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Abstract

We consider global bounded solutions of fully nonlinear parabolic
equations on bounded reflectionally symmetric domains, under nonho-
mogeneous Dirichlet boundary condition. We assume that, as t→∞,
the equation is asymptotically symmetric, the boundary condition
is asymptotically homogeneous, and the solution is asymptotically
strictly positive in the sense that all its limit profiles are strictly posi-
tive. Our main theorem states that all the limit profiles are reflection-
ally symmetric and decreasing on one side of the symmetry hyperplane
in the direction perpendicular to the hyperplane. We also illustrate
by example that, unlike for equations which are symmetric at all finite
times, the result does not hold under a relaxed positivity condition re-
quiring merely that at least one limit profile of the solution be strictly
positive.
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1 Introduction

In this paper, we continue our study of symmetry properties of positive so-
lutions of nonlinear parabolic equations. In the previous papers [19, 11], we
considered the problem

∂tu = F (t, x, u,Du,D2u), (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ ∂Ω× (0,∞),
(1.1)

where Ω is a bounded domain in RN , which is reflectionally symmetric about
a hyperplane and convex in the direction orthogonal to that hyperplane,
and F is a Lipschitz function satisfying uniform ellipticity conditions. Un-
der suitable symmetry hypotheses on the nonlinearity F , we established the
asymptotic reflectional symmetry of bounded positive solutions. These re-
sults are in the spirit of earlier symmetry results for elliptic equations as
proved in [13, 17, 10, 6, 9, 21] and many other papers (surveys can be found
in [5, 16, 18]).

When dealing with the Cauchy-Dirichlet problem for parabolic equations,
solutions cannot be spatially symmetric, unless they emanate from a symmet-
ric initial condition. Thus the asymptotic symmetry, that is, the symmetry
of all limit profiles of a solution as time approaches ∞, is a natural concept
for the study of symmetry. First asymptotic symmetry results for parabolic
equations were given in [2, 3, 14], more general results can be found in the
later papers [4, 19, 11] (see also the survey [20] and the recent paper [23]).

While there are many similarities between the results in parabolic and
elliptic equations, in particular the method of moving hyperplanes [1, 24]
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usually plays an important role in both, there are significant differences as
well. For example, a solution of (1.1), even though positive, may converge to
zero along a sequence of times and to some positive functions along different
sequences. This causes major technical difficulties when one wants to estab-
lish the asymptotic symmetry of such solutions and new techniques had to
be developed for this purpose [19].

When considering the asymptotic symmetry of solutions, several natu-
ral questions come to mind. For example, can the asymptotic symmetry be
proved if the equation itself is not symmetric, but is merely asymptotically
symmetric as t → ∞? Then one can start thinking about relaxing other
conditions: assuming the solutions in question to be asymptotically positive,
rather than positive, or replacing the homogeneous Dirichlet boundary con-
dition with an asymptotically homogeneous one. Our goal in this paper is to
examine to what extend the asymptotic symmetry results remain valid for
such asymptotically symmetric problems. To discuss our present contribu-
tions in a simpler setting, consider first the following semilinear problem

∂tu = ∆u+ f(t, u) + g1(x, t), (x, t) ∈ Ω× (0,∞),

u = g2(x, t), (x, t) ∈ ∂Ω× (0,∞).
(1.2)

Here Ω ⊂ RN is a bounded domain and f : [0,∞)×R→ R, g1 : Ω̄× [0,∞)→
R, g2 : ∂Ω × [0,∞) → R are continuous functions such that the following
conditions are satisfied.

(D) Ω is convex in x1 and symmetric with respect to the hyperplane

H0 := {x = (x1, . . . , xN) ∈ RN : x1 = 0}.

(f) f if Lipschitz in u: there is β > 0 such that

sup
t≥0
|f(t, u) − f(t, ũ)| ≤ β|u − ũ| (t ≥ 0, u, ũ ∈ R). (1.3)

(g) For i = 1, 2 one has
lim
t→∞

sup
x
|gi(x, t)| = 0, (1.4)

where the supremum is taken over x ∈ Ω if i = 1 and over x ∈ ∂Ω if
i = 2.
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Let us make a few comments on these hypotheses. Without g1, the first
equation in (1.2) is symmetric: it is invariant under reflections. With g1

added, the equation is no longer symmetric, but the nonsymmetric pertur-
bation diminishes as t→∞ and in this sense the equation is asymptotically
symmetric. This setting is general enough to apply to a larger class of non-
symmetric perturbations. For example, instead of g1 one could add to f
another nonlinearity g = g(t, x, u) converging to 0 as t → ∞ uniformly
in x and u. Since we only consider properties of individual solutions, we
can always write this more general equation in the form (1.2) by setting
g1(x, t) = g(t, x, u(x, t)), where u is a solution under investigation. A sim-
ilar remark applies to the asymptotically homogeneous Dirichlet boundary
condition.

As indicated above, problems like (1.2) come about naturally when one
thinks about the robustness of the symmetry results for (1.1). Asymptotically
symmetric equations can also arise in studies of parabolic systems. Assume,
for example, that a parabolic system for the unknown vector function (u, v)
is considered in which the first equation has the form ut = ∆u + f(t, u) +
g(t, u, v). This equation can also be put in the form (1.2) by setting g1(x, t) =
g(t, u(x, t), v(x, t)), where (u(x, t), v(x, t)) is a solution to be examined. In
this situation, the decay of g1 as t → ∞ might come from explicit decay
assumptions on the function g or it can be forced by the behavior of v.
The latter occurs when g has the form g(t, u, v) = vg̃(t, u, v) and one can
establish the decay of v (a specific example of a reaction-diffusion system
that is reduced this way to an asymptotically symmetric autonomous scalar
equation can be found in [15]).

By the asymptotic symmetry of a global solution u of (1.2) we mean the
property

lim
t→∞

(u(−x1, x
′, t)− u(x1, x

′, t)) = 0 (x = (x1, x
′) ∈ Ω). (1.5)

Alongside (1.5), we consider the asymptotic monotonicity of u:

lim sup
t→∞

ux1(x1, x
′, t) ≤ 0 (x ∈ Ω0 := {x ∈ Ω : x1 > 0}). (1.6)

If {u(·, t) : t ≥ 0} is relatively compact in C(Ω̄), these properties can be
expressed in terms of the limit profiles of u, that is, the elements of its ω-
limit set,

ω(u) := {φ : φ = limu(·, tn) for some tn →∞},
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where the convergence is in C(Ω̄) (with the supremum norm). The asymp-
totic symmetry and monotonicity of u mean that each φ ∈ ω(u) is symmetric
(even) in x1 and monotone nonincreasing in x1 on Ω0.

