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Abstract. We prove a unified and general criterion for the uniqueness of critical points of a functional

in the presence of constraints such as positivity, boundedness, or fixed mass. Our method relies on
convexity properties along suitable paths and significantly generalizes well-known uniqueness theorems.

Due to the flexibility in the construction of the paths, our approach does not depend on the convexity

of the domain and can be used to prove uniqueness in subsets, even if it does not hold globally. The
results apply to all critical points and not only to minimizers, thus they provide uniqueness of solutions

to the corresponding Euler-Lagrange equations. For functionals emerging from elliptic problems, the

assumptions of our abstract theorems follow from maximum principles, decay properties, and novel
general inequalities. To illustrate our method we present a unified proof of known results, as well as new

theorems for mean-curvature type operators, fractional Laplacians, Hamiltonian systems, Schrödinger

equations, and Gross-Pitaevski systems.
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1. Introduction

The existence of critical points of a functional I traditionally follows from general arguments based on
Direct or Minimax Methods.

However, the uniqueness of critical points is in general a subtle issue, depending both on local and
global properties of a functional, and essentially on its domain of definition. In particular, this domain
might reflect conserved quantities (such as mass or energy), or one-sided constraints (e.g. positivity or
boundedness).

Probably, the best known uniqueness result in the calculus of variations is the following: If I is a
strictly convex functional, defined on an open convex subset of a normed space, then it has at most
one critical point, which is the global minimum whenever it exists. However, problems with constraints
have frequently non-convex domains and even for convex ones, such as the cone of positive functions, the
convexity of I is a very restrictive requirement. For example, in many problems zero is a critical point of
I (or solution of the corresponding Euler-Lagrange equation), and if there exists a positive critical point
then I cannot be strictly convex in the cone of positive functions.

In this paper we provide a simple yet general condition guaranteeing the uniqueness of critical points,
which relies on an elementary observation: If I is a smooth functional and γ is a smooth curve connecting
two critical points of I, then t 7→ I(γ(t)) =: F (t) ∈ R cannot be a strictly convex function. Indeed, since
γ connects critical points, the derivative of F at the endpoints must vanish, which is impossible for a
strictly convex function. This observation yields a uniqueness result whenever an appropriate curve γ
can be found, and below we construct such γ for many problems involving nonlinear partial differential
equations (pdes). These examples contain new uniqueness proofs and a shorter and unified approach to
some known results.

We emphasize that requiring convexity along a particular curve is much weaker than assuming convex-
ity of I. Moreover, such path-wise convexity can be defined on sets that are not necessarily convex. As
such, it can be used as a fine tool to prove uniqueness of critical points with certain additional criteria.
Our method can also be used to prove the simplicity of the eigenvalues of non-linear eigenvalue problems,
where the uniqueness holds up to multiplication by scalars.

Recall that the uniqueness immediately implies that the critical point inherits all symmetries of the
problem. For example, if the functional and its domain are radially symmetric, then the critical point
possesses the same symmetry. Furthermore, the uniqueness simplifies the dynamics of the gradient flow
induced by the functional, and in many cases provides global stability properties of equilibria.

Our main uniqueness result is formulated in a general abstract framework to allow applications to
various problems.

Theorem 1.1. Let (X, ‖ · ‖) be a normed space, I : X → R be a Fréchet differentiable functional, and
A ⊂ X be a subset of critical points of I. If for all u, v ∈ A there exists a map γ : [0, 1]→ X such that

a) γ(0) = u, γ(1) = v,
b) γ is locally Lipschitz at t = 0, that is, ‖γ(t)− u‖ ≤ Ct for each t ∈ [0, δ] and some δ > 0,
c) t 7→ I(γ(t)) is convex in [0, 1],

then

i) I is constant on A,
ii) t 7→ I(γ(t)) is a constant function,

iii) if condition c) holds with strict convexity for all u 6= v, then A has at most one element.

We readily see that every (strictly) convex functional satisfies conditions a)-c) of Theorem 1.1 (resp.
with strict inequality at c)) for γ(t) = (1 − t)u + tv. The linear structure on X is not essential and
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can be replaced by a differential structure, which is needed for the notion of critical point. Rather than
introducing a new notation and restating the problem on Banach or Fréchet manifolds, we formulate a
consequence of Theorem 1.1 for constraint minimization problems with applications to elliptic problems
in mind.

Corollary 1.2. Let X,Y be Banach spaces, I : X → R and R : X → Y be Fréchet differentiable. Suppose
that 0 is a regular value of R, set S := R−1(0), and let A ⊂ S be a subset of critical points of I|S. If
for all u, v ∈ A there exists γ : [0, 1]→ S satisfying a)–c) of Theorem 1.1, then i)–iii) from Theorem 1.1
hold with I replaced by I|S.

We apply Theorem 1.1 and Corollary 1.2 to several pde problems with variational structure. In these
applications, assumption a) is easily fulfilled, the main challenge is the construction of paths γ satisfying
b) and c). The condition b) is in fact an assumption on the parametrization γ. Actually, if b) is not
satisfied we cannot conclude that the derivative of t 7→ I(γ(t)) vanishes at t = 0 even if ∇I(γ(0)) = 0.
This is not a technical obstacle, since the uniqueness of critical points does not hold if we require Hölder
continuity in b) instead of Lipschitz continuity. Indeed, consider the following one-dimensional example

I(x) =
1

3
x3 − x− 2

3
=

1

3
(x+ 1)3 − (x+ 1)2, γ(t) =

√
2
√

1 + t− 1. (1.1)

It is easy to verify that I has two critical points ±1, γ(±1) = ±1, and t 7→ I(γ(t)) = 2
√

2
3 (1+t)

3
2 −2(1+t)

is a strictly convex function; however, γ is not Lipschitz at t = −1. The verification of b) is a subtle
issue and in our examples, where X is a function space and critical points are solutions of certain elliptic
problems, it strongly relies on comparison properties of endpoints of γ, which follow either from the Hopf
lemma or from sharp decay estimates at infinity for solutions of the Euler-Lagrange equation. In this
step we strongly use that the endpoints of γ are critical points of I and not arbitrary elements of X.

The assumption c) has a different flavor and it heavily depends on indirect convexity properties of
I, which are manifested by sharp and delicate inequalities for arbitrary endpoints u, v (not necessarily
critical points). As noted in Theorem 2.1 below, the convexity in c) can be weakened to conclude i) of
Theorem 1.1; however, in that case we need additional assumptions to conclude the uniqueness of critical
points.

Our main results also provide novel insights to problems where uniqueness cannot be established.
For instance, if the set A contains a global minimizer of I, it follows from i) and ii) that all critical
points are global minimizers. Moreover, if A contains at least two points, then they are not isolated
since every point on γ is a global minimizer (the continuity of γ at t = 0 follows from b)). Another fine
application, illustrated below for the mean curvature operator, is the uniqueness of small solutions, even
if the existence of additional large solutions is known.

The idea of proving uniqueness by using a generalized convexity assumptions is not entirely new in
the literature. The closest to our results is [12], where the key idea there can be rephrased in our
setting as: There is no curve γ connecting two global minimizers of I such that t 7→ I(γ(t)) is strictly
convex. This is indeed true, since strictly convex functions on an interval attain a strict maximum at
an endpoint, a contradiction to global minimality of endpoints. Although this method is presumably
applicable to curves connecting strict local minima, it fails for general critical points, see for instance our
one-dimensional example (1.1). There are many papers applying the ideas of [12] in various settings, see
for instance [5, 21, 22, 34, 35, 40, 49, 57, 61, 80], however, none contains results as general as Theorem
1.1 or Corollary 1.2.
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The cornerstone of [12] (which deals with elliptic equations involving the p–Laplace operator), and an
important ingredient in many of our examples, is the inequality

|∇γ(t)(x))| ≤
(

(1− t)|∇u(x)|p + t|∇v(x)|p
) 1
p

for u, v > 0 ,

where γ(t)(x) := ((1− t)up(x) + tvp(x))
1
p . This inequality can be traced back to [13, 37] and in our

manuscript we prove a more general version. Such path γ was used in many papers to show the unique-
ness of positive solutions for elliptic equations in mathematical physics, for instance, [55, Lemma A.4]
studies a Gross-Pitaevskii energy functional and [13, Lemma 4] treats a Thomas-Fermi-von Weizsäcker
functional. Frequently, only minimizers are considered due to physical considerations, and therefore the
strict convexity of t 7→ I(γ(t)) suffices to prove uniqueness.

Another approach to uniqueness relies on the existence of a strict variational sub-symmetry, see [70].
Specifically, if u0 is a critical point of I and there is a family of maps (gε) with a group structure such
that I(gε(u)) < I(u) for u 6= u0, then u0 is the only critical point. In some particular settings the abstract
method of [70] can be interpreted as an infinitesimal version of our approach.

To show an application of Theorem 1.1, let us consider the following basic model problem, which already
contains most of the important ingredients. Let Ω ⊂ RN be a regular bounded domain, 1 < q < 2, and
define the functional on the Sobolev space H1

0 (Ω) by

I(u) :=
1

2

∫
Ω

|∇u|2 dx− 1

q

∫
Ω

|u|q dx .

It is well known that I has infinitely many critical points, see for example [11, Theorem 1 (b)]; however,
there is only one positive critical point of I, see [52, 51, 6, 47, 32, 23]. Although I is not strictly convex
on the cone of positive functions of H1

0 (Ω) , we can verify the uniqueness of positive critical points using
Theorem 1.1 with

γ(t) =
√

(1− t)u2 + tv2 .

Indeed, as q < 2, one obtains that t 7→ |γ(t)|q is strictly concave, and therefore the second term of
t 7→ I(γ(t)) is strictly convex. The first term is convex by the general Lemma 3.5 proved below. Intuitively,
in our examples we employ a strong convexity property of the principal term to improve convexity
properties of the nonlinear part. Observe that the critical points of I are weak solutions of the Euler-
Lagrange equation

−∆u = |u|q−2u in Ω, u = 0 on ∂Ω ,

and therefore the required local Lipschitz property follows from the comparison of positive solutions u
and v, see Lemma 3.1 below, and Theorem 1.1 yields the uniqueness.

Our abstract results apply in far more general settings and here we focus on models arising for example
in physics, engineering, and geometry. We present simplified and unified proofs of known results and we
also present new uniqueness results. Our goal is to present the main ideas and complications in a
comprehensible manner and to show the methods in a broad range of problems, rather than treating the
most general setting or finding optimal assumptions. Our examples include equations and systems with
quasilinear or nonlocal differential operators on bounded and unbounded domains with various boundary
conditions.

In the first example we study a family of quasilinear problems

−div(h(|∇u|p)|∇u|p−2∇u) = g(x, u), p > 1 ,

and under general assumptions on h and g we show new uniqueness results for positive solutions. If h ≡ 1
the uniqueness was already established in [37]. In this case, the left hand side reduces to the well-known
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p-Laplacian operator (−∆p), which is a nonlinear counterpart of the Laplacian (p = 2). It is used to
model phenomena strongly characterized by nonlinear diffusion and it finds application, for example, in
elasticity theory to model dilatant (p > 2) or pseudo-plastic (1 < p < 2) materials. We show uniqueness
results which in particular include sublinear [37] and Allen-Cahn-type p-Laplacian problems, either with
Dirichlet or nonlinear boundary conditions. For the latter see [15, 16] for the particular case of p = 2.

For p = 2 and h(z) = (1 ± z2)−
1
2 we obtain a problem involving the mean curvature operator in

Eucledian or Minkowski space

M±u := −div

(
∇u√

1± |∇u|2

)
= g(x, u) . (1.2)

The operator M+ is important in geometry. We refer to [43] for classical results on minimal surfaces
and to [67, 68] for more references on boundary value problems involving this operator. It also classically
appears in the study of capillarity surfaces, see [41], and was proposed as a prototype in models of reaction
processes with saturating diffusion, see [53] and the references therein. The natural functional space to
look for solutions of (1.2) with M+ is the space of functions of bounded variations. We anticipate that
our results lead to uniqueness of regular solutions.

The operatorM− appears in the Born-Infeld electrostatic theory to include the principle of finiteness
in Maxwell’s equations; see [18, 14, 9]. Solutions to (1.2) must satisfy |∇u| < 1 and can be obtained by
minimization of a functional in a suitable convex subset of the Sobolev space W 1,∞(Ω). Because of this,
we need to formulate an auxiliary problem using truncations, which rely on fine quantitative regularity
estimates. Since the set of critical points of the transformed problem might be larger than the original
one, we need to exploit the fact that Theorem 1.1 also applies to proper subsets of critical points.

Our abstract results can also be applied to obtain new uniqueness results for nonlocal equations such
as

(−∆)su(x) := lim
ε→0

∫
|x−y|≥ε

u(x)− u(y)

|x− y|N+2s
dy = g(x, u(x)) ,

where s ∈ (0, 1). The operator (−∆)s is often called the (integral) fractional Laplacian and it appears as
an infinitesimal generator of a Lévy process. It finds applications, for instance, in water waves models,
crystal dislocations, nonlocal phase transitions, finance, flame propagation; see [24, 36]. The fractional
Laplacian is a nonlocal operator, since it encodes diffusion with large-distance interactions, and this
nonlocality plays an essential role in the definition of the variational setting and in the application of
Theorem 1.1. For instance, the nonlocal character of the problem requires the path γ to satisfy a convexity
inequality for arbitrary pairs of points in RN .

With respect to systems of equations we present a new proof of a known uniqueness result [31, 63] for
positive solutions of Hamiltonian elliptic system in the sublinear case

−∆u = |v|q−1v , −∆v = |u|p−1u , p, q > 0 , p · q < 1 .

These systems can be seen as a generalization of the biharmonic equation, since with q = 1, u solves the
fourth-order elliptic equation

∆2u = |u|p−1u , 0 < p < 1.

Due to their structure, they pose many mathematical challenges, and they can be treated by using several
variational frameworks, each one with its advantages and disadvantages (we refer to the survey [19] for
more details). To treat Hamiltonian system by our methods, we define an appropriate functional by using
the dual method approach, which goes back to [27]. Then the principal part of the functional contains
the inverse of the Laplacian rather than differentials, and therefore new convexity inequalities are needed.
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Another obstacle is a proper choice of a path γ and the verification of the local Lipschitz property in a
multi-component setting.

We include an example involving the quasilinear defocusing Schrödinger equation

−∆u− u∆u2 + V (x)u+ u3 = ωu (1.3)

on both bounded domains and on RN , where V is an appropriate potential and ω is either fixed or a
Lagrange multiplier when the mass (i.e. the L2–norm) is fixed. This equation appears when looking
for standing waves of a Schrödinger type equation, and is a particular case of a more general problem
appearing in many physical phenomena such as plasma physics and fluid dynamics, or condensed matter
theory, see [29, 69] for a detailed list of physical references. The main difficulty in the application of our
main results when working in RN is to obtain a comparison for positive weak solutions of (1.3), which
is needed for the proof of the local Lipschitz continuity of γ. Such comparison can be derived from new
sharp decay estimates,

u(x) ∼ |x|
ω−N

2 e−
1
2 |x|

2

as |x| → ∞,
that are proved for a transformed problem with a simplified principal part.

