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Abstract In this paper we investigate symmetry properties of positive so-
lution of quasilinear parabolic problems in the whole space. As the main
result, we prove that if the problem converges exponentially to a symmet-
ric one, then the solution converges to the space of symmetric functions.
We also show, that this result does not hold true, if the convergence is not
exponential.
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1 Introduction

In this paper we study quasilinear parabolic equation

∂tu = Aij(t, u,∇u)uxixj +F (t, u,∇u)+G(x, t), (x, t) ∈ RN×(0,∞) , (1.1)

where∇g denotes the gradient of a function g. The functions A and F satisfy
certain regularity, ellipticity, and symmetry assumptions as specified in the
next section. The function G that decays to 0 as t approaches infinity, is
considered to be a perturbation of the problem. In (1.1), and also in the rest
of the paper, we use summation convention, that is, when an index appears
twice in a single term, we are summing over all of its possible values, usually
from 1 to N .

Our goal is to show that every positive, classical, global, bounded solution
u of (1.1) is asymptotically symmetric. Before we make these statements
precise, let us give a brief account of older results.
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The first results on reflectional symmetry were established by Gidas, Ni
and Nirenberg [13] for positive solutions of elliptic equations on bounded
domains. Specifically, if Ω is a bounded, smooth domain, convex in x1, and
symmetric with respect to the hyperplane

H0 := {x ∈ RN : x1 = 0} ,

and f is a Lipschitz function, then a positive classical solution u of

∆u+ f(u) = 0, x ∈ Ω , (1.2)

u = 0, x ∈ ∂Ω , (1.3)

is even in x1 and nonincreasing in the set

Ω0 := {x ∈ Ω : x1 > 0} .

The used techniques included the maximum principle and the method of
moving hyperplanes introduced by Alexandrov [2] and developed by Serrin
[31], who used it for overdetermined elliptic problems. Later, the results of
Gidas et al. were generalized by Li [19] to fully nonlinear problems, and
Berestycki and Nirenberg [8] extended them to nonsmooth domains Ω. We
refer the reader to the surveys [6, 24, 26] for more results, references, and
generalizations.

In another paper, Gidas, Ni and Nirenberg [14] considered (1.2) with Ω =
RN and a smooth nonlinearity f satisfying f(0) = 0, and certain hypothesis
near 0. They proved that each positive solution, which decays to 0 at a
suitable rate, is radially symmetric. Later, Li [20] showed that any decay
of solution as |x| → ∞ is sufficient for symmetry, provided f(0) = 0 and
f ′(0) < 0. The later condition was weakened by Li and Ni [21], who assumed
that f ′(z) ≤ 0 for any z sufficiently close to 0. All these papers also treat
fully nonlinear problems. The described results were extended in various
directions such as cooperative systems of equations, more general unbounded
domains, or more general equations. We again refer the reader to [6, 24, 26]
for more references.

The situation is more complicated for parabolic problems, as one cannot
expect the solution to be symmetric, unless the initial data are symmetric.
However, one can prove that the solution approaches the space of symmetric
functions as time approaches infinity. To make this concept precise, for any
open Ω ⊂ RN we define ω-limit set of u to be

ω(u) := {z : z = lim
n→∞

u(·, tn) for some tn →∞} ,
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where the convergence is in the space C0(Ω), the space of continuous functions
on Ω that vanish on ∂Ω and decay to zero at infinity (if Ω is unbounded).
The space C0(Ω̄) is equipped with the supremum norm.

If Ω is a bounded domain, symmetric with respect to H0, we say that u
is asymptotically symmetric if z is even in x1 and decreasing in x1 in Ω0 for
each z ∈ ω(u).

The first results on asymptotic symmetry appeared in [15], where Hess
and Poláčik proved asymptotic symmetry for positive classical solutions of
the problem

ut = ∆u+ f(t, u), x ∈ Ω ,

u = 0, x ∈ ∂Ω .

Here, Ω is a smooth bounded domain convex in x1, symmetric with respect to
H0 and f is Hölder in t and Lipschitz in u. In an independent work Babin [3,
4] showed asymptotic symmetry for autonomous fully nonlinear problem and
later, Babin and Sell [5] allowed nonlinearity to depend on t. However, these
results require additional compactness and positivity assumptions compared
to [15].

These drawbacks were removed in [29], where Poláčik proved the asymp-
totic symmetry for positive, classical solutions of a general fully nonlinear
parabolic problem on bounded domains. The results required certain strong
positivity assumptions that were further discussed in [12].

Unlike for elliptic equations, symmetric properties of solutions on RN are
much less understood. The difficulties arise from the fact that the center of
symmetry is not a priori fixed. Even if one is able to prove the symmetry of
every function z ∈ ω(u) with respect to some hyperplane, it is not immediate
to show that all functions in ω(u) are symmetric with respect to the same
hyperplane. Having this in mind, we say that u defined on Ω = RN is
asymptotically symmetric, if there is λ0 ∈ R such that all functions z ∈ ω(u)
are symmetric with respect to the same hyperplane

Hλ0 := {x ∈ RN : x1 = λ0} ,

and decreasing in the halfspace

RN
λ0

:= {x ∈ RN : x1 > λ0} .

In [27], Poláčik proved that a nonnegative solution u of (1.1) is asymptotically
symmetric, provided G ≡ 0 and assumptions (N1)–(N4), (2.4), (2.5) from the
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next section are satisfied. In [28], Poláčik discussed entire solutions, that is,
solutions defined for all times (positive and negative), and he showed that
each nonnegative entire solution is symmetric at each time.

We were not able to locate any symmetry results in the literature if G 6≡
0. However, these can be obtained if the problem (1.1) is asymptotically
autonomous, that is, if F and Aij are independent of t, and u converges to a
solution of the elliptic problem

0 = Aij(u,∇u)uxixj + F (u,∇u), x ∈ RN . (1.4)

Then by the symmetry results for elliptic problems [14], this equilibrium is
symmetric, and therefore the solution of the parabolic problem is asymptot-
ically symmetric.

The convergence to a nonnegative equilibrium was obtained for asymptot-
ically autonomous problems, that is, for the problems that are approaching
an autonomous one as t→∞. First, let us explain the existing results on the
following model problem. Let u be a classical, global, nonnegative solution
of the problem

ut = ∆u+ F (u) +G(x, t), (x, t) ∈ Ω× (0,∞) ,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞) .
(1.5)

Huang and Takáč in [16] (see also [10]) proved that the solution u of (1.5)
converges to a solution v of the problem

0 = ∆v + F (v), x ∈ Ω ,

v = 0, x ∈ ∂Ω ,
(1.6)

provided Ω is a smooth bounded domain, F satisfies certain analyticity as-
sumptions and

sup
t∈(0,∞)

t1+δ

∫ ∞
t

‖G(·, s)‖L2(Ω)ds <∞ . (1.7)

Huang and Takáč also treated more general gradient-like problems with self-
adjoint differential operators.

Later, Chill and Jendoubi [11] considered the problem (1.5) with Ω = RN

and
F (u) =

∑
p∈P

cp|u|p−1u ,
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where P is a finite subset of (1, N+2
N−2

) and cq > 0 for q = maxp∈P p. Moreover,

they assumed that there exists a compact set K ⊂ RN with suppG(·, t) ⊂ K
for each t > 0. As a result, they proved that (1.7) implies the convergence of
positive solutions u, with bounded H1(RN) norm, to a solution of (1.6).

In this paper we generalize symmetry results from [27] to nonnegative
solutions of the problem (1.1) with G 6≡ 0. Under the assumptions (N1)–
(N4) listed in the next section, we prove that each positive solution of (1.1)
is asymptotically symmetric, provided there exists µ > 0 with

‖G‖X(t,∞)
≤ Ce−µt (t ≥ 0) , (1.8)

where

X(s,t) := L∞(RN × (s, t))⊕LN+1(RN × (s, t)) (t, s ∈ (0,∞], s < t) (1.9)

is the space of functions f that can be written in the form f = g + h with
g ∈ L∞(RN × (s, t)) and h ∈ LN+1(RN × (s, t)), equipped with the norm

‖f‖X(s,t)
= inf

g+h=f

(
‖g‖L∞(RN×(s,t)) + ‖h‖LN+1(RN×(s,t))

)
. (1.10)

Notice that G is not assumed to be globally integrable in x. This general-
ization proves to be useful for perturbations that depends on the solution
or derivatives of solution, since these are only assumed to be bounded. In-
deed, if instead of G : (x, t) → R we consider a function G̃ : (x, t, u, p, q) ∈
Ω× [0,∞)× R1+N+N2 → R, then our results apply, if

G̃ : (x, t) 7→ G̃(x, t, u(x, t), Du(x, t), D2u(x, t)) ((x, t) ∈ RN × [0,∞))

satisfies (1.8). An example of such function G̃ is

G̃ : (x, t, u,Du,D2u) 7→ e−tg(u,Du,D2u) , (1.11)

where g is continuous. Notice that problem (1.1) with G replaced by G̃ is
fully nonlinear. Therefore, our symmetry results cover certain fully nonlinear
problems that converge exponentially to quasilinear ones as t → ∞. How-
ever, it is not known if the symmetry results hold for general fully nonlinear
equations.