In a theorem of [19], the asymptotic symmetry and monotonicity is estab-
lished for bounded positive solutions of problem (1.2) with gi ≡ 0, i = 1, 2.
Two extra conditions on u, in addition to boundedness and positivity, are
assumed in that theorem. One is an equicontinuity condition, which gives
compactness of the orbit {u(·, t) : t ≥ 0}; it can be removed under minor
regularity conditions on Ω, such as the exterior cone condition. The other
condition requires that at least one element of ω(u) be strictly positive on
Ω. It was also shown in [19] that without this strict positivity condition, the
result is not valid in general, even if u itself is strictly positive ([11] contains
sufficient conditions, in terms of the domain and the nonlinearity f , under
which the strict positivity condition can be omitted).

Let us now consider a bounded positive solution of the asymptotically
symmetric problem (1.2), assuming the same conditions on u as in [19]. It
might be surprising at the first glance that, even with g2 ≡ 0 and g1(·, t)
decaying to zero exponentially, one cannot prove the symmetry result in the
same form as for g1 ≡ 0. We show in Example 2.3 below that the asymptotic
monotonicity fails in general. We do not know whether the asymptotic sym-
metry can be established without the asymptotic monotonicity. This might
be an interesting problem to tackle (see [22] for a discussion of related issues
in the context of elliptic equations).

As Example 2.3 demonstrates, stronger assumptions are needed for the
symmetry result to hold for (1.2). In this paper, we prove that (1.5), (1.6)
hold if the strict positivity assumption is strengthened so as to require all
elements of ω(u) to be positive in Ω. We prove this statements in the setting
of fully nonlinear equations, see Theorem 2.2 in the next section. The strict
positivity condition can be equivalently stated as

lim inf
t→∞

u(x, t) > 0 (x ∈ Ω). (1.7)

This condition requires u to be asymptotically strictly positive; whether
u(·, t) is positive or not at finite times is irrelevant. In a remark following
Example 2.3 in Section 2, we mention an alternative condition, a sufficiently
fast decay of the gi, under which the symmetry theorem can also be proved.

With our strict positivity assumption, two different approaches to the
symmetry problem are possible. One is based on symmetry results for entire
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solutions (that is, solutions defined for all t ∈ R) of symmetric equations.
Similarly as in [4], the idea is to view ω(u) as a set of entire solutions, positive
by assumption, of a suitable “limit equation.” Since the perturbation terms
gi disappear at t = ∞, the limit equation is symmetric. Thus known sym-
metry results for positive entire solutions [2, 4] can be used to establish the
symmetry of the elements of ω(u). This approach requires stronger regular-
ity assumptions on the solution u and the nonlinearity in the equation. We
use a different approach, similar to that in [19]. Since it is based on direct
Harnack-type estimates of the solution and does not depend on any limit
equation, no extra regularity assumptions are needed. Such an approach was
also used in [12], where asymptotically symmetric quasilinear equations on
RN were considered.

We have organized the exposition as follows. Our main symmetry result
is stated in the next section and proved in Section 4. Estimates of solutions
of linear nonhomogeneous equations that facilitate the proof are collected in
Section 3. Section 5 contains the computations needed for Example 2.3.

To conclude the introduction, we add another point to the discussion of
the robustness of the symmetry properties. In (1.2), the domain Ω is assumed
to be symmetric. One can make the problem more general by allowing Ω to
vary in time in such a way that it approaches, in a suitable sense, a symmetric
domain, as t → ∞. While we do not explicitly consider this generalization,
our results cover it to some extent. Indeed, if the variable domain is suffi-
ciently smooth, then using a time dependent change of coordinates one can
transform it to a fixed symmetric domain. This changes the equation in
an asymptotically symmetric way, although the transformed equation is no
longer of the form (1.2). Nonetheless, our results on fully nonlinear asymp-
totically symmetric equations, as given in the next section, can be applied
to the transformed problem.

2 Main results

Our main results concern parabolic problems of the form

∂tu = F (t, x, u,Du,D2u) +G1(x, t), (x, t) ∈ Ω× (0,∞),

u = G2(x, t), (x, t) ∈ ∂Ω× (0,∞).

}
(2.1)

Here, Ω is a bounded domain in RN satisfying condition (D) from the intro-
duction. The real valued function F is defined on [0,∞)× Ω̄×O, where O
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is an open convex subset of R1+N+N2
, invariant under the transformation

Q : (u, p, q) 7→ (u,−p1, p2, · · · , pN , q̃),

q̃ij =

{
−qij if exactly one of i, j equals 1,

qij otherwise .

The assumptions on F are as follows.

(N1) Regularity. The function F is continuous, differentiable with respect
to q, and Lipschitz continuous in (u, p, q) uniformly with respect to
(x, t) ∈ Ω̄× R+. This means that there is β > 0 such that

sup
x∈Ω̄,t≥0

|F (t, x, u, p, q)− F (t, x, ũ, p̃, q̃)| ≤ β|(u, p, q)− (ũ, p̃, q̃)|

((u, p, q), (ũ, p̃, q̃) ∈ O). (2.2)

(N2) Ellipticity. There is a positive constant α0 such that for each ξ ∈ RN

and (t, x, u, p, q) ∈ [0,∞)× Ω̄×O one has

∂F

∂qij
(t, x, u, p, q)ξiξj ≥ α0|ξ|2.

Here and below we use the summation convention (summation over
repeated indices); for example, in the above formula the left hand side
represents the sum over i, j = 1, . . . , N .

(N3) Symmetry and monotonicity. For all (x1, x
′), (x̃1, x

′) ∈ Ω with x̃1 >
x1 ≥ 0 and for all (t, u, p, q) ∈ [0,∞)×O one has

F (t,±x1, x
′, Q(u, p, q)) = F (t, x1, x

′, u, p, q) ≥ F (t, x̃1, x
′, u, p, q) .

The functions G1 and G2 are defined on Ω × [0,∞) and ∂Ω × [0,∞),
respectively, and are assumed to satisfy the following conditions.