Finally, we show an application to the Gross-Pitaevskii system

−∆ui + V (x)ui + ui

k∑
j=1

βiju
2
j = ωiui i = 1, . . . , k (1.4)

which arises as a model for standing waves of Bose-Einstein Condensates [79] or in Nonlinear Optics [3].
We treat the case when ω1, . . . , ωk are fixed, as well as the case when the mass of each ui is fixed, and
the parameters appear as Lagrange multipliers. As in the previous example, when Ω = RN we need the
following sharp decay estimates for positive solutions (u1, . . . , uk) of (1.4),

ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

as |x| → ∞. (1.5)

However, additional difficulties stem from the fact that critical points of the associated functional might
have some trivial components, and therefore are not comparable. Moreover, when the mass of the ui is
fixed, the parameters ωi may depend on the solution. In that case, the sharp decay estimates yield that
positive solutions are not comparable and our method does not apply, but we include an alternative proof
for completeness which also relies on (1.5).

The paper is organized as follows. In Section 2 we prove Theorem 1.1 and Corollary 1.2. We collect
general auxiliary statements and inequalities needed throughout of the paper, in Section 3. Section 4
contains applications to second order problems and Section 5 to mean curvature operators. Problems
involving the fractional Laplacian are discussed in Section 6 and the problems regarding Hamiltonian
systems are in Section 7. Our study of Schrödinger equations and Gross-Pitaevskii systems can be found
in Section 8.

2. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. i) For a contradiction, suppose that there exist u, v ∈ A such that I(v) < I(u)
and set N := I(v)− I(u) < 0. Then, with γ as in the hypotheses of this theorem,

I(γ(t))− I(γ(0)) ≤ (1− t)I(u) + t I(v)− I(u) = tN for all t ∈ (0, 1) ,

that is,
I(γ(t))− I(u)

t
≤ N < 0 for all t ∈ (0, 1), (2.1)
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and in particular γ(t) 6= u for all t ∈ (0, 1). On the other hand, since γ is locally Lipschitz at 0, there
exist δ > 0 and C > 0 such that

‖γ(t)− u‖ ≤ Ct for all t ∈ [0, δ]. (2.2)

Since I is Fréchet differentiable and u is a critical point, then (2.1) and (2.2) yield

0 = lim
t→0

|I(γ(t))− I(u)− I ′(u)(γ(t)− u)|
‖γ(t)− u‖

= lim
t→0

|I(γ(t))− I(u)|
‖γ(t)− u‖

≥ |N |
C

> 0,

which is a contradiction. Therefore, I is constant on A and i) follows.

ii) Let j : [0, 1]→ R be defined as j(t) = I(γ(t)). For every t ∈ (0, 1) such that γ(t) 6= γ(0) we can write

|j(t)− j(0)|
t

=
|I(γ(t))− I(u)− I ′(u)(γ(t)− γ(0))|

‖γ(t)− γ(0)‖
‖γ(t)− γ(0)‖

t

and we infer that j′(0) = 0. Then j : [0, 1]→ R is convex, j(0) = j(1), j′(0) = 0, and therefore constant
on [0, 1]. Indeed, since j is convex

j(h)− j(0)

h
≤ j(t+ h)− j(h)

t
, for all t ∈ (0, 1), h ∈ (0, 1− t).

Then, taking the limit as h→ 0+, and using j′(0) = 0, we infer that j(0) ≤ j(t) ≤ (1−t)j(0)+tj(1) = j(0).
Part iii) immediately follows from ii) . �

Proof of Corollary 1.2. Recall that u is a critical point of I|S if and only if there exists λ (depending on
u) in the dual space of Y such that u is a critical point of the functional J : X → R defined by

J = I − λ ◦R.
Then the proof follows by applying the arguments in the proof of Theorem 1.1 to the functional J and
taking into account that J ◦ γ = I ◦ γ since γ(t) ∈ S for all t ∈ [0, 1]. Observe that in the proof of
Theorem 1.1 the fact that v is a critical point is not actually needed. �

In case A contains a local minimum of I, we present a similar —but non-equivalent— version of

Theorem 1.1. Observe that in this version t 7→ I(γ(t)) is not assumed to be convex and that one could
also state the corresponding version of Corollary 1.2 within this weaker setting. The proof follows the
same arguments as in the proof of Theorem 1.1 and it is omitted.

Theorem 2.1. Let X be a normed space, I : X → R be a Fréchet differentiable functional and A ⊂ X
be a nonempty subset of critical points of I. Suppose that given u, v ∈ A, with u 6= v, there exists
γ ∈ C([0, 1], X) such that

a) γ(0) = u, γ(1) = v.
b) γ is locally Lipschitz at t = 0, that is, ‖γ(t)− u‖ ≤ Ct for each t ∈ [0, δ] and some δ > 0.
c) I(γ(t)) ≤ (1− t)I(u) + t I(v) for all t ∈ (0, 1).

Then,

i) I is constant on A.
ii) if A contains a local minimum u0 of I and the strict inequality holds at condition c), then A = {u0}.

We point out that in Theorem 2.1 the existence of a local minimum is sharp in order to prove that
A is a singleton. Indeed, let B ⊂ RN , with N ≥ 1, be the unit ball in RN centered at the origin and
consider the Hénon equation [46]

−∆u = |x|α|u|q−2u in B, u = 0 on ∂B, (2.3)
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with α > 0, 2 < q if N ∈ {1, 2} and 2 < q < 2N
N−2 if N ≥ 3. Then the classical solutions of (2.3) are

critical points of

Iα(u) =
1

2

∫
B

|∇u|2 dx− 1

q

∫
B

|x|α|u|q dx, u ∈ H1
0 (B).

Let α > 0 be large enough such that least energy solutions —L.E.S. for short— of (2.3) are not radially

symmetric; see [75, 25]. Set A as either

{u; u is a L.E.S. of (2.3)} or {u; u is a L.E.S. of (2.3) and u > 0 in Ω}.
Given u, v ∈ A, with u 6= v, consider the path

γ(t) =

{
(1− 2t)u, t ∈ [0, 1/2],

(2t− 1)v, t ∈ [1/2, 1].

Taking into account the characterization of the Nehari manifold

Nα = {u ∈ H1
0 (B)\{0}; I ′α(u)u = 0},

we infer that all hypotheses a)-c) of Theorem 2.1 are satisfied with the strict inequality at condition
c). However, for N ≥ 2, and non-radial u∗ ∈ A, the set A contains infinitely many critical points
{u∗ ◦ O; O ∈ SO(N)} ⊂ A of Iα which are all of mountain pass type. Observe also that t 7→ I(γ(t)) is
not convex, and therefore Theorem 1.1 is not violated. Also, for v1, v2 ∈ {u∗ ◦ O; O ∈ SO(N)} there is
clearly a path between v1 and v2 along which I is constant, so mere convexity is in general not enough
to guarantee the uniqueness in Theorem 1.1.

3. Preliminary results

In this section we collect general results used throughout the paper that help to verify the assumptions
of Theorem 1.1 and Corollary 1.2. Let Ω ⊆ RN be a domain (bounded or unbounded) and fix u, v : Ω→ R
belonging to an appropriate space W specified below. We consider paths γ : [0, 1]→W of the form

γ(t)(x) := Q−1((1− t)Q(u(x)) + tQ(v(x))), t ∈ [0, 1], x ∈ Ω ,

where Q : [0,∞)→ R is an increasing, and therefore invertible function. For simplicity and without loss
of generality we also assume that Q(0) = 0. Then we have

Q(γ(t)) := (1− t)Q(u) + tQ(v) , (3.1)

where we suppressed the dependence on x for simplicity. The model function that satisfies all assumptions
below is Q(z) = zp for p > 1.

First, we provide a general criterion for the Lipschitz continuity of γ at t = 0. Note that even in the
model case Q(z) = zp for p > 1 we have to assume that u and v are comparable, that is, for some δ ≥ 1
we have on Ω

u, v > 0 ,
1

δ
≤ u

v
≤ δ . (3.2)

Otherwise if say u ≡ 0, then γ(t) = t
1
p v, which is not a locally Lipschitz function at t = 0. This

comparability is assumed to be preserved by Q as specified in the following lemma.

Lemma 3.1. Let W stand for either Lp(Ω), W 1,p
0 (Ω), or W 1,p(Ω) with p ≥ 1. Fix Q ∈ C([0,∞)) ∩

C1((0,∞)) such that

a) Q′ > 0 on (0,∞),
b) for each c0 > 0 there is c2 > 0 such that

1

c2
≤ Q′(z1)

Q′(z2)
≤ c2, whenever

1

c0
≤ z1

z2
≤ c0 , z1, z2 > 0 .
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If u, v ∈W satisfy (3.2) for some δ ≥ 1, then γ : [0, 1]→W defined by (3.1) is locally Lipschitz at t = 0,
provided W = Lp(Ω). If in addition

c) Q ∈ C2((0,∞)) and there is δ1 > 1 and c3 > 0 such that

1

c3
≤ Q′′(z1)

Q′′(z2)
whenever 1 ≤ z1

z2
≤ δ1 ,

then γ : [0, 1]→W is locally Lipschitz at t = 0, for any choice of W .

Remark 3.2. From the proof of the Lemma 3.1 immediately follows that the statement holds true for
weighted Lebesgue and Sobolev spaces.

Proof. To simplify the notation we drop the dependence of functions on x. Clearly γ(0) = u, γ(1) = v
and, since Q is increasing so is Q−1 and we have

min{u, v} ≤ γ(t) ≤ max{u, v} , for all t ∈ [0, 1].

Let us prove that ‖γ(t)− u‖W ≤ Ct for t ∈ [0, 1]. By the defintion of γ we have (whenever u(x) 6= v(x)
and t 6= 0)

Q(v)−Q(u) =
Q(γ(t))−Q(u)

t
=
Q(γ(t))−Q(u)

γ(t)− u
γ(t)− u

t
,

and by the Mean-value Theorem

Q(v)−Q(u) = Q′(ξ)(v − u),
Q(γ(t))−Q(u)

γ(t)− u
= Q′(η) ,

where ξ is pointwise between u and v, and η between u and γ(t). In particular,

1

δ
≤ min{u, v}

max{u, v}
≤ ξ

η
≤ max{u, v}

min{u, v}
≤ δ.

Thus from
γ(t)− u

t
=
Q′(ξ)

Q′(η)
(v − u) , (3.3)

and b), we have ‖γ(t)− u‖Lp(Ω) ≤ Ct, whenever u, v ∈ Lp(Ω).
To treat the Sobolev spaces, first observe from b), c), Q′ > 0, and the Mean-value Theorem that one

has, for z1 > 0,

c2 − 1 ≥ |Q
′(δ1z1)−Q′(z1)|

Q′(z1)
= (δ1 − 1)

|Q′′(w)|
Q′(z1)

z1 = (δ1 − 1)
Q′′(w)

Q′′(z1)

|Q′′(z1)|
Q′(z1)

z1 ≥
δ1 − 1

c3

|Q′′(z1)|
Q′(z1)

z1 ,

where the last inequality holds since z1 < w < δ1z1. Consequently for each z1 > 0

|Q′′(z1)|
Q′(z1)

z1 ≤ C . (3.4)

After differentiating (3.1) we have that

Q′(γ(t))(∇γ(t)−∇u) = (Q′(u)−Q′(γ(t)))∇u+ t(Q′(v)∇v −Q′(u)∇u) =: T1 + T2 .

Since γ(t) and u, v are comparable, by the Mean-value Theorem, b), (3.3), and (3.4) we obtain

|T1|
tQ′(γ(t))

≤ |Q
′′(ζ)|

Q′(γ(t))

|u− γ(t)|
t

|∇u| ≤ C Q′(ζ)

Q′(γ(t))

Q′(ξ)

Q′(η)

|u− v|
ζ
|∇u| ≤ C|∇u| ,
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where in the last inequality we used that ζ lies between u and γ(t), and therefore γ(t), ζ, ξ, and η are all
mutually comparable in the sense of (3.2). Finally,

|T2|
tQ′(γ(t))

≤ C(|∇u|+ |∇v|)

follows immediately from b). In conclusion, we have

|∇γ(t)−∇u|
t

≤ κ(|∇u|+ |∇v|)

and the local Lipschitz continuity of γ at t = 0 follows when W is either W 1,p(Ω) or W 1,p
0 (Ω). �

An immediate application of the previous lemma is the following.

Corollary 3.3. Let W stand for either Lp(Ω), W 1,p
0 (Ω), or W 1,p(Ω) with p ≥ 1 and take r > 1. If u

and v satisfy (3.2) for some δ ≥ 1, then the path γ : [0, 1]→W defined by

γ(t) = ((1− t)ur + tvr)
1
r

is locally Lipschitz at t = 0.

Proof. Just apply the previous lemma to Q(z) = zr, with r > 1. �

Note that if u and v satisfy 0 < c ≤ u, v < C in Ω, then (3.2) is clearly satisfied for δ = C/c. If u and v
attain zero Dirichlet boundary conditions, we have the following well known lemma, whose assumptions
are usually checked with the help of Hopf’s Lemma.

Lemma 3.4. Let Ω ⊂ RN , N ≥ 1, be a bounded smooth domain. Suppose that u, v ∈ C1(Ω) satisfy

a) u, v > 0 in Ω and u = v = 0 on ∂Ω;

b)
∂u

∂ν
< 0 and

∂v

∂ν
< 0 on ∂Ω.

Then there exists δ ≥ 1 such that δ−1v < u < δv in Ω.

Proof. The proof is standard and hence omitted. �

Next, we turn our attention to the assumption c) of Theorem 1.1 for paths of type (3.1). In our
examples, the principal part of the functional I usually has the form

∫
Ω
M(|∇u|) and the following result

proves its convexity.

Lemma 3.5. Let u, v ∈ W 1,∞(Ω) ∩W with u, v > 0 in Ω and let Q,M ∈ C([0,∞)) ∩ C1((0,∞)) such
that Q(0) = 0 and Q′,M ′ > 0 on (0,∞). Let γ(t) = Q−1((1− t)Q(u) + tQ(v)) and denote

F1 := Q′ ◦Q−1, F2 := M−1 .

If for some Γ ∈ (M(0),∞] the function F : (z1, z2) 7→ F1(z1)F2(z2) is concave on (0,∞) × (M(0),Γ),
then for each |∇u|, |∇v| ∈M−1([M(0),Γ]) we have a pointwise inequality

M(|∇γ(t)|) ≤ (1− t)M(|∇u|) + tM(|∇v|), for all t ∈ [0, 1] (3.5)

and t 7→ M(|∇γ(t, ·)|) is convex. If F is strictly concave on (0,∞) × (M(0),Γ), then for each t ∈
(0, 1), |∇u| ∈ M−1([M(0),Γ]), and |∇v| ∈ M−1((M(0),Γ)), the strict inequality holds in (3.5), and
t 7→M(|∇γ(t, ·)|) is strictly convex.
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Proof. By differentiating (3.1) we have

Q′(γ(t))∇γ(t) = (1− t)Q′(u)∇u+ tQ′(v)∇v ,

and consequently, by using triangle inequality and the invertibility of Q and M

Q′(γ(t))|∇γ(t)| ≤ (1− t)Q′(u)|∇u|+ tQ′(v)|∇v| (3.6)

= (1− t)Q′ ◦Q−1 ◦Q(u)M−1 ◦M(|∇u|) + tQ′ ◦Q−1 ◦Q(v)M−1 ◦M(|∇v|)
= (1− t)F1(Q(u))F2(M(|∇u|)) + tF1(Q(v))F2(M(|∇v|)) .

