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Abstract

We show that nonlinear Liouville theorems does not hold in general

for indefinite problems on half spaces. Thus, in order to use blow-up

method to obtain a priori estimates of indefinite elliptic equations, one

has to impose assumptions on the nodal set of nonlinearity. The counter

example is constructed by shooting method in one-dimensional case and

then extended to higher dimensions.

1 Introduction

This paper is motivated by studies of the indefinite elliptic problems of the form

−∆u = m(x)|u|p−1u, x ∈ Ω

u = 0 x ∈ ∂Ω ,
(1)

and the parabolic counterparts. In this context the indefinite problem means
that the function m is changing sign in Ω̄. Here, and below we assume that
Ω ⊂ R

N is a smooth domain (of class C2,α for some α > 0) and the problem
is superlinear and subcritical, that is, 1 < p < pS , where ps := ∞ for N = 1, 2
and pS := (N + 2)/(N − 2) for N ≥ 3. The assumptions on the function m will
be specified below.

Indefinite elliptic problems attracted a lot of attention during recent decades
see e.g [1, 2, 5, 6, 7, 16] and references therein. In order to investigate their
qualitative properties it is important to obtain a priori bounds for solutions. By
a priori estimates we mean estimates of the form

‖u‖X ≤ C(N, p,Ω,m) , (2)

where X := L∞(Ω̄). We remark that analogous problem for parabolic problems
investigates blow-up rates of solutions see e.g. [9, 14, 17] and references therein.

In order to obtain a priori estimates, one can use various strategies (see [15]).
In this paper we focus on the scaling method, which often yields optimal results
with respect to exponent p, if precise asymptotics of the nonlinearity is known,
in our case up, for u close to infinity.
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Let us briefly explain how the scaling method connects a priori estimates and
Liouville theorems. Detailed exposition for elliptic and parabolic problems can
be found for example in [7, 9, 13]. We are not going to discuss the optimality
of assumptions, especially assumptions on the exponent p. An interested reader
can find a detailed analysis in [15], see also references therein.

In this paper the term Liouville theorem refers to the following statement.
Any bounded, non-negative solution of a given problem is trivial, that is, the
solution is equal to zero everywhere. Equivalently, there is no non-trivial, non-
negative, bounded solution of a given problem.

Before we proceed, we need the following notation:

R
N
c := {x = (x1, x

′) ∈ R
N : x1 > c} (c ∈ R) ,

and

Ω+ := {x ∈ Ω : m(x) > 0}, Ω− := {x ∈ Ω : m(x) < 0}, Ω0 := {x ∈ Ω : m(x) = 0} .

Assume that m is a continuous function and there are positive continuous func-
tions α1, α2 defined on the small neighborhood of Ω0 in Ω and γ1, γ2 > 0 such
that

m(x) =

{

α1(x)[dist(x,Ω0)]
γ1 x ∈ Ω+,

α2(x)[dist(x,Ω0)]
γ2 x ∈ Ω− .

We assume that (2) fails, that is, we assume that for each k ∈ N there exist a
solution uk of the problem (1) and xk ∈ Ω such that

uk(xk) ≥ 2k (k ∈ N) .

After an application of doubling lemma (see [13, Lemma 5.1]), appropriate scal-
ing, and elliptic regularity we can distinguish following cases.

If there is a subsequence of (xk)k∈N (denoted again (xk)) such that xk → x0

with x0 ∈ Ω̄ and x0 6∈ Ω0, then there must exist a bounded nonnegative function
v with v(0, 0) = 1 that solves

0 = ∆v + κvp, x ∈ R
N , (3)

or
0 = ∆v + κvp, x ∈ R

N
c∗ ,

v = 0, x ∈ ∂R
N
c∗ ,

(4)

for some c∗ ∈ R, where κ ∈ {−1, 1}. However, by the results of Gidas and
Spruck [10] if κ = 1 and [4, 8] if κ = −1, the Liouville theorem holds for
problem (3) and (4) with 1 < p < pS . This means v ≡ 0, which contradicts
v(0, 0) = 1.