If we apply our results on reflectional symmetry in various directions, the
standard arguments show that all functions in the ω-limit set are radially
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symmetric with respect to the same origin. In a future paper we show how
to apply our symmetry results in the study of the asymptotic behavior of
solution of asymptotically autonomous problems, that is, when F and (Aij)
are independent of t.

The asymptotic symmetry of positive solutions does not hold true if we
merely assume that G converges to 0 as t→∞. A counterexample is given
in Example 2.3 below, with ‖G‖X(t,∞) ≈ 1

t
. However, it is not know if the

exponential decay (as stated in (1.8)) is necessary. Especially, we leave as
an open problem, whether the integrability of t 7→ ‖G‖X(t,∞) is sufficient for
asymptotic symmetry of solutions.

To prove the symmetry results, we extend linear estimates for parabolic
equations such as Alexandrov-Krylov estimate and the Harnack inequality
to more general inhomogeneities (right hand sides) on unbounded domains.
Since these results might be of independent interest, especially for appli-
cations to unbounded domains, we devote them a separate section. Once
the linear estimates are established, we follow the framework from [27] to
prove the symmetry results. The application of methods from [27] is not
completely straightforward and a special care should be taken when treating
perturbations on unbounded sets, since various constants might depend on
the diameter of the set or the length of the time interval. In that case, we
restrict our arguments to bounded time intervals and use iterative methods.

The rest of the paper is organized as follows. In the next section we state
our main results. Section 3 contains general linear estimates of parabolic
problems, and in Section 4, we prove the symmetry results.

2 Main results

Consider parabolic problem (1.1). We assume that the real valued functions
(Aij)1≤i,j≤N , F : (t, u, p) 7→ R are defined on [0,∞)× [0,∞)×RN and satisfy
the following conditions.

(N1) Regularity. The functions (Aij)1≤i,j≤N , F are continuous on [0,∞) ×
[0,∞)×RN and continuously differentiable with respect to u and p =
(p1, · · · , pN) uniformly in t ∈ [0,∞). This means, that if h stands for
any of ∂uAij, ∂uF , ∂pkAij or ∂pkF for some 1 ≤ i, j, k ≤ N , then for
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each M > 0 one has

lim sup
0≤u,v,|p|,|q|≤M,t≥0
|u−v|+|p−q|→0

|h(t, u, p)− h(t, v, q)| = 0 . (2.1)

(N2) Ellipticity. There is a positive constant α0 such that for each ξ ∈ RN

Aij(t, u, p)ξiξj ≥ α0|ξ|2 ((t, u, p) ∈ [0,∞)× [0,∞)× RN) .

(N3) Symmetry. For each (t, u, p) ∈ [0,∞)× [0,∞)× RN and 1 ≤ i, j ≤ N
one has

Aij(t, u, p) = Aij(t, u,−p1, p2, · · · , pN) ,

F (t, u, p) = F (t, u,−p1, p2, · · · , pN) ,

A1j = Aj1 ≡ 0 if j 6= 1 .

(N4) Stability of 0. F (t, 0, 0) = 0 and there is a constant γ > 0 such that

∂uF (t, 0, 0) < −2γ (t ≥ 0) .

Remark 2.1. The assumption (N4) and uniform continuity of ∂uF in t
imply the existence of ε∗γ > 0 with

∂uF (t, u, p) < −γ ((t, u, p) ∈ [0,∞)× [0, ε∗γ]×Bε∗γ ) ,

where Br is an open ball centered at the origin with the radius r.

The assumptions on G are as follows (recall that X(s,t) was defined in
(1.9)) .

(G1) G ∈ X(t,t+1) for each t ∈ [0,∞) and

lim
t→∞
‖G‖X(t,t+1)

= 0 . (2.2)

Some results require exponential decay of G.

(G2) For each t ∈ (0,∞) one has G ∈ X(t,∞). Moreover, there exist µ > 0
and Cµ > 0 such that

‖G‖X(t,∞)
≤ Cµ

2
e−µt (t > 0) . (2.3)
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One can easily verify that, with possibly changed µ, (G2) is equivalent to the
following statement. For each ε > 0, there exists tε > 0 with ‖G̃‖X(tε,∞)

≤ ε,

where G̃(x, t) = eµ(t−tε)G(x, t). Notice that if we replace X(t,∞) by X(t,t+1) in
(G2), we obtain an equivalent assumption. As explained in the introduction,
the space X allows us to treat, possibly unbounded, perturbations depending
on u, Du or D2u.

We assume that u is a classical, nonnegative, global solution of (1.1),
that is, u ∈ C2,1(RN × (0,∞)) and u satisfies (1.1) everywhere. Moreover,
we assume

S := sup
(x,t)∈RN×[0,∞)

1≤i,j≤N

{|u(x, t)|, |uxi(x, t)|, |uxixj(x, t)|} <∞ , (2.4)

and

lim sup
|x|→∞,t∈[0,∞)

{|u(x, t)|, |uxi(x, t)|, |uxixj(x, t)|} = 0 (1 ≤ i, j ≤ N) . (2.5)

Observe that (N1) combined with (2.4) yields the existence of β0 > 0 such
that

sup
t≥0
|h(t, v, p)− h(t, w, q)| ≤ β0|(v, p)− (w, q)|

(v, w ∈ [0, S], p, q ∈ RN , |p|, |q| ≤ S) , (2.6)

where h stands for F or Aij, and S was defined in (2.4). Although we suppose
(N2) and (2.6) with fixed constant α0, we really need it to be true on the
range of (u,Du,D2u) for each considered solution u. Since u is bounded and
has bounded derivatives, (N2) needs to hold true only for u, |p| < S.

By (2.5), there is ρ∗γ such that |u|, |∇u| < ε∗γ in (RN \Bρ∗γ )× [0,∞), and
therefore by Remark 2.1

∂uF (t, u(x, t),∇u(x, t)) < −γ ((x, t) ∈ (RN \Bρ∗γ )× [0,∞)) . (2.7)

Uniformity of the limit (2.5) in t is not technical. When omitted the
symmetry results may fail even for G ≡ 0. For more details see [28] and
references therein.

It is not sufficient to merely assume ∂uF (t, 0, 0) < 0 in (N4). Indeed, for
appropriate p > 1 Poláčik and Yanagida [30] constructed a positive solution
of the problem

ut = ∆u+ up, (x, t) ∈ RN × (0,∞)
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satisfying (2.4) and (2.5) that is not asymptotically symmetric. If we set
F (t, u, q) = up − e−tu and G(x, t) = e−tu(x, t), then ∂uF (t, 0, 0) < 0 and G
satisfies (G2). However, u is not asymptotically symmetric.

The assumptions (2.4) and (2.5) guarantee that u is globally defined and
{u(·, t) : t ≥ 0} is relatively compact in E := C1

0(RN), which stands for the
space of C1(RN) functions, bounded together with their first order deriva-
tives, equipped with the standard C1 norm. Define the ω-limit set of u as

ω(u) = {z : z = lim
n→∞

u(·, tn) for some tn →∞} , (2.8)

where the convergence is in the topology of the space C1
0(RN).

Then ω(u) is nonempty, compact set in E, and it attracts the solution in
the following sense

lim
t→∞

distE (u(·, t), ω(u)) = 0 . (2.9)

We are ready to formulate our first symmetry result.

Theorem 2.2. Assume (N1)–(N4), (G1), and let u be a global solution of
(1.1) satisfying (2.4) and (2.5). Then either u converges to 0 in L∞(RN) or
there exist λ ∈ R and φ ∈ ω(u) such that for each x ∈ RN

λ one has

φ(2λ− x1, x
′) = φ(x) ((x1, x

′) = x ∈ RN) ,

∂x1φ(x) < 0 (x ∈ RN
λ ) .

(2.10)

If we in addition assume (G2), then either ω(u) = {0} or there is λ ∈ R
such that (2.10) holds for all φ ∈ ω(u).

The following example shows, that the last statement of Theorem 2.2
does not hold if we merely assume (G1). In particular it is not true that all
functions in the ω-limit set are symmetric with respect to the same hyper-
plane.

Example 2.3. Let v be a positive function satisfying (2.4), (2.5), and

0 = ∆v + g(v), x ∈ RN , (2.11)

for appropriate function g with g′(0) < 0. Such a function v exists for
example for g(u) = λu + up (see e.g. [7] and references therein) with λ < 0,
1 < p < pS, where pS := N+2

N−2
for N ≥ 3 and pS := ∞ for N ≤ 2 is

the critical Sobolev exponent. By [14], v is radially symmetric and radially
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decreasing with center at a point x0 ∈ RN . Let η : [0,∞)→ R be a bounded
differentiable function and define u : RN × (0,∞) → R by u(x, t) := v(x1 +
η(t), x′) for any (x, t) = ((x1, x

′), t) ∈ RN × [0,∞). Then u satisfies (2.4),
(2.5), and

ut = ∆u+ g(u) +G(x, t), (x, t) ∈ RN × [0,∞) ,

where

G(x, t) := vx1(x1 + η(t), x′)η′(t) ((x, t) = ((x1, x
′), t) ∈ RN × [0,∞)) .