Since F is concave on (0,∞) × (M(0),Γ), it is concave on (0,∞) × [M(0),Γ] and for any |∇u|, |∇v| ∈
M−1([M(0),Γ]) we have

Q′(γ(t))|∇γ(t)| ≤ F1((1− t)Q(u) + tQ(v))F2((1− t)M(|∇u|) + tM(|∇v|)) (3.7)

= F1(Q(γ(t)))F2((1− t)M(|∇u|) + tM(|∇v|))
= Q′(γ(t))M−1((1− t)M(|∇u|) + tM(|∇v|))

and (3.5) follows. Note that (3.5) also implies that |∇γ(t)| ∈M−1([M(0),Γ]) for each t ∈ [0, 1].
To prove the convexity of t 7→ M(|∇γ(t)|), fix t1, t2, θ ∈ [0, 1] and set γ =: γuv to emphasize its

dependence on the endpoints u and v. Then it is easy to verify that

γuv((1− θ)t1 + θt2) = γU1U2
(θ), where Ui is defined by Q(Ui) = (1− ti)Q(u) + tiQ(v), i = 1, 2. (3.8)

Then, by (3.5) applied to γU1U2

M(|∇γuv((1− θ)t1 + θt2)|) = M(|∇γU1U2
(θ)|) ≤ (1− θ)M(|∇γU1U2

(0)|) + θM(|∇γU1U2
(1)|)

= (1− θ)M(|∇γuv(t1)|) + θM(|∇γuv(t2)|) ,

and the convexity follows.
To prove the strict convexity, first observe that for each t ∈ (0, 1)

(1− t)F (z) + tF (z̄) < F ((1− t)z + tz̄) , (3.9)

where z ∈ (0,∞) × [M(0),Γ] and z̄ ∈ (0,∞) × (M(0),Γ). Indeed, if not, then there exist t0 ∈ (0, 1)
such that equality holds in (3.9) with t replaced by t0. Then, by the concavity of F , we obtain that the
equality holds in (3.9) for each t ∈ [0, 1], and therefore F is linear along the segment connecting z and z̄.
Since such segment (except one of the endpoints) lies in (0,∞)× (M(0),Γ), we obtain a contradiction to
the strict concavity of F .

Finally, the strict inequality in (3.5) is a consequence of the strict concavity in (3.7), and strict convexity
of t 7→M(|∇γ(t, ·)|) follows as above. �

Remark 3.6. To our best knowledge, a special case of the following lemma with Q(z) = M(z) = z2

first appeared in [13]. The case Q(z) = M(z) = zp was treated in [37, Lemma 1], see also [12] and [70,
Chapter 2]. Note that our general results require a completely different proof based on concavity, which
is in a sense optimal; see Remark 3.7 below. At Section 8.1 we will consider the case M(z) = z2 and
Q(z) = f2 where f is the odd function such that

f ′(t) =
1√

1 + 2f2(t)
in (0,∞), f(0) = 0.

We work with classical derivatives to avoid methods of Orlicz spaces. However, the arguments hold true
whenever the expressions are defined, cf. proof of Lemma 3.9 below for the discussion on weak derivatives.



12 BONHEURE, FÖLDES, MOREIRA DOS SANTOS, SALDAÑA, AND TAVARES

Remark 3.7. Our assumptions are in some sense optimal, since if F is not concave, we obtain an
opposite inequality in (3.7) at some points. Besides the triangle inequality, this is the only estimate used
in the proof, and therefore (3.5) is not expected to hold true in general.

Remark 3.8. To verify the concavity of the function (z1, z2) 7→ F1(z1)F2(z2), since F1, F2 ≥ 0, one
needs both F1 and F2 to be concave and the determinant of the Hessian matrix to be non-negative, that
is,

F1F
′′
1 F2F

′′
2 ≥ (F ′1F

′
2)2 ,

where Fi depends on zi. If F ′i does not vanish we require

1 ≤ F1F
′′
1

(F ′1)2

F2F
′′
2

(F ′2)2
=

((
F1

F ′1

)′
− 1

)((
F2

F ′2

)′
− 1

)
, (3.10)

where the first parenthesis depends only on z1 whereas the second one depends only on z2. Recall that
F2 := M−1 is given by the problem, being associated to the principal part of the functional.

As such (3.10) provides partially optimal sufficient conditions on Q. Indeed, if for given M the second
parenthesis changes sign, there is no no-trivial Q yielding the desired convexity. However, if for example
the second parenthesis is bounded from below by 1

c0
> 0, then we can explicitly solve the differential

inequality to obtain

F1 ≤ c2((c0 + 1)z1 + c1)
1

c0+1

for some constants c1, c2 ≥ 0. Recall that F1 = Q′ ◦Q−1 and we obtain a differential inequality for Q

Q′ ≤ c2((c0 + 1)Q+ c1)
1

c0+1 , Q(0) = 0 .

If c1 = 0, or equivalently Q′(0) = 0, this inequality can be solved explicitly.

If the function (x, y) 7→ F1(x)F2(y) from Lemma 3.5 is concave, but not strictly concave, the equality
in (3.5) is a much more subtle issue and, in general, it is achieved at (u, v) with a nontrivial relation.
However, we show an important example that we can treat explicitly. Many of the ideas in the proof can
be used also in a more general setting.

Lemma 3.9. Take u, v ∈ W , where W stands for either W 1,p
0 (Ω) or W 1,p(Ω) with p > 1, with u, v > 0

in Ω. If Q(z) = M(z) = zp and γ is as in (3.1), that is, γ(t) = ((1− t)up + tvp)
1/p

, then the weak
derivatives satisfy

|∇γ(t)|p ≤ (1− t)|∇u|p + t|∇v|p (3.11)

and t 7→ |∇γ(t, x)|p is convex. Moreover, if u, v ∈ C(Ω)∩W with u, v being linearly independent functions,
then t 7→ ‖∇γ(t)‖pLp(Ω) is strictly convex.

Proof. It is easy to show that under our assumptions up, vp ∈ W 1,1(Ω) and the proof of Lemma 3.5 can
be repeated line by line with pointwise derivatives replaced by weak ones.

Let q be the conjugate exponent of p, that is q satisfies 1/p+ 1/q = 1. If F1 and F2 are as in Lemma

3.5, then F1(z1) = pz
1/q
1 and F2(z2) = z

1/p
2 .

Clearly F ′′1 < 0, F ′′2 < 0 and it is easy to verify that the Hessian is equal to

H(z1, z2) =
z

1
q−2

1 z
1
p−2

2

pq

1

q

(
−z2

2 z1z2

z1z2 −z2
1

)
with eigenvalues 0 and −(z2

1 +z2
2) corresponding to the eigenvectors (z1, z2)T and (−z2, z1)T respectively.

In particular, (z1, z2) 7→ F1(z1)F2(z2) is concave and (3.11) and the convexity of t 7→ |∇γ(t, x)|p follows
from Lemma 3.5. However, it is not strictly concave and we need a careful inspection of the proof of
Lemma 3.5 to prove that t 7→ ‖∇γ(t)‖pLp(Ω) is strictly convex.
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Since Q and Q−1 are monotone and homogeneous (Q(λt) = λpQ(t)), then the linear independence of u
and v implies that Q(u) and Q(v) are linearly independent, and consequently U1 = γ(t1) and U2 = γ(t2)
are linearly independent for all t1, t2 ∈ [0, 1] with t1 6= t2. Hence, arguing as in (3.8) of the proof of
Lemma 3.5, it is enough to prove that

‖∇γ(t)‖pLp(Ω) < (1− t)‖∇u‖pLp(Ω) + t‖∇v‖pLp(Ω) for all t ∈ (0, 1). (3.12)

Suppose that, for some t ∈ (0, 1), (3.12) does not hold. Hence ‖∇γ(t)‖pLp(Ω) = (1 − t)‖∇u‖pLp(Ω) +

t‖∇v‖pLp(Ω). First, the equality holds in the triangle inequality (3.6) if and only if there is α : Ω→ [0,∞)

such that

∇v = α∇u . (3.13)

Second, the equality holds in the concavity inequality (3.7) if and only if the vector connecting the points
(Q(u),M(|∇u|)) and (Q(v),M(|∇v|)) is parallel to the eigenvector corresponding to the zero eigenvalue
at the point (Q(u),M(|∇u|)). Equivalently, there is β : Ω→ [0,∞) such that

βpQ(u) = Q(v) , βpM(|∇u|) = M(|∇v|) .

With our choice of M and Q we have

βu = v , β|∇u| = |∇v| ,

and a comparison with (3.13) yields α = β. Therefore, since u, v > 0 and u, v ∈ C(Ω), and consequently
uniformly positive on compact subsets of Ω, then α = v

u is locally a C(Ω) ∩W function. Furthermore,
the weak derivatives of α satisfy

∇α = ∇
( v
u

)
=
u∇v − v∇u

u2
=

(αu− v)∇u
u2

≡ 0,

which shows by Du Bois-Reymond Lemma that α is constant and concludes the proof. �

4. Generalized p-Laplacian equations

For a bounded smooth domain Ω ⊂ RN and p > 1, consider the equation

−div(h(|∇u|p)|∇u|p−2∇u) = g(x, u) in Ω, u = 0 on ∂Ω . (4.1)

First, under general assumptions on h and g, we prove a general theorem (see Theorem 4.1 below)
and then in Section 4.1 we present a unified proof to many classical uniqueness theorems involving
quasilinear elliptic problems. We remark that our results holds true for Neumann boundary conditions
with straightforward modifications in the proofs. In the particular case h ≡ 1, the uniqueness was already
established in [37]. Our assumptions in particular include Allen-Cahn-type p-Laplacian problems, see
Example 4.9, and so extend some previous results of [15, 16] for the case of p = 2, h ≡ 1, g ≡ ku− uq−1

with q > 2.

Set

H(t) :=

∫ t

0

h(s)ds and G(x, t) :=

∫ t

0

g(x, s)ds, (4.2)

and assume:

(H1) h : [0,∞)→ [0,∞) is continuous, bounded, and non-decreasing.

(H2) The map u 7→
∫

Ω
G(x, u) dx is Fréchet differentiable in W 1,p

0 (Ω) and its derivative evaluated at

v ∈W 1,p
0 (Ω) is

∫
Ω
g(x, u)v dx.

(H3) For every x ∈ Ω, the function t 7→ G(x, t1/p) is concave on [0,∞).



14 BONHEURE, FÖLDES, MOREIRA DOS SANTOS, SALDAÑA, AND TAVARES

We say that u ∈W 1,p
0 (Ω) is a weak solution of (4.1) if∫

Ω

h(|∇u|p)|∇u|p−2∇u∇v dx−
∫

Ω

g(x, u)v dx = 0, for all v ∈W 1,p
0 (Ω),

or equivalently, u is a critical point of the Fréchet differentiable functional

I(u) =
1

p

∫
Ω

H(|∇u|p) dx−
∫

Ω

G(x, u) dx, u ∈W 1,p
0 (Ω). (4.3)

Observe that by (H1) the function H is convex, but since we do not assume that G is concave, I is
not necessarily convex. We also suppose the following condition, which is related to (3.2).

(H4) (Regularity and Global comparison) Every critical point u ≥ 0 of (4.3) is C
(
Ω
)
. Given any

positive critical points u, v of (4.3), there exists δ ≥ 1 such that δ−1v ≤ u ≤ δv in Ω.

Theorem 4.1. Assume (H1)– (H4), let I be as in (4.3) and A be the set of positive critical points of
(4.3). If A 6= ∅, then the following holds:

i) I is constant on A.
ii) If h is increasing, or the function in (H3) is strictly concave, then A is a singleton.

iii) If h > 0 on (0,∞), then A ⊂ {αu0; α ∈ (0,∞)} for some u0 ∈ A.
iv) If we assume (H4) only for u ∈ A′ ⊂ A, then i)–iii) holds with A replaced by A′.

Remark 4.2. i) Note that h > 0 implies that H is strictly increasing. Also, if h is strictly increasing,
then H is strictly convex.

ii) Hypothesis (H2) is satisfied for example if g : Ω × R → R is continuous and there exist C > 0 and
r > 0 with r(N − p) ≤ (p− 1)N + p, such that

|g(x, t)| ≤ C(1 + |t|r), for all t ∈ R, x ∈ Ω.

iii) Theorem 4.1 can be trivially extended to differentiable functionals

u ∈W 7→ Ĩ(u) = H̃(|∇u|p)− G̃(u) ,

where W is W 1,p
0 (Ω) or W 1,p(Ω) and the critical points of Ĩ satisfy (H4). Moreover, H̃ : L1(Ω)→ R

is non-decreasing (with respect to the cone of positive function in L1) and convex and G̃ : W → R
satisfy (H3) with G replaced by G̃.

iv) In the proof of uniqueness of positive solutions for (4.1), it is sometimes assumed (see e.g. [37, (H2)])
that

g(x, t)

tp−1
is strictly decreasing in (0,∞),

which implies (H3).
v) On bounded domains the global comparison of positive solutions (GC for short) introduced in (H4)

is a consequence of Hopf Lemma. Indeed, if ∂u
∂ν < 0 and ∂v

∂ν < 0 on ∂Ω, then the GC follows from

Lemma 3.4. However, Hopf Lemma is not suitable to obtain GC if the problem is posed on RN . In
this case the argument needs to be replaced by sharp decay estimates, as presented in Section 8.

vi) The result of Theorem 4.1 holds true under slightly weaker conditions, where we require (H1)–(H3)
only on the range of u and ∇u (when we have a priori estimates). This version will be used in
Section 5.2.

To prove Theorem 4.1 from Theorem 1.1 we need the following lemma, which generalizes Lemma 3.9.

Lemma 4.3. Let W be either W 1,p
0 (Ω) or W 1,p(Ω) and Φ : W → R given by Φ(u) =

∫
Ω
H(|∇u|p)dx with

h as in (H1). Let u, v ∈W such that u, v > 0 in Ω and γ(t) = ((1− t)up + tvp)1/p for t ∈ [0, 1]. Then:
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i) t 7→ Φ(γ(t)) is convex on [0, 1].
ii) t 7→ Φ(γ(t)) is strictly convex on [0, 1] if u, v ∈ C(Ω) ∩W , u 6= v and h is increasing.

iii) t 7→ Φ(γ(t)) is strictly convex on [0, 1] if u and v are linearly independent, u, v ∈ C(Ω) ∩W and
h > 0 on (0,∞).

Proof. From (H1) we know that H : [0,∞) → R is nondecreasing and convex. Then, from (3.11), given
t1, t2 ∈ [0, 1] and θ ∈ (0, 1),

Φ(γ((1− θ)t1 + θt2)) =

∫
Ω

H(|∇γ((1− θ)t1 + θt2)|p)dx ≤
∫

Ω

H((1− θ)|∇γ(t1)|p + θ|∇γ(t2)|p) dx

≤
∫

Ω

[(1− θ)H(|∇γ(t1)|p) + θH(|∇γ(t1)|p)] dx = (1− θ)Φ(γ(t1)) + θΦ(γ(t2)), (4.4)

and i) follows.
In addition to (H1), if h is increasing or h > 0, then H : [0,∞)→ R is increasing and the first inequality

in (4.4) is strict if u and v are linearly independent and iii) follows. Otherwise, u = αv and if in addition
h is increasing, H is strictly convex and the second inequality in (4.4) is strict unless |∇γ(t1)| = |∇γ(t2)|.
Thus α = 1 and u ≡ v and ii) holds true. �

Proof of Theorem 4.1. Let I : W 1,p
0 (Ω) → R be a Fréchet differentiable functional given by (4.3) and A

be the set of positive solutions of (4.1). It is enough to show that conditions a)-c) of Theorem 1.1 are
satisfied.

