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a b s t r a c t

Children in households reporting the receipt of free or reduced-price school meals through the National
School Lunch Program (NSLP) are more likely to have negative health outcomes than observationally
similar nonparticipants. Assessing causal effects of the program is made difficult, however, by missing
counterfactuals and systematic underreporting of program participation. Combining survey data with
auxiliary administrative information on the size of the NSLP caseload, we extend nonparametric partial
identification methods that account for endogenous selection and nonrandom classification error in a
single framework. Similar to a regression discontinuity design, we introduce a new way to conceptualize
themonotone instrumental variable (MIV) assumption using eligibility criteria asmonotone instruments.
Under relatively weak assumptions, we find evidence that the receipt of free and reduced-price lunches
improves the health outcomes of children.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Every school day, more than 19 million children in the United
States receive free or reduced-price lunches through the National
School Lunch Program (NSLP).1 With expenditures approaching
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1 The NSLP is based on three categories of payments: free, reduced price, and

full price. The former two categories apply for children with household incomes
below 185% of the poverty line. While those between 130% and 185% of the poverty
line receive reduced-price meals, the costs (no more than 40 cents per meal)

$10 billion in fiscal year 2009, the NSLP is a large and important
child nutrition program that is a vital component of the social
safety net for children in low-income households. As such,
policymakers expect the program to have a positive impact on the
health of this vulnerable population. Yet, the existing empirical
literature reveals little supporting evidence and, in some cases,
appears to find deleterious effects. In particular, the literature has
found that children receiving free or reduced-price lunches are
more likely to have negative health outcomes than observationally
similar eligible nonparticipants.

Despite these findings, the causal effects of the National School
Lunch Program remain uncertain. Assessing the effects of the
program is made difficult by the presence of two fundamental
identification problems. First, children receiving free or reduced-
price meals through the NSLP (hereafter referred to as the free
lunch program) are likely to differ from eligible nonparticipants
in ways that are not observed in the data. Second, the association
between participation in the NSLP and poor nutritional health
may be at least partly an artifact of household misreporting of

are substantially less than the full-price meals. See http://www.fns.usda.gov/cnd/
lunch/ for administrative details about the program.
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participation in the program. Meyer et al. (2009), for example, find
evidence of aggregate underreporting rates of 45% in the Current
Population Survey and 27% in the Panel Study of IncomeDynamics.

While these identification problems have been known to con-
found inferences on the impact of the free lunch program, credible
solutions remain elusive.Most studies treat selection as exogenous
and, to our knowledge, all studies assume that the classification of
receipt is accurately reported.2 Moreover, classical prescriptions
for addressing these problems, namely linear instrumental vari-
able models, may be untenable. State variation in program rules,
which often serve as instruments to study the impact of other
means-tested programs in the United States, are less useful as in-
strumental variables in this setting where most program rules are
set by the federal government and have not changed substantially
over time. In addition, as with much of the empirical literature
onmeans-tested assistance programs, conventional parametric re-
strictions imposed to identify treatment effects – for example, the
classical linear response model assumption – are difficult to jus-
tifywhen considering programs that are thought to have heteroge-
neous effects. Finally, classical measurement error models do not
apply when the inaccurately measured covariate is discrete (see,
e.g., Bollinger, 1996), when measurement error is thought to be
systematic in a particular direction (e.g., underreporting of public
transfers as documented in Meyer et al., 2009), or when the errors
may be correlated with other characteristics of the respondents.

In this paper, we evaluate the impact of the free lunch program
in light of the ambiguity created by the selection andmeasurement
problems. Extending a recent analysis of the Supplemental
Nutrition Assistance Program (SNAP, formerly known as the Food
Stamp Program) in Kreider et al. (2011; KPGJ hereafter), we
apply partial identification bounding methods that allow one
to consider weaker assumptions than utilized in conventional
parametric approaches. The primary methodological innovation
is to introduce a new way to conceptualize the monotone
instrumental variable (MIV) assumption using eligibility criteria
as monotone instruments. We use these partial identification
methods coupled with data from the 2001–2004 waves of the
National Health and Nutrition Examination Survey (NHANES) to
assess the impact of the free lunch programon the nutritionalwell-
being of children. Specifically, we focus on studying what can be
learned about the average treatment effect (ATE) of the free lunch
program on food insecurity, poor general health, and obesity under
various sets of assumptions about the selection and measurement
error processes.