It is easy to see that we can choose η with the following properties. There are
sequences (sk)k∈N, (tk)k∈N with sk, tk → ∞ as k → ∞ such that η(tk) = 1,
η(sk) = 0, and there is C > 0 with |η′(t)| ≤ C

t
for all t > 0. Since vx1 is

bounded,

lim
t→∞
‖G‖X(t,t+1)

≤ lim
t→∞
‖G‖L∞(RN×(t,t+1)) ≤ lim

t→∞
‖vx1‖L∞(RN×(0,∞))

C

t
= 0 ,

and in particular G satisfies (G1). However, v(x1 + s, x′) ∈ ω(u) for any
s ∈ [0, 1], and therefore the functions in ω(u) are not symmetric with respect
to the same hyperplane.

Finally, we state the corollary of Theorem 2.2 on asymptotic radial sym-
metry. We omit the proof since it uses the same arguments as in the case
G ≡ 0 (cf. [27]). The formulation of results on rotational symmetry, if the
problem is rotationally symmetric, is left to the reader.

Corollary 2.4. In addition to (N1)–(N4) and (G2), assume Aij ≡ 0 if i 6= j
and

Aii(t, u, p) = Aii(t, u, q), F (t, u, p) = F (t, u, q) whenever |p| = |q| .

Let u be a global solution of (1.1) satisfying (2.4) and (2.5). Then either u
converges to 0 in L∞(RN) or there exists ξ ∈ R such that for each φ ∈ ω(u)
there is φ̃ : R→ R with

φ(x− ξ) = φ̃(|x|) (x ∈ RN) ,

∂rφ̃(r) < 0 (r = |x| > 0) .
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Remark 2.5. Assume f ∈ C1([0,∞)), f(0), and f ′(0) < 0. Also assume
G ∈ Cα((0,∞), L∞(RN)), (α > 0) satisfies (G2). If u solves a semilinear
problem

ut = ∆u+ f(u) +G(x, t), (x, t) ∈ RN × (0,∞) ,

with ‖u‖L∞(RN×(0,∞)) <∞ and

lim sup
|x|→∞,t∈[0,∞)

|u(x, t)| = 0 , (2.12)

then the statement of Corollary 2.4 holds true. Indeed, assumptions of Corol-
lary 2.4 on A, F , and G are cleary satisfied. By standard regularity theory
(cp. [23]), ‖u‖L∞(RN×(0,∞)) < ∞ and G ∈ Cα((0,∞), L∞(RN)) imply (2.4).
One can easily see that in the semilinear case only (2.12) is needed in the
proof of main results.

3 Linear equations

This section is devoted to linear parabolic estimates as a preparation for the
method of moving hyperplanes. The results that were already published are
stated without proofs. However, at some places we have to extend existing
results and for those we include proofs as well.

Recall the following standard notation. For an open set Q ⊂ RN we
denote by ∂PQ the parabolic boundary of Q (for precise definition see e.g.
[17, 22]). We also define a time cut of Q to be

QM := {(x, s) ∈ Q̄ : s ∈M} (M ⊂ R) . (3.1)

If M = {t}, we often write Qt instead of Q{t}.
For bounded sets U , U1 in RN or RN+1, the notation U1 ⊂⊂ U means

Ū1 ⊂ U , diamU stands for the diameter of U , and |U | for its Lebesgue
measure (if it is measurable). For any λ ∈ (−∞,∞) we define an open half
space: RN

λ := {x ∈ RN : x1 > λ}, and for λ = −∞ we set RN
λ = RN . The

open ball in RN centered at x with radius r is denoted by B(x, r) and if the
ball is centered at the origin, that is, if x = 0, we also write Br := B(0, r).
For any λ ∈ R and R > 0 we set Bλ

R := BR∩RN
λ . Symbols f+ and f− denote

the positive and negative parts of a function f : f± := (|f | ± f)/2 ≥ 0.
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We consider time dependent elliptic operators L of the form

L(x, t) = akm(x, t)
∂2

∂xk∂xm
+ bk(x, t)

∂

∂xk
. (3.2)

To simplify the notation we shall use the following definition.

Definition 3.1. Given an open set Q ∈ RN × (0,∞) and positive numbers
α0, β0, we say that an operator L of the form (3.2) belongs to E(α0, β0, Q) if
its coefficients akm, bk are measurable functions defined on Q and they satisfy

|akm|, |bk| ≤ β0 (k,m = 1, . . . , N) ,

akm(x, t)ξkξm ≥ α0|ξ|2 ((x, t) ∈ Q, ξ ∈ RN).

3.1 Nonlinear to linear

In this subsection we assume (N1)–(N4) and (G1). At some places, where
explicitly stated, we also assume (G2). Fix a positive global solution u of
(1.1) satisfying (2.4) and (2.5). We show, how symmetries of the problem
give rise to linear equations from the nonlinear ones.

We say that a pair of functions (ũ, G̃) is admissible, if ũ satisfies (2.4),
(2.5), G̃ satisfies (G1), and ũ is a positive solution of (1.1) with G replaced
by G̃. In particular (u,G) is an admissible pair.

Let (ũ, G̃) be an admissible pair different to (u,G). If we denote w :=
u− ũ, then

wt = L(x, t)w + c(x, t)w + f(x, t), (x, t) ∈ RN × (0,∞) ,

lim
|x|→∞

sup
t∈(0,∞)

|w(x, t)| = 0 , (3.3)
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where L has the form (3.2) with

aij(x, t) = Aij(t, u(x, t),∇u(x, t)),

bi(x, t) =

∫ 1

0

Fpi(t, u(x, t),∇ũ(x, t) + s(∇u(x, t)−∇ũ(x, t))) ds

+ ũxkx`(x, t)

∫ 1

0

Ak`,pi(t, u(x, t),∇ũ(x, t) + s(∇u(x, t)−∇ũ(x, t))) ds,

c(x, t) =

∫ 1

0

Fu(t, ũ(x, t) + s(u(x, t)− ũ(x, t)),∇ũ(x, t)) ds

+ ũxkx`(x, t)

∫ 1

0

Ak`,u(t, ũ(x, t) + s(u(x, t)− ũ(x, t)),∇ũ(x, t)) ds.

(3.4)
Then

L ∈ E(α0, β0,RN × (0,∞)) , ‖c‖L∞(RN×(0,∞)) ≤ β0 , (3.5)

and, by (N1), Remark 2.1
c(x, t) < −γ , (3.6)

whenever u(x, t), ũ(x, t), |∇ũ(x, t)| and |D2ũ(x, t)| are smaller than ε∗γ, where
ε∗γ was defined in Remark 2.1. Observe, that we do not impose any smallness
assumptions on |∇u(x, t)| or |D2u(x, t)|.

Moreover,

f := G− G̃ ∈ X(t,t+1), lim
t→∞
‖f‖X(t,t+1)

= 0 . (3.7)

If we suppose that (G2) holds for G and G̃, then

‖f‖X(t,∞)
≤ Cµe

−µt (t > 0) . (3.8)

Uniform continuity of derivatives of (Aij)1≤i,j≤N and F in conjunction with
(2.4) yields that (aij), (bi), and c are continuous in x and t.

Example 3.2. By (N4), ũ ≡ 0 and G̃ ≡ 0 is an admissible pair. Thus
w = u − 0 = u solves the equation (3.3) such that (3.5) and (3.7) hold true
with f = G. Moreover,

c(x, t) < −γ ((x, t) ∈ RN × (0,∞) : u(x, t) ≤ ε∗γ) , (3.9)

and by (2.7),

c(x, t) < −γ ((x, t) ∈ RN × (0,∞), |x| ≥ ρ∗γ) . (3.10)
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Example 3.3. For any x0 ∈ RN define

ũ(x, t) := u(x+ x0, t) and G̃(x, t) := G(x+ x0, t) ((x, t) ∈ RN × (0,∞)) .

Since (Aij)1≤i,j≤N and F are independent of x, the pair (ũ, G̃) is admissible.
Therefore, w(x, t) := u(x+ x0, t)− u(x, t) satisfies (3.3), such that (3.5) and
(3.7) hold true. Moreover, by (3.6) and (2.7)

c(x, t) < −γ ((x, t) ∈ RN × (0,∞), |x| ≥ ρ∗γ + |x0|) .