If x0 ∈ Ω0, then the problem is more involved and it was discussed in [7],
see also references therein, under the assumption Ω̄0 ⊂ Ω, that is, m does not
vanish on ∂Ω. Then v with v(0, 0) = 1 can in addition to (3) and (4) solve

0 = ∆v + h(x1)v
p, x ∈ R

N , (5)
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where h(x) = xγ1 for x > 0 and h(x) = −|x|γ2 for x < 0. However, by [7, 12]
the problem (5) satisfies the Liouville theorem for any continuous, nondecrasing
function h, such that

h(0) = 0, h is strictly increasing for x > 0, lim
x→∞

h(x) = ∞ . (6)

Hence v ≡ 0, a contradiction to v(0, 0) = 1. We remark that we can allow h to
depend on x1 only, due to translational and rotational invariance of the problem
(5).

The situation in the remaining case is more interesting. If we allow Ω̄0∩∂Ω 6=
∅, then v with v(0, 0) = 1, can, in addition to the cases above, solve

0 = ∆v + h(x · b)vp, x ∈ R
N
c∗ ,

v = 0, x ∈ ∂R
N
c∗ ,

(7)

where b is a unit vector, c∗ ∈ R, and h(x) = xγ1 for x > 0 and h(x) = −|x|γ2

for x < 0. Notice that we cannot choose b = (1, 0, · · · , 0) since the problem is
defined on the half space, and therefore it is not rotationally invariant. In order
to obtain a contradiction as above, one has to prove Liouville theorem for (7).
It follows from the following Corollary that was proved in [9].

Corollary 1. Assume b 6= −e1 and c∗ ∈ R, or b = −e1 and c∗ ≥ 0. If
h : R → R is continuous, non-decreasing function such that (6) holds, then
there is no non-negative, non-trivial, bounded solution v of (7).

We remark that the result in [9] treats more general nonlinearities. In the
case b = −e1 and c∗ ≥ 0, Lioville theorem holds under more general assumptions
on h (see [9, 17]). One might expect that the Liouville theorem will continue to
be true when b = −e1 and c∗ < 0.

However, the main result of this paper (see Proposition 1 below), shows that
such Liouville theorem does not hold. More precisely, if b = −e1, then for each
c∗ < 0 there exists a bounded, positive solution of (7). The construction of
the solution in one dimensional case (N = 1) is based on the shooting method
in two directions. A counter-example in higher dimensions is obtained by an
extension of the one dimensional solution by a constant. Similarly, one can
obtain a counter-example to parabolic Liouville theorems.

This counter-example shows that the blow-up method based on scaling needs
additional assumptions on m, if m(x0) = 0 for some x0 ∈ ∂Ω. For example we
need to assume, as in [9], that Ω0 intersects ∂Ω transversally.

Since one might consider more general functions m, or one might be inter-
ested in ordinary differential equations, we consider more general problems than
required for our counter-examples.

More specifically, we consider a function h ∈ C(R) such that:

h(x) > 0 for x > 0, h(x) < 0 for x < 0, (8)
∫ 0

−∞

h(x) dx = −∞ ,

∫

∞

0

h(x) dx = ∞ , (9)

there exists ε∗ > 0 such that h is non-decreasing on (−ε∗, 0). (10)
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The main result of the paper is the following proposition.

Proposition 1. Let p > 1 and assume that a continuous function h satisfies
(8)–(10). Then for each a > 0 there exists a bounded, non-negative, nontrivial
solution u of the problem

u′′ = h(x)|u|p−1u, x ∈ (−a,∞) ,

u(−a) = 0 .
(11)

Moreover, u′(x) < 0 for x ≥ 0 and limx→∞ u(x) = 0.