(G) G1 ∈ LN+1(Ω× (0, T )) for each T ∈ (0,∞), G2 ∈ C(∂Ω× (0,∞)), and

lim
t→∞

max
{
‖G1‖LN+1(Ω×(t,t+1)), ‖G2(·, t)‖L∞(∂Ω)

}
= 0. (2.3)

Remark 2.1. Some remarks on our hypotheses are in order.
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(i) Although we are not assuming any regularity of the perturbation term
G1 (other than that contained in (G)), the reader may notice that
when working with classical solutions, as we do in this paper, G1 must
be continuous for the first equation in (2.1) to be satisfied. However,
the continuity is never used in our proofs. If one wishes to consider
more specific semilinear or quasilinear equations with a weaker notion
of solutions (as long as the solutions are in W 2,1

N+1(Ω× (0, T )) for each
T ∈ (0,∞), as needed in our estimates of linearized problems), then it
might be reasonable to consider functions G1 which are not necessarily
continuous on Ω× (0,∞).

(ii) As discussed in the introduction in the context of semilinear equations,
the form of problem (2.1) is general enough to cover equations with
nonlinear nonsymmetric perturbation terms when individual solutions
are considered. For example, if G1(x, t) in the first equation is replaced
with G̃1(x, t, u,Du,D2u), where G̃1(x, t, u, p, q) is a function defined on
Ω̄×[0,∞)×R1+N+N2

, then, given a solution u of the modified equation,
we set

G1(x, t) = G̃1(x, t, u,Du,D2u)

to bring the equation to the form (2.1). The results of our paper are
then applicable, provided G̃1 satisfies a suitable decay assumption so
that the resulting function G1 satisfies (G) for any global solution u
one wishes to consider.

By a solution of (2.1) we mean a classical solution, that is, a function
u ∈ C2,1(Ω × (0,∞)) ∩ C(Ω̄ × [0,∞)), such that (u,Du,D2u) takes values
in O and all relations in (2.1) are satisfied everywhere. We shall consider
solutions such that

sup
t∈[0,∞)

‖u(·, t)‖L∞(Ω) <∞ (2.4)

and the family of functions u(·, ·+ s), s ≥ 1, is equicontinuous on Ω̄× [0, 1],
that is,

lim
h→0

sup
x,x̄∈Ω̄,t,t̄∈[0,1],
|t−t̄|,|x−x̄|<h

s≥1

|u(x, t+ s)− u(x̄, t̄+ s)| = 0 . (2.5)

We remark that using [19, Proposition 2.7], one can give sufficient con-
ditions for (2.5) to hold for any bounded solution of (2.1). This is true, for
example, if G2 ≡ 0, the function F (t, x, 0, 0, 0)+G1(t, x) is bounded, and ∂Ω
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satisfies the exterior cone condition. The proof given in [19, Proposition 2.7]
for G1 ≡ 0 applies here with just a notational change.

For a solution u satisfying (2.4), (2.5), the set {u(·, t) : t ≥ 1} is relatively
compact in the space C(Ω̄). Consequently, the ω-limit set of u in C(Ω̄),

ω(u) := {φ : φ = limu(·, tn) for some tn →∞},

is nonempty and compact. Moreover,

dist(u(·, t), ω(u))→ 0 in C(Ω̄) as t→∞. (2.6)

We are ready to formulate our main symmetry result.

Theorem 2.2. Assume (D), (N1) – (N3), (G), and let u be a global solution
of (2.1) satisfying (2.4), (2.5), and (1.7). Then for each z ∈ ω(u)

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω)

and z is strictly decreasing in x1 in Ω0 = {x ∈ Ω : x1 > 0}. The latter holds
in the form zx1 < 0 provided zx1 ∈ C(Ω0).

Note that without extra conditions, like boundedness of spatial derivatives
of u, we cannot in general assume that elements of ω(u) are differentiable.

By (2.6) and the compactness of ω(u) in C(Ω̄), condition (1.7) is equiva-
lent to the following condition:

for each z ∈ ω(u), one has z > 0 on Ω. (2.7)

One can give several sufficient conditions for (2.7). For example, assume
that the functions u(·, 0), G2, and F (·, ·, 0, 0, 0)+G1 are all nonnegative, and
there exist positive constant γ, t0 and a ball B ⊂ Ω such that

F (t, x, 0, 0, 0) +G1(x, t) ≥ γ (x ∈ B, t > t0). (2.8)

Let us indicate how (2.7) is derived from these conditions. First one uses the
strong comparison principle to show that u > 0 (note that u ≡ 0 is not a
solution by (2.8)). Next one shows that if x0 is the center of B, then u(x0, t)
stays above a positive constant as t → ∞. This is done by constructing a
suitable subsolution: choose a smooth function ϕ with a compact support
contained in B such that ϕ(x0) = 1. By (2.8) and (N1) there are positive
constants ε0 and t0 such that

F (t, x, εϕ(x), εDϕ(x), εD2ϕ(x)) +G1(x, t) ≥ 0 ((x, t) ∈ B × [t0,∞)),
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whenever ε ∈ (0, ε0). If ε ∈ (0, ε0) is chosen such that εϕ < u(·, t0) in B, then
a comparison argument gives εϕ < u(·, t) in B for all t ≥ t0. In particular
u(x0, t) ≥ ε for all t ≥ t0, hence z(x0) > 0 for each z ∈ ω(u). The proof of
(2.7) is now completed by a Harnack-type estimate for which we refer to [19,
Proof of Theorem 2.5].

The following example shows that in general one cannot relax the strict
positivity condition to merely require that at least one z ∈ ω(u) be positive
in Ω, even if the nonsymmetric perturbation terms decay exponentially. This
contrasts with the result of [19] which says that if G1 ≡ 0, G2 ≡ 0, then the
relaxed positivity condition is sufficient for the asymptotic symmetry and
monotonicity result.

Example 2.3. Let I = (−2π, 2π), Ω = I × I, and fix β > 1. There is a
continuous function f : I × (0,∞) × R → R, piecewise linear in the last
variable with Lipschitz constant β + 2, and a continuous function R : Ω̄ ×
[0,∞)→ R satisfying

‖R(·, t)‖L∞(Ω) ≤ Ce−
β
25
t (t ≥ 0)

for some C = C(β) > 0 such that the problem

ut = ∆u+ f(t, y, u) +R(x, y, t), (x, y, t) ∈ Ω× (0,∞),

u = 0, (x, y, t) ∈ ∂Ω× (0,∞),

u > 0, (x, y, t) ∈ Ω× (0,∞),

has a global, bounded solution u with the following properties. There exist
z, w ∈ ω(u) such that z > 0 in Ω, w > 0 in (0, 2π) × I, and w(0, y) = 0 for
every y ∈ I. In particular, since w satisfies the Dirichlet boundary condition,
it is not monotone in x on (0, 2π)× I.

