoli-type estimates for weak solutions of (1.1).
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Lemma 2.3 (Caccioppoli type inequality). Fix s ∈ (1, 2), Λ > 0, Ω ⊂ Rn and assume that the
n × n matrix A satisfies (1.2)-(1.3). Then, there is a constant C depending only on Λ, s, and n
such that for any weak solution u of (1.1), any r > 0 and x0 ∈ Ω, one has∫

Ωr(x0)
|∇û|2dx ≤ C(Λ, n, s)

r 2n
s′ −2

[
[[d]]2

BMO + 1
] {∫

Ω3r/2(x0)
|û|

2s
2−s dx

} 2−s
s

+

∫
Ω3r/2(x0)

|F(x)|2dx

 .
where s′ = s

s−1 and û = u − (u)Br(x0) with (u)Br(x0) is defined in (2.1).

Proof. Without loss of generality, we assume that x0 = 0. We also write Ωr = Ωr(0) and Br =

Br(0). Let ϕ ∈ C∞0 (B3r/2, [0, 1]) be a cut-off function with ϕ = 1 on Br and |∇ϕ| ≤ 2
r . Note that if

B3r/2 ∩ (Rn \Ω) , ∅, then (u)B3r/2 = 0, and therefore

û = u = 0 on B3r/2 ∩ ∂Ω.

By using ûϕ2 as a test function, we obtain∫
Ω3r/2

〈a∇û,∇û〉ϕ2dx = −2
∫

Ω3r/2

〈a∇û,∇ϕ〉ϕûdx −
∫

Ω3r/2

〈d∇û,∇û〉ϕ2dx

−

∫
Ω3r/2

〈d∇û,∇(ϕ2)〉ûdx +

∫
Ω3r/2

F(x) · [ϕ2∇û + 2ϕû∇ϕ]dx.

Since d = −d∗, we have

〈d∇û,∇û〉 = 0,
∫

Ω3r/2

〈dB2r(0)∇û,∇(ϕ2)〉ûdx = 0 ,

where dB2r(0) is the average of d defined in (1.4). Note that the first equality is direct consequence
of skew-symmetry and the other follows after two integrations by parts. From this, (1.2), and
Young’s inequality, we obtain

Λ

∫
Ω3r/2

|∇û|2ϕ2dx ≤ 2Λ−1
∫

Ω3r/2

|∇û||∇ϕ|ϕ|û|dx + 2
∫

Ω3r/2

|d − d̄B3r/2 ||∇û||∇ϕ|ϕ|û|dx

+

∫
Ω3r/2

|F|[ϕ2|∇û| + 2|∇ϕ||û|ϕ]dx

≤
Λ

2

∫
Ω3r/2

|∇û|2ϕ2dx + C(Λ)
∫

Ω3r/2

[
|F|2ϕ2 + |∇ϕ|2û2

]
dx

+ C(Λ)
∫

Ω3r/2

|d − d̄B3r/2 |
2|∇ϕ|2|û|2dx.

Therefore,

(2.2)
∫

Ω3r/2

|∇û|2ϕ2dx ≤ C(Λ)
[

1
r2

∫
Ω3r/2

[
|d − d̄B3r/2 |

2 + 1
]
|û|2dx +

∫
Ω3r/2

|F|2dx
]
.

We now control the first term on the right hand side of (2.2). Recall that Ω is a Lipschitz domain,
there exists a constant A such that

|Ωρ(x)| ≥ A|Bρ(x)|, ∀ρ > 0, ∀ x ∈ Ω.
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Then, for s ∈ (1, 2), and with s′ = s/(s − 1), Hölder’s inequality yields∫
Ω3r/2

|d − d̄B2r |
2|û|2dx ≤ C(n)r

2n
s′

{?
B3r/2

|d(x) − d̄B2r |
s′dx

} 2
s′

{∫
Ω3r/2

|û|
2s

2−s dx
} 2−s

s

≤ C(n)r
2n
s′ [[d]]2

BMO

{∫
Ω3r/2

|û|
s

2−s dx
} 2−s

s

.