After describing the data in Section 2, we formally define the
empirical questions and identification problems in Section 3. The
usual program evaluation literature formally acknowledges uncer-
tainty associated with counterfactuals but not uncertainty associ-
ated with misreporting.3 As a departure from this literature, we
account for both identification problems in a single framework. To
do so, we begin by modifying the worst-case Manski (1995) selec-
tion bounds to account for classification error in the treatment.4

2 Recent studies that address the possibility of endogenous selection include
Gleason and Suitor (2003), Bhattacharya et al. (2006), Schanzenbach (2009), and
Millimet et al. (2010). Evidence on selection ismixed. See Currie (2003) andMillimet
et al. (2010) for thorough overviews of the literature.
3 Millimet (2010) provides an extensive Monte Carlo analysis of the conse-

quences of nonclassical measurement error in treatment effect models and finds
that even infrequent errors can have dramatic consequences for the performance
of various estimators. Kreider (2010) comes to similar conclusions using linear and
probit specifications. McCarthy and Tchernis (2010) consider the problem of mis-
classified and endogenous treatments in a Bayesian setting.
4 We draw on the related literature on corrupt samples in Horowitz and Manski

(1995) and for addressing missing treatments from Molinari (2008, 2010). We
also borrow from the related partial identification work in Manski and Pepper
(2000), Pepper (2000), Kreider and Pepper (2007, 2011), Kreider and Hill (2008),
and Kreider et al. (2011).

While the data are uninformative in the absence of prior informa-
tion on classification errors, we show how administrative informa-
tion on the size of the NSLP caseload inherently places informative
constraints on the classification error problem in the NHANES (see
also KPGJ).

We then introduce a number of monotonicity assumptions that
tighten inferences by addressing the selection problem. In Sec-
tion 4, we consider the identifying power of a monotone instru-
mental variable (MIV) assumption that certain observed covariates
are known to be monotonically related to the latent response vari-
able (Manski and Pepper, 2000). Requiring no a priori exclusion
restriction, the MIV assumption can be plausible in many applica-
tions where the standard independence assumption is a matter of
considerable controversy. In our application, we maintain the as-
sumption that the latent probability of a poor health outcome is
nonincreasing with reported income.

In addition, we also consider two important variations of the
MIV. The first variation, introduced in Manski and Pepper (2000),
replaces the exogenous treatment selection assumption implicitly
imposed in much of the literature with a weaker monotone
treatment selection (MTS) restriction. This self-selection model
formalizes the commonplace explanation for why recipients may
have poorer health outcomes than nonrecipients — namely, that
the decision to participate in the free lunch program is presumed to
be (weakly) monotonically related to poor latent health outcomes.

Our second variation, which extends the methods applied in
KPGJ, introduces a new way to conceptualize the MIV assumption
by using eligibility criteria as monotone instruments. There is a
long history of using ineligible respondents to identify the impact
of a wide array public policies, including several recent studies
that assess the impacts of the NSLP and the School Breakfast
Program. Schanzenbach (2009), for example, uses a regression
discontinuity design that exploits the income eligibility cutoff as
an instrument, Bhattacharya et al. (2006) use children attending
schools that do not offer meal programs, and Gleason and Suitor
(2003) use a comparison of days when children participate and
do not participate in the NSLP. While the basic idea of the
discontinuity design is appealing, in practice there can be several
limitations. Considerable disagreement often arises, for example,
over the implicit assumption that ineligible respondents reveal the
counterfactual outcome distribution for participants. Moreover,
even if the comparison group is credible, these designs generally
identify the effect only for persons near the eligibility cutoff and
are not robust to classification error.