See Section 5 for the detailed construction. Similar examples can be given
with G1 ≡ 0, and with ‖G2(·, t)‖L∞(∂Ω) decaying exponentially.

In Example 2.3, we emphasize the relation between the exponential decay
of the function R and the Lipschitz constants of f . In fact, R cannot have
an arbitrarily fast exponential decay rate. In general, it can be proved,
that if the nonsymmetric perturbation functions G1, G2 decay to zero with
sufficiently fast exponential rate, relative to the Lipschitz constant of the
nonlinearity F , then Theorem 2.2 holds if the strict positivity assumption
(1.7) is relaxed to the weaker assumption requiring the existence of just one
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positive function in ω(u). This result was mentioned in the survey [20], with
reference to the present paper. However, since this statement requires a
substantially different and rather involved proof, we decided not to include
it in this paper.

Our final remark in this section concerns problem (2.1), where Ω is a ball
centered at the origin and F satisfies the radial symmetry assumptions as
in [19]. The assumptions essentially say that condition (N3) holds after an
arbitrary rotation of the coordinate system. Then, assuming also the other
hypotheses of Theorem 2.2, one obtains that all elements of ω(u) are radially
symmetric, that is, they are functions of |x| only. Since this result is deduced
in a standard way from the reflectional symmetry in any direction, we omit
the details.

3 Estimates for linear equations

In this section, we state several estimates of solutions of linear parabolic
equations to which we will refer when using the method of moving hyper-
planes.

For an open set D ⊂ RN and for t < T , we denote by ∂P (D × (t, T )) the
parabolic boundary of D× (t, T ): ∂P (D× (t, T )) := (D×{t})∪ (∂D× [t, T ]).
For bounded sets U , U1 in RN or RN+1, the notation U1 ⊂⊂ U means Ū1 ⊂ U ,
diamU stands for the diameter of U , and |U | for its Lebesgue measure (if it
is measurable). The open ball in RN centered at x with radius r is denoted
by B(x, r). Symbols f+ and f− denote the positive and negative parts of a
function f : f± := (|f | ± f)/2 ≥ 0.

We consider time dependent elliptic operators L of the form

L(x, t) = akm(x, t)
∂2

∂xk∂xm
+ bk(x, t)

∂

∂xk
+ c(x, t) . (3.1)

Definition 3.1. Given an open set U ⊂ RN , an interval I, and positive
numbers α0, β, we say that an operator L of the form (3.1) belongs to
E(α0, β, U, I) if its coefficients akm, bk, c are measurable functions defined on
U × I and they satisfy

|akm|, |bk|, |c| ≤ β (k,m = 1, . . . , N),

akm(x, t)ξkξm ≥ α0|ξ|2 ((x, t) ∈ U × I, ξ = (ξ1, . . . , ξN) ∈ RN).
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Let us briefly recall how linear equations arise when the method of moving
hyperplanes is applied to (2.1). For more details and explicit expressions
using Hadamard’s formulas see [19]. For any λ ∈ R, we set

Hλ := {x ∈ RN : x1 = λ},
Ωλ := {x ∈ Ω : x1 > λ},
` := sup{x1 ∈ R : (x1, x

′) ∈ Ω for some x′ ∈ RN−1}.
(3.2)

Further, let Pλ stand for the reflection in the hyperplane Hλ and for x ∈ Ω̄
let xλ := Pλx.

Assume that Ω satisfies hypothesis (D), the nonlinearity F satisfies (N1)
– (N3) and the functions Gi, i = 1, 2 satisfy (G). Condition (D) in particular
implies that Pλ(Ωλ) ⊂ Ω for each λ ∈ [0, `). Let u be a global solution of
(2.1) satisfying (2.4), (2.5), and (1.7). By (N3),

F (t, xλ, Q(u, p, q)) ≥ F (t, x, u, p, q)

for any (t, u, p, q) ∈ [0,∞) × O, λ > 0, and any (x1, x
′) ∈ Ωλ. If uλ(x, t) :=

u(xλ, t), we obtain

∂tu
λ ≥ F (t, x, uλ, Duλ, D2uλ) +G1(xλ, t), (x, t) ∈ Ωλ × (0,∞) .

Hence, the function wλ : Ω̄λ × (0,∞) → R, wλ : (x, t) 7→ uλ(x, t) − u(x, t),
λ ∈ [0, `) satisfies

∂tw
λ(x, t) ≥ F (x, t, u(xλ, t), Du(xλ, t), D2u(xλ, t))

−F (x, t, u(x, t), Du(x, t), D2u(x, t)) +G1(xλ, t)−G1(x, t)

= Lλ(x, t)wλ + fλ(x, t), (x, t) ∈ Ωλ × (0,∞),

(3.3)

where Lλ ∈ E(α0, β,Ωλ, (0,∞)) and fλ is a measurable function satisfying

lim
t→∞
‖(fλ)−‖LN+1(Ωλ×(t,t+1)) = 0. (3.4)

Also, wλ satisfies the following boundary conditions

wλ(x, t) ≥ gλ(x, t) :=

{
u(xλ, t)−G2(x, t), (x, t) ∈ (∂Ωλ \Hλ)× (0,∞),

0, (x, t) ∈ (∂Ωλ ∩Hλ)× (0,∞) .

(3.5)
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Note that (1.7) and the compactness of {u(·, t) : t ≥ 1} in C(Ω̄) imply

lim
t→∞
‖u−(·, t)‖L∞(∂Ωλ) = 0. (3.6)

This and (G) give
lim
t→∞
‖(gλ)−(·, t)‖L∞(∂Ωλ) = 0 . (3.7)

In the rest of this section we consider a general class of linear problems
including (3.3), (3.5). The symmetry of Ω plays no role in this consideration,
thus one can assume that Ω is any fixed bounded domain in RN .

We fix positive constants β, α0 and consider the problem

vt ≥ L(x, t)v + f(x, t) , (x, t) ∈ U × (τ, T ), (3.8)

v ≥ g(x, t) , (x, t) ∈ ∂U × (τ, T ), (3.9)

where 0 ≤ τ < T ≤ ∞, U ⊂ Ω is an open set, L ∈ E(α0, β, U, (τ, T )), and
f, g are bounded measurable functions.