The next example is crucial for the method of moving hyperplanes. To
simplify the notation denote xλ := (2λ−x1, x

′), the reflection of x = (x1, x
′) ∈

RN with respect to the hyperplane Hλ. We indicate explicitly the dependence
of functions and operators on λ.

Example 3.4. By (N3),

ũ(x, t) := u(xλ, t) and G̃(x, t) := G(xλ, t) ((x, t) ∈ RN × (0,∞))

form an admissible pair. Thus, wλ := ũ − u satisfies (3.3) such that (3.5)
and (3.7) hold true. Moreover, |x| > 2|λ| + ρ∗γ ≥ ρ∗γ implies |xλ| > ρ∗γ, and
therefore (3.6) and (2.7) yield

cλ(x, t) < −γ ((x, t) ∈ RN × (0,∞), |x| ≥ ρ∗γ + 2|λ|) . (3.11)

By (N1), (2.6) (and (G2), if assumed), the constants α0, β0, (and also Cµ, µ)
are independent of λ. Notice that wλ(x, t) = 0 for any (x, t) ∈ Hλ × [0,∞).
Hence, wλ satisfies

wλt = Lλ(x, t)wλ + cλ(x, t)wλ + fλ(x, t), (x, t) ∈ RN
λ × (0,∞) ,

wλ = 0, (x, t) ∈ Hλ × (0,∞) ,
(3.12)

lim sup
|x|→∞,t>0

wλ(x, t) = 0 .

Also, if G satisfies (G2), then G̃ satisfies (G2) as well. Consequently (3.8)
holds with f replaced by fλ. Notice that (aij) in (3.4) are independent of λ.
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3.2 Estimates of solutions

The results in this subsection might be of independent interest, therefore
we state them in more general setting, than required for the proofs of our
symmetry results.

Let Q be a domain in RN+1 (bounded or unbounded), and let α0, β0 be
positive constants. Consider a general linear parabolic equation

vt = L(x, t)v + c(x, t)v + f(x, t), (x, t) ∈ Q . (3.13)

For any s < t denote X(s,t)(Q) the space of functions f : Q → R such that
their extension by 0 to RN+1 belongs to X(s,t) (cf. (1.10)). We denote Cloc(Q̄)
the space of continuous functions equipped with the topology induced by the
locally uniform convergence.

First, we formulate Alexandrov – Krylov estimate, proved by Alexandrov
[1] in the elliptic case, and later extended by Krylov [17] to the parabolic
setting. In the literature, one can find many generalizations of these results.
Here, we extend Cabré’s result [9] to functions f belonging to X(s,t)(Q). If
f ≡ 0, we refer to the next theorem as the maximum or comparison principle.

Theorem 3.5. Given τ < T , fix an open set Q ⊂ RN × (τ, T ). If v ∈
Cloc(Q̄)∩W 2,1

N+1,loc(Q) is a bounded supersolution of (3.13) (it satisfies (3.13)
with “ = ” replaced by “ ≥ ”) with L ∈ E(α0, β0, Q), a measurable function
c ≤ 0, and f ∈ X(τ,T )(Q), then

sup
Q
v− ≤ sup

∂PQ
v− + C‖f−‖X(τ,T )(Q) , (3.14)

where C depends on N,α0, β0, T − τ .

Proof. Fix arbitrary ε > 0 and choose f1, f2 such that f−1 + f−2 = f− and

‖f−‖X(τ,T )(Q) + ε ≥ ‖f−1 ‖LN+1(Q(τ,T )) + ‖f−2 ‖L∞(Q(τ,T )) .

Since c ≤ 0, the bounded function w : Q→ R

w(x, t) := v(x, t) + sup
∂PQ

v− + (t− τ)‖f−2 ‖L∞(Q(τ,T )) ((x, t) ∈ Q) ,

satisfies

wt ≥ L(x, t)w + c(x, t)w − f−1 (x, t), (x, t) ∈ Q ,
w ≥ 0, (x, t) ∈ ∂PQ .

(3.15)
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Consequently, by [9, Corollary 1.16]

sup
Q
w− ≤ C‖f−1 ‖LN+1(Q) , (3.16)

where C depends on N,α0, β0, T − τ . Then,

sup
Q
v− ≤ sup

Q
w− + sup

∂PQ
v− + (t− τ)‖f−2 ‖L∞(Q(τ,T ))

≤ sup
∂PQ

v− + C
(
‖f−2 ‖L∞(Q) + ‖f−1 ‖LN+1(Q)

)
≤ sup

∂PQ
v− + C

(
‖f−‖X(τ,T )(Q) + ε

)
.

Since ε > 0 was arbitrary, (3.14) follows.

Corollary 3.6. If the assumption c ≤ 0 of the previous theorem is replaced
by c ≤ k for some k ∈ R, and all other assumptions are retained, then

a) if k ≥ 0

sup
Q[τ,T ]

v− ≤ ek(T−τ)

(
sup

∂P (Q[τ,T ])

v− + C‖f−‖X(τ,T )(Q)

)
,

where C depends on N,α0, β0, T − τ .

b) if k < 0

sup
QT

v− ≤ max{ek(T−τ)‖v−‖L∞(Qτ ), sup
(∂PQ[τ,T ])\Qτ

v−}

+
C

1− ek
sup

t∈[τ,T−1]

‖f−‖X(t,t+1)(Q) ,

where C depends on N,α0, β0. Notice that C is independent of T − τ .

Proof of Corollary 3.6. The function ṽ := e−ktv is a a supersolution of (3.13)
with c and f replaced by c−k and f̃ respectively, where f̃(x, t) = e−ktf(x, t).
Since c− k ≤ 0, Theorem 3.5 implies

e−kt2 sup
Qt2

v− = sup
Qt2

ṽ− ≤ sup
Q[t1,t2]

ṽ−

≤ max{sup
Qt1

ṽ−, sup
(∂PQ[t1,t2]

)\Qt1
ṽ−}+ C‖f̃−‖X(t1,t2)

(Q)

(τ ≤ t1 < t2 ≤ T ) , (3.17)
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where C depends on N,α0, β0, t2 − t1.
If k ≥ 0, we set t1 = τ and elementary manipulations imply

sup
Qt2

v− ≤ ek(t2−τ)

(
sup

∂P (Q[τ,t2]
)

v− + C‖f−‖X(τ,t2)
(Q)

)
.

Part a) follows, if we take supremum with respect to t2 ∈ [τ, T ].
Denote Γ := supt∈[τ,T−1] ‖f−‖X(t,t+1)(Q). If k < 0, then (3.17) with t2 =

t1 + 1 yields

sup
Qt1+1

v− ≤ max{ek sup
Qt1

v−, sup
(∂PQ(t1,t1+1))\Qt1

v−}+ CΓ (t1 ∈ [τ, T − 1]) ,

where C depends onN,α0, β0. Iterating the previous expression for t1 = τ+j,
with j ∈ N, j ≤ T − τ − 1, we obtain

sup
Qτ+j

v− ≤ max{ekj sup
Qτ

v−, sup
(∂PQ(τ,τ+j))\Qτ

v−}+ CΓ

j−1∑
i=0

eki . (3.18)

Choose j0 ∈ N ∪ {0} such that τ + j0 ≤ T < τ + j0 + 1. Then (3.17) with
t1 = τ + j0, t2 = T and (3.18) imply

sup
QT

v− ≤ max{ek(T−(τ+j0)) sup
Qτ+j0

v−, sup
(∂PQ(τ+j0,T ))\Qτ+j0

v−}+ CΓ

≤ max{ek(T−τ) sup
Qτ

v−, sup
(∂PQ(τ,T ))\Qτ

v−}+ CΓ
∞∑
i=0

eki ,

where C depends on N,α0, β0 and the part b) follows.

If Q = RN
λ × (τ, T ), λ ∈ R, τ < T , we can change variables such that

c becomes negative in the neighborhood of Hλ and it does not change too
much away from Hλ. Such results are usually obtained with an application
of an appropriate supersolution. The observation that such procedure is
possible for thin domains and domains of small measure was proved in [8].
In the next lemma we summarize properties of the supersolution constructed
in [27, Lemma 2.5].
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Lemma 3.7. Given Θ, ε > 0, there exist a function g : [0,∞) → R and a
constant δ = δ(N,α0, β0,Θ, ε) > 0 with the following properties:

g ∈ C1([0,∞)) ∩ C2([0, δ)) ∩ C2((δ,∞)) ,

1

2
≤ g ≤ 2 ,

g′′(ξ) + Θ(|g′(ξ)|+ g(ξ)) ≤ 0 (ξ ∈ (0, δ)) ,

g′′(ξ) + Θ|g′(ξ)| − εg(ξ) ≤ 0 (ξ ∈ (δ,∞)) .

Following [27, Remark 2.6], we obtain the following result.

Remark 3.8. Set Q := RN
λ × (τ, T ) for some λ ∈ R and 0 ≤ τ < T ≤ ∞.