Remark 1. The nonlinearity |u|p−1u can be replaced by a Lipschitz function
f : [0,∞) → R, such that f(0) = 0, f(u) > 0 for u > 0, f is non-decreasing for
u > 0, and

lim
u→∞

f(u)

u
= ∞, lim

u→0+

f(u)

u
= 0 .

In that case we extend f as a Lipschitz function to whole R such that f(u) < 0
for u < 0.

If the assumption
∫

∞

0

h(x) dx = ∞

is removed, Proposition 1 still holds true without the statement limx→∞ u(x) =
0.

If the problem is scale invariant, then the proof can be simplified and we can
also address the question of uniqueness.

Proposition 2. If h(x) = sign(x)|x|α for some α > 0, then the solution in
Proposition 1 is unique.

The following corollary states a counter-example to Liouville theorem for in-
definite problems on half spaces. It shows that Corollary 1 cannot be improved.
A counterexample is given by a function v(x1, · · · , xN ) = u(x1), where u is a
function from Proposition 1.

Corollary 2. If b = −e1, c∗ < 0, and h satisfies (8)–(10), then the problem
(7) possess a bounded, nonnegative solution.

2 Proof of Proposition 1 and Proposition 2

Let us prove Proposition 1 first. Fix ξ ∈ (0,∞). Let uk : (τk, Tk) → R be the
solution of the initial value problem

u′′

k = h(x)|uk|
p−1uk , x ∈ (τk, Tk) ,

uk(0) = ξ , u′

k(0) = k ,
(12)

where (τk, Tk) is the maximal existence interval of uk. By a standard theory,
−∞ ≤ τk < 0 < Tk ≤ ∞.
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Remark 2. Decay at infinity. If h(x) = |x|α for some α > 0, then one can
proceed as in [11, Theorem 2.1] and obtain that for 1 < p < pS , every solution

u satisfies u(x) ≤ C|x|−
2+α
p−1 and |u′| ≤ C|x|−

p+1+α
p−1 for each |x| > 1. Observe

that [11] discusses problem with h(x) = −|x|α, but one can easily modify the
proof of [11, Lemma 2.1] by replacing Liouville theorem of Gidas and Spruck
[10] by e.g. [4, 8].

Variational approach. For each ξ > 0 the existence of a unique k(ξ) such
that there exists global (Tk = ∞), positive solution, follows from variational
approach. Specifically, let X be the Banach space of functions with finite norm

‖u‖X :=

(

1

2

∫

∞

0

(u′(x))2 dx

)
1
2

+

(

1

p + 1

∫

∞

0

h(x)|u(x)|p+1 dx

)
1

p+1

.

Then it is easy to check that the functional

F [u] :=
1

2

∫

∞

0

(u′(x))2 dx +
1

p + 1

∫

∞

0

h(x)|u(x)|p+1 dx

is coercive, strictly convex, and continuous. Moreover, the set M := {u ∈ X :
u(0) = ξ} is convex and closed (therefore weakly closed) so there exists a unique
global minimizer of F on M . The minimizer satisfies Euler-Lagrange equation
(12) for some k. Since F [u] = F [|u|], the minimizer is non-negative. Also,
as u ≡ 0 is an equilibrium of (12), every non-negative, non-trivial solution is
positive. Notice that this method also implies decay rate of the minimizer at
infinity.

However, the variational approach requires the solution to be in the space
X, which we cannot guarantee a priori. Also, it gives merely existential result
and it does not specify how k depends on ξ.

Fowler transformation. If h(x) = |x|α, one can proceed as in [3] and
transform the problem by Fowler transformation X(t) := −xu′u−1, Z(t) :=
x1+αup(u′)−1, and x = et. Then X and Z satisfies

X ′ = X[X + Z + 1]

Z ′ = Z[(1 + α) − pX − Z] .
(13)

The existence of solutions of (12) is equivalent to the existence of heteroclinic
trajectories connecting equilibria (0, 0), (1+α

p−1 ,−p+1+α
p−1 ) of the system (13). This

approach yields very precise asymptotic −XZ = x2+αup−1 → (1+α)(p+1+α)
(p−1)2 as

x → ∞ (and analogous expression for u′).
However, since this method does not apply readily to general h and the proof
of the existence of heteroclinic orbits is not elementary, we rather use other
approach.