Suppose that u and v, with u 6= v, are positive solutions of (4.1) and set γ(t) = ((1 − t)up + tvp)1/p.
Then, from (H4) and Corollary 3.3, we infer that γ satisfies the hypotheses a) and b) of Theorem 1.1.
From Lemma 4.3 i) (where we use (H1)) and (H3) we obtain t 7→ I(γ(t)) is convex on [0, 1] as it is the
sum of two convex functions. Therefore c) of Theorem 1.1 holds and i) follows.

To prove ii), observe that by Lemma 4.3, t 7→ I(γ(t)) is strictly convex on [0, 1] if either H is strictly
convex (equivalent to h being increasing), or the strict concavity holds at (H3).

Finally, iii) follows from by Lemma 4.3 iii) if u and v are linearly independent, and hence A ⊂ {αu0; α ∈
(0,∞)}.

The proof of iv) immediately follows after replacing A by A′. �

4.1. New proofs for classical equations. Throughout this section Ω ⊂ RN , with N ≥ 1, is a bounded
smooth domain and p > 1. Some of the results, namely Examples 4.4 and 4.6, already appeared in [70,
Sections 2.5.4 and 2.5.5] where the author uses a different approach and the uniqueness is proved via
strict variational sub-symmetry transformation groups; see [70, Section 2] for more details.

Example 4.4 (p-sublinear problems with Dirichlet boundary conditions). Consider (4.1) with h ≡ 1
and g(x, t) = |t|q−2t with 1 < q < p, that is

−∆pu = |u|q−2u in Ω, u = 0 ∂Ω. (4.5)

Then, by [38, 56], any weak solution is C1(Ω). Since G(t) = 1
q |t|

q, then G(t1/p) = 1
q |t|

q/p is strictly

concave on [0,∞) as q < p. Condition (H4) is satisfied by combining Hopf’s Lemma [81, Theorem 5]
with Lemma 3.4. Hence, by Theorem 4.1, problem (4.5) has at most one positive solution. On the other
hand, it is standard to show that in this case (4.1) has a positive solution (a global minimizer of I).

Remark 4.5. An alternative proof of the result above is presented in [37] where the path
γ(t) = ((1− t)up + tvp)1/p is used to prove the integral monotonicity∫

Ω

(
−∆pu

1/p

u(p−1)/p
+

∆pv
1/p

v(p−1)/p

)
(u− v)dx ≥ 0. (4.6)
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Alternatively, it is simple to show that D = {v > 0; v1/p ∈ W 1,p
0 (Ω)} is a convex cone and as proved in

[12, p. 230], see also [50], the functional

v 7→ I(v1/p) =: J(v)

is strictly convex on D. Therefore, since I has a global minimizer u ∈ W 1,p
0 (Ω) with u > 0, then J has

a global minimizer on D and the uniqueness of positive minimizers of I follows from the uniqueness of
minimizer for J ; see also [55, Lemma A.4] for an application to a Gross-Pitaevskii energy functional.
However, the proof of uniqueness of positive critical points requires more attention, as showed by our
example (1.1), since I might have more critical points than J and the cone of positive functions in W 1,p

0 (Ω)
has empty interior if 1 < p < N .

Example 4.6 (Simplicity of the first p-Laplacian eigenvalue). The first eigenvalue of the p-Laplacian
operator is given by

Λp = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pdx∫
Ω

|u|pdx
. (4.7)

Moreover, the first eigenfunctions can be characterized as the nontrivial critical points of

I(u) =
1

p

∫
Ω

|∇u|pdx− Λp
p

∫
Ω

|u|pdx, u ∈W 1,p
0 (Ω),

or as nontrivial solutions of

−∆pu = Λp|u|p−2u in Ω, u = 0 ∂Ω. (4.8)

It is standard to show that (4.8) has a positive solution (a global minimizer of I). Then the simplicity
of Λp is a consequence of Theorem 4.1 iii), with h(t) = 1, g(x, t) = Λp|t|p−2t and with A defined as the

set of positive solutions of (4.8). Note that h is not strictly increasing and G(t1/p) =
Λp
p t is not strictly

concave. See [33, 7, 72, 8, 58] for alternative and [12, 22] for similar proofs.

Example 4.7 (Nonlinear boundary value problems). Consider the equation

−∆pu+ |u|p−2u = 0 in Ω, |∇u|p−2 ∂u

∂ν
= |u|q−2u on ∂Ω, 1 < q < p. (4.9)

Here we prove that (4.9) has at most one positive weak solution; see [17, Theorem 1.2] for the existence
of infinitely many sign-changing weak solutions.

The weak solutions of (4.9) are defined as the critical points of

I(u) =
1

p

∫
Ω

(|∇u|p + |u|p) dx− 1

q

∫
∂Ω

|u|qdS, u ∈W 1,p(Ω). (4.10)

Note that since q < p the boundary integral is well defined. By [38, 56], any weak solutions of (4.9) is
C1(Ω). By [81, Theorem 5], any nonnegative nontrivial critical point v of (4.10) satisfies v > 0 in Ω. Set

A = {u ∈W 1,p(Ω);u is a positive weak solution of (4.9)}.

The positivity on Ω for any u, v yields (H4), and from Remark 4.2 with

H̃(v) =
1

p

∫
Ω

v dx, G̃(v) =
1

p

∫
Ω

|v|p dx−
∫
∂Ω

|v|q dS

and the strict concavity of G̃, we infer that A has at most one element. Again it is standard to show that
A is not empty (contains a global minimizer of I).
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Example 4.8 (Nonlinear Steklov problem). The arguments from Examples 4.6 and 4.7 can be applied
to prove that the first eigenvalue of

−∆pu+ |u|p−2u = 0 in Ω, |∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

is simple; see [62] for an alternative proof based on arguments from [58, Appendix] on the strict convexity
of the function

z ∈ RN , z 7→ |z|p.

Example 4.9 (p-Laplacian Allen-Cahn problems). Let q > p > 1 and consider the equation{
−∆pu = k|u|p−2u− |u|q−2u in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

(4.11)

and let Λp be as in (4.7). Set X = W 1,p
0 (Ω) ∩ Lq(Ω) with the norm ‖u‖X = ‖∇u‖Lp(Ω) + ‖u‖Lq(Ω), and

define I : X → R by

I(u) =
1

p

∫
Ω

|∇u|p dx+

∫
Ω

(
|u|q

q
− k |u|

p

p

)
dx.

The weak solutions of (4.11) are defined as the nontrival nonnegative critical points of I. By testing (4.11)
with u we infer that (4.11) has no weak solution if k ≤ Λp. So we consider k > Λp. By testing (4.11) with

(u − k1/q−p)+ we can show that any nonnegative solution satisfies ‖u‖L∞(Ω) ≤ k1/(q−p) and by [38, 56],

u ∈ C1(Ω). Then the Hopf Lemma, as in [81, Theorem 5], combined with Lemma 3.4 guarantees (H4).
Then, from Theorem 4.1, by setting

A = {u ∈ X;u > 0 is a weak solution of (4.11)}

and noting that h ≡ 1 and G(t) = k
p |t|

p− 1
q |t|

q with G(t1/p) being strictly concave on [0,∞), we infer that

(4.11) has at most one (positive) weak solution (Corollary 3.3 guarantees that γ(t) = ((1− t)up − tvp)1/p

is locally Lipschitz at t = 0). Finally, with k > Λp, it is simple to show that A contains a global minimizer
of I. See [15, Theorem 4] and [16, Theorem 6] for alternative proofs in the case of p = 2 and q = 3. For
the general case q > p > 1 an alternative proof follows using the arguments in [37] based on the relation
(4.6).

5. Mean curvature type operators

5.1. Mean curvature operator in Euclidean space. In this section we investigate solutions of

−div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω, u = 0 on ∂Ω, (5.1)

where Ω ⊂ RN , with N ≥ 1, is a bounded smooth domain. Note that problem (5.1) has the structure

of (4.1) with h(t) = (1 + t)−
1
2 , but h does not satisfy (H1) since it is a decreasing function. A model

nonlinearity in this section is g(x, u) = λup−1 with p ∈ (1, 2), λ > 0; however, in this case it is known
[54, 44] that there are multiple non-negative solutions of (5.1). Even in this case, our method yields the
uniqueness of solutions in certain subsets of the state space, specifically for functions with an additional
bound on the gradient. We remark that the existence of small C1-solutions was proved in the one-
dimensional case in [44, 20] and the existence of small solutions in higher dimensions in [67]. Our
uniqueness results provide new insights on the bifurcation diagrams obtained in [20, Fig. 2] and [44, Fig.
1]. Observe that our results also apply to Allen-Cahn-type nonlinearities like g(x, u) = k|u|p−2u−|u|q−2u
with k > 0, q > p and p ∈ (1, 2).
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Theorem 5.1. If there exists p ∈ (1, 2) such that the function t 7→ G(x, t
1
p ) is concave and (H2) (from

Section 4) is satisfied, then there exists at most one positive solution of (5.1) in the set

Z :=

{
u ∈W 1,∞

0 (Ω); ‖∇u‖L∞(Ω) <

(
2− p
p− 1

)1/2
}
.

Proof. We verify assumptions of Theorem 1.1 with the curve γ defined for any u, v ∈ Z, u, v > 0 by

γ(t) = ((1− t)up + tvp)
1
p t ∈ [0, 1] .

Note that solutions to (5.1) that belong to Z are critical points of the Fréchet differentiable functional

I : W 1,p
0 (Ω)→ R, I(u) :=

∫
Ω

√
1 + |∇u|2 −G(x, u) dx .

To prove the convexity of t 7→ I(γ(t)) we use Lemma 3.5 with

Q(z) = zp z ∈ (0,∞), and M(z) =
√

1 + z2 z ∈

[
0,

(
2− p
p− 1

)1/2
)
.

Then F1(z1) = pz
(p−1)/p
1 for any z1 ∈ (0,∞) and F2(z2) =

√
z2

2 − 1 for any z2 = M(z) ∈ [1, 1/
√
p− 1).

It is easy to check that F ′′2 (z2) < 0, F ′′1 (z1) < 0 for any (z1, z2) ∈ (0,∞) × (1, 1/
√
p− 1). The strict

concavity of F on (0,∞)× (1, 1/
√
p− 1) now follows by (3.10) from((

F1

F ′1

)′
− 1

)((
F2

F ′2

)′
− 1

)
=

1

p− 1

(
1

z2
2

)
> 1 .

Note that this is the only step where we need a restriction on the gradient. Thus from Lemma 3.5 we have
that t 7→ M(|∇γ(t)|) is strictly convex whenever at least one of |∇u|, |∇v| is positive. Here and below,
the gradient of a function is understood in a weak sense. Clearly, M(|∇γ(·)|) ≡ 1 if |∇u| = |∇v| = 0.
If |∇u| = 0 almost everywhere, then u is constant, and therefore zero by the boundary conditions, a
contradiction to u > 0. Thus |∇u| > 0 on a set of positive measure, and on that set t 7→ M(|∇γ(t)|) is
strictly convex, and consequently for each u, v > 0

t 7→
∫

Ω

M(|∇γ(t)|) dx is strictly convex in [0, 1] .

Since t 7→ G(x, γ(t)) is concave, the strict convexity of t 7→ I(γ(t)) follows.
Moreover, any solution in Z of (5.1) satisfies a uniformly elliptic equation, and consequently it is

smooth by elliptic regularity, and moreover satisfies the maximum principle and Hopf lemma. Thus by
Lemma 3.4 and Corollary 3.3 we obtain condition Theorem 1.1 b) , and the uniqueness follows. �

5.2. Mean curvature operator in Minkowski space. We now consider a quasilinear Dirichlet prob-
lem involving the mean curvature operator in Minkowski space, namely

−div

(
∇u√

1− |∇u|2

)
= g(x, u) in Ω, u = 0 on ∂Ω, (5.2)

where Ω ⊂ RN , with N ≥ 1, is a bounded domain. Existence of positive solutions can be found by
minimization of

I(u) :=

∫
Ω

(
1−

√
1− |∇u|2

)
−G(x, u)dx ,
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where G(x, t) :=
∫ t

0
g(x, s) ds on the convex set

K0 := {u ∈W 1,∞(Ω); |∇u| ≤ 1, u = 0 on ∂Ω},

under suitable assumptions on g, see for example [14].
Set

diam(Ω) := sup{|x− y|;x, y ∈ Ω}, M :=
diam(Ω)

2
,

and we have that

‖u‖L∞(Ω) ≤M for all u ∈ K0 . (5.3)

Our main contribution is the following new uniqueness result.

Theorem 5.2. Let Ω ⊂ RN be a bounded smooth domain and assume that

(G) for every x ∈ Ω, the function t 7→ G(x,
√
t) is concave in [0,M2],

(g) The function g : Ω× [0,M ]→ R is continuous and of the form g = g1 + g2, with gi(x, 0) = 0 for
i = 1, 2, where t 7→ g1(x, t) is Lipschitz continuous in [0,M ] uniformly in x and g2 is continuous
and nonnegative in Ω× [0,M ].

Then (5.2) has at most one positive classical solution, that is, the set

A := {u ∈ C2,α(Ω);u > 0 in Ω and u satisfies (5.2)}

contains at most one element.

Remark 5.3. i) (g) is used to show (H4) from Section 4.
ii) If one assumes (g) and that g(x, ·) is nonincreasing in [0,M ] for every x ∈ Ω, then (5.2) has only

one solution by the convexity of the energy functional (see [9, Proposition 1.1]).
iii) If the concavity assumption (G) is dropped, then there are results on multiplicity of nontrivial nonneg-

ative solutions. In particular, [14, Theorem 3] shows that (5.2) has at least two nontrivial nonnegative
solutions if g(x, u) = k|u|p−2u− u, p > 2, and k > 0 is large enough.

Let λ1 denote the first Dirichlet eigenvalue of the Laplacian in Ω. Theorem 5.2 and standard existence
arguments imply the following result which applies in particular to g(x, u) = ku− |u|p−2u with k > 2λ1,
p > 2 or to g(x, u) = |u|q−2u for q ∈ (1, 2).

Corollary 5.4. Let Ω ⊂ RN , N ≥ 1, be a bounded smooth domain. In addition to (G), (g) from Theorem
5.2, assume that g is Hölder continuous in Ω× [0,M ], g(·, 0) = 0 in Ω, and

G(x, t)

t2
> λ1 as t→ 0+, uniformly in x ∈ Ω. (5.4)

Then (5.2) has a unique positive classical solution.

We prove first the main theorem of this section.

Proof of Theorem 5.2. By (5.3) and [9, Corollary 3.4 and Theorem 3.5] there is θ ∈ (0, 1) such that

A ⊂ {u ∈ K0; |∇u| ≤ 1− θ}. (5.5)

Let

ĝ(x, t) := sign(t)g(x,min{|t|,M}) for (x, t) ∈ Ω× R.
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and Ĝ(x, t) :=
∫ t

0
ĝ(x, s) ds. Note that ĝ is just a truncation of g extended as an odd function. Moreover,

let h̃ ∈ C([0,∞)) be given by

h̃(t) =

{ 1√
1−t , t ∈ [0, 1− θ],

1√
θ
, t ≥ 1− θ,

with θ as in (5.5) and let H̃(t) :=
∫ t

0
h̃(s)ds for t ≥ 0. By (5.3) and (5.5), the elements of A are critical

points of

Ĩ : H1
0 (Ω)→ R, Ĩ(u) :=

∫
Ω

H̃(|∇u|2)

2
− Ĝ(x, u)dx.