Moreover, since ∫
Ω3r/2

|û|2dx ≤ C(n)r
2n
s′

{∫
Ω3r/2

|û|
2s

2−s dx
} 2−s

s

,

it follows from the last two estimates and (2.2) that∫
Ω3r/2

|∇u|2ϕ2dx ≤ C(Λ, n, s)

r 2n
s′ −2

[
[[d]]2

BMO + 1
] {∫

Ω3r/2

|û|
2s

2−s dx
} 2−s

s

+

∫
Ω3r/2

|F|2ϕ2dx

 ,
and the proof is complete. �

Lemma 2.4 (Reverse Hölder’s inequality). For µ ∈
(

2n
n+2 , 2

)
, there exists a constant C = C(Λ, n, µ)

such that for every x0 ∈ Ω and every r > 0, we have∫
Ωr(x0)

|∇û|2dx ≤ C

rn
(
1− 2

µ

)[
[[d]]2

BMO + 1
] (∫

Ω2r(x0)
|∇û|µ

)2/µ

+

∫
Ω2r(x0)

|F(x)|2dx

 .
Proof. Since µ ∈

(
2n

n+2 , 2
)
, we can choose s ∈ (1, 2) such that λ = 2s

2−s satisfies

n
(

1
λ
−

1
µ

)
+ 1 ≥ 0.

Then, it follows from Poincaré - Sobolev’s inequality, Lemma 2.1, that(∫
Ω3r/2

|û|λdx
)1/λ

≤ C(n, µ)r
n
(

1
λ−

1
µ

)
+1

(∫
Ω2r

|∇û|µ
)1/µ

.

Therefore, Lemma 2.3 implies∫
Ωr

|∇û|2dx ≤ C(Λ, n, s)

r2n
(

1
s′ +

1
λ−

1
µ

)[
[[d]]2

BMO + 1
] (∫

Ω2r

|∇û|µ
)2/µ

+

∫
Ω2r

|F(x)|2dx


= C(Λ, n, s)

rn
(
1− 2

µ

)[
[[d]]2

BMO + 1
] (∫

Ω2r

|∇û|µ
)2/µ

+

∫
Ω2r

|F(x)|2dx

 .
The proof is then complete. �

Proof of Theorem 1.1. We start with proving the existence and uniqueness of the weak solution
of (1.1). To this end, we define the bilinear form

B(u, v) =

∫
Ω

〈A(x)∇u,∇v〉dx, u, v ∈ W1,2
0 (Ω),

and prove that it is coercive and bounded. First of all, note that by the ellipticity condition (1.2)
and the fact that d is skew-symmetric, we see that

B(u, u) ≥ Λ ‖∇u‖2L2(Ω) , ∀ u ∈ W1,2
0 (Ω).



6 JURAJ FÖLDES AND TUOC PHAN

Hence, B is coercive. On the other hand, since d = (di j)n×n skew-symmetric, and it is in BMO, it
follows from [2] and [4] (see also [12]) that∣∣∣∣∣∫

Ω

〈d∇u,∇v〉dx
∣∣∣∣∣ ≤ C(n, [[d]]BMO) ‖∇u‖L2(Ω) ‖∇u‖L2(Ω) , ∀ u, v ∈ W1,2

0 (Ω).

This together with (1.2) imply that

|B(u, v)| ≤ C(n,Λ, [[d]]BMO) ‖∇u‖L2(Ω) ‖∇u‖L2(Ω) , ∀ u, v ∈ W1,2
0 (Ω).

This gives the boundedness of B. Therefore, the existence, uniqueness of weak solution of (1.1),
and the estimate (1.6) follow from the Lax-Milgram theorem.

It now remains to prove (1.7). Let us cover Ω with a finite number of balls

Ω ⊂

 m0⋃
k=1

Bρk (xk)

 ∪
 l0⋃

k=1

Bµk (yk)

 ,
where ρk > 0, xk ∈ ∂Ω for all k = 1, 2, · · ·m0 and

µl > 0, B3µl(yl) ⊂ Ω, ∀ l = 1, 2, · · · , l0.

Now, for each k = 1, 2, · · · , l0, it follows from Lemma 2.4 that

(2.3)
?

Br

|∇û|2dx ≤ C

[[[d]]2
BMO + 1

] (?
B2r

|∇û|µ
)2/µ

+

?
B2r

|F(x)|2dx

 ,
for all Br = Br(x) ⊂ Bµk (yk). Note that for any R > 0 and any z0 ∈ R

n, the following inclusions
are obvious

BR(z0) ⊂ QR(z0) ⊂ BR
√

n(z0).

Therefore, we can rewrite (2.3) with cubes on the left- and right-hand sides with fixed ration of
lengths of edges. Thus, we can apply Lemma 2.2 to find εk > 0 such that with p ∈ [2, 2 + εk],

(2.4)

?
Bρk (yk)

|∇û|pdx

1/p

≤ C


?