We say that v is a solution of (3.8) (or that it satisfies (3.8)) if it is
an element of the space W 2,1

N+1,loc(U × (τ, T )) and (3.8) is satisfied almost
everywhere. By a solution of (3.8), (3.9), we mean a solution of (3.8) which
is continuous on Ū × (τ, T ) and satisfies (3.9) everywhere.

We now give estimates of solutions (3.8), (3.9) to be used in the next
section. We start with a version of the maximum principle for small domains.
The first such maximum principles were proved for elliptic equations [6, 7]
(see also [8]). The following result is an extension to nonhomogeneous linear
equations of Lemma 3.5 from [19] and it can be proved along similar lines.
However, a more general result, [11, Lemma 3.5], is now available and we
refer the reader to that paper for the proof.

Lemma 3.2. Given any k > 0, there exists δ = δ(α0, β,N, diam Ω, k) such
that for any open set U ⊂ Ω with |U | < δ and any 0 ≤ τ < T ≤ ∞
the following holds. If v ∈ C(Ū × [τ, T )) is a solution of (3.8), (3.9), with
L ∈ E(α0, β, U, (τ, T )), then

‖v−(·, t)‖L∞(U) ≤ 2 max{e−k(t−τ)‖v−(·, τ)‖L∞(U), ‖g−‖L∞(∂U×(τ,t))}
+ C‖f−‖LN+1(U×(τ,t)) (t ∈ (τ, T )),

(3.10)

where C depends only on N, β, α0, diam (Ω).
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Corollary 3.3. There exists δ = δ(α0, β,N, diam Ω) such that for any open
set U ⊂ Ω with |U | < δ and any 0 ≤ τ0 <∞ the following holds. If v ∈ C(Ū×
[τ0,∞))∩L∞(Ū × [τ0,∞)) satisfies (3.8), (3.9) with L ∈ E(α0, β, U, (τ0,∞))
and

lim
t→∞
‖g−(·, t)‖L∞(U) = lim

t→∞
‖f−‖LN+1(U×(t,t+1)) = 0, (3.11)

then
lim
t→∞
‖v−(·, t)‖L∞(U) = 0 .

Proof. Choose δ > 0 such that the conclusion of Lemma 3.2 holds for k = ln 4.
If t > τ0 + 1, applying estimate (3.10) with τ = t− 1, we obtain

‖v−(·, t)‖L∞(U) ≤ 2 max{1

4
‖v−(·, t− 1)‖L∞(U), ‖g−‖L∞(∂U×(t−1,t)}

+ C‖f−‖LN+1(U×(t−1,t)) (t ∈ (τ0 + 1,∞)) ,
(3.12)

where C is independent of t. Take a sequence tn →∞ such that

lim ‖v−(·, tn)‖L∞(U) = σ := lim sup
t→∞

‖v−(·, t)‖L∞(U).

Then (3.12) and (3.11) give σ ≤ σ/2, hence σ = 0.

If Q is an open bounded subset of RN+1, u : Q → R is a bounded,
continuous function, and p > 0, we set

[u]p,Q :=

(
1

|Q|

∫
Q

|u|p dx dt
) 1

p

.

The following lemma is proved in [19, Lemma 3.5].

Lemma 3.4. Given d > 0, ε > 0, θ > 0 there are positive constants κ, κ1, p
determined only by N, diam Ω, α0, β, d, ε, and θ with the following properties.
Let D and U be domains in Ω with D ⊂⊂ U , dist (D̄, ∂U) ≥ d, |D| > ε,
and let L ∈ E(α0, β, U, (τ, τ + 4θ)), f ∈ LN+1(U × (τ, τ + 4θ)). If v ∈
C(Ū × [τ, τ + 4θ]) satisfies (3.8) with T = τ + 4θ, then

inf
D×(τ+3θ,τ+4θ)

v(x, t) ≥ κ[v+]p,D×(τ+θ,τ+2θ) − e4βθ sup
∂P (U×(τ,τ+4θ))

v−

− κ1‖f−‖LN+1(U×(τ,τ+4θ)) .
(3.13)
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4 Proofs of the symmetry results

Throughout this section, we assume that Ω ⊂ RN is a bounded domain
satisfying (D), F satisfies (N1) – (N3), and G1, G2 satisfy (G). Also we
assume that u is a solution of (2.1) satisfying (2.4), (2.5), and (1.7).

We use the notation from Section 3 (see (3.2)). For any function g : Ω→
R, and any λ ∈ [0, `) we denote

Vλg(x) := g(xλ)− g(x), (x ∈ Ωλ).

Further, for the solution u, we let

wλ(x, t) := Vλu(x, t) = u(xλ, t)− u(x, t) (x ∈ Ωλ, t > 0) .

As shown in Section 3, the function wλ solves a linear problem (3.3), (3.5),
with L ∈ E(α0, β,Ωλ, (0,∞)), and with measurable functions fλ, gλ sat-
isfying (3.4), (3.7), respectively. Hence the estimates from Section 3 are
applicable to wλ. We use this observation below, usually without notice.

We carry out the process of moving hyperplanes in the following way.
Starting from λ = `, we move λ to the left as long as the following property
is satisfied

lim
t→∞
‖(wλ(·, t))−‖L∞(Ωλ) = 0. (4.1)

In Lemma 4.2 below we show that (4.1) holds for all λ < ` close to `. Defining

λ0 := inf{µ > 0 : lim
t→∞
‖(wλ(·, t))−‖L∞(Ωλ) = 0 for each λ ∈ [µ, `)}, (4.2)

our goal will be to prove that λ0 = 0.

Remark 4.1. Note that, by compactness of {u(·, t) : t ≥ 0} in C(Ω̄), (4.1)
is equivalent to Vλz ≥ 0 in Ωλ for each z ∈ ω(u). Thus, by continuity,

Vλz(x) ≥ 0 (x ∈ Ωλ, z ∈ ω(u), λ ∈ [λ0, `)). (4.3)

This implies that z ∈ ω(u) is nonincreasing in x1 in Ωλ0 . Indeed, if (x1, x
′),

(x̃1, x
′) are points in Ωλ0 with x1 > x̃1, then Vλz ≥ 0 with λ = (x1 + x̃1)/2 >

λ0 gives z(x1, x
′) ≥ z(x̃1, x

′).