Clearly h̃ satisfies assumption (H1), ĝ satisfies (H2), and, by (G), for every x ∈ Ω, t 7→ Ĝ(x,
√
t) =

G(x,
√
t) is concave on [0,M2] and so (H3) is satisfied. We now show that (H4) holds for all elements in

A. Note that these might not be all the critical points of Ĩ. We argue as in [30, Lemma 2.2]. Let u ∈ A
and note that u solves the uniformly elliptic linear equation −

∑N
i,j=1 aij∂xixju− c u = ρ, where

aij := a(|∇u|2)δij + 2a′(|∇u|2)∂xiu∂xju with a(s) := (1− s)− 1
2 , (5.6)

δij is the Kronecker delta, c(x) :=
∫ 1

0
g′1(x, su(x)) ds, and ρ(x) := g2(x, u(x)) for a.e. x ∈ Ω. By (g) we

have that ρ ≥ 0 and c ∈ L∞(Ω). By Hopf’s Lemma we obtain that ∂u
∂η < 0 on ∂Ω. Therefore, for every

u, v ∈ A there is δ > 1 such that 1
δ v ≤ u ≤ δv. The result now follows from Theorem 4.1, iv) and ii). �

Proof of Corollary 5.4. The uniqueness follows from Theorem 5.2. We now show that

A := {u ∈ C2,α(Ω);u > 0 in Ω and u satisfies (5.2)}
is nonempty. Here and below α ∈ (0, 1) denotes possibly different Hölder exponents. Let

Î : K0 → R; Î(u) =

∫
Ω

(
1−

√
1− |∇u|2

)
− Ĝ(x, u) dx,

with Ĝ and ĝ as in the proof of Theorem 5.2. Since ĝ is continuous and bounded in Ω×R, [14, Theorem

1] implies that Î attains its infimum at ū ∈ K0 ∩W 2,p(Ω) for some p > N with ‖∇ū‖L∞(Ω) < 1 and

ū solves (5.2) with g replaced by ĝ. By (5.4) and the inequality 1 −
√

1− t ≤ t for t ∈ [0, 1], one has

Î(εϕ1) < 0 for ε > 0 small enough, where ϕ1 is the positive eigenfunction associated to λ1 normalized

in L2(Ω). Therefore, Î(ū) < 0 and hence ū 6≡ 0. Moreover, since t 7→ Ĝ(x, t) is even by construction,

we have that Î(|ū|) = Î(ū), and consequently v̄ := |ū| ∈ K0 is also a critical point of Î (in the sense of
[14]). Therefore [14, Theorem 1] implies that v̄ ∈ K0 ∩W 2,p(Ω) for some p > N with ‖∇v̄‖L∞(Ω) < 1
and solves (5.2), since ĝ(x, v̄) = g(x, v̄) by (5.3).

Arguing as in the proof of Theorem 5.2, −
∑N
i,j=1 aij∂xixj v̄ = η with aij as in (5.6) and η(x) :=

g(x, v̄(x)). Since η ∈ C0,α(Ω) and v̄ ∈ C1,α(Ω) by Sobolev embeddings, we have that aij ∈ C0,α(Ω).

Then [42, Theorem 6.14] yields that v̄ ∈ C2,α(Ω). Finally, v̄ > 0 in Ω by the maximum principle. �

6. Problems involving fractional Laplacians

In this section we use Theorem 1.1 to obtain new uniqueness results for nonlocal operators.

Let s ∈ (0, 1) and Ω ⊂ RN , N ≥ 1 be a bounded smooth domain and let

Hs0(Ω) :=

{
u ∈ L2(RN ); ‖u‖Hs :=

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

<∞ and u ≡ 0 in RN\Ω

}
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denote the fractional Sobolev space of order s and

(−∆)su(x) = P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε→0

∫
|x−y|≥ε

u(x)− u(y)

|x− y|N+2s
dy

denote the fractional Laplacian of order s, where we have omitted any normalization constant for sim-
plicity. We say that u ∈ C0,s(Ω) ∩Hs0(Ω) is a weak solution of

(−∆)su = g(x, u) in Ω, u ≡ 0 in RN\Ω , (6.1)

if
1

2

∫
RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy =

∫
Ω

g(x, u(x))φ(x) dx (6.2)

for all φ ∈ Hs0(Ω). Let X be a subspace of Hs0(Ω) such that the energy associated to (6.1)

I(u) :=
1

4

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy −

∫
Ω

G(x, u(x)) dx for all u ∈ X (6.3)

is well defined and Fréchet differentiable, where G is given by (4.2) and

the derivative of u 7→
∫

Ω

G(x, u) dx evaluated at v ∈ X is

∫
Ω

g(x, u)v dx. (6.4)

The choice of X depends on the nonlinearity and for most applications one can consider X = Hs0(Ω) or
X = Hs0(Ω) ∩ Lp(Ω) for some p > 2. In the latter case we endow X with the norm ‖u‖X = ‖u‖Hs +
‖u‖Lp(Ω).

Theorem 6.1. Let Ω ⊂ RN be a bounded smooth domain, s ∈ (0, 1), and assume that

(G) for every x ∈ Ω, the function t 7→ G(x,
√
t) is strictly concave in [0,∞),

(g) The function g : Ω×R→ R is continuous of the form g = g1+g2, with g1(x, 0) = 0 and t 7→ g1(x, t)
is locally Lipschitz continuous in R uniformly in x, and g2 is continuous and nonnegative in
Ω× [0,∞).

Let X = Hs0(Ω) or X = Hs0(Ω)∩Lp(Ω) for some p > 2 such that I as in (6.3) is Fréchet differentiable in
X and (6.4) is satisfied. Then (6.1) has at most one positive weak solution u ∈ C0,s(Ω) ∩Hs0(Ω).

Proof. Let X = Hs0(Ω) ∩Lp(Ω) endowed with the norm ‖u‖X = ‖u‖Hs + ‖u‖Lp(Ω) (the case X = Hs0(Ω)

follows similarly). We use Theorem 1.1 with A ⊂ C0,s(Ω) ∩ X being the set of nontrivial nonnegative
weak solutions of (6.1). Observe that, by the maximum principle (see, for example, [39, 48]), any element

of A is positive in Ω. Fix u, v ∈ A. For t ∈ [0, 1], let γ(t) := ((1 − t)u2 + tv2)
1
2 . We show first that

γ : [0, 1]→ X is well defined and Lipschitz at t = 0. We start with the Hs-norm, that is, we show that∥∥∥∥γ(t)− γ(0)

t

∥∥∥∥
Hs
≤ C(‖u‖Hs + ‖v‖Hs) for t ∈ (0, 1], (6.5)

and for some C > 0. Indeed, note that

γ(t)− γ(0)

t
=

v2 − u2

γ(t) + u
= u

w2 − 1

(1− t+ tw2)
1
2 + 1

= u z(w, t) ,

where w := v
uχΩ, z(ξ, t) := ξ2−1

(1−t+tξ2)
1
2 +1

, and χΩ is the characteristic function of Ω. Since u, v ∈ C0,s(Ω),

there is M > 0 such that 0 < v < Mδs in Ω, where δ(x) := dist(x,RN\Ω). Moreover, u is a weak solution

of (−∆)su− c(x)u = ρ, with c(x) :=
∫ 1

0
g′1(x, su(x)) ds, and ρ(x) := g2(x, u(x)) for a.e. x ∈ Ω. By (g) we
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have that ρ ≥ 0 and c ∈ L∞(Ω). Then, by Hopf’s Lemma (see [39]) there is m > 0 such that u > mδs in
Ω. Therefore w < M

m in Ω. Moreover, for x, y ∈ Ω,

u(x)z(w(x), t)− u(y)z(w(y), t) =(u(x)− u(y))z(w(x), t)− u(y)(z(w(y), t)− z(w(x), t))

and by the Mean value Theorem

u(y)|z(w(x), t)− z(w(y), t)| ≤ C1u(y)|w(x)− w(y)| = C1|v(x)− v(y) +
v(x)

u(x)
(u(y)− u(x))|

≤ C2(|v(x)− v(y)|+ |u(y)− u(x)|) ,

where C1 := sup
k∈[0,Mm ],t∈[0,1]

|∂wz(k, t)| <∞ and C2 := C1 + M
m .

On the other hand, if x ∈ Ω and y ∈ RN\Ω, then u(y) = 0 and

|u(x)z(w(x), t)− u(y)z(w(y), t)| ≤ C1‖w‖L∞(Ω)|u(x)− u(y)| .

These estimates readily imply (6.5) and therefore γ is Lipschitz at 0 with respect to the Hs-norm.
Moreover, by Corollary 3.3 we have that γ is Lipschitz at t = 0 with respect to the Lp-norm, and
therefore γ is Lipschitz at 0 with respect to the norm in X.

Finally, to prove the strict convexity of t 7→ I(γ(t)) it suffices (see (3.8) in the proof of Lemma 3.5) to
show that

(γ(t)(x)− γ(t)(y))2 ≤ (1− t)(u(x)− u(y))2 + t(v(x)− v(y))2 for x, y ∈ RN

(recall that t 7→ −
∫

Ω
G(x, γ(t)(x)) dx is strictly convex by assumption (G)). Indeed, after the substitution

a =
√

1− t u(x), b =
√

1− t u(y), c =
√
t v(x), and d =

√
t v(y) this is equivalent to∣∣∣(a2 + c2)

1
2 − (b2 + d2)

1
2

∣∣∣ ≤ ((a− b)2 + (c− d)2
) 1

2

,

which follows from the Minkowski inequality. Thus all the assumptions from Theorem 1.1 are satisfied
and the uniqueness follows. �

Remark 6.2. Note that whenever (H4) from Section 4 holds, we can use the path γ(t) := ((1−t)up+tvp)
1
p ,

p ≥ 1 to show the uniqueness of a nontrivial nonnegative critical point of the functional

I(u) =
1

2p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy −

∫
Ω

G(x, u(x)) dx for all u ∈W s,p
0 (Ω) ,

where t 7→ G(x, t1/p) is strictly concave, cf. (H3). This functional is related to the fractional p-Laplacian
(−∆)sp, s ∈ (0, 1). Assumption (H4) can be deduced from a Hopf-type lemma, but, to our best knowledge,
such result is established only if p = 2.

Let Λ1 > 0 and Φ1 ∈ C0,s(Ω) ∩Hs0(Ω) be such that

(−∆)sΦ1 = Λ1Φ1 in Ω, Φ1 > 0 in Ω, Φ1 ≡ 0 in RN\Ω, (6.6)

see, for example, [48, Theorem 5.23]. Then Theorem 6.1 and standard minimization arguments imply
the following.

Corollary 6.3. Let Ω ⊂ RN , N ≥ 1 be a bounded domain of class C2, s ∈ (0, 1), p > 2, and k > Λ1.
Then (6.1) with g(x, u) = ku− |u|p−2u has a unique positive weak solution u ∈ C0,s(Ω) ∩Hs0(Ω).
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Proof. The uniqueness follows from Theorem 6.1. The existence follows from a standard global min-
imization argument. We recall that X := Hs0(Ω) ∩ Lp(Ω) is (compactly) embedded into L2(Ω); see,
for example, [36, Theorem 7.1]. It is standard to see that I is bounded from below and weakly lower
semi-continuous, and therefore a global minimizer u ∈ X is attained. Moreover, u is nontrivial because

the condition k > Λ1 guarantees that I(εΦ1) =
∫

Ω
(Λ1

2 −
k
2 + εp−2

p Φp−2
1 )ε2Φ2

1 dx < 0 for ε ∼ 0, by (6.6).

Finally, since |u| ∈ X and I(|u|) ≤ I(u), we may assume that u ≥ 0 in RN .
It only remains to show that u > 0 in Ω and u ∈ Cs(Ω). Let φ = (k1/(p−2)−u)− ∈ X. Then (6.2), the

fact that the positive and the negative part of a function have disjoint supports, and u(k − |u|p−2)φ ≤ 0
yield

0 =
1

2

∫
RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy −

∫
Ω

u(x)(k − |u(x)|p−2)φ(x) dx

≥ 1

2

∫
RN

∫
RN

(φ(x)− φ(y))2

|x− y|N+2s
dxdy −

∫
Ω

u(x)(k − |u(x)|p−2)φ(x) dx ≥ 0 .

Therefore ‖u‖L∞(RN ) ≤ k1/(p−2). This implies that the right-hand side of (6.1) is nonnegative and

bounded. It follows by regularity, see [71], that u ∈ C0,s(Ω). The strict positivity u > 0 in Ω follows
from the maximum principle; see, for example, [39, 48]. This ends the proof. �

7. Hamiltonian elliptic systems

Let Ω ⊂ RN , N ≥ 1, be a bounded smooth domain and consider the Hamiltonian elliptic system −∆u = |v|q−1v in Ω,
−∆v = |u|p−1u in Ω,
u, v = 0 on ∂Ω

(7.1)

in the sublinear case, a notion which, for these systems, corresponds to

p, q > 0 and p · q < 1 . (7.2)

The uniqueness of a positive solution to (7.1) was proved in [31, Theorem 3], see also [63], using Kras-
noselskii [52] type argument. Here we present an alternative proof based on Theorem 1.1.

Theorem 7.1. If (7.2) is satisfied, then (7.1) has a unique positive classical solution.

To prove Theorem 7.1 we will treat (7.1) by using the dual variational method. We mention that this
approach has been used in [27] in the case p > 1 and q > 1; see also [19, Section 3] for general p and q.

For any r > 0 define φr : R→ R by

φr(t) = |t|r−1t, t ∈ R.
Then we rewrite (7.1) as

u = (−∆)−1(|v|q−1v) = (−∆)−1(φq(v)), v = (−∆)−1(|u|p−1u) = (−∆)−1(φp(u))

and after introducing the new variables f = |u|p−1u = φp(u) = −∆v, g = |v|q−1v = φq(v) = −∆u, we
are led to the system

(−∆)−1f = |g|
1
q−1g = φ−1

q (g), (−∆)−1g = |f |
1
p−1f = φ−1

p (f). (7.3)

Define K := (−∆)−1, X := L
p+1
p (Ω)×L

q+1
q (Ω), and since

∫
Ω
fKg dx =

∫
Ω
gKf dx, it follows that the

system (7.3) appears as the Euler-Lagrange equations associated to the action functional

Φ(f, g) =

∫
Ω

(
p

p+ 1
|f |

p+1
p +

q

q + 1
|g|

q+1
q

)
dx−

∫
Ω

fKg dx, (f, g) ∈ X. (7.4)
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It is well known that (f, g) ∈ X is a critical point of Φ if, and only if, (u, v) = (Kg,Kf) = (φ−1
p (f), φ−1

q (g))
is a classical solution of (7.1).

Within this framework, with Φ as defined above, we prove Theorem 7.1 with help of Theorem 1.1. We
need same preliminaries results.