In contrast, theMIV assumption introduced in this paper allows
us to relax this traditional identifying assumption by holding that
mean outcomes among subgroups of ineligible respondents bound,
instead of identify, the counterfactual outcome distribution. In our
application, we focus on three ineligible subgroups: (1) children
in households with incomes above the income eligibility threshold
for free or reduced-price lunches (185% of the federal poverty line),
(2) children enrolled in schools that do not participate in the NSLP
(primarily private schools), and (3) children who have dropped
out of school. Children in the first two groups are presumed to
have no worse latent health outcomes on average than eligible
children, while children in the third group are presumed to have
no better outcomes on average. In this application, these ineligible-
MIV assumptions provide substantial identifying information for
the ATE.

Finally, in developing this new ineligibility-MIV assumption,
we formally allow for the possibility of mislabeling some eligible
households as ineligible. Specifically, in cases where self-reports
of participation status are inconsistent with our assessment of
ineligibility, we remain agnostic about whether it is ineligibility or
participation that is misclassified.

Layering successively stronger assumptions, an objective of our
analysis is tomake transparent how the strength of the conclusions



C. Gundersen et al. / Journal of Econometrics ( ) – 3

Table 1
Means and standard deviations by National School Lunch Program participation.

Income-eligible childrena Recipientsb Nonrecipientsb

Age in years 11.1 10.7∗∗ 12.2
(3.30) (3.11) (3.56)

Ratio of income to the poverty line 0.980 0.917∗∗ 1.162
(0.472) (0.453) (0.479)

NSLP recipient 0.743 1.000 0.000
(0.437) (0.000) (0.000)

Outcomes:
Food-insecure household 0.364 0.399∗∗ 0.263

(0.481) (0.490) (0.441)

Poor or fair health 0.072 0.071 0.075
(0.258) (0.257) (0.263)

Obese (BMI ≥ 95th percentile) 0.193 0.196 0.186
(0.395) (0.397) (0.389)

N 2693 2077 616
Sample estimates weighted with the medical exam weight. The estimated means for the NSLP recipient population are superscripted with ∗∗ or ∗ to indicate that they are
statistically significantly different from the means for the nonrecipient population (with p-values less than 0.01 and 0.05, respectively, based on Wald statistics corrected
for the complex design).

a Includes all children residing in households with income less than 185% of the poverty line, attending schools that offer a lunch provided by the National School Lunch
Program, and without any missing information for the variables in the table.

b Receipt is based on a self-reported (by the parent) indicator of participation in the free lunch program.

varies with the strength of the identifying assumptions. In
Section 5, we highlight the additional identifying power of a
monotone treatment response (MTR) assumption that participation
in the NSLP would not increase the prevalence of poor health (see,
e.g., Currie, 2003). Combined with our MIV assumptions, the MTR
assumption narrows the range of uncertainty about the average
treatment effects and clearly identifies that the free lunch program
reduces poor health outcomes. Section 6 draws conclusions.

2. Data

To study the impact of the NSLP on children’s nutritional
health, we use data from the 2001–2004 NHANES. The NHANES,
conducted by the National Center for Health Statistics, Centers
for Disease Control (NCHS/CDC), is a program of surveys designed
to assess the health and nutritional status of adults and children
in the United States through interviews and direct physical
examinations.5 The survey currently examines a national sample
of about 5000 persons each year, about half of whom are children.
Vulnerable groups, including Hispanics and African–Americans,
are oversampled. The NHANES provides detailed and varied
information ondietary andhealth-related outcomes collected from
self-reports of health and nutritional well-being, medical and
dental examinations, physiological measurements, and laboratory
tests. Given the wealth of health-related information, the NHANES
has been widely used in previous research on health- and
nutrition-related child outcomes.

We restrict attention to households with children who appear
eligible to receive free or reduced-price lunches through the NSLP.
Specifically, we restrict the analysis to children between the ages
of 6 and 17 who are reported to be attending schools with the
NSLP and residing in households with income less than 185% of
the federal poverty line. This constitutes the full set of information
necessary to determine eligibility for the free lunch program and
results in a sample of 2693 eligible children.6 We also utilize
information from three groups of children who appear ineligible

5 We pool the 2001–2002 and 2003–2004 two-year cycles of the NHANES and
use sample weights that are established within the NHANES for use when multiple
cycles are combined.
6 As described below, parts of our analysis account for the possibility that

eligibility may be measured with error.

to receive free or reduced-price lunches: children residing in
households with incomes between 185% and 300% of the poverty
line (N = 899), income-eligible children in this age range who
are enrolled in schools without the NSLP (N = 84), and income-
eligible children who are no longer in school (N = 120).