B2ρk (yk)
|∇û|2

1/2

+

?
B2ρk (yk)

|F(x)|pdx

1/p .
Now, for k = 1, 2, · · · ,m0, we consider the ball Bρk (xk). Note that since xk ∈ ∂Ω and Ω is
Lipschitz, we have

(2.5)
∣∣∣∣Br(xk) ∩ (Rn \Ω)

∣∣∣∣ ≥ crn.

Note also (u)B3r/2(xk) = 0, and therefore u = û. By extending F, û to be zero outside of Ω, we can
see that u ∈ H1

0(Rn). Moreover, from Lemma 2.4 and (2.5), we also obtain?
Br

|∇û|2dx ≤ C

[[[d]]2
BMO + 1

] (?
B2r

|∇û|µ
)2/µ

+

?
B2r

|F(x)|2dx

 ,
for all Br = Br(x) ⊂ Bρk (xk). As before, we can apply the Lemma 2.2 again. Hence, there exists
δk > 0 such that for all p ∈ [2, 2 + δk], the following estimate holds?

Bµk (xk)
|∇û|pdx

1/p

≤ C


?

B2µk (xk)
|∇û|2

1/2

+

?
B2µk (xk)

|F(x)|pdx

1/p .
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This implies

(2.6)

?
Ωρk (xk)

|∇û|pdx

1/p

≤ C


?

Ω2ρk (xk)
|∇û|2

1/2

+

?
Ω2ρk (xk)

|F(x)|pdx

1/p .
By taking ε = min{δk, εl, k = 1, 2, · · · ,m0, l = 1, 2, · · · , l0}, we see that Theorem 1.1 follows from
the estimates (1.6), (2.4), and (2.6). The proof is therefore complete. �

3. Proof of Theorem 1.2

This section provides an example showing that ellipticity condition and boundedness of A is
not sufficient for (1.7) for large p > 2, even when the symmetric part of A is the identity matrix.
Our construction is partly motivated by a famous work [13], in which the symmetric part of A is
bounded (but not continuous) and the skew-symmetric part is identically zero. In our example,
the symmetric part of A is the identity matrix, but the skew-symmetric part is not continuous.

For any fixed µ ∈ R \ {0}, we define

(3.1) D(x, y) =

(
0 d(x, y)

−d(x, y) 0

)
with d(x, y) = Cµ

arctan
(

y
x

)
x , 0,

π
2 sgn(y) x = 0 ,

where Cµ =
µ2−1
µ , 0 for µ , ±1. Moreover, let

A(x) = I2 + D(x) =

(
1 d(x, y)

−d(x, y) 1

)
.

Note that D is skew-symmetric and the matrix A is uniformly elliptic as

(3.2) 〈A(x, y)ξ, ξ〉 = |ξ|2, ∀ ξ ∈ R2, for all a.e.(x, y) ∈ R2.

Furthermore, since arc-tangent is bounded smooth function, the matrix A has bounded coefficients
which are smooth away from the y-axis: Y = {(0, y) : y ∈ R}. Note also that d cannot be extended
as a continuous function to Y for µ , ±1, that is, Cµ , 0 since

(3.3) lim
x→0+

d(x, y) =
Cµπ

2
sgn(y) , −

Cµπ

2
sgn(y) = lim

x→0−
d(x, y) .

We also remark that d is bounded with ‖d‖L∞(R2) =
π|1−µ2 |

2µ , and thus d is a BMO-function.
Let B1 be the unit ball in R2 centered at the origin. We consider the following elliptic equation

(3.4) Lu := div(A(x, y)∇u) = 0 in B1.

We show that for each µ ∈ (0, 1) the function u(x, y) = x(x2 + y2)
µ−1

2 is a weak solution of Lu = 0.
First note that u is smooth in R \ {0} and d is smooth on R2 \ Y . Then on R2 \ Y

Lu = ∆u + (duy)x − (dux)y = ∆u + dxuy − dyux .(3.5)

Using the polar coordinates we have

Lu = urr +
1
r

ur +
1
r2 uθθ +

(
dr cos θ − dθ

sin θ
r

) (
ur sin θ + uθ

cos θ
r

)
−

(
ur cos θ − uθ

sin θ
r

) (
dr sin θ + dθ

cos θ
r

)
= urr +

1
r

ur +
1
r2 uθθ +

druθ − dθur

r
.
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Moreover, u = rµ cos θ for any r and θ. Also for r > 0 and θ ∈ (−π/2, π/2)

d = Cµ arctan (tan θ) = Cµθ ,

and for θ ∈ (π/2, 3π/2)
d = Cµ arctan (tan θ) = Cµ(θ − π) .