Theorem 7.2 (Generalized Minkowski inequality). Let F : X × Y → R be a measurable function on
a σ-finite measure space X × Y and let µ, ν be the respective measures on Y and X. Then, for any
1 ≤ p <∞, (∫

X

(∫
Y

|F |dµ(η)

)p
dν(ξ)

) 1
p

≤
∫
Y

(∫
X

|F |pdν(ξ)

) 1
p

dµ(η) .

For the proof of the above Generalized Minkowski inequality we refer to [78] and [45, Theorem 202].

Proposition 7.3. Let β > 1 and G1, G2 ∈ Lβ(Ω) be nonnegative functions and K = (−∆)−1. Then the
pointwise inequality holds:

((KG1)β + (KG2)β)
1
β ≤ K(Gβ1 +Gβ2 )

1
β in Ω. (7.5)

Note that the variable x for KGi(x) and Gi(x) is not indicated to simplify notation.

Proof. This is particular case of Theorem 7.2. Indeed, let G be the Green’s function of −∆, that is,
Kf = G ∗ f . Then (7.5) follows from Theorem 7.2 with p = β, dµ(y) := G(x, y) dy, ν = δ1 + δ2,
X = {1, 2}, Y = Ω and F (i, y) = Gi(y). �

Lemma 7.4. Let m > 0, m 6= 1 and t ∈ (0, 1). Then the function

q 7→ ((1− t)mq + t)1/q, q ∈ (0,∞) (7.6)

is increasing.

Proof. Since the derivative of the function defined in (7.6) is

((1− t)mq + t)1/q

q

(
(1− t)mq lnm

(1− t)mq + t
− ln((1− t)mq + t)

q

)
,

it suffices to prove the positivity of the term in parentheses. This is equivalent to

((1− t)mq + t) ln((1− t)mq + t) < (1− t)mq lnmq + t ln 1

and the monotonicity follows from the strict convexity of the function x ∈ (0,∞) 7→ x lnx. �

Proposition 7.5. Let fi ∈ L
p+1
p (Ω), gi ∈ L

q+1
q (Ω), i = 1, 2, be positive functions and assume (7.2). If

(f1, g1) 6= (f2, g2), then for each x ∈ Ω

t 7→
(

(1− t)f
p+1
p

1 + tf
p+1
p

2

) p
p+1

K

((
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)
is strictly concave on [0, 1]. (7.7)

Proof. Arguing as in (3.8) of the proof of Lemma 3.5, it is enough to prove the pointwise inequality(
(1− t)f

p+1
p

1 + tf
p+1
p

2

) p
p+1

K

((
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)
> (1− t)f1Kg1 + tf2Kg2 , for all t ∈ (0, 1), for all x ∈ Ω. (7.8)

First observe that the condition p · q < 1 is equivalent to p
p+1 + q

q+1 < 1. Set α = p+1
p and let β > 0

be such that
1

α
+

1

β
= 1.
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Then observe that β < q+1
q . Applying (7.6) with m = a

b , for any a > 0, b > 0 with a 6= b and t ∈ (0, 1),

the function r ∈ (0,∞) 7→ ((1 − t)ar + tbr)
1
r is strictly increasing. Since K = (−∆)−1 is a strictly

monotone operator, it is enough to prove (7.8) as non-strict inequality with q+1
q replaced by β.

After the substitution

F1 := (1− t) 1
α f1, G1 := (1− t)

1
β g1, F2 := t

1
α f2, G2 := t

1
β g2,

we obtain that (7.8) (with non-strict inequality) is equivalent to

(Fα1 + Fα2 )
1
αK(Gβ1 +Gβ2 )

1
β ≥ F1KG1 + F2KG2 t ∈ (0, 1) .

By Hölder inequality and Proposition 7.3

F1KG1 + F2KG2 ≤ (Fα1 + Fα2 )
1
α ((KG1)β + (KG2)β)

1
β ≤ (Fα1 + Fα2 )

1
αK(Gβ1 +Gβ2 )

1
β ,

as desired. �

Remark 7.6. If p > 0, q > 0 and p · q = 1, then (7.8) holds true as non-strict inequality.

Remark 7.7. By setting f1 = εf2, g1 = εg2 in (7.8) we have (after division by f1Kg1 > 0)

((1− t)εα + t)
1
α
(
(1− t)εβ + t

) 1
β >

(
(1− t)ε

1
α+ 1

β + t
)
.

Clearly the opposite (strict) inequality holds true if 1
α + 1

β > 1, and ε, t > 0 are sufficiently small. Thus

p · q ≤ 1 is an optimal assumption.

Proof of Theorem 7.1. Let A be the set of positive solutions of (7.1) and Φ be defined by (7.4).

Step 1. The set A contains at most one element.
It is enough to show that conditions a)-c) of Theorem 1.1 are satisfied. Given (fi, gi) with fi, gi > 0,

for i = 1, 2, and such that (f1, g1) 6= (f2, g2), consider the path

γ(t) =

((
(1− t)f

p+1
p

1 + tf
p+1
p

2

) p
p+1

,

(
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)
, t ∈ [0, 1],

which connects (f1, g1) to (f2, g2), i.e. condition a) from Theorem 1.1. In addition, from (7.7) we infer
that

t 7→ Φ(γ(t)) is strictly convex on [0, 1]

and condition c) of Theorem 1.1 follows. On the other hand, any positive solution (f, g) of (7.3) cor-
responds to a positive solution (u, v) := (φ−1

p (f), φ−1
q (g)) ∈ C2(Ω) × C2(Ω) of (7.1) and, by the Hopf

Lemma, we infer that ∂u
∂ν < 0 and ∂v

∂ν < 0 on ∂Ω. Then by Lemma 3.4 we have δ−1u1 ≤ u2 ≤ δu1 and

δ−1v1 ≤ v2 ≤ δv1 for any positive solutions (u1, v1) and (u2, v2) of (7.1). Consequently δ−1f1 ≤ f2 ≤ δf1

and δ−1g1 ≤ g2 ≤ δg1 and Corollary 3.3 yields condition b) of Theorem 1.1. Therefore, A is empty or a
singleton.

Step 2. Existence of a positive solution (global minimizer of Φ).

Let (f, g) ∈ L
p+1
p (Ω) × L

q+1
q (Ω) and let α, β be as in the proof of Proposition 7.5. Then, since

‖Kg‖Ls ≤ C‖g‖Ls for any s > 0 we infer from the Hölder and Young inequalities (note that β < q+1
q )

that for any ε > 0 ∫
Ω

fKg dx ≤ C‖f‖Lα‖g‖Lβ ≤ ε(‖f‖
p+1
p

L
p+1
p

+ ‖g‖
q+1
q

L
q+1
q

) + C(ε) ,
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and consequently Φ is coercive, and in particular bounded from below. Since Kg ∈ W 2, q+1
q (Ω) ∩

W
1, q+1

q

0 (Ω) and we have the compact embedding W 2, q+1
q (Ω) ⊂⊂ L

q+1
q (Ω) ⊂ Lp+1(Ω), we infer that

Φ is lower semi-continuous and thus attains its global minimum, which is negative (indeed, taking ϕ a

C∞(Ω) positive function, Φ(εϕ, (εϕ)
q(p+1)
p(q+1) ) < 0 for small ε > 0) at a point (f0, g0) with f0, g0 > 0 in Ω.

The latter statement follows from the maximum principle. �

8. Nonlinear eigenvalue problems from Mathematical Physics

In this section we apply our main results to elliptic equations and systems appearing in Mathematical
Physics. More precisely, we approach eigenvalue type-problems, that is, problems which can be written
in the form

L1u1 = ω1u1, . . . , Lkuk = ωkuk (k ≥ 1),

where Li are nonlinear differential operators. There are two different kind of natural questions: firstly,
given ω1, . . . , ωk, does there exist a unique positive solution to the problem? Secondly, does there exist
a unique positive eigenvalue satisfying the constraint

∫
u2
i = 1? These questions are, in general, not

equivalent: in the second framework, the eigenvalues are not fixed a priori, and appear as Lagrange
multipliers. We will deal with these issues in the case of a quasilinear Schrödinger equation (Section 8.1)
and for a Gross-Pitaevskii–type system (Section 8.2), both for Ω bounded and Ω = RN .

8.1. Defocusing Schrödinger equation. Consider the equation

−∆u− u∆u2 + V (x)u+ u3 = ωu in Ω, (8.1)

where V (x) is the trapping potential |x|2 in case Ω = RN , or V ∈ L∞(Ω) and u = 0 on the boundary
if Ω is a bounded regular domain, and N ≥ 1. This equation arises when looking for standing waves
φ(t, x) = eıωtu(x) of the quasilinear defocusing Schrödinger equation

i∂tφ−∆φ− φ∆|φ|2 + V φ+ φ3 = 0 in (0,∞)× Ω,

which serves as a model in many physical situations, for which we refer to [29, 69].
The first results for (8.1) appeared in [60, 69], where for Ω = RN and ω = 0, a constrained minimization

is used to prove existence of solutions. Difficulties arise due to the presence of the term u∆u2, and are
related to the existence of three different scales in the equation. In the variational setting the term∫
u2|∇u|2 dx is not well defined in H1(RN ), while the natural set {u ∈ H1(RN );

∫
u2|∇u|2 dx < ∞ }

is not a vector space. To treat u∆u2 a substitution u = f(v) (cf. (8.2)) was introduced in [28, 59],
which reduced (8.1) to a semilinear equation, with a more complicated nonlinear zero order term. This
reduction, that has also been used for example in [1, 29], allows one to work in the H1 setting.

We will use the dual method as in [28]. Let f be the odd function such that

f ′(t) =
1√

1 + 2f2(t)
in (0,∞), f(0) = 0. (8.2)

If u is a solution to (8.1), by [28, §2], then v = f−1(u) is a solution of

−∆v + (V (x)− ω)
f(v)√

1 + 2f2(v)
+

(f(v))3√
1 + 2f2(v)

= 0. (8.3)

We recall from [28, Lemma 2.1] that

f(t)

t
→ 1 as t→ 0,

f(t)√
t
→ 21/4 as t→ +∞, (8.4)
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and from [28, Lemma 2.2] that

1

2
f(t) ≤ t√

1 + 2f2(t)
≤ f(t) for all t ∈ R. (8.5)

For every fixed ω ∈ R, the solutions of (8.3) are critical points of the C1-action functional Aω : H → R
with

Aω(v) =
1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

(V (x)− ω)(f(v))2 dx+
1

4

∫
Ω

(f(v))4 dx,

where H = {u ∈ H1(RN );
∫
RN |u|

2|x|2 dx <∞} with the norm

‖u‖2H =

∫
RN
|∇u|2 + |u|2|x|2 dx

if Ω = RN , and H = H1
0 (Ω) with the standard norm if Ω is a bounded regular domain. Observe that

Aω ∈ C1(H,R) since (8.5) implies that f2(t) + 2f4(t) ≤ 4t2.
On the other hand, we can consider the constraint

M :=

{
v ∈ H;

∫
Ω

(f(v))2 dx = 1

}
and the energy E :M→ R,

E(v) :=
1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

V (x)(f(v))2 dx+
1

4

∫
Ω

(f(v))4 dx.

In this second framework, one looks for critical points of E|M and ω appears as a Lagrange multiplier.
When Ω is bounded we prove uniqueness of positive critical points both for Aω and E|M, while for

Ω = RN , we deduce uniqueness of positive critical points of Aω. The following statements are, to the
best of our knowledge, new.

Theorem 8.1. Let Ω be a bounded regular domain of RN , with N ≥ 1, and assume that V ∈ L∞(Ω).
Then,

i) for each ω ∈ R fixed, there exists at most one positive solution to (8.1) with u = 0 on ∂Ω, that is,
Aω has at most one positive critical point, which exists if, and only if, ω > λV . Here λV stands for
the first eigenvalue of (−∆ + V (x)I,H1

0 (Ω)).
ii) there exists exactly one positive critical point of E|M.

Theorem 8.2. Let Ω = RN , with N ≥ 1, and take V (x) = |x|2. For each ω ∈ R fixed, there exists at
most one positive solution of (8.1), that is, at most one positive critical point of Aω, which exists if, and
only if, ω > λV . Here λV stands for the first eigenvalue of (−∆ + V (x)I,H).

In order to prove Theorem 8.2, we will need to deduce the sharp decay at infinity for all positive
solutions of (8.3). Since v = f−1(u) and f(t) ∼ t as t → 0, this also gives the sharp decay result for
positive solutions of our original problem (8.1). Since we believe this to be of independent interest, we
state these results as a theorem.

Theorem 8.3. Let v ∈ H be any positive solution of problem

−∆v + (|x|2 − ω)
f(v)√

1 + 2f2(v)
+

(f(v))3√
1 + 2f2(v)

= 0 in RN . (8.6)

Then

v(x) ∼ |x|
ω−N

2 e−
|x|2
2 as |x| → ∞, (8.7)
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that is, there exist C1, C2 > 0 such that

C1|x|
ω−N

2 e−
|x|2
2 ≤ v(x) ≤ C2|x|

ω−N
2 e−

|x|2
2 for large |x|.

Consequently, if u is a positive solution of

−∆u− u∆u2 + |x|2u+ u3 = ωu in RN ,

then

u(x) ∼ |x|
ω−N

2 e−
|x|2
2 as |x| → ∞.

Let us proceed to the proof of the main results. Next, we will build suitable paths to set the proofs
of Theorems 8.1 and 8.2 in the framework of Theorem 1.1 and Corollary 1.2. The first step is to verify
some convexity of the gradient of these new paths.

Lemma 8.4. Let u, v ∈ H ∩W 1,∞(Ω) such that u, v > 0 in Ω. Set

γ(t) = f−1
(√

(1− t)f2(u) + tf2(v)
)
, for all t ∈ [0, 1]. (8.8)

Then γ : [0, 1]→ H is well defined and, pointwise in Ω,

t 7→ |∇γ(t)|2 is convex on [0, 1]. (8.9)

Proof. First observe that min{u, v} ≤ γ(t) ≤ max{u, v} for all t ∈ [0, 1] since f2 is increasing. Then,
once (8.9) is proved, we infer that γ(t) ∈ H for all t ∈ [0, 1].

We use Lemma 3.5 and so we show that its hypotheses are satisfied. In this case we have Q(z) = f2(z),
M(z) = z2 and we prove that (z1, z2) 7→ F (z1, z2) = F1(z1)F2(z2) is concave on (0,∞) × [0,∞) where

F1(z1) = Q′ ◦Q−1(z1) =
2z

1/2
1

(1+2z1)1/2
by (8.2) and F2(z2) = z

1/2
2 . It is simple to verify that F1 and F2 are

concave and, by direct computations,
(
F2

F ′2

)′
− 1 = 1 and

(
F1(z1)
F ′1(z1)

)′
− 1 = 1 + 8z1 ≥ 1. Hence, as observed

at Remark 3.8, F is concave. �

Next, we use Lemma 3.1 to prove that γ defined by (8.8) is locally Lipschitz at t = 0 whenever u and
v are comparable.

Lemma 8.5. Consider u, v ∈ H such that

u, v > 0 in Ω and there is δ ≥ 1 such that δ−1v ≤ u ≤ δv in Ω (8.10)

and let γ be as in (8.8). Then, γ : [0, 1] → H satisfies γ(0) = u, γ(1) = v, and γ is locally Lipschitz at
t = 0.

Proof. It is obvious that γ(0) = u, γ(1) = v and so we just need to verify conditions a), b), and c) of
Lemma 3.1. Take also into account that we can argue as in (3.3) to infer that γ is locally Lipschitz at
t = 0 with respect to the term w 7→

∫
RN |x|

2|w|2 dx in the case of Ω = RN .