Table 1 displays the means and standard deviations for the
variables used in our analysis for the main sample of children
classified as eligible to receive free or reduced-price lunches. For
each respondent, we observe a limited set of socioeconomic and
demographic information, including age and the ratio of income
to the poverty line, the ratio of a family’s income to the poverty
threshold defined by the US Census Bureau accounting for the
family’s composition. We also observe a self-reported (by the
parent) indicator of participation in the free lunch program. In this
survey, 74% of the eligible households claim to have children who
received free or reduced-price lunches through the NSLP during
the school year.

We examine three outcomes: food insecurity, poor health,
and obesity.7 To calculate official food insecurity rates in the US,
defined over a 12-month period, a series of 18 questions about
food-related needs and resources in the household are posed in
the Core Food Security Module (CFSM) for families with children.
Examples include ‘‘I worried whether our food would run out
before we got money to buy more’’ (the least severe outcome)
and ‘‘Did a child in the household ever not eat for a full day
because you couldn’t afford enough food?’’ A child is considered
to reside in a food-insecure household if the respondent answers
affirmatively to three or more of these questions. We measure
obesity using measures based on a child’s body mass index (BMI,
kg/m2) such that a child is classified as obese if his or her BMI
is at or above the 95th percentile for age and gender. General
health is based on a self-reported measure provide by the child’s
parent. A child’s health under this measure is placed into one of
five categories based on responses from the parent: excellent, very
good, good, fair, or poor. In this paper, we combine these general
health categories into an indicator of fair or poor health.

7 For tractability, we treat these health outcomes as accurately measured. While
errors in measuring obesity are likely to be minimal (data on height and weight
were collected by trained personnel), this assumption may be violated for the poor
health and food insecurity outcomes. In general, measurement error in the outcome
variables would widen the bounds established in this paper.
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In our data, 36.4% of the respondents are food insecure, 19.3%
are obese, and 7.2% report being in poor or fair health. These three
measures are considered to be central indicators of the nutritional
health andwell-being of children and reflect awide range of health
related outcomes that might be affected by the NSLP. All three
outcomes are known to be associated with a range of negative
physical, psychological, and social consequences that have current
and future implications for health. Children in households
suffering from food insecurity, for example, are more likely to
have poor health, psychosocial problems, frequent stomachaches
and headaches, increased odds of being hospitalized, greater
propensities to have seen a psychologist, behavior problems,worse
developmental outcomes, more chronic illnesses, less mental
proficiency, and higher levels of iron deficiency with anemia (for
a review, see Gundersen and Kreider, 2009). Likewise, childhood
obesity is known to have negative physical, psychological, and
social consequences, including reduced life expectancy (Fontaine
et al., 2003).

While policymakers have expressed a great deal of interest
in understanding the impact of assistance programs on food
insecurity, researchers have not, to our knowledge, examined the
impact of the NSLP on food insecurity or measures of general
health.8 There is, however, a growing body of literature that
examines the program’s impact onobesity, a recent concern among
policymakers. This literature finds that the NSLP appears to lead
to modest increases in obesity rates (see Millimet et al., 2010;
Schanzenbach, 2009).

In Table 1, we see that free lunch recipients appear to be
somewhat worse off than eligible nonparticipants. Most striking
are the outcomes for food insecurity. The rates of food insecurity
among self-reported recipients are nearly 14 percentage points
higher than for nonparticipants. The obesity rate is slightly higher
for children in households claiming to participate, and the rate of
poor health is slightly lower. For both obesity and poor health,
these differences are not statistically significant.