Let v ∈ Cloc(Q̄) ∩W 2,1
N+1,loc(Q) be a solution of (3.13) with L ∈ E(α0, β0, Q),

‖c‖L∞(Q) ≤ β0, and f ∈ LN+1(Q) satisfying

v = 0 ((x, t) ∈ Hλ × (τ, T )) and lim
M→∞

sup
(x,t)∈Q,|x|≥M

|v(x, t)| = 0 .

For any γ > 0 set Θ = 2β0
γ

+ 1, ε = γ
2

and let δ = δ(N,α0, β0, γ) > 0 and g
be as in Lemma 3.7. Then

w : (x, t) 7→ v(x, t)

g(x1 − λ)
((x, t) ∈ Q)

is a solution of

wt = L̂(x, t)w + ĉ(x, t)w + f̂(x, t), (x, t) ∈ RN
λ × (τ, T ) ,

w = 0, (x, t) ∈ Hλ × (τ, T ) ,

lim
M→∞

sup
(x,t)∈Q,|x|≥M

|v(x, t)| = 0
(3.19)

with L̂(x, t) ∈ E(α0, 5β0, Q), ‖ĉ‖L∞(Q) ≤ 5β0 and

‖f̂‖X(τ,T )(Q) ≤ 2‖f‖X(τ,T )(Q) .

Moreover,

ĉ(x, t) ≤

{
−γ

2
(x, t) ∈ Q, x1 ∈ [λ, λ+ δ) ,

c(x, t) + γ
2

(x, t) ∈ Q, x1 ∈ [λ,∞) .
(3.20)
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We conclude this section with a version of Krylov-Safonov Harnack in-
equality [18] (see also [22]) for sign changing solutions of nonhomogeneous
problems. The statement is based on [29, Lemma 3.5], however it was mod-
ified to obtain the dependence of κ and κ1 on diam D instead of diam U .

Lemma 3.9. Given numbers d > 0, θ > 0, 0 < τ1 < τ2 < τ3 < τ4, and τ
with τ1 − 2θ ≤ τ ≤ τ1 − θ, consider bounded domains D,U ⊂ RN with

D ⊂⊂ U, dist (D̄, ∂U) ≥ d ,

and denote Q = U × (τ, τ4). Then there exist constants κ, κ1 > 0 determined
only by N , α0, β0, d, diam D, θ, τ2 − τ1, τ3 − τ2, and τ4 − τ3 with the
following property. If v ∈ Cloc(Q̄)∩W 2,1

N+1,loc(Q) is a solution of (3.13), with
L ∈ E(α0, β0, Q), ‖c‖L∞(Q) ≤ β0, and f ∈ X(τ,τ4)(Q), then

inf
D̄×(τ3,τ4)

v ≥ κ‖v+‖L∞(D×(τ1,τ2)) − κ1‖f‖X(τ,τ4)
(Q) − sup

∂PQ
em(τ4−τ)v− ,

where m = supQ c.

Sketch of the proof. Since the proof closely follows [29, Proof of Lemma 3.5],
we only outline differences (our statement includes a minor correction to [29,
Lemma 3.5], as given in the addendum, see [25]). Instead of [29, Lemma 3.6]
we employ the original Krylov-Safonov Harnack inequality for nonnegative
solutions, [17, 18] where κ depends on N , diam D, α0, β0, θ, τ2 − τ1, τ3 − τ2

and τ4 − τ3, but not on diam U . Moreover, we use Theorem 3.5 instead of
used Alexandrov-Krylov estimate to make κ1 independent of diam U and to
replace LN+1 norm of f by X norm. The rest of the proof remains unchanged.

In the next corollary we formulate Harnack inequality for half spaces and
the whole space. Based on the proof, one can easily formulate the results
for other unbounded domains. If λ = −∞ in the next corollary, we set
RN
λ := RN and Hλ := ∅.

Corollary 3.10. Given numbers d > 0, λ ∈ R∪{−∞}, θ > 0, 0 < τ1 < τ2 <
τ3 < τ4, and τ1 − 2θ ≤ τ ≤ τ1 − θ, denote Q := RN

λ × (τ, τ4). Fix a bounded
domain D ⊂⊂ RN

λ with dist (D̄,Hλ) ≥ d. If v ∈ Cloc(Q̄) ∩ W 2,1
N+1,loc(Q)

satisfies (3.13) with L ∈ E(α0, β0, Q), ‖c‖L∞(Q) ≤ β0, f ∈ X(τ,τ4)(Q), and

lim
M→∞

sup
(x,t)∈Q,|x|≥M

|v(x, t)| = 0 , (3.21)
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then there exist constants κ, κ1 and p depending on N , α0, β0, d, diam (D),
θ, τ2 − τ1, τ3 − τ2, and τ4 − τ3 such that

inf
D̄×(τ3,τ4)

v ≥ κ‖v+‖L∞(D×(τ1,τ2)) − sup
∂PQ

eβ0(τ4−τ)v− − κ1‖f‖X(τ,τ4)
(Q) .

Proof. Choose large enough R such that D ⊂⊂ Bλ
R and dist (∂Bλ

R, D) ≥ d
2
.

Then Lemma 3.9 applied with U = Bλ
R implies

inf
D̄×(τ3,τ4)

v ≥ κ‖v+‖L∞(D×(τ1,τ2)) − sup
∂PQ

eβ0(τ4−τ)v−

− sup
|x|=R,t∈(τ,τ4)

eβ0(τ4−τ)v−(x, t)− κ1‖f‖X(τ,τ4)
(Q) ,

where κ and κ1 are as in Lemma 3.9. In particular they are independent of
R. Passing R→∞ and using (3.21), we obtain the desired result.

We mostly use Corollary 3.10 with

τ = τ1 − ϑ and τi = τ + iϑ, (i = 1, 2, 3, 4) . (3.22)

With this choice we obtain the following result.

Corollary 3.11. For given d > 0, λ ∈ R ∪ {−∞}, ϑ ∈ (0, 1) and τ > 1.
Denote Q := RN

λ × (τ, τ + 4ϑ) and fix a bounded domain D ⊂⊂ RN
λ with

dist (D̄,Hλ) ≥ d. If v ∈ Cloc(Q̄) ∩ W 2,1
N+1,loc(Q) satisfies (3.13) with L ∈

E(α0, β0, Q), ‖c‖L∞(Q) ≤ β0, f ∈ X(τ,τ+4ϑ)(Q), and

lim
M→∞

sup
(x,t)∈Q,|x|≥M

|v(x, t)| = 0 ,

then there exist constants κ and κ1 depending on N , α0, β0, d, diam (D), ϑ
such that

inf
D̄×(τ+3ϑ,τ+4ϑ)

v ≥ κ‖v+‖L∞(D×(τ+ϑ,τ+2ϑ)) − sup
∂PQ

e4β0ϑv− − κ1‖f‖X(τ,τ+4ϑ)(Q) .

4 Proof of Theorem 2.2

In this section the notation and assumptions are as in Section 2. In particular,
(Aij)1≤i,j≤N and F satisfy (N1)–(N4) and G satisfies (G1). At some places,
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where explicitly stated, we also assume (G2). Let u be a positive, global,
classical solution of (1.1) satisfying (2.4) and (2.5).

In addition we denote

Xλ
(s,t) := X(s,t)(RN

λ × (s, t)) (λ ∈ R, s, t ∈ (0,∞), s < t) ,

where X(s,t)(Q), for general Q ⊂ RN+1, was defined at the beginning of
Subsection 3.2.

To start the proof, we assume

lim sup
t→∞

‖u(·, t)‖L∞(RN ) > 0 , (4.1)

otherwise ‖u(·, t)‖L∞(RN ) → 0 the the theorem follows.

Lemma 4.1. Given any ball B ⊂ RN , there exists k(B) > 0 and T̃ > 0
depending on N , α0, β0, and B such that

u(x, t) ≥ k(B) ((x, t) ∈ B̄ × (T̃ ,∞)) . (4.2)

Proof. We claim that

lim inf
t→∞

‖u(·, t)‖L∞(RN ) > 0 . (4.3)

Suppose not, that is, suppose

lim inf
t→∞

‖u(·, t)‖L∞(RN ) = 0 . (4.4)

We find a contradiction by showing that there exists τ > 0 with

u(x, t) < 3ε :=
1

2
min

{
lim sup
t→∞

‖u(·, t)‖L∞(RN ), ε
∗
γ

}
((x, t) ∈ RN × (τ,∞)) , (4.5)

where ε∗γ was defined in Remark 2.1.
According to Example 3.2, u satisfies (3.3) with L ∈ E(α0, β0,RN ×

(0,∞)) such that (3.5), (3.7), (3.9), and (3.10) hold. Let C = C(α0, β0, N)
be a constant from Corollary 3.6 b). Then by (3.7) (or (G1)) and (4.4) there
is τ with

max

{
C

1− e−γ
sup
s≥τ
‖G‖X(s,s+1)

, ‖u(·, τ)‖L∞(RN )

}
≤ ε .
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We prove that (4.5) holds for such τ . Suppose not, that is, suppose that

T := inf{t > τ : sup
x∈RN

u(x, t) = 3ε} <∞ .