We prove the existence of solutions for (12) by shooting method. Notice
that this method applies to general h and no decay of u is required. Moreover,
it allows us to derive more precise information on dependence of k on ξ.
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Claim 1. If u′

k(x0) ≥ 0 and uk(x0) > 0 for some x0 > 0, then u′

k(x) > 0 for
each x > x0 and limx→Tk

uk(x) = ∞.

Proof of Claim 1. By (8), u′′

k(x0) = h(x0)u
p
k(x0) > 0, and therefore u′

k(x) >
u′

k(x1) > u′

k(x0) ≥ 0, for each x > x1 > x0 sufficiently close to x0. If u′

k(x) >
u′

k(x1) > 0 for each x > x1, Claim 1 follows.
Otherwise, there exists the smallest x2 > x1 with u′

k(x2) = u′

k(x1). Then
u′

k(x) > 0 on [x1, x2], and consequently uk(x) > 0 on [x1, x2]. Moreover, for
each x ∈ [x1, x2] one has u′′

k(x) = h(x)up
k(x) > 0, that is, uk is strictly convex

on [x1, x2], a contradiction to u′

k(x2) = u′

k(x1).

Claim 2. If uk(x0) ≤ 0 for some x0 > 0, then uk(x) < 0 for each x > x0 and
limx→Tk

uk(x) = −∞.

Proof of Claim 2. Let x∗ := inf{x > 0 : uk(x) = 0}. Since uk(0) = ξ > 0, x∗ is
well defined and x∗ > 0. Suppose that there is x1 > x∗ such that uk(x1) ≥ 0.
Then either u ≥ 0 on [x∗, x1], or u has a negative minimum at x2 ∈ [x∗, x1].
In the first case x∗ is a local minimizer of u. By the uniqueness of solutions of
initial value problems one has u ≡ 0, a contradiction to u(0) = ξ > 0. In the
second case u′′

k(x2) = h(x2)|uk|
p−1uk(x2) < 0, a contradiction. Hence, x0 = x∗

and u < 0 on (x0,∞).
Finally, since u′′

k = h(x)|u|p−1u(x) < 0 for each x ∈ (x0,∞), uk is concave
on (x0,∞) and the second statement follows.

Denote

K0 := {k : uk(x) ≤ 0 for some x ≥ 0} ,

K2 := {k : uk(x) ≥ 2 for some x ≥ 0} .

Claim 3. The sets K0 and K2 are non-empty, open, and disjoint. Moreover
(−∞,−2ξ − Hξp) ⊂ K0, where H := supx∈[0,1] h(x).

Proof of Claim 3. From Claim 2 it follows that (0,∞) ⊂ K2 6= ∅. If k ∈ K0,
then limx→Tk

uk(x) → −∞ and if k ∈ K2, then limx→Tk
uk(x) → ∞. Thus

K0 ∩ K2 = ∅.
If k0 ∈ K0 then, by Claim 2, there exists x1 such that uk0

(x1) < −1. The
continuous dependence of solutions on initial data implies uk(x1) < −1 for any
k sufficiently close to k0. Thus, K0 is open.

Analogously if k0 ∈ K2, then by Claim 1 there is x0 such that uk0
(x0) > 3.

Then the continuous dependence of solutions on the initial data yields uk(x0) >
3 for any k sufficiently close to k0. Thus, K2 is open as well.