3. The average treatment effect with endogenous selection and
classification errors

Our interest is in learning the average effect of the free lunch
program among eligible households:

ATE(1, 0 | X ∈ Ω) = E[Y (1) | X ∈ Ω] − E[Y (0) | X ∈ Ω]

= P[Y (1) = 1 | X ∈ Ω] − P[Y (0) = 1 | X ∈ Ω], (1)

where Y (1) denotes the health of a child if participating in the
NSLP, Y (0) denotes the analogous outcome if not participating,
and X ∈ Ω denotes conditioning on observed covariates whose
values lie in the set Ω .9 Thus, the average treatment effect reveals
how the mean outcome would differ if all eligible children would
receive assistance versus the mean outcome if all eligible children
would not receive assistance. Two forms of uncertainty arise
when assessing the impact of the NSLP on children’s outcomes.
First, even if participation were observed, the outcome Y (1) is

8 Food insecurity and self-reported measures of health have been widely used as
outcomes in studies of other food assistance programs such as SNAP (e.g., Kreider
et al. (2011), DePolt et al. (2009), Gundersen et al. (2008) and Gundersen and
Oliveira (2001)).
9 Previous research on the impact of the NSLP also focuses on estimating the

population average treatment effect (see, e.g., Gleason and Suitor (2003), Millimet
et al. (2010) and Schanzenbach (2009)). We follow this literature and focus on the
ATE parameter since it measures the effect of the program on the entire population
of interest to policymakers (Ginther, 2000). Other treatment effects, such as the
effect of the treatment on the treated or the status quo treatment effect might also
be of interest, and themethods developed in this paper can bemodified to evaluate
those parameters.

counterfactual for all children who did not receive assistance, and
Y (0) is counterfactual for all children who did receive assistance.
This is referred to as the selection problem. Second, participation
may not be accurately observed for all respondents. This is referred
to as the classification error problem.

Conditioning on X allows the researcher to focus on specific
subpopulations of interest. Following the existing literature, we
consider the subgroup of households that appear to be eligible
for the free lunch program based on sufficiently low self-reported
income and having a child enrolled in a school that offers the
program.10 We refer to these households as eligible, though errors
in measuring the variables used to determine eligibility – most
notably income –may lead to some contamination of the eligibility
indicator.11 While this is a well-defined population for analysis
regardless of the potential for errors in classifying eligibility,
we checked the sensitivity of our results to different income
thresholds for defining the main sample. Our empirical results are
quite robust to alternative income thresholds ranging from 150%
to 200% of the poverty line. To simplify exposition, in what follows
we suppress the conditioning on X .

In Section 3.1, we formalize the identification problems that
arise from the selection and participation classification error
problems. Then, in Section 3.2 we focus on what can be inferred
about the ATE in the worst-case scenario where one has no
prior information restricting the selection problem. We show how
auxiliary information on the size of the NSLP caseload can be used
to constrain the classification error problem. In Sections 4 and5,we
assess the identifying power of monotonicity assumptions used to
address the selection problem.

3.1. The identification problem

To disentangle the selection and classification problems, it is
useful to introduce notation for accurate and inaccurate reports
of participation. In particular, let S∗

= 1 indicate that the child
truly receives free lunches, with S∗

= 0 otherwise, such that
the observed health outcome is Y = Y (1)S∗

+ Y (0)(1 − S∗).
The classification error problem arises because we only observe
S, which indicates whether the household reports that a child
participates, and not S∗.

We highlight these two identification problems by writing
P[Y (1) = 1] = P[Y (1) = 1 | S∗

= 1]P(S∗
= 1)

+ P[Y (1) = 1 | S∗
= 0]P(S∗

= 0)
= [P(Y = 1, S = 1) − θ+

1 + θ−

1 ]

+ P[Y (1) = 1 | S∗
= 0][P(S = 0) + (θ+

1 + θ+

0 )

− (θ−

1 + θ−

0 )], (2)