Lemma 4.2. If δ = δ(α0, β,N, diam Ω) > 0 is as in Corollary 3.3, then (4.1)
holds whenever |Ωλ| < δ. Consequently, λ0 < `.
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Proof. Corollary 3.3 applied to v = wλ implies (4.1), whenever |Ωλ| < δ.
Since this is true for all λ < ` sufficiently close to `, we have λ0 < `.

Lemma 4.3. For any λ > 0 with λ0 ≤ λ < ` and any z ∈ ω(u), we have
Vλz > 0 in Ωλ.

Proof. Fix arbitrary λ > 0 with λ0 ≤ λ < ` and z ∈ ω(u). Let Uλ be any
connected component of Ωλ. We have z > 0 in Ω by (2.7) and z = 0 on
∂Ω. Consequently, Vλz 6≡ 0 in Uλ. By Remark 4.1, Vλz is a nonnegative
continuous function, thus there exist an open ball B0 ⊂⊂ Uλ and d0 > 0
such that

Vλz(x) > 4d0 (x ∈ B0) .

Choose an increasing sequence (tk)k∈N converging to∞ such that u(·, tk)→ z
in C(Ω̄). Then wλ(·, tk) → Vλz, and therefore wλ(·, tk) > 2d0 in B̄0 for all
k > k0, if k0 is large enough. By the equicontinuity property (2.5), there is
ϑ > 0 independent of k, such that

wλ(x, t) > d0 ((x, t) ∈ B̄0 × [tk − 4ϑ, tk], k > k0) .

Since λ0 ≤ λ, one has ‖(wλ)−(·, t)‖L∞(Uλ) → 0 as t → ∞. Fix an arbitrary
domain D ⊂⊂ Uλ with B0 ⊂⊂ D. An application of Lemma 3.4 with
(v, τ, θ, f) = (wλ, tk, ϑ, f

λ) yields

wλ(x, t) ≥ κ[(wλ)+]p,D×(tk−3ϑ,tk−2ϑ) − sup
Uλ×(tk−4ϑ,tk)

e4βϑ(wλ)−

− κ1‖(fλ)−‖LN+1(Uλ×(tk−4ϑ,tk)) ((x, t) ∈ D × [tk − ϑ, tk]),

where κ, κ1, and p do not depend on k. Since the last two terms converge to
zero as k → ∞ and the first term stays bounded from below by a positive
constant (independent of k), there are d1 > 0 and k1 ≥ k0 (depending on D)
such that

wλ(x, t) ≥ d1 ((x, t) ∈ D̄ × [tk − ϑ, tk], k ≥ k1) .

Choose t = tk and let k →∞ to obtain

Vλz(x) > 0 (x ∈ D).

Since D was an arbitrary domain with B0 ⊂⊂ D ⊂⊂ Uλ, Vλz > 0 in Uλ.
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In our last preliminary lemma, we establish a strict monotonicity property
of the functions in ω(u). Note that the requirement that Ωλ0 be connected
will be verified by condition (D), once we prove that λ0 = 0.

Lemma 4.4. If Ωλ0 is connected, then each z ∈ ω(u) is strictly decreasing
in x1 in Ωλ0. If zx1 ∈ C(Ωλ0), then zx1 < 0.

Proof. Fix any z ∈ ω(u). For h > 0 let Ωh
λ0

:= Ωλ0 ∩ {x ∈ Ω : x + he1 ∈ Ω}
and

dhz(x) :=
z(x+ he1)− z(x)

h
(x ∈ Ωh

λ0
) .

By Remark 4.1, dhz ≤ 0 in Ωh
λ0

for all z ∈ ω(u).
We claim that if h > 0 and U is a connected component of Ωh

λ0
, then

either dhz ≡ 0 in U or dhz < 0 in U .
The proof of this statement is similar to the proof of Lemma 4.3. Assume

dhz 6≡ 0 in U . Then there is a ball B ⊂⊂ Ωh
λ0

and ρ0 > 0 such that

dhz(x) < −4ρ0 (x ∈ B). (4.4)

Set

dhu(x, t) :=
u(x+ he1, t)− u(x, t)

h
((x, t) ∈ Ωh

λ0
× (0,∞)) .

Similarly as with wλ, hypotheses (N1)-(N3) and Hadamard’s formulas (see
[19]) imply that

(dhu)t ≤ L(x, t)(dhu) + fh(x, t), (x, t) ∈ Ωh
λ0
× (0,∞), (4.5)

where L ∈ E(α0, β,Ω
h
λ0
, (0,∞)) and fh is a measurable function with

lim
t→∞
‖fh‖LN+1(Ωhλ0

×(t,t+1)) = 0.

Let (tk)k∈N be an increasing sequence converging to∞ such that u(·, tk)→
z in C(Ω̄). Then dhu(·, tk) → dhz in C(Ω̄h

λ0
), and therefore there is k0 such

that dhu(·, tk) < −2ρ0 in B for all k > k0. The equicontinuity assumption
(2.5) yields ϑ > 0, independent of k, such that dhu(x, t) < −ρ0 for all x ∈ B,
t ∈ [tk − 4ϑ, tk], and k > k0.

Since dhz̃ ≤ 0 in Ωh
λ0

for all z̃ ∈ ω(u),

lim
t→∞
‖(dhu)+(·, t)‖L∞(Ωhλ0

) = 0 . (4.6)
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Let D ⊂⊂ U be any domain with B ⊂⊂ D. Applying Lemma 3.4 in a
similar way as in the proof of Lemma 4.3, we obtain

dhu(x, tk) ≤ −ρ1 < 0 (x ∈ D̄, k ≥ k1) , (4.7)

where ρ1 = ρ1(D) > 0 is independent of k and k1 = k1(D) is a sufficiently
large integer. Passing to the limit, as k →∞, in (4.7), we obtain

dhz(x) ≤ −ρ1 (x ∈ D̄). (4.8)

In particular, dhz < 0 in D̄ and since the domain D with B ⊂⊂ D ⊂⊂ U
was arbitrary, the claim is proved.

Now, if dh0z(x̃) = 0 for some h0 > 0 and x̃ ∈ Ωh0
λ0

, then from the mono-
tonicity of z it follows that dhz(x̃) = 0 for all 0 < h ≤ h0. Then the claim
implies that for each h ∈ (0, h0) one has dhz ≡ 0 in the connected compo-
nent of Ωh

λ0
containing x̃. Since Ωλ0 is connected, this clearly implies that

z is constant in x1 in Ωλ0 , hence, by the boundary condition, z ≡ 0 in Ωλ0 .
This would contradict (2.7), hence no such h0 > 0 and x̃ can exist. Therefore
dhz < 0 in Ωh

λ0
for all h > 0, and consequently z is strictly decreasing in x1.