Since 3ε < ε∗γ, by (3.9) one has c(x, t) ≤ −γ for any (x, t) ∈ RN × [τ, T ]. An
application of Corollary 3.6 b) with Q = RN × (τ, T ) yields

sup
RN

u(·, T ) ≤ e−γ(T−τ)‖u(·, τ)‖L∞(RN ) +
C

1− e−γ
sup
s≥τ
‖G‖X(s,s+1)

≤ 2ε < 3ε ,

a contradiction. Thus, (4.3) holds true, or equivalently there are constants
s, T > 0 such that

‖u(·, t)‖L∞(RN ) > s (t ∈ (T,∞)) .

By (2.5), we can replace RN in the previous inequality by BR ∪ B for a
sufficiently large R independent of T . Then, an application of Corollary 3.11
with (d, λ,D, τ, ϑ) = (1,−∞, BR ∪B, t, 1) yields

u(x, t) ≥ κs− κ1‖G‖X(t−4,t)
((x, t) ∈ (B̄R ∪B)× (T + 4,∞)) ,

where κ, κ1 depend on R, N , α0, β0. Since the second term in the previous
inequality converges to 0 as t→∞, we obtain for sufficiently large T̃

u(x, t) ≥ k(BR ∪B) :=
κs

2
((x, t) ∈ (B̄R ∪B)× (T̃ ,∞)) .

Recall, that for any x = (x1, x
′) ∈ RN

λ we already defined xλ = (2λ −
x1, x

′). Now, for any function g : RN → R, let

Vλg(x) := g(xλ)− g(x) (x ∈ RN
λ , λ ∈ R) ,

and for the solution u of (1.1) let

wλ(x, t) := Vλu(x, t) := u(xλ, t)− u(x, t) ((x, t) ∈ RN
λ × (0,∞), λ ∈ R) .

As shown in Example 3.4, the function wλ satisfies (3.3) such that (3.5), (3.7),
(3.11), and (3.12) hold. Hence, the results of Subsection 3.2 are applicable
to wλ. We use this observation below, often without notice.

In the process of the moving hyperplanes we examine the following state-
ment

lim inf
t→∞

inf
x∈D

wλ(x, t) ≥ 0 for all bounded D ⊂ RN
λ , (4.6)
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which by the compactness of {u(·, t) : t ≥ 0} in C1
0(RN) is equivalent to

Vλz(x) ≥ 0 (x ∈ RN
λ , z ∈ ω(u)) . (4.6*)

The next lemma states an criterion for (4.6) to hold.

Lemma 4.2. Consider g and δ = δ(N,α0, β0, γ) > 0 such that Lemma 3.7
is satisfied with (Θ, ε) = ( β0

α0
+ 1, γ

2α0
). For fixed λ > 0 consider a domain

D0 ⊂⊂ RN
λ such that

Bρ∗γ+2|λ| ∩ {x ∈ RN
λ : x1 > λ+ δ} ⊂ D0 , (4.7)

where ρ∗γ was defined in (2.7). Then (4.6) holds, provided there exist η > 0
and t0 > 0 with

(wλ)+(x, t) ≥ η ((x, t) ∈ D0 × (t0,∞)) . (4.8)

Remark 4.3. Notice that (4.8) is equivalent to assumptions in [27, Lemma
3.2]:

lim inf
t→∞

‖wλ(·, t)‖L∞(D0) > 0 , (4.9)

wλ(x, t) > 0 ((x, t) ∈ D0 × (t0,∞)) . (4.10)

Proof of Lemma 4.2. Fix a bounded domain D∗ ⊂⊂ RN
λ with D0 ⊂ D∗ and

denote d := dist (D∗, Hλ).
If we transform (3.12) as described in Remark 3.8, then

w̃λ(x, t) :=
wλ(x, t)

g(x1 − λ)
((x, t) ∈ RN

λ × (0,∞))

satisfies (3.19) with L̂λ ∈ E(α0, 5β0,RN
λ × (0,∞)), ‖ĉλ‖L∞(RNλ ×(0,∞)) ≤ 5β0,

and f̂λ satisfies (3.7). Moreover, by (3.11) one has c(x, t) < −γ for each
(x, t) ∈ (RN

λ \Bρ∗γ+2|λ|)× (0,∞), and consequently (3.20) yields

ĉ(x, t) ≤ −γ
2

((x, t) ∈ (RN
λ \D0)× (0,∞)) .

By (4.8), any connected component Q of the set {(x, t) : w̃λ(x, t) < 0, t ≥ t0}
is contained in (RN

λ \D0)× (t0,∞), and in particular ĉ(x, t) ≤ −γ/2 for any
(x, t) ∈ Q. Then Corollary 3.6 b) implies

‖(w̃λ)−‖L∞(Qt) ≤ e−
γ
2

(t−t∗)‖(w̃λ)−‖L∞(Qt∗ ) +
C

1− e− γ2
sup
s≥t∗
‖fλ‖Xλ

(s,s+1)

(t0 < t∗ < t) , (4.11)
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where C depends on N , α0, and β0. This, (4.8), and an application of
Corollary 3.11 with ϑ = 1

4
imply

w̃λ(x, t+ 1) ≥ κ‖(w̃λ)+‖L∞(D∗×(t+ 1
4
,t+ 1

2
)) − eβ0 sup

∂P (RNλ ×(t,t+1))

(w̃λ)−

− κ1‖fλ‖Xλ
(t,t+1)

≥ κη − eβ0e−
γ
2

(t−t∗)‖(w̃λ)−(·, t∗)‖L∞(RNλ )

−
(
κ1 +

eβ0C

1− e γ2

)
sup
s≥t∗
‖fλ‖Xλ

(t,t+1)
((x, t) ∈ D∗ × (t∗,∞)) ,

(4.12)

where κ, κ1 > 0 depends on N , α0, β0, d and diam D∗. Then, by (2.4) and
(3.7), one can choose large enough t∗ such that w̃λ(x, t + 1) ≥ κη

2
for any

(x, t) ∈ D∗ × (2t∗,∞). Since D∗ ⊂ RN
λ was arbitrary, (4.6) follows.

The following lemma shows that the method of moving hyperplanes can
get started, that is, (4.6) is true for large λ. The proof is similar to [27,
Lemma 3.3] and we omit it here.

Lemma 4.4. There exists λ1 such that (4.6) holds for all λ > λ1.

Now, we move the hyperplane Hλ to the left (decrease λ) as far as (4.6)
is satisfied and we investigate properties of the limiting position:

λ∞ := inf{µ : (4.6) holds for all λ ≥ µ}. (4.13)

Lemma 4.5. Let λ1 be as in Lemma 4.4. Then:

(i) −∞ < λ∞ ≤ λ1.

(ii) Vλ∞z ≥ 0 for all z ∈ ω(u).

(iii) There exists ẑ ∈ ω(u) such that Vλ∞ ẑ ≡ 0.

(iv) For each z ∈ ω(u) one has ∂x1z < 0 in RN
λ∞

.

Proof. The proofs of (i) and (ii) are analogous to [27, Lemma 3.4 (i), (ii)].
To prove (iii), we proceed by contradiction, that is, we assume Vλ∞z 6≡ 0

for each z ∈ ω(u). By (ii), one has Vλ∞z ≥ 0 for each z ∈ ω(u). By the
compactness of ω(u) we can assume the existence of a bounded open set
D0 ⊂⊂ RN

λ∞
and b > 0 such that

‖(Vλ∞z)+‖L∞(D0) > 2b (z ∈ ω(u)) . (4.14)
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This remains valid if we enlarge D0 ⊂⊂ RN
λ∞

. We make D0 so large that it
satisfies assumptions of Lemma 4.2 for any λ < λ∞ sufficiently close to λ∞.
By (2.9) and (4.14), there is t∗ > 0 such that

‖(wλ∞)+(·, t)‖L∞(D0) > b (t ≥ t∗) .

Consequently, Corollary 3.11 with ϑ = 1
4

yields

wλ∞(x, t) ≥ κb− eβ0 sup
RNλ∞

(wλ∞)−(·, t− 1)− κ1‖fλ∞‖Xλ
(t−1,t)

(x ∈ D0, t ≥ t∗) ,

where κ and κ1 depend on N , α0, β0, dist (D0, Hλ) and diam (D0). Since
Vλ∞z ≥ 0 for each z ∈ ω(u) and (3.7) holds true, the last two terms decay to
0 as t→∞. Hence, for any sufficiently large t

wλ∞(x, t) ≥ 1

2
κb (x ∈ D0) .

Since ∇u is bounded, the previous inequality holds with λ∞ replaced by λ
for any λ < λ∞ sufficiently close to λ∞. Then, Lemma 4.2 implies (4.6) for
any λ sufficiently close to λ∞, a contradiction.