where θ+

i = P(Y = i, S = 1, S∗
= 0) and θ−

i = P(Y =

i, S = 0, S∗
= 1) denote the fraction of false positive and

10 Note that there are no regression orthogonality conditions to be satisfied, and
excluding other personal characteristics does not introduce omitted variable bias
into the analysis.
11 In particular, the NSLP defines a child as eligible for free or reduced-price meals
based on income information obtained at the start of the school year or, in some
cases, during the school year. In contrast, the NHANES asks respondents about their
annual income which, due to timing issues, may not coincide with levels reported
to the NSLP. Also, these measures may be reported with error. In the context of
food stamps, Daponte et al. (1999) highlight the problem that determiningwhether
households are eligible for a program may be conceptually straightforward but
operationally difficult, especially when eligibility is determined in part by asset
level. We are not aware of research assessing the extent or nature of errors in
classifying eligibility status for the NSLP, where eligibility depends on income but
not assets. The standard practice in the literature has been to implicitly assume that
the information provided by households regarding the relevant eligibility variables
is accurate. We generally follow this practice but, as discussed in Section 4, in some
cases relax the assumption that eligibility is classified accurately.
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false negative classifications of NSLP participation, respectively, for
children realizing a health outcome of i = 0 or 1. Notice that the
first term P[Y (1) = 1 | S∗

= 1]P(S∗
= 1) is not identified

because of the classification error problem. If we rule out these
errors such that θ+

1 = θ−

1 = 0, then this term is revealed by
the data as P(Y = 1, S = 1). The second term is not identified
because of both the selection and classification error problems.
The data cannot reveal the counterfactual outcome distribution,
P[Y (1) = 1 | S∗

= 0], regardless of whether participation is
measured accurately, and, in the presence of classification errors,
the sampling process does not reveal the fraction of participants,
P(S∗).

3.2. Worst-case bounds

Suppose that the classification error probabilities, θ , are known,
and let Θ ≡ (θ−

1 + θ+

0 ) − (θ−

0 + θ+

1 ). It then follows that

[−P(Y = 1, S = 0) − P(Y = 0, S = 1)] + Θ ≤ ATE(1, 0)
≤ [P(Y = 1, S = 1) + P(Y = 0, S = 0)] + Θ. (3)

With no classification errors, Θ = 0, and Eq. (3) simplifies to
the Manski (1995) worst-case selection bounds. In the absence of
assumptions on the selection process, these bounds on the ATE
always have a width of 1 and always include 0. The data alone
cannot reveal the sign of the treatment effect. In our application, for
example, the estimated worst-case bounds on the ATE for the food
insecurity outcome are [−0.514, 0.486]. With known classification
errors, these bounds shift by Θ .

In practice, the classification error probabilities are unknown,
and the survey data alone are uninformative.12 We have found,
however, that readily available auxiliary data on the size of the
caseload implymeaningful restrictions on these error probabilities.
In particular, combining administrative datawith survey data from
the NHANES allows us to estimate both the true participation rate,
P(S∗

= 1), and the self-reported rate, P(S = 1). Knowledge of the
true and self-reported participation rates bounds the classification
error probabilities, θ . For example, if the self-reported rate lies
below the true participation rate, we know that the fraction of false
negative reports must exceed the fraction of false positive reports.
More generally, we exploit the following three restrictions (see
KPGJ)13:

(θ−

1 + θ−

0 ) − (θ+

1 + θ+

0 ) = P(S∗
= 1) − P(S = 1) (4a)

θ−

i ≤ min{P(Y = i, S = 0), P(S∗
= 1)} ≡ θUB−

i , i = 1, 0 (4b)

θ+

i ≤ min{P(Y = i, S = 1), P(S∗
= 0)} ≡ θUB+

i , i = 1, 0. (4c)

Eq. (4a) restricts the net fraction of false negative reports to equal
the difference between the true and self-reported participation
rates. Eqs. (4b)–(4c) place meaningful upper bounds on the
fractions of false negative and positive reports.

These restrictions on classification error probabilities imply
informative bounds on the unknown parameter, Θ . Subject to the
restrictions in Eq. (4), the upper bound is found by maximizing
(θ−

1 + θ+

0 ) and minimizing (θ−

0 + θ+

1 ), and vice versa for the lower
bound.

12 To see this, note that, without any restrictions on classification errors, Θ ∈

[−P(Y = 0, S = 0) − P(Y = 1, S = 1), P(Y = 1, S = 0) + P(Y = 0, S = 1)] and
the worst-case bounds are [−1, 1].
13 In addition, the aggregate false positive and false negative rates are bounded as
follows: max{0, P(S = 1)−P(S∗

= 1)} ≤ (θ+

1 + θ+

0 ) ≤ min{P(S∗
= 0), P(S = 1)}

andmax{0, P(S∗
= 1)−P(S = 1)} ≤ (θ−

1 +θ−

0 ) ≤ min{P(S = 0), P(S∗
= 1)}. The

totalmisreporting rate is bounded to liewithin [|P(S∗
= 1)−P(S = 1)|,min{P(S =

1) + P(S∗
= 1), P(S = 0) + P(S∗

= 0)}].