Finally, we show the second statement, which also implies K0 6= ∅. Fix k <
−2ξ −Hξp and suppose that there is the smallest x0 ∈ [0, 1] with u′

k(x0) = −ξ.
Then uk(x) ≤ uk(0) = ξ on (0, x0). However,

u′

k(x0) = u′

k(0) +

∫ x0

0

u′′

k(x) dx = k +

∫ x0

0

h(x)up
k(x) dx ≤ k + Hξp < −ξ ,

a contradiction.
Hence, u′

k(x) < −ξ on [0, 1], and therefore uk(x) ≤ 0 for some x ∈ [0, 1].
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Denote
M := R \ (K0 ∩ K2) .

By Claim 3, M 6= ∅ and since uk (k ∈ M) is bounded, Tk = ∞. Also, by Claim
1, u′

k < 0 in [0,∞) for each k ∈ M , and therefore limx→∞ uk(x) =: L ≥ 0 exists.
If L > 0, then

0 ≥ u′(x) = u′(0) +

∫ x

0

u′′(t) dt = k +

∫ x

0

h(t)up(t) dt ≥ k + Lp

∫ x

0

h(t) dt ,

a contradiction to (9) for sufficiently large x. This implies L = 0.

Claim 4. M = {k∗}.

Proof of Claim 4. Suppose that there are k1, k2 ∈ M with k1 > k2. Then for
x0 > 0 sufficiently small, one has

uk1
(x0) − uk2

(x0) > 0 and (uk1
− uk2

)′(x) > 0 (x ∈ [0, x0]) .

Since limx→∞ uk1
(x) − uk2

(x) = 0, there exists the smallest x1 > x0 with
u′

k1
(x1) = u′

k2
(x1). Then uk1

(x) > uk2
(x) for x ∈ (x0, x1); however,

u′

k1
(x1) = u′

k1
(x0) +

∫ x1

x0

u′′

k1
(x) dx = u′

k1
(x0) +

∫ x1

x0

h(x)up
k1

(x) dx

> u′

k2
(x0) +

∫ x1

x0

h(x)up
k2

(x) dx = u′

k1
(x0) +

∫ x1

x0

u′′

k2
(x) dx = u′

k2
(x1) ,

a contradiction.

Define the function k : (0,∞) → (−∞, 0) such that k(ξ) is the unique k for
which the problem (12) has bounded positive solution on (0,∞). Let uξ be the
solution of such problem:

u′′

ξ = h(x)|uξ|
p−1uξ , x ∈ (τξ,∞) ,

uξ(0) = ξ , u′

ξ(0) = k(ξ) ,
(14)

where τξ defines, as above, the existence time of uξ. Recall that uξ is decreasing
and decays to 0 as x → ∞. Notice that the subscript now indicates the value
of uξ(0) rather than u′

ξ(0).

Claim 5. The function k : (0,∞) → (−∞, 0) is continuous, limξ→∞ k(ξ) =
−∞, and limξ→0+ k(ξ) = 0.

Proof. First, let us prove continuity. For a contradiction suppose that there is a
sequence (ξn)n∈N with limn→∞ ξn = ξ0 ∈ (0,∞) such that k(ξ0) 6= limn→∞ k(ξn) =:
M . Let u be the solution of the problem (12) with u′(0) = k replaced by
u′(0) = M . Since M 6= k(ξ0), the solution is either not bounded or not positive.
Thus, by Claim 1 and Claim 2 there exists x0 such that either u(x0) < −2 or
u(x0) > 3. The continuous dependence of solution on initial conditions yields
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that uξn
(x0) < −2 or uξn

(x0) > 3 for sufficiently large n. This contradicts the
definition of k(ξn), and proves that k is continuous.

From Claim 3 and negativity of k it follows that 0 > k(ξ) ≥ −2ξ−Hξp, and
the statement limξ→0+ k(ξ) = 0 follows.