The statement (iv) is proved by analogous arguments as in [27, Proposi-
tion 3.5]. We only modify the application of the Harnack inequality in the
same way as we did in the proof of (iii).

This lemma finishes the proof of the first part of Theorem 2.2.
Before we proceed we state a lemma analogous to Lemma 4.5. Define

v : RN × (0,∞) → R as v(x, t) := u(−x1, x
′, t) for all (x1, x

′, t) = (x, t) ∈
RN×(0,∞), and observe that v satisfies (1.1), (2.4), and (2.5) withG changed
to G̃(x, t) := G(−x1, x

′, t). Then G̃ satisfies (G1), and Lemma 4.5 applied to
v yields to following result.

Lemma 4.6. There exists λ−∞ such that

(i) −∞ < λ−∞ ≤ λ∞,

(ii) Vλ−∞z ≤ 0 for all z ∈ ω(u),

(iii) There exists z̃ ∈ ω(u) such that Vλ−∞ z̃ ≡ 0,
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(iv) For each z ∈ ω(u) one has ∂x1z > 0 in (RN
λ−∞

)− := {x = (x1, x
′) ∈ RN :

x1 < λ−∞}.

To prove the second part of Theorem 2.2, it suffices to show λ∞ = λ−∞.
Indeed, then Lemma 4.5 (ii), (iv) and Lemma 4.6 (ii), (iv) imply that all
functions z ∈ ω(u) are symmetric with respect to Hλ∞ and decreasing in x1

for x1 > λ∞.

Lemma 4.7. If (G2) holds, then λ∞ = λ−∞.

The basic idea of the proof, already introduced in [27], is to move a
hyperplane Hλ beyond the natural limit Hλ∞ , that is, to consider λ < λ∞,
and investigate the behavior of sign-changing functions wλ. One of the crucial
steps is to estimate (wλ)+ from below. This is done by the comparison of
wλ with a subsolution, similar to one constructed in [27, Lemma 3.8]. Its
properties are listed in the following lemma.

Lemma 4.8. Given any domain D0 ⊂⊂ RN
λ∞

and any θ > 0, there exist
λ2 < λ∞, t0 > 0, a domain D, and a function φ : D̄ × [t0,∞)→ R with the
following properties:

(i) D0 ⊂⊂ D ⊂⊂ RN
λ∞

,

(ii) φ ∈ C2,1(D̄ × [t0,∞)),

(iii) eθtφ(x, t) ≥ C2 > 0 for any (x, t) ∈ D0× (t0,∞) and some C2 indepen-
dent of t0 and t,

(iv) φ < 0 in ∂D × (t0,∞),

(v) one has
‖φ+(·, t)‖L∞(D)

‖φ+(·, s)‖L∞(D)

≥ Ce−θ(t−s) (t ≥ s ≥ t0), (4.15)

for some constant C > 0 independent of t and s,

(vi) for each λ ∈ [λ2, λ∞], φ satisfies

φt < aij(x, t)φxixj + bλi (x, t)φxi + cλ(x, t)φ+ C ′e−θt|f `(x, t)|,
(x, t) ∈ D × (t0,∞) ,

where ` > λ∞, is a fixed number close to λ∞, and C ′ depends on the
L∞ bound of u and `.
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Sketch of the proof of Lemma 4.8. Since the proof closely follows the proof
of [27, Lemma 3.8], we only outline differences. We define

φ(x, t) = e−θtvα(x, t) + s(−e−θt(x1 − `)β) = w1 + sw2 , (4.16)

where v := w`, ` > λ∞ is sufficiently close to λ∞, and α > 1 > β with α, β
sufficiently close to 1. We remark that [27, Lemma 3.8] uses µ instead of `.
Then by calculations similar to those in [27, Lemma 3.8] one obtains for any
λ < λ∞ sufficiently close to λ∞:

eθt(∂tw1 − aij(x, t)(w1)xixj + bλi (x, t)(w1)xi + cλ(x, t)w1) ≤ −θ
8
vα + vα−1f `

≤ −θ
8
vα + Cf ` .

The rest of the proof remains unchanged. Notice that (iii) immediately fol-
lows from [27, (3.31)].

Proof of Lemma 4.7. We proceed by contradiction, that is, we assume λ∞ >
λ−∞. Since (G2) holds, fλ satisfies (3.8) (and in particular (3.7)) for each
λ ∈ R. Then, by Lemma 4.5 and Lemma 4.6, there exist ẑ and z̃ ∈ ω(u)
monotone in RN

λ∞
and RN

λ−∞
respectively, with Vλ∞ ẑ ≡ Vλ−∞ z̃ ≡ 0. Hence,

Vλẑ(x) < 0 (x ∈ RN
λ , λ ∈ (λ−∞, λ∞)) ,

Vλz̃(x) > 0 (x ∈ RN
λ , λ ∈ (λ−∞, λ∞)) .

(4.17)

Fix sequences (t̂n)n∈N and (t̃n)n∈N such that t̃n < t̂n < t̃n+1 for all n ∈ N and

u(t̂n, ·)→ ẑ, u(t̃n, ·)→ z̃ with the convergence in C1(RN) .

Let δ = δ(N,α0, β0, γ) > 0 be such that Lemma 3.7 is satisfied with (Θ, ε) =

( β0
α0

+ 1, γ
2α0

). Fix a domain D0 ⊂⊂ RN
λ∞

with B
λ∞+ δ

2

ρ∗γ+2|λ∞| ⊂ D0. Consequently,

Bλ+δ
ρ∗γ+2|λ| ⊂ D0

(
λ ∈

[
λ∞ −

δ

2
, λ∞

])
. (4.18)

Let λ2 < λ∞ and D be such that Lemma 4.8 holds with D0 and

θ :=
1

4
min

{γ
2
, α0, µ

}
, (4.19)
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where µ and γ are defined in (G2) and (N4) respectively. Fix any λ with

max{λ2, λ∞ −
δ

2
} < λ < λ∞ .

Then by (4.17), there is q > 0 such that

Vλẑ(x) < −q (x ∈ D̄) ,

Vλz̃(x) > q (x ∈ D̄) ,
(4.20)

and therefore for large n ∈ N we have

wλ(x, t̂n) < −q (x ∈ D̄) ,

wλ(x, t̃n) > q (x ∈ D̄) .
(4.21)

Then, there exists Tn ∈ (t̃n, t̂n) with

wλ(x, t) > 0 ((x, t) ∈ D̄ × (t̃n, Tn)) ,

wλ(x0, Tn) = 0 for some x0 ∈ D̄ .
(4.22)

We claim that the following three statements are true.

(C1) limn→∞ Tn − t̃n =∞.

(C2)

lim
n→∞

sup
t∈[t̃n,Tn]

e2θ(t−t̃n)‖(wλ)−(·, t)‖L∞(RNλ ) = 0 .

(C3) For any sufficiently large n and any t̃n ≤ t1 < t2 ≤ Tn one has

sup
x∈D̄

wλ(x, t) ≥ C0e
−θ(t−t1) inf

x∈D̄
wλ(x, t1)

− C1e
β0(t−t1)e−µt1 (t ∈ [t1, t2]) ,

where C0 is independent of t1, t2 and n, C1 depends on t2 − t1, but it
is independent of t1 and n.

Let us first prove (C1). Fix M > 0 and for each n ∈ N we define

wλn(x, t) := wλ(x, t)− wλ(x, t̃n) ((x, t) ∈ RN
λ × (t̃n,∞)) .
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Then wλn is a classical bounded solution of

(wλn)t = Lλ(x, t)wλn + cλ(x, t)wλn + hλn(x, t), (x, t) ∈ RN
λ × (t̃n,∞) ,

wλn(x, t) = 0, (x, t) ∈ ∂P (RN
λ × (t̃n,∞)) ,

where Lλ ∈ E(α0, β0,RN × (t̃n,∞)), ‖cλ‖L∞(RN×(t̃n,∞)) ≤ β0 and

hλn(x, t) := fλ(x, t) + Lλ(x, t)wλ(x, t̃n) + cλ(x, t)wλ(x, t̃n)

((x, t) ∈ RN
λ × (t̃n,∞)) .