To prove the last conclusion assume that zx1 ∈ C(Ωλ0). Since zx1 6≡ 0
in Ωλ0 , we can choose a ball B ⊂⊂ Ωλ0 and ρ0 > 0, both independent of h,
such that (4.4) holds for all sufficiently small h > 0. The connectedness of
Ωλ0 implies that given any x ∈ Ωλ0 , if h > 0 is small enough, then x and
B̄ lie in the same connected component of Ωh

λ0
. Hence there is a domain

D containing both x and B̄ such that D ⊂⊂ Ωh
λ0

for each sufficiently small
h > 0. Estimate (4.8) then holds with ρ1 independent of h, which gives in
particular zx1(x) < 0.

Proof of Theorem 2.2. Let λ0 ≥ 0 be as in (4.2). We show that λ0 = 0.
Assume λ0 > 0. For each z ∈ ω(u) we have z > 0 by assumption and this
implies Vλ0z 6≡ 0 on ∂Ωλ0\Hλ0 . Thus by Lemma 4.3, Vλ0z > 0 in Ωλ0 . Choose
δ as in Corollary 3.3 and fix a compact set K ⊂ Ωλ0 with |Ωλ0 \K| ≤ δ/2.
By the compactness of ω(u) ⊂ C(Ω̄), there is d0 > 0 such that

Vλ0z(x) > 4d0 (x ∈ K, z ∈ ω(u)) .

This implies that there exists t0 > 0 such that

wλ0(x, t) > 2d0 ((x, t) ∈ K × (t0,∞)) .
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The equicontinuity assumption (2.5) implies that if λ is sufficiently close to
λ0, then

wλ(x, t) > d0 ((x, t) ∈ K × (t0,∞)) . (4.9)

Let λ ∈ [0, λ0] be close enough to λ0 so that (4.9) holds together with |Ωλ \
Ωλ0 | < δ/2. Then |Ωλ \ K| < δ and an application of Corollary 3.3 with
(U, τ, v, f) = (Ωλ \K, t0, wλ, fλ) gives

‖(wλ(·, t))−‖L∞(Ωλ) = 0,

a contradiction to the definition of λ0. This contradiction shows that λ0 = 0.
Hence V0z ≥ 0 for all z ∈ ω(u).

Now, the problem (2.1) and the assumptions of the theorem are invariant
under the transformation x1 → −x1. Therefore, applying the above conclu-
sion to the function u(−x1, x

′, t), we obtain V0z ≤ 0 in Ω0 for all z ∈ ω(u).
Hence, V0z ≡ 0 in Ω0, or equivalently

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω, z ∈ ω(u)) .

The remaining statements of the theorem follow from Lemma 4.4.

5 Details for Example 2.3

Recall the notation I = (−2π, 2π), Ω = I × I. Let β be an arbitrary fixed
number in (1,∞).

The key part of our construction deals with the following one-dimensional
problem

ut = uxx + f(t, u) +R(x, t), (x, t) ∈ I × (0,∞) ,

u = 0, (x, t) ∈ ∂I × (0,∞) ,

u ≥ 0, (x, t) ∈ I × (0,∞) .

(5.1)

Our goal is to find a continuous function f : I × (0,∞) × R → R, which is
piecewise linear in the second variable with Lipschitz constant β + 1, and a
continuous function R : Ī × [0,∞)→ R satisfying

‖R(·, t)‖L∞(Ω) ≤ Ce−
β
25
t (t ≥ 0)

for some C = C(β) > 0 such that (5.1) has a global, bounded solution u with
the following properties. There exist g, h ∈ ω(u) (ω-limit set in C[−2π, 2π])
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such that h > 0 in I, g > 0 in (0, 2π), and g(0) = 0. Once such functions
have been found, the construction for Example 2.3 is completed in two simple
steps as follows. First we modify the functions u and R to achieve u > 0 (note
that in (5.1) we only require u ≥ 0). This is done by adding to u a smooth
function v : Ī× [0,∞) such that v > 0 in I× [0,∞), v(−2π, t) = v(2π, t) = 0
for all t ∈ [0,∞), and ‖H(·, t)‖L∞(I) ≤ e−βt, where H is any of the functions
v, vx, vxx, or vt. Then ũ := u + v is a positive solution of (5.1), if R(x, t) is
replaced with the function

R̃(x, t) := ũt(x, t)− ũxx(x, t)− f(t, ũ(x, t))

= [f(t, u(x, t))− f(t, ũ(x, t))] + vt(x, t)− vxx(x, t) +R(x, t).

Since f is Lipschitz in u, the continuous function R̃ has the same exponential
decay as R: ‖R̃(·, t)‖L∞(I) ≤ Ce−tβ/25, possibly with a larger constant C. Of
course, u and ũ have the same ω-limit sets, so we have a positive solution of
the one-dimensional problem as desired.

The second step is to use this example and separation of variables to
obtain a solution of the problem on Ω. This is done in much the same way
as in [19, Example 2.3]. One takes U(x, y, t) = ũ(x, t)ψ(y), with ψ(y) =
cos(y/4). Then U is a positive solution of the problem

Ut = ∆U + f ∗(y, U) +R∗(x, y, t), (x, y) ∈ Ω, t > 0, (5.2)

U = 0, (x, y) ∈ ∂Ω, t > 0, (5.3)

where

f ∗(t, y, U) =


f

(
t,

U

ψ(y)

)
ψ(y) +

1

16
U if |y| 6= 2π,

1

16
U if |y| = 2π

and R∗(x, y, t) = R̃(x, t)ψ(y). Clearly f ∗ is continuous in all variables and
it is Lipschitz continuous in U with Lipschitz constant LipU f

∗ = Lipu f +
1/16 ≤ β + 2. The functions z := hψ,w := gψ are contained in ω(U) and
have the properties as stated in Example 2.3.

Let us now return to the one-dimensional problem (5.1). Set

h(x) = cos
(x

4

)
, g(x) =

1− cos(x)

2
(x ∈ I) .