In particular, dr = 0 and dθ = Cµ. Hence, in R2 \ Y the definition of Cµ yields

1
rµ−2 Lu = µ(µ − 1) cos θ + µ cos θ − cos θ −Cµµ cos θ = 0 .(3.6)

Hence, we proved that Lu = 0 on R2 \ Y , where Y = {(0, y) : y ∈ R} is the y-axis.
Let us prove that for µ ∈ (0, 1), u is a weak solution of Lu = 0. Observe that for such µ one has

|∇u| ∈ L2(B1). Let ϕ be any smooth function compactly supported in B1. We claim that

(3.7)
∫

B1

〈A(x, y)∇u,∇ϕ〉dxdy = 0 .

Let ε ∈ (0, 1), and we write

(3.8)
∫

B1

〈A(x, y)∇u,∇ϕ〉dxdy =

∫
Bε
〈A(x, y)∇u,∇ϕ〉dxdy +

∫
B1\Bε
〈A(x, y)∇u,∇ϕ〉dxdy

We now control the first term on the right hand side of (3.8). As |∇u(x, y)| ≤ C(µ)rµ−1, we infer
that ∣∣∣∣∣∣

∫
Bε
〈A(x, y)∇u,∇ϕ〉dxdy

∣∣∣∣∣∣ ≤ ‖ϕ‖L∞(B1) ‖A‖L∞(B1)

∫
Bε
|∇u(x, y)|dxdy

≤ C
∫ ε

0
rµdr ≤ Cεµ+1 → 0 as ε → 0+.

(3.9)

To deal with the second term on the right hand side of (3.8), let us denote

E+ = {(x, y) : x > 0} ∩ (B1 \ Bε), E− = {(x, y) : x < 0} ∩ (B1 \ Bε),

Yε = Y ∩ {(x, y) ∈ R2 : ε < |y| < 1},

and we write∫
B1\Bε
〈A(x, y)∇u,∇ϕ〉dxdy =

∫
E+

〈A(x, y)∇u,∇ϕ〉dxdy +

∫
E−
〈A(x, y)∇u,∇ϕ〉dxdy.

Then, by using the integration by parts on each of E+ and E−, and using Lu = 0 on R2 \ Y , we
obtain ∫

B1\Bε
〈A(x, y)∇u,∇ϕ〉dxdy

=

∫
Yε
〈A(0+, y)∇u(0+, y),−e1〉ϕ(0, y)dy +

∫
Yε
〈A(0−, y)∇u(0−, y), e1〉ϕ(0, y)dy

−

∫
∂Bε
〈A∇u, ~ν〉ϕ(x, y)dS −

∫
E+

Lu(x, y)ϕ(x, y)dxdy −
∫

E−
Lu(x, y)ϕ(x, y)dxdy

= −

∫
Yε

[ux(0+, y) + d(0+, y)uy(0+, y)]ϕ(0, y)dy

+

∫
Yε

[ux(0−, y) + d(0−, y)uy(0−, y)]ϕ(0, y)dy −
∫
∂Bε
〈A∇u, ~ν〉ϕ(x, y)dS ,(3.10)
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where e1 = (1, 0)T , ~ν is the normal outward vector on the circle ∂Bε , and for any function f we
denote f (0±, y) = limx→0± f (x, y). Next, since ux is a continuous function on R2 \ {0}, we obtain

(3.11) −

∫
Yε

ux(0+, y)ϕ(0, y)dy +

∫
Yε

ux(0−, y)ϕ(0, y)dy = 0 .

Moreover, since uy(0+, y) = uy(0−, y) = 0 for each y ∈ Yε and d is bounded, it follows that

(3.12) −

∫
Yε

d(0+, y)uy(0+, y)ϕ(0, y)dy +

∫
Yε

d(0−, y)uy(0−, y)ϕ(0, y)dy = 0.

Finally, |∇u| ≤ Crµ−1, and boundedness of A imply∣∣∣∣∣∣
∫
∂Bε
〈A∇u, ~ν〉ϕ(x, y)dS

∣∣∣∣∣∣ ≤ ‖A‖L∞(B1) ‖∇ϕ‖L∞(B1) ε
µ−1

∫
∂Bε

dS

≤ Cεµ → 0, as ε → 0+.

(3.13)

Hence, by collecting (3.8), (3.9), (3.10), (3.11), (3.12), and (3.13), we see that (3.7) follows as
desired.

Finally, it can be easily inferred that |∇u| ∈ Lp(B1) if and only if p < 2
1−µ and u ∈ Cα(B1) if

and only if α ≤ µ. Since µ ∈ (0, 1) was arbitrary, the desired conclusion follows.
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