We finish the proof by showing that k(ξ) ≤ − ξ
2 for large ξ. Otherwise,

there exists large ξ such that k(ξ) > − ξ
2 and the convexity of uξ yields that

u′

ξ(x) > − ξ
2 for each x ∈ [0, 1]. Hence, uξ(x) > ξ

2 for each x ∈ [0, 1]. Since uξ is
a nonincreasing function

0 ≥ u′

ξ(1) = u′

ξ(0) +

∫ 1

0

u′′

ξ (t) dt

= k(ξ) +

∫ 1

0

h(t)up
ξ(t) dt ≥ −

ξ

2
+

(

ξ

2

)p ∫ 1

0

h(t) dt ,

a contradiction for sufficiently large ξ.

Claim 6. For each ξ > 0, there exists x∗ < 0 such that uξ(x
∗) = 0.

Proof of Claim 6. For a contradiction assume uξ(x) > 0 for each x ∈ (τξ, 0).
Since u′′

ξ (x) = h(x)up
ξ < 0, uξ is concave on (τξ, 0). Therefore, 0 ≤ uξ(x) ≤

1 + u′

ξ(0)x for each x ∈ (τξ, 0), and in particular τξ = −∞.
Next, we show that u′

ξ(x0) > 0 for some x0 < 0. If not, then uξ decreases
on (−∞, 0) and uξ(x) ≥ uξ(0) = ξ for all x < 0. However,

0 ≥ u′

ξ(x) = u′

ξ(0) −

∫ 0

x

u′′

ξ (s) ds = k(ξ) −

∫ 0

x

h(s)up
ξ(s) ds

≥ k(ξ) − ξp

∫ 0

x

h(s) ds ,

a contradiction to (9) for large negative x.
Thus u′

ξ(x0) > 0 for some x0 < 0, and since uξ is concave, u′

ξ(x) ≥ u′

ξ(x0) > 0
for each x < x0. Hence, uξ(x

∗) = 0 for some x∗ < 0, a contradiction.

Denote a(ξ) := sup{x < 0 : uξ(x) = 0}. By Claim 6, a is well defined and
negative for each ξ. Also, continuous dependence of k on ξ implies the continuity
of a.

Claim 7. The range of a is (−∞, 0), that is, R := {a(ξ) : ξ ∈ (0,∞)} =
(−∞, 0).

Proof. By the continuity of a is suffices to prove supR = 0 and inf R = −∞.
First, for a contradiction assume max{supR,−ε∗} =: −ε < 0, where ε∗ was

defined in (10). We show that for a sufficiently large ξ, u′

ξ(x) = 0 for some
x ∈ [− ε

4 , 0]. For a contradiction suppose u′

ξ(x) < 0 for each x ∈ [− ε
4 , 0]. Then,

uξ decreases on [− ε
4 , 0], and by (10), u′′

ξ = h(x)up
ξ increases on [− ε

4 , 0].

If u′

ξ(x) ≥ k(ξ)
2 for some x ∈ (− ε

8 , 0), then the increasing second derivative
of uξ yields u′

ξ(x) = 0 for some x ∈ [− ε
4 , 0], a contradiction. Otherwise u′

ξ(x) <
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k(ξ)
2 for all x ∈ (− ε

8 , 0). Then, since uξ decreases on [− ε
4 , 0], one has uξ(x) ≥

uξ(−
ε
8 ) ≥ − ε

16k(ξ) for each x ∈ (− ε
4 ,− ε

8 ). Moreover,

0 > u′

ξ

(

−
ε

4

)

= u′

ξ(0) −

∫ 0

−
ε
4

u′′

ξ (t) dt = k(ξ) −

∫ 0

−
ε
4

h(t)up
ξ(t) dt

≥ k(ξ) −

∫

−
ε
8

−
ε
4

h(t)

(

−
εk(ξ)

16

)p

dt = k(ξ) − cε|k(ξ)|p ,

where cε > 0, a contradiction for any sufficiently large k(ξ) (and by Claim 5,
for sufficiently large ξ).