In this case we have Q = f2 and so, by (8.2), Q′(z) = 2f(z)√
1+2f2(z)

, which implies condition a), and

Q′′(z) = 1
(1+2f2(z))2 . Then b) and c) follows from (8.4) and (8.5). �

Now, once the paths are built and their convexity properties established, we prove Theorem 8.1.

Proof of Theorem 8.1. Here we take either

Aω = {u ∈ H; u > 0 and A′ω(u) = 0} or AE = {u ∈M; u > 0 and E ′|M(u) = 0}.

Step 1. Sets Aω and AE are empty or singletons.
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Let u, v ∈ Aω, or u, v ∈ AE (to shorten the proof, we will prove both statements of the theorem at the
same time). By combining Lemma 8.4 with the strict convexity of the map t 7→ t2, we immediately have
for γ defined in (8.8), that for u 6= v

t 7→ Aω(γ(t)) and t 7→ E(γ(t)) are strictly convex on [0,1]

and γ(t) ∈ M for every t ∈ [0, 1] provided u, v ∈ M. Thus, in order to apply Theorem 1.1 for Aω
and Corollary 1.2 for AE , one needs to prove that γ is locally Lipschitz at 0. For that, we will prove a
comparison result like (8.10). Let ū and v̄ solve (8.3), which (for positive solution) can be written in the
form

−∆w + a(w)w = 0, with a(w) = (V (x)− ω)
f(w)

w
√

1 + 2f2(w)
+

f3(w)

w
√

1 + f2(w)
∈ L∞.

Then Hopf’s Lemma implies that 1/δ ≤ v̄/ū ≤ δ on Ω as we desired and so we can apply Lemma 8.5.

Step 2. If ω ≤ λV , then Aω is empty. This follows after testing (8.1) by u.

Step 3. The set AE is not empty. Moreover, if ω > λV , then Aω is not empty as well.
Observe that both Aω and AE contain a global minimum of the corresponding functionals. In fact,

both functionals are bounded from below and coercive: E(v) ≥ 1
2

∫
Ω
|∇v|2 dx + C1|Ω|, while Aω(v) ≥

1
2

∫
Ω
|∇v|2 dx+C2|Ω|, where C1 and C2 are respectively the absolute minimum levels of the polynomials

t 7→ − 1
2‖V ‖∞t

2 + 1
4 t

4 and t 7→ − 1
2 (‖V ‖∞ + ω)t2 + 1

4 t
4, and we have compact embeddings of H1

0 (Ω) into

L2(Ω). By combining ω > λV with the behaviour of f close to t = 0, we can prove that ε 7→ Aω(εϕ1) is
negative for ε ∼ 0, where ϕ1 is a positive eigenfunction of (−∆ + V (x)I,H1

0 (Ω)), and therefore minH Aω
is negative. �

In order to prove Theorem 8.2, we need first to show the sharp decay of the positive solutions of our
problem as in Theorem 8.3. This result is a consequence of the following very general result.

Lemma 8.6 ([64, Proposition 6.1]). Let N ≥ 1, γ < 2, and fix ρ ≥ 0 and a nonnegative function
W ∈ C1([ρ,∞)). If

lim
s→+∞

W (s) > 0 and lim
s→+∞

W ′(s)s1+β = 0 for some β > 0, (8.11)

then there exists a nonnegative radial function h : RN \Bρ(0)→ R such that

−∆h(x) +
W 2(|x|)
|x|γ

h(x) = 0 for all x ∈ RN \Bρ(0)

and

lim
|x|→∞

h(|x|)|x|
N−1

2 −
γ
4 exp

(∫ |x|
ρ

W (s)

s
γ
2

ds

)
= 1

Proof of Theorem 8.3. Step 1. We claim that v(x)→ 0 as |x| → ∞.
Observe that

−∆v + (|x|2 + 1)v
f(v)

v
√

1 + 2f2(v)
+ v

f3(v)

v
√

1 + 2f2(v)
= (1 + ω)v

f(v)

v
√

1 + 2f2(v)
,

and therefore, v solves

−∆v + a(v)v ≤ (1 + ω)b(v)v,

with

a(t) =
f(t)

t
√

1 + 2f2(t)
+

f3(t)

t
√

1 + 2f2(t)
, b(t) =

f(t)

t
√

1 + 2f2(t)
.
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By (8.4) and (8.5), we have

a, b ∈ L∞(0,∞), and a is bounded away from 0.

In particular, there exist κ1, κ2 > 0 such that

−∆v + κ1v ≤ κ2v in RN .

Now a classical Brezis-Kato/Moser Iteration Scheme yields that v ∈ L∞(RN ) (see [65, pages 1264-1265]).
Moreover, reasoning as in [42, §3.4] we have |∇v| ∈ L∞(RN ) which, combined with v ∈ H and the mean
value theorem, implies the claim of this step.

Step 2. As an intermediate step, we prove that there exist C > 0 and R > 0 such that

v(x) ≤ Ce−
|x|2
4 for all |x| ≥ R . (8.12)

Rewrite (8.6) as

−∆v + (|x|2 − ω)v = (|x|2 − ω)

(
v − f(v)√

1 + 2f2(v)

)
− f3(v)√

1 + 2f2(v)
. (8.13)

Since v → 0 as |x| → ∞, then by (8.4), for each ε > 0 there exists R > 0 such that the right-hand side
of (8.13) is less than or equal to (|x|2 − ω)εv outside BR(0), and consequently

−∆v + (|x|2 − ω)(1− ε)v ≤ 0 in RN \BR(0).

Set ρ := max{R, 2
√
ω}. Then W (s) :=

√
(1− s−2ω)(1− ε) satisfies (8.11), since W ′(s) ∼ Cs−3 as

s → ∞. Then we apply Lemma 8.6 with γ = −2, obtaining the existence of a positive function h
satisfying

−∆h(x) + (|x|2 − ω)(1− ε)v = 0 in RN \Bρ(0)

and

h(x) ∼ |x|−N2 exp

(
−
∫ |x|
ρ

√
(s2 − ω)(1− ε) ds

)
as |x| → ∞.

Thus, for |x| sufficiently large, we infer that

h(x) ≤ Ce−
|x|2
4 |x| ≥ R.

By replacing h by ah(x), where a is a sufficiently large constant, we can assume that v(x) ≤ h(x) on

∂BR(0). Hence, by the maximum principle, v(x) ≤ h(x) on RN \BR(0) and thus the claim (8.12) follows.

Step 3. Finally, we show that the sharp decay (8.7) holds.
By (8.4), for small v the expressions∣∣∣∣∣1− f(v)

v
√

1 + 2f2(v)

∣∣∣∣∣ and
f3(v)

v
√

1 + 2f2(v)

are bounded by cv2 ≤ Ce−|x|2/2. Hence we have, for some C > 0, that

−∆v + (|x|2 − ω − Ce−
|x|2
4 ) ≤ 0, −∆v + (|x|2 − ω + Ce−

|x|2
4 ) ≥ 0

in RN \BR(0). Observing that W±(s) :=

√
1− s−2ω ± Cs−2e−

s2

4 satisfy the assumptions of Lemma 8.6,

with W ′(s) ∼ s−3 as s→∞, for a ρ̃ ≥ R sufficiently large, there exist positive functions h+, h− with:

−∆h± + (|x|2 − ω ± Ce−
|x|2
4 )h± = 0 for all |x| ≥ ρ̃,
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and

h±(x) ∼ |x|−N2 exp

(
−
∫ |x|
ρ

√
s2 − ω ± Ce−s2/4 ds

)
as |x| → ∞.

Thus, by the maximum principle, there exist positive constants a+ and a− such that

a+h+ ≤ ui ≤ a−h− for all |x| ≥ ρ̃.
Since√

s2 − ω − Ce−s2/4 ≥
√
s2 − ω −

√
Ce−s2/4 and

√
s2 − ω + Ce−s2/4 ≤

√
s2 − ω +

√
Ce−s2/4,

and e−s
2/2 is an integrable function, we get the existence of two constants C1, C2 > 0 such that

C1|x|−
N
2 exp

(
−
∫ |x|
ρ̃

√
s2 − ω ds

)
≤ ui(x) ≤ C2|x|−

N
2 exp

(
−
∫ |x|
ρ̃

√
s2 − ω ds

)
.

and the statement now follows from∫ |x|
ρ̃

√
s2 − ω ds =

1

2

(
|x|
√
|x|2 − ω − ω ln(

√
|x|2 − ω + |x|)

)
+ C(ρ̃)

and

|x|2 ≥ |x|
√
|x|2 − ω ≥ |x|2 −M , |x| ≥

√
|x|2 − ω ≥ m|x|

for appropriate M,m > 0 depending on ω and all sufficiently large |x|. �

Proof of Theorem 8.2. Take

Aω = {v ∈ H; v > 0 and A′ω(v) = 0}.
Step 1. We claim that Aω is empty or a singleton.

Suppose u, v ∈ Aω with u 6= v. As in the bounded domain case we have that

t 7→ Aω(γ(t)) is strictly convex on [0,1]

with γ defined in (8.8). It remains to show that, given u, v ∈ Aω, there are C1, C2 > 0 such that

C1 ≤
v(x)

u(x)
≤ C2 for all x ∈ RN ,

which follows from Theorem 8.3.

Step 2. We show that Aω is not empty if, and only if, ω > λV .
Since V (x) = |x|2 implies a compact embedding H ↪→ L2(RN ), we infer that

λV = inf
v∈H

∫
RN |∇v|

2 + V (x)v2dx∫
RN v

2dx
,

the first eigenvalue of (−∆ + V (x)I,H), is positive.
By testing (8.1) by u we see that Aω is empty if ω ≤ λV .
Now, if ω > λV , as in the bounded domain case, we have that m := infH Aω is negative. Moreover,

observe that

Aω(v) ≥ 1

2

∫
RN
|∇v|2 dx+ C3|B(0,

√
|ω|)|

where C3 is the minimum of the function t 7→ − 1
2 |ω|t

2 + 1
4 t

4 for t ∈ [0,∞). Next, we prove that there
exists a positive function v ∈ H that satisfies Aω(v) = m := infH Aω, hence v ∈ Aω. Observe that,
unlike for Ω bounded, it is not immediate that minimizing sequences are bounded in ‖ · ‖H , due to the
term

∫
RN |x|

2(v(x))2 dx in the definition of the norm.
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However, since Aω is bounded from below, there is a minimizing sequence (vn) ⊂ H of Aω. Since
Aω(|v|) = Aω(v), we can suppose that vn 6≡ 0, vn ≥ 0 and Aω(vn) < 0 for all n ∈ N. In addition, since
Aω(v∗) ≤ Aω(v) for all v ≥ 0 in H1(RN ), where v∗ stands for the Schwarz symmetrization of v, we can
assume that vn are Schwarz symmetric.

From

Aω(vn) =
1

2

∫
RN
|∇vn|2 dx+

1

2

∫
RN

(|x|2 − ω)(f(vn))2 dx+
1

4

∫
RN

(f(vn))4 dx < 0,

we infer that

1

2

∫
RN
|∇vn|2 dx+

1

2

∫
RN
||x|2 − ω|(f(vn))2 dx+

1

4

∫
RN

(f(vn))4 dx ≤
∫
|x|2<ω

(ω − |x|2)(f(vn))2 dx

≤ 1

8

∫
|x|2<ω

(f(vn))4 dx+ C0(ω) ≤ 1

8

∫
RN

(f(vn))4 dx+ C0(ω)

for some C0(ω) > 0, and hence

1

2

∫
RN
|∇vn|2 dx+

1

2

∫
RN
||x|2 − ω|(f(vn))2 dx+

1

8

∫
RN

(f(vn))4 dx ≤ C0(ω). (8.14)

From (8.14) we infer that∫
RN

(f(vn))2 dx ≤
∫
|x|2<2ω

(f(vn))2 dx+
1

ω

∫
|x|2≥2ω

(|x|2 − ω)(f(vn))2 dx ≤ C1(ω) +

∫
RN

(f(vn))4 dx

≤ C2(ω) .

(8.15)
Hence, from (8.14), (8.15) one has

1

2

∫
RN
|∇vn|2 dx+

1

2

∫
RN

(|x|2 + 1)(f(vn))2 dx+
1

8

∫
RN

(f(vn))4 dx ≤ C3(ω). (8.16)

Since vn ∈ H1(RN ) is Schwarz symmetric, then vn ∈ C(RN\{0}) and so vn(1) = Mn is well defined. As
vn is decreasing in the radial direction, (8.16) implies Mn ≤ C4(ω). Indeed,

(f(Mn))4|B1(0)| ≤
∫
|x|≤1

(f(vn))4 dx ≤ 8C3(ω) .

From (8.4) there exists a positive constant C5(ω) such that t ≤ C5(ω)f(t) for all t ∈ [0, C4(ω)]. Hence,
from (8.5) and (8.16),∫

RN
|x|2v2

n dx =

∫
|x|≤1

|x|2v2
n dx+

∫
|x|>1

|x|2v2
n dx ≤

∫
|x|≤1

v2
n dx+ C2

5 (ω)

∫
|x|>1

|x|2(f(vn))2 dx

≤
∫
|x|≤1

[(f(vn))2 + 2(f(vn))4] dx+ C2
5 (ω)

∫
|x|>1

|x|2(f(vn))2 dx ≤ C6(ω) .

In particular, (vn) is uniformly bounded in H and standard arguments show that a weak limit v is a
global minimizer of Aω.

Therefore, we conclude that v ∈ H is such that v ≥ 0 and realizes m := infH Aω. Then, by the
maximum principle, we infer that v ∈ Aω, as desired. �

Remark 8.7. All results proved in this section can be extended to

−∆u− |u|α−2u∆|u|α + |x|γu+ |u|p−1u = ωu, in Ω, (8.17)
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with α > 1, p > 1, and γ > 0, a generalization considered in [1] (without the trapping potential, and in
the defocusing case). The only difference in the proof of Theorems 8.1 and 8.2 would be the definition of
the energy functional

E(v) =
1

2

∫
Ω

|∇v|2 dx− 1

2

∫
Ω

(f(v))2 dx+
1

2

∫
RN
|x|γ(f(v))2 +

1

p+ 1
dx

∫
RN
|f(v)|p+1 dx,

and the action functional

Aω(v) = E(v)− ω
∫

Ω

(f(v))2 dx,

where f is the odd function which solves

f ′(t) =
1√

1 + αf2α−2(t)
in (0,∞), f(0) = 0.

Remark 8.8. We end this section by observing that Selvitella in [73] proved existence results for some
general problems that include (8.17), proving also nonoptimal decay estimates.

8.2. Defocusing Gross-Pitaevskii system. Consider the following system with k equations:

−∆ui + V (x)ui + ui

k∑
j=1

βiju
2
j = ωiui in Ω, i = 1, . . . , k, (8.18)

where V (x) = |x|2 if Ω = RN , or V ∈ L∞(Ω) if Ω ⊂ RN is a bounded regular domain, and N ≥ 1.
Such system arises when looking for standing wave solutions φi(t, x) = eıωitui(x) of the following Gross-
Pitaevskii system:

ı∂tφi −∆φi + φi

k∑
j=1

βij |φj |2 = 0 . (8.19)

We will assume that

B = (βij)ij symmetric, and either positive semidefinite or positive definite.