Suppose that 1 = P(S∗
= 1) − P(S = 1) is observed (or can

be estimated). Then, for the case where the true participation rate
exceeds the self-reported rate (i.e., 1 > 0), KPGJ show that the
following bounds apply.
Worst-case bounds on the ATE given restrictions (4a)–(4c) on partic-
ipation misreporting:
− min{θUB−

0 , 1 + θUB+
1 } − min{θUB+

1 , θUB−
0 − 1} ≤ Θ

≤ min{θUB−
1 , 1 + θUB+

0 } + min{θUB+
0 , θUB−

1 − ∆}. (5)

See KPGJ for a proof of this result.14 Combining Eq. (5) with
Eq. (3) implies a sharp bound on the average treatment effect.
Notice that allowing for ambiguity created by the reporting error
problem (weakly) widens the treatment effect bounds in Eq. (3).

Except for the true participation rate, P(S∗
= 1), all of the

probabilities in Eq. (5) can be consistently estimated using data
from the NHANES. To infer P(S∗

= 1), we combine auxiliary data
on the size of the caseload with data from the NHANES on the
size of the eligible population. Administrative data from the US
Department of Agriculture (USDA) reveals that from 2001–2005 an
average of 16million children received free or reduced pricemeals
through the NSLP per month (Food and Nutrition Service, 2010).
From theNHANES,we estimate that about 18million childrenwere
eligible to receive assistance. Thus, the implied participation rate
is about 0.89, 15 percentage points higher than the reported rate
of 0.74. We use this estimated participation rate of 0.89 to restrict
the classification error probabilities, θ , and to estimate bounds on
the ATE. Given that errors in classifying NSLP-eligible children in
the NHANES may bias the estimated participation rate, we also
assess the sensitivity of the estimated bounds to variation in the
true participation rate.

Specifically, the solid lines in Figs. 1A–1C trace out the esti-
mated worst-case bounds on the ATE on the household food inse-
curity rate, fair or poor health, and obesity as the true participation
rate, P∗

= P(S∗
= 1), varies between 0 and 1. The accompany-

ing tables reproduce these results for P∗ equal to the self-reported
participation rate of 0.74 based on reports in the NHANES data and
the estimated true participation rate of 0.89 based on administra-
tive data from the USDA. For the self-reported rate of 0.74, we re-
port the bounds under two scenarios: (1a) no reporting errors (not
shown in the figures), and (1b) reporting errors in which false pos-
itive and false negative reports exactly cancel, 1 = 0. To account
for sampling variability, we also report Imbens and Manski (2004)
confidence intervals that cover the ATE with 90% probability.15

As noted above, if receipt of reduced-price lunches is known to
be accurately reported, the worst-case bounds on the ATE have a
width of 1 and always include 0. Allowing for classification errors
increases thewidth of these bounds. For example, suppose that the
true participation rate remains at 0.74, but that reporting errors
are allowed as long as there is no net misreporting (i.e., the rate of
false positives equals the rate of false negatives). Then, as shown
in Fig. 1A and the accompanying table, the ATE bounds on the food
insecurity rate expand from [−0.514, 0.486], with a width of 1, to
[−0.893, 0.621], with a width of 1.5. If the true participation rate
is 0.89 (the rate consistent with the USDA administrative data),
the bounds are [−0.747, 0.475], with a width of 1.2. Interestingly,
the upper bound of 0.475 is improved compared with the no
classification error upper bound of 0.486. This occurs because the
estimated upper bound on Θ is negative. Similar results for poor
general health status and obesity are traced out in Figs. 1B and 1C.

Without additional restrictions to address the selection prob-
lem, we cannot rule out the possibility that the free lunch program
has large positive or negative effects on health outcomes. To nar-
row these bounds, we consider a number of additional identifying
assumptions.