Let bξ := sup{x < 0 : u′

ξ(x) = 0}. We showed that bξ > − ε
4 for any

sufficiently large ξ. Let Uξ := uξ(bξ), then Uξ ≥ ξ since uξ decreases on (bξ, 0).
Assume that there exists x ∈ (− ε

2 , bξ) such that uξ(x) < Uξ/2. Then the
concavity of uξ yields that uξ(x) < 0 for some x ∈ (−ε− bξ, bξ), a contradiction
to the definition of ε. Hence, uξ(x) > Uξ/2 for each x ∈ (− ε

2 , bξ). However,

0 < uξ

(

−
ε

2

)

= uξ(bξ) + u′

ξ(bξ)(−
ε

2
− b(ε)) −

1

2

∫ bξ

−
ε
2

(−
ε

2
− t)u′′

ξ (t) dt

= Uξ +
1

2

∫ bξ

−
ε
2

(
ε

2
+ t)h(t)up

ξ(t) dt ≤ Uξ +
Up

ξ

2

∫

−
ε
4

−
ε
2

(
ε

2
+ t)h(t) dt

= Uξ + cεU
p
ξ ,

where cε < 0, a contradiction for sufficiently large Uξ, and therefore ξ. We have
showed supR = 0.

Assume M := inf R > −∞. First, we claim limξ→0+ uξ(bξ) = 0, where bξ

was defined above. Otherwise, there is a sequence (ξn) converging to 0 such that
limn→∞ uξn

(bξn
) =: δ > 0. Since uξ is concave, uξn

(bξn
) ≤ ξn + k(ξn)bξn

, and
therefore bξn

< (uξn
(bξn

)−ξn)/k(ξn) (recall k(ξ) < 0). By Claim 5, k(ξn) → 0−

as n → ∞ and uξn
(bξn

)−ξn → δ. Thus bξn
→ −∞ as n → ∞. Since uξ decreases

on (bξ, 0), it is positive there, and consequently M ≤ a(ξn) ≤ bξ → −∞, a
contradiction. Therefore, uξ(bξ) → 0 as ξ → 0+.

Since uξ is concave, uξ increases on (a(ξ), bξ). Hence, uξ(x) ≤ uξ(bξ) for
each x ∈ (a(ξ), bξ). Then,

0 = uξ(a(ξ)) = uξ(bξ) + u′

ξ(bξ)(a(ξ) − bξ) −
1

2

∫ bξ

a(ξ)

(a(ξ) − t)u′′

ξ (t) dt

= uξ(bξ) −
1

2

∫ bξ

a(ξ)

(a(ξ) − t)h(t)up(t) dt ≥ uξ(bξ) −
up

ξ(bξ)

2

∫ bξ

a(ξ)

(a(ξ) − t)h(t) dt

≥ uξ(bξ) −
up

ξ(bξ)

2

∫ 0

−M

(−M − t)h(t) dt = uξ(bξ) − cMup
ξ(bξ) ,

where cM > 0, a contradiction for small uξ(bξ) (that is, small ξ).

This finishes the proof of Proposition 1.
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Proof of Proposition 2. It is trivial to check, that assumptions (8)–(10) are sat-
isfied for h(x) = sign(x)|x|α, and therefore all claims in the proof of Proposition
1 holds true. In particular, for each a < 0 there exists a solution of (11). Fix
a and two bounded, positive, nontrivial, solutions u, v of (11). Notice, by the

scale invariance, that vλ(x) = λ
2+α
p−1 v(λx) satisfies the equation in (11) and vλ

is a positive bounded function.
Without loss of generality assume u(0) ≤ v(0). Then there exists λ ∈ (0, 1]

such that vλ(0) = u(0). Moreover, Claim 4 yields that v′

λ(0) = u′(0), and
consequently u = vλ by the uniqueness of the initial value problem. If λ 6= 1,

then 0 = u(−a) = vλ(−a) = λ
2+α
p−1 v(−λa) > 0, a contradiction. Thus, λ = 1

and u = v, the uniqueness follows.
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