These are the functions we want to be contained in the ω-limit set of
a solution u. Our strategy is to first find a nonlinearity f(t, u) such that
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the equation ut = uxx + f(t, u) has four distinctive regimes occurring, in
succession, on disjoint time intervals: in the first regime, there is a solution
which decreases from its initial condition h to a small multiple of h; in the
second one, a solution increases from a small multiple of g to g; in the
third one, a solution decreases from its initial condition g to another small
multiple of g; and, finally, in the forth regime, a solution increases from a
small multiple of h back to h. Using a suitable perturbation function R(x, t),
we then connect the solutions in these four regimes. Repeating the cycle
infinitely many times, we produce a solution u of (5.1) such that h, g ∈ ω(u).
Care is needed in the construction to guarantee that the function R has the
indicated exponential decay.

We now give the details. To simplify the notation, for any function ζ of
the variables x ∈ I, u ∈ R, and t ≥ 0, ST ζ stands for the time shift of ζ:

ST [ζ(x, u, t)] := ζ(x, u, t− T ) (T < t) .

Let s : [0, 1]→ [0, 1] and m : [0, 1]→ R be smooth functions such that

s(0) = 1, s(1) = 0, s′(0) = s′(1) = −β
2
, |s′| < β,

m(0) = m(1) = 1, m′(0) = −m′(1) = β, m ≥ 1, |m′| ≤ β

(for the existence of s we invoke the condition β > 1). For n = 1, 2, . . . , let

bn :=
5n

4
− 1, an := e−βbn .

Define functions un : Ī × [0, 4bn + 4]→ R and fn : [0, 4bn + 4]×R as follows:

un(x, t) :=



e−βth(x) t ∈ [0, bn),

Sbn [an(s2(t)h(x) + (1− s(t))2g(x))] t ∈ [bn, bn + 1),

Sbn+1[ane
βtg(x)] t ∈ [bn + 1, 2bn + 1),

S2bn+1[m(t)g(x)] t ∈ [2bn + 1, 2bn + 2),

S2bn+2[e−βtg(x)] t ∈ [2bn + 2, 3bn + 2),

S3bn+2[an(s2(t)g(x) + (1− s(t))2h(x))] t ∈ [3bn + 2, 3bn + 3),

S3bn+3[ane
βth(x)] t ∈ [3bn + 3, 4bn + 3),

S4bn+3[m(t)h(x)] t ∈ [4bn + 3, 4bn + 4],
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where x ∈ Ī, and

fn(t, u) :=

(−β + 1
16

)u t ∈ [0, bn),

Sbn [(1− t)(−β + 1
16

)u+ t((1 + β)u− aneβt)] t ∈ [bn, bn + 1),

Sbn+1[(β + 1)u− an
2
eβt] t ∈ [bn + 1, 2bn + 1),

S2bn+1[(m
′(t)

m(t)
+ 1)u− m(t)

2
] t ∈ [2bn + 1, 2bn + 2),

S2bn+2[(1− β)u− 1
2
e−βt] t ∈ [2bn + 2, 3bn + 2),

S3bn+2[(1− t)((1− β)u− an
2
e−βt) + t(β + 1

16
)u] t ∈ [3bn + 2, 3bn + 3),

S3bn+3[(β + 1
16

)u] t ∈ [3bn + 3, 4bn + 3),

S4bn+3[(m
′(t)

m(t)
+ 1

16
)u] t ∈ [4bn + 3, 4bn + 4] ,

where u ∈ R. One easily verifies that that un ∈ C2,1(I × [0, 4bn + 4)] and fn
is a continuous function on [0, 4bn + 4)], which is piecewise linear in u with
Lipschitz constant β + 1. Also the following relations are straightforward to
verify:

un(0, t) = un(1, t) = 0 (t ∈ [0, 4bn + 4]), (5.4)

un(·, 0) = un(·, 4bn + 4) = h, (5.5)

(un)t(·, 0) = (un)t(·, 4bn + 4) = −βh, (5.6)

un(·, 2bn + 1) = g, (5.7)

fn(0, u) = fn(4bn + 4, u) = (−β +
1

16
)u (u ∈ R), (5.8)

(un)t(x, t)− (un)xx(x, t)− fn(t, un(x, t)) = 0

(x ∈ I, t ∈ [0, 4bn + 4] \ ((bn, bn + 1) ∪ (3bn + 2, 3bn + 3))). (5.9)

The four different regimes mentioned in the above outline are active on the
“long” time intervals, that is, those intervals in the definitions of un and fn
that have the length bn.

Next define Rn by

Rn(x, t) := (un)t(x, t)−(un)xx(x, t)−fn(t, un(x, t)) ((x, t) ∈ I×[0, 4bn+4]) .
(5.10)

By (5.9), Rn(·, t) 6= 0 only if t ∈ (bn, bn + 1) ∪ (3bn + 2, 3bn + 3). An easy
calculation shows that Rn is a continuous function with

‖Rn(·, t)‖L∞(I) ≤ Can (t ∈ [0, 4bn + 4]), (5.11)
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where C is independent of n (it depends on β).
Finally, to complete the construction, set

T0 := 0, Tn :=
n∑
i=1

(4bi + 4) =
5

4
(5n − 1)

(recalling that bi := 5i/4− 1) and

u(x, t) := STnun(x, t), f(t, u) := STnfn(t, u), R(x, t) := STnRn(x, t)

((x, u, t) ∈ I × R× [Tn, Tn+1), n ∈ N ∪ {0}) .

It follows from (5.5), (5.6), and (5.8), that u ∈ C2,1(Ī × [0,∞)), f and R
are continuous on Ī × [0,∞), and f is Lipschitz in u with Lipschitz constant
β + 1. Clearly, u is bounded and u ≥ 0 everywhere. By (5.10) and (5.4), u
is a solution of (5.1), and by (5.5), (5.7), h, g ∈ ω(u).

It remains to show that R has the specified exponential decay. Given any
t > 0, pick the integer n for which 5(5n − 1)/4 ≤ t < 5(5n+1 − 1)/4. Then,
by (5.11),

‖R(·, t)‖L∞(I) ≤ Can = Ce−βbn = Ce−β( 5n

4
−1) ≤ Ce−β( t

25
− 19

20
) = C̃e−

β
25
t,

where C̃ = C̃(β) is a constant independent of t.
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Ann. Inst. H. Poincaré Anal. Non Lineaire (to appear).

[23] A. Saldaña and T. Weth, Asymptotic axial symmetry of solutions
of parabolic equations in bounded radial domains, J. Evol. Equ. doi
10.1007/s00028-012-0150-6 (preprint).

[24] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech.
Anal. 43 (1971), 304–318.

25