Consequently, by Corollary 3.6 a) and the boundedness of coefficients of Lλ,
one has

sup
RNλ ×(t̃n,t̃n+ϑ)

(wλn)− ≤ C‖hλn‖Xλ
(t̃n,t̃n+ϑ)

≤ C(‖fλ‖Xλ
(t̃n,t̃n+ϑ)

+ ϑ
1

N+1β0‖wλ(·, t̃n)‖C2(RNλ )) (ϑ ∈ [0, 1]) ,

(4.23)
where C depends on N , α0 and β0. Now, choosing ϑ sufficiently small (in-
dependent of n) and n sufficiently large, we can by (2.4) and (3.8) achieve
(wλn)− ≤ q

2
in RN

λ × [t̃n, t̃n + 4ϑ]. Then, by the definition of wλn and (4.21) one
has

wλ(x, t) ≥ q

2
((x, t) ∈ D̄ × [t̃n, t̃n + 4ϑ]) . (4.24)

Next, an application of Corollary 3.10 with constants (D, τ, θ, τ1, τ2, τ3, τ4) =
(D, tn, ϑ, tn + 2ϑ, tn + 3ϑ, tn + 4ϑ, tn +M) yields

wλ(x, t) ≥ κ‖(wλ)+‖L∞(D×(tn+2ϑ,tn+3ϑ)) − e2β0 sup
RNλ

(wλ)−(·, tn)

− κ1‖fλ‖Xλ
(tn,tn+M)

((x, t) ∈ D̄ × (t̃n + 4ϑ, t̃n +M)) ,

where κ and κ1 depend on N , α0, β0, diam D, ϑ and M . By (4.17) and (3.8),
the last two terms in the previous inequality converge to 0 as n→∞, whereas
the first one is bounded from below by κq/2. Therefore wλ(x, t) ≥ κ q

8
for all

(x, t) ∈ D̄× [t̃n + 4ϑ, t̃n +M ] and sufficiently large n. This and (4.24) yields
the desired result, since M was arbitrary.

To prove (C2) it is enough to show that for any ε′ > 0, there is n0 such
that

sup
(x,t)∈RNλ ×[t̃n,Tn]

vn(x, t) ≤ ε′ (n ≥ n0) , (4.25)
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where

vn(x, t) := e2θ(t−t̃n) (wλ)−(x, t)

g(x1 − λ)
((x, t) ∈ RN

λ × [t̃n, Tn]) ,

and g is as in Lemma 3.7 with (Θ, ε) = (2β0
γ

+ 1, γ
2
). Since wλ > 0 in

D × [t̃n, Tn),

Un := {(x, t) : vn(x, t) > 0, t ∈ [t̃n, Tn)} ⊂ (RN
λ \D)× [t̃n, Tn) . (4.26)

Observe that (wλ)− = −wλ on Ūn for each n ∈ N. Thus Remark 3.8 yields

(vn)t − L̂λ(x, t)vn = c̃λ(x, t)vn + f̃λ(x, t), (x, t) ∈ Un ,

vn(x, t) = 0, (x, t) ∈ ∂PUn \ (Un)t̃n ,

vn(x, t̃n) =
(wλ)−(x, t̃n)

g(x1 − λ)
, x ∈ (Un)t̃n ,

lim
|x|→∞

sup
t∈(0,∞)

|v(x, t)| = 0 ,

(4.27)
where L̂λ ∈ E(α0, 5β0, U

n),

c̃λ := ĉλ + 2θ, and f̃λ(x, t) := −e2θ(t−t̃n) fλ(x, t)

g(x1 − λ)
.

By Remark 3.8 we have ‖ĉλ‖L∞(Un) ≤ 5β0, and therefore

‖c̃λ‖L∞(Un) ≤ 7β0 .

Moreover, by (3.20) and (4.19)

c̃λ(x, t) ≤ ĉλ(x, t) + 2θ ≤ −γ
2

+ 2θ ≤ −θ (x1 ∈ [λ, λ+ δ], t > 0) , (4.28)

and by (3.11) one has

c̃λ(x, t) ≤ −γ + 2θ ≤ −θ (|x| ≥ ρ∗λ + 2λ, t > 0) .

Since Bρ∗γ+2|λ| ⊂ D and (4.26) holds true, cλ < −γ for any (x, t) ∈ Un, n > 0.
Also, µ > 2θ and (3.8) implies, that there exists tε′ such that

‖f̃λ‖Xλ
(tε′ ,∞)

< ε′
1− e−ϑ

2C
,
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where C = C(N,α0, 7β0) is the constant from Corollary 3.6 b). Then Corol-
lary 3.6 b) yields

sup
Unt

vn ≤ e−θ(t−t̃n) sup
Un
t̃n

vn + C
1

1− e−θ
‖f̃λ‖Xλ

(tε,∞)

≤ sup
Un
t̃n

vn +
ε′

2
(t ∈ [t̃n, Tn], t̃n > tε) .

Since ‖vn(·, t̃n)‖L∞(Un
t̃n

) → 0 as n → ∞, we obtain that (4.25) holds for

sufficiently large n0.
Let us prove (C3). Recall that D was fixed such that Lemma 4.8 holds

with D0 and θ. Let φ be the corresponding subsolution. Denote

η :=
infx∈D̄ w

λ(x, t1)

‖φ+(·, t1)‖L∞(D)

> 0 and v := wλ − ηφ .

Lemma 4.8 (iii) and (2.4) imply that e−θtη is bounded by a constant inde-
pendent of t1.

Then

vt ≥ Lλ(x, t)v + cλ(x, t)v + (fλ − C ′e−θtη|f `|), (x, t) ∈ D × (t1, t2) ,

0 < v(x, t), (x, t) ∈ ∂D × (t1, t2) ,

0 ≤ v(x, t1), x ∈ D̄ .

Consequently, (3.8), Corollary 3.6 a), and positivity of wλ in D× [t1, t2] yield

C1e
β0(t−t1)e−µt1 ≥ Ceβ0(t−t1)‖fλ − C ′e−θtη|f `|‖Xλ

(t1,t)
≥ sup

x∈D
(v(x, t))−

≥ − sup
x∈D

wλ(x, t) + η sup
x∈D

φ(x, t) (t ∈ [t1, t2]) ,

where C1 depends on t2 − t1, but is independent of t1. Since by Lemma 4.8
(v) and the definition of η one has

η sup
x∈D

φ(x, t) ≥ ηCe−θ(t−t1)‖φ(·, t1)‖L∞D ≥ Ce−θ(t−t1) inf
x∈D̄

wλ(x, t1) ,

(C3) follows.
We will complete the proof of the lemma by showing that (C1)–(C3) lead

to a contradiction.
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By (C1) we have Tn− t̃n →∞ as n→∞. Let C0 be as in (C3), let κ, κ1

be as in Corollary 3.11 for already fixed D and ϑ = 1
4
. Denote

Ĉ :=
κC0e

θ
2

2
.

Fix K > 2 such that
e−θK ≤ Ĉ (4.29)

and let C1 := C1(t2 − t1) be as in (C3) with t2 − t1 = K. By (C2) there is
n0 > 0 such that

e2θeβ0e−2θ(t−t̃n)‖(wλ)−(·, t)‖L∞(RNλ ) ≤
q

2
(t ∈ [t̃n, Tn], n ≥ n0) . (4.30)

Enlarge n0 if necessary, such that Tn − t̃n > K and

(κ1 + C1(K)eβ0K)Cµe
θKe−µt̃n ≤ 1

2
qĈ (n ≥ n0) . (4.31)

Now, fix n ≥ n0. We prove by the mathematical induction that for any
i ∈ N ∪ {0} with i ≤ Tn−t̃n

K
, one has

wλ(x, τi) ≥ qe−θiKĈi (x ∈ D̄) , (4.32)

where τi := iK + t̃n.
For i = 0 the statement follows from (4.21). Next assume that (4.32)

is true for some i ∈ N ∪ {0} such that (i + 1)K ≤ Tn − t̃n. We show
that (4.32) holds with i replaced by i + 1. Indeed, Corollary 3.11 with
(τ, ϑ) = (τi+1 − 1, 1

4
), (C3), (4.30), and (3.8) yield

wλ(x, τi+1) ≥ κ
∥∥(wλ)+

∥∥
L∞(D×(τi+1− 3

4
,τi+1− 1

2
))
−eβ0‖(wλ)−‖L∞(RNλ ×(τi+1−1,τi+1))

− κ1‖fλ‖Xλ
(τi+1−1,τi+1)

≥ κe−θKC0e
θ
2 inf
x∈D̄

wλ(x, τi)−
q

2
e−2θ(τi+1−t̃n) − (κ1 + C1e

β0K)Cµe
−µτi (x ∈ D̄) .

Consequently, (4.32), (4.29), and (4.31) imply

wλ(x, τi+1) ≥ 2Ĉe−θKqe−θiKĈi − q

2
e−θ(i+1)K(e−θK)i+1

− (κ1 + C1e
β0K)Cµe

−θiK(e−θK)ie−µt̃n

≥ qe−θ(i+1)KĈi+1

(
2− 1

2
− (κ1 + C1e

β0K)Cµe
θK

qĈ
e−µt̃n

)
≥ qe−θ(i+1)KĈi+1 (x ∈ D̄) .
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Thus if i0 ∈ N is such that i0K ≤ Tn− t̃n < (i0 +1)K, then (4.32) holds with
i = i0. If we replace τi+1 by Tn and τi by τi0 in the previous calculation, we
obtain by the same reasoning

wλ(x, Tn) ≥ qe−θ(i+1)KĈi+1 > 0 (x ∈ D̄) ,

a contradiction to the definition of Tn. This finishes the proof of the lemma.
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