The symmetry assumption on B makes the problem variational. The positive semidefiniteness implies
that βii ≥ 0 for i = 1, . . . , k. In the case βii > 0, for every i = 1, . . . , k, it is usually said that the
self-interacting parameters are of defocusing type.

Remark 8.9. Assume β11, . . . , βkk > 0. With k = 2, (βij)ij being positive semidefinite is equivalent to
β2

12 ≤ β11β22. For a general k, this assumption is fulfilled for instance when the off-diagonal terms βij
(i 6= j) are small with respect to the diagonal ones βii.

These systems appear as a model in the physical phenomenon of Bose-Einstein Condensation or in
Nonlinear Optics (see for instance [26, 74, 79] and references therein for an easy-to-follow physical descrip-
tion). From a mathematical point of view, there has been an intense activity in the last ten years, both
regarding existence results (check for example the introduction of [76], or [10, 66] and their references) as
well as the regularity and asymptotic study of solutions as the competition increases, namely βij → +∞
for i 6= j (see the recent survey [77] for an overview on this topic). One of the interesting features of these
systems is that they admit solutions (u1, . . . , uk) with trivial components, that is ui ≡ 0 for some i.
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In order to consider solutions of (8.18), there are two (nonequivalent) points of view. The first is to
consider ω = (ω1, . . . , ωk) ∈ Rk fixed, and look for solutions as critical points of the action functional

Aω(u1, . . . , uk) =
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + (V (x)− ωi)u2
i ) dx+

k∑
i=1

βii
4

∫
Ω

u4
i dx+

∑
i<j

βij
2

∫
Ω

u2
iu

2
j dx ,

=
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + (V (x)− ωi)u2
i ) dx+

1

4

∫
Ω

[u2
1 . . . u

2
k]B[u2

1 . . . u
2
k]T dx

defined in H, where H = {u ∈ (H1(RN ) ∩ L4(RN ))k;
∫
RN u

2
i |x|2 dx <∞ for all i} and

‖u‖H :=

k∑
i=1

(∫
RN

(|∇u|2 + |x|2u2
i ) dx

)1/2

+

k∑
i=1

(∫
RN

u4
i dx

)1/4

if Ω = RN , or H = (H1
0 (Ω) ∩ L4(Ω))k and

‖u‖H :=
k∑
i=1

(∫
Ω

|∇u|2 dx
)1/2

+
k∑
i=1

(∫
Ω

u4
i dx

)1/4

if Ω is bounded.
The second point of view consists of fixing the L2–norm (i.e., the mass) rather that the ωi’s:

M = {(u1, . . . , uk) ∈ H;

∫
Ω

u2
i = 1, for all i = 1, . . . , k}

and to look for solutions of (8.18) as critical points of the energy functional

E(u1, . . . , uk) =
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + V (x)u2
i ) +

k∑
i=1

βii
4

∫
Ω

u4
i +

∑
i<j

βij
2

∫
Ω

u2
iu

2
j

=
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + V (x)u2
i ) +

1

4

∫
Ω

[u2
1 . . . u

2
k]B[u2

1 . . . u
2
k]T

constrained to M. Among these critical points, minimizers of E|M are called ground state solutions.
Within this second framework, the parameters ωi in (8.18) are not fixed a priori, but appear as Lagrange
multipliers. These solutions are physically relevant since both the energy and the mass are, at least
formally, conserved along trajectories t 7→ (φ1(t), . . . , φk(t)) of the solutions of system (8.19).

In what follows, we will say that (u1, . . . , uk) is positive if ui > 0 for every i = 1, . . . , k. Using the first
point of view leads to the set

Aω = {(u1, . . . , uk) ∈ H; ui > 0 for all i, A′ω(u1, . . . , uk) = 0} , (8.20)

while the second leads to

AE = {(u1, . . . , uk) ∈M; ui > 0 for all i, E ′|M(u1, . . . , uk) = 0}. (8.21)

These sets in principle do not coincide, since two critical points of E|M, or even two ground states, may
have different associated Lagrange multipliers.

Observe that if the set Aω is not empty then necessarily ωi > λV for at least one i ∈ {1, . . . , k}, where
λV stands for the first eigenvalue of (−∆ + V (x)I,H). The equivalence is not clear since the functional
Aω admits, in general, critical points with trivial components.

On the other hand, the set AE is non empty if B is positive semidefinite, containing necessarily a
ground state solution, that is, a minimizer of E|M. In fact, the level minM E is clearly achieved by
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(ui, . . . , uk), a critical point of E|M with all positive components (by eventually taking |ui| and using the
maximum principle). Observe that H ⊂⊂ L2(Ω) in both cases Ω = RN or Ω bounded.

Let us first discuss the case Ω bounded. Using Theorem 1.1 and Corollary 1.2, our contribution is the
following new result.

Theorem 8.10. Let Ω be a bounded regular domain and B = (βij)ij a symmetric matrix.

i) Assume that B is positive definite. Then, for ω1, . . . , ωk ∈ R fixed, the functional Aω has at most
one positive critical point, that is, system (8.18) has at most a positive solution.

ii) Assume that B is positive semidefinite. Then there exists exactly one positive critical point of E|M.
In particular, the ground state is unique, up to sign.

Remark 8.11. As it will be illustrated in the proof of Theorem 8.10, if B is not positive definite then in
item i) the only thing we can conclude in general is that either Aω = ∅ or there exists u = (u1, . . . , uk) ∈
Aω such that

Aω ⊂ {(α1u1, . . . , αkuk); αi > 0 for every i}. (8.22)

Observe that the strict convexity of Lemma 3.9 is essential in this case. There are particular cases when
B is positive semidefinite, det(B) = 0, and Aω is not a singleton: if for instance Ω is bounded with
λ1(Ω) < 1, V (x) ≡ 0, k = 2, ω1 = ω2 = 1 and βij = 1 for every i, j = 1, 2, then (taking also into account
(8.22) and Example 4.9):

A0 =
{

(α1u, α2u) ; −∆u = u− u3, u > 0 in Ω, u = 0 on ∂Ω, α2
1 + α2

2 = 1, α1, α2 > 0
}
.

The result of Theorem 8.10 i) was proved in [4, Theorem 4.1] by using different techniques. The
proof there consists of using the identity obtained when one multiplies the i-th equation of (8.18) by
1
2ui((

ui
vi

)2 − 1), where u and v are two positive solutions.

Remark 8.12. If ωi > λV for every i, it is straightforward to prove that Aω 6= ∅, and thus this set is a
singleton if B is positive definite. In fact, the level minH Aω is clearly achieved, and if it were achieved
by a vector with some trivial components, say for e.g. (0, u2, . . . , uk), then by taking ϕ1 an eigenfunction
associated with λV and using the fact that ω1 > λV it is easy to show that

Aω(εϕ1, u2, . . . , uk) < Aω(0, u2, . . . , uk),

a contradiction.

As an immediate consequence of the second statement of Theorem 8.10, we have the following classi-
fication result.

Corollary 8.13. Assume Ω is a bounded regular domain, V (x) ≡ 0, B = (βij)ij is a symmetric positive
semidefinite matrix, and that there exists β such that

k∑
j=1

βij = β for all i = 1, . . . , k.

Then the unique positive critical point of E|M is u = (U, . . . , U) where U is the unique positive critical

point of Ẽ |S, where

Ẽ(w) =
1

2

∫
Ω

|∇w|2dx− β

4

∫
Ω

w4, w ∈ H1
0 (Ω)

and S = {w ∈ H1
0 (Ω);

∫
Ω
w2dx = 1}.

In the case Ω = RN (with trapping potential), our results are the following.

Theorem 8.14. Assume that B = (βij)ij is a symmetric matrix, Ω = RN , and V (x) = |x|2. Then,
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i) Assume that B is positive definite. Given ω1, . . . , ωk ∈ R, the system (8.18) admits at most one
positive solution.

ii) Assume that B is positive semidefinite. There exists a unique positive critical point of E|M. In
particular, the ground state is unique, up to sign.

The first result is a generalization of [2, Theorem 1.3-(1)] for systems with an arbitrary number of
equations. Moreover, our proof seems simpler. The second results is a generalization of [2, Theorem
1.3-(2)] (which holds for two equations).

In the proof of the previous theorem, a key step is the sharp decay at infinity of the solutions of (8.18).

Proposition 8.15. Let (u1, . . . , uk) ∈ H be a positive solution of

−∆ui + |x|2ui + ui

k∑
j=1

βiju
2
j = ωiui in RN .

Then, for every i = 1, . . . , k,

ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

as |x| → ∞.

This result will replace Hopf’s Lemma (not available when working in RN ) and imply a global compar-
ison principle between positive solutions; this will be used in the proof of item i). Since the decay depends
on the Lagrange multipliers ωi, in order to prove ii) we will not have at our disposal a global comparison
between solutions, and instead of using Corollary 1.2 we will combine the sharp decay information with
the strategy previously used in [2].

Let us proceed for the proofs of the results.

Proof of Theorem 8.10. Let A be either (8.20) (for item (i)) or (8.21) (for item (ii)). Given u =
(u1, . . . , uk), v = (v1, . . . , vk) ∈ A with u 6= v, take

γ(t) = (γ1(t), . . . , γk(t)), with γi(t) =
√

(1− t)u2
i + tv2

i .

By the standard Hopf Lemma, we have that the comparison condition (3.2) in Section 3 is satisfied for
each pair (ui, vi), and Corollary 3.3 yields that γ is Lipschitz continuous at 0. The assumption that (βij)
is positive semi-definite ensures that the quadratic form

Rk → R, z 7→ zBzT =
∑
i

βiiz
2
i + 2

∑
i<j

βijzizj

is convex and, using Lemma (3.9), we infer that

t 7→ Aω(γ(t)) and t 7→ E(γ(t)) are strictly convex on [0,1].

Indeed, it is clear that t 7→ Aω(γ(t)) is strictly convex if B is positive definite. In the second case, with
u, v ∈ M and since u 6= v, there exists i ∈ {1, . . . , k} such that ui and vi are linearly independent and,
in this case, the strict convexity of t 7→ E(γ(t)) follows from the strict convexity of the gradient term
given by Lemma 3.9. Therefore, in the case of i) the conclusion follows by Theorem 1.1, and we infer
that AE is empty or a singleton by Corollary 1.2. As above, recall that Aω 6= ∅ by standard compactness
arguments. �

Proof of Proposition 8.15. The proof closely follows the proof of Theorem 8.3 and we only highlight the
differences. First of all, observe that ui, |∇ui| ∈ L∞(RN ), and ui → 0 as |x| → ∞. In fact, note that the
potential |x|2 is bounded on the ball B2

√
ωi(0), being bounded away from zero outside, and the Moser

iteration scheme applies. Next, as in Step 2. in the proof of Theorem 8.3 one has that for each i

−∆ui + (|x|2 − ωi − κ)ui ≤ 0.
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and analogously one obtains

h(x) ≤ Ce−
|x|2
4 |x| ≥ R.

for some C,R > 0. Then, ∣∣∣∣∣∣
k∑
j=1

βiju
2
j

∣∣∣∣∣∣ ≤ αe− |x|
2

2 ,

and therefore

−∆ui + (|x|2 − ωi − αe−
|x|2
2 )ui ≤ 0, −∆ui + (|x|2 − ωi + αe−

|x|2
2 )ui ≥ 0,

in RN \BR(0). The proof now follows as in the proof of Theorem 8.3 with obvious modifications. �

Proof of Theorem 8.14. i) We can repeat the proof of Theorem 8.10-i) almost word by word, with the
exception that now, instead of using Hopf’s lemma, we get the comparison condition (3.2) in Section 3
for any two possible positive solutions of (8.18) from the sharp decay of Proposition 8.15.

ii) Our main results Theorem 1.1 and Corollary 1.2 cannot be directly applied in this case, since two
critical points u and v can have different Lagrange multipliers ω, and therefore different decay at infinity.
In such a situation it is not clear how to choose a path γ which is Lipschitz continuous at the endpoints.

Instead, our strategy will basically follow the ideas of [2, Theorem 1.3-(2)] (see also [4, Theorem 4.1]),
and we refer to it for the exact computations and more details. Our main contribution here is an extension
to k equations and weaker assumptions on B. The key step is an use of the sharp estimates of Proposition
8.15.

For any two positive critical points u, v we claim that

E(u1, . . . , uk) = E(v1, . . . , vk) + F (w1, . . . , wk) (8.23)

where wi := ui/vi and

F (w1, . . . , wk) =

k∑
i=1

∫
RN

|∇wi|2v2
i

2
+

1

4

∫
RN

[v2
1(w2

1 − 1) . . . v2
k(w2

k − 1)]B[v2
1(w2

1 − 1) . . . v2
k(w2

k − 1)]T .

Assume that (ui) and (vi) satisfy (8.18) respectively with Lagrange multipliers (ωi) and (µi). By using
integration by parts, we have, for every R > 0 fixed,∫

BR(0)

−∆vivi(w
2
i − 1) +

∫
∂BR(0)

∂νvi

(
u2
i

vi
− vi

)
=

∫
BR(0)

(
|∇vi|2(w2

i − 1) + 2viwi∇vi · ∇wi
)
.

Observe that, since ∇vi ∈ L∞ and

ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

, vi(x) ∼ |x|
µi−N

2 e−
1
2 |x|

2

,

then∣∣∣∣∣
∫
∂BR(0)

∂νvi

(
u2
i

vi
− vi

)∣∣∣∣∣ ≤ CRN−1Rωi−N−
µi−N

2 e−
R2

2 + CRN−1R
µi−N

2 e−
1
2R

2

→ 0 as R→∞ .

Consequently, since u solves (8.18)∫
RN

(|∇vi|2(w2
i − 1) + 2viwi∇vi · ∇wi) = −

∫
RN

(|x|2v2
i + βiiv

4
i + v2

i

∑
j 6=i

βijv
2
j )(w2

i − 1),

where we used that ui and vi have the same mass, that is, (u1, . . . , uk), (v1, . . . , vk) ∈M, and therefore

µi

∫
RN

v2
i (w2

i − 1) = µi

∫
RN

(u2
i − v2

i ) = 0.
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Now, by using this identity in E(u1, . . . , uk) = E(v1w1, . . . , vkwk), we get (8.23).
Since B is positive semidefinite, F (w1, . . . , wk) ≥ 0 and (8.23) yields E(u1 . . . , uk) ≥ E(v1 . . . , vk). By

interchanging u and v, we have E(u1 . . . , uk) = E(v1 . . . , vk), and thus F (w1, . . . , wk) = 0. This, in turn,
gives w2

i ≡ αi, for some constant αi. Actually αi = 1, since
∫
RN u

2
i dx =

∫
RN v

2
i dx = 1.

Once again Aω 6= ∅ by standard compactness arguments. �
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[33] François de Thélin. Sur l’espace propre associé à la première valeur propre du pseudo-laplacien. C. R. Acad. Sci. Paris

Sér. I Math., 303(8):355–358, 1986.

[34] Francesco Della Pietra and Nunzia Gavitone. Anisotropic elliptic problems involving Hardy-type potentials. J. Math.
Anal. Appl., 397(2):800–813, 2013.

[35] Francesco Della Pietra and Nunzia Gavitone. Faber-Krahn inequality for anisotropic eigenvalue problems with Robin

boundary conditions. Potential Anal., 41(4):1147–1166, 2014.
[36] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces.

Bull. Sci. Math., 136(5):521–573, 2012.
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