14 KPGJ provide results for all values of 1.
15 Our confidence sets do not account for the fact that 1 is estimated.



6 C. Gundersen et al. / Journal of Econometrics ( ) –

Fig. 1A. Sharp bounds on the ATE for household food insecurity as a function of P∗ , the unobserved true NSLP participation rate.

4. Monotone instrumental variable assumptions: variations on
a theme

Many observed variables are thought to be monotonically
related to the latent health outcomes in Eq. (1). In this section,
we formalize and assess the identifying power of several different
types of monotone instrumental variable (MIV) assumptions. We
begin by considering the relatively innocuous assumption that the
latent probability of negative health outcomes weakly decreases
with income relative to the poverty threshold (which varies by
family size), as in KPGJ. A large body of empirical research supports
the idea of a negative gradient between reported income and
the health outcomes studied in this paper (see, e.g., Nord et al.
(2010) for food insecurity, (Case et al., 2002) for general health,
(Shrewsbury andWardle, 2008) for obesity, and (Deaton, 2002) for
a broad array of health outcomes).

To formalize the notion that the latent probability of a negative
health outcome P[Y (t) = 1] is known to vary monotonically with

an observed covariate, let v be a monotone instrumental variable
such that

(A1) Income-MIV

u1 ≤ u ≤ u2 ⇒ P[Y (t) = 1 | v = u2]

≤ P[Y (t) = 1 | v = u] ≤ P[Y (t) = 1 | v = u1].

Then the MIV restriction presented in Manski and Pepper (2000,
Prop. 1) implies that

sup LB(u2)
u≤u2

≤ P[Y (t) = 1 | v = u] ≤ infUB(u1)
u≥u1

,

where LB(u) and UB(u) are the known lower and upper bounds
evaluated at v = u, respectively, given the available information.
TheMIVboundon theunconditional latent probability P[Y (t) = 1]
can then be obtained using the law of total probability.

To estimate the MIV bounds, we take the appropriate weighted
average of the plug-in estimators of lower and upper bounds
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Fig. 1B. Sharp bounds on the ATE for child poor health as a function of P∗ , the unobserved true NSLP participation rate.

across the different values of the instrument.16 As discussed in
Manski and Pepper (2000, 2009) and Kreider and Pepper (2007),
this MIV estimator is consistent but biased in finite samples. We
employ Kreider and Pepper (2007)’s modified MIV estimator that
accounts for the finite sample bias using a nonparametric bootstrap
correction method.

In our application, the income-MIV assumption has some iden-
tifying power but does not substantially narrow the worst-case
selection bounds. Thus, rather than present bounds under the
income-MIV assumption alone, we combine this assumption with
two other distinct but related instrumental variable restrictions. In
Section 4.1, we apply the monotone treatment selection assump-
tion that participation in the program is (weakly) negatively re-

16 To estimate these income-MIV bounds, we divide the sample into 10 groups
defined by the ratio of income to the poverty line.

lated to expected health outcomes. In Section 4.2, we introduce
and assess the assumption that ineligibility criteria for the NSLP
are monotonically related to the latent outcomes. For example,
income-ineligible children – i.e., children residing in households
with income greater than 185% of the poverty line – are likely
to have better average health outcomes than the income-eligible
children. In Section 4.3, we present results under these three MIV
restrictions.

4.1. Monotone treatment selection

Self-selection into the NSLP is the most common explanation
for the positive correlation between participation and poor health
(Currie, 2003). Unobserved factors associated with poor health are
thought to be positively associated with the decision to take up
the program, S∗

= 1. The monotone treatment selection (MTS)
assumption, which replaces the exogenous selection assumption
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Fig. 1C. Sharp bounds on the ATE for child obesity as a function of P∗ , the unobserved true NSLP participation rate.

implicit in much of the literature, specifies that children receiving
free lunches are likely to have no better latent health outcomes on
average than nonparticipants.

(A2) Monotone treatment selection (MTS):

P[Y (t) = 1 | S∗
= 0] ≤ P[Y (t) = 1 | S∗

= 1] for t = 0, 1.

Under this MTS assumption, it follows that

ATE(1, 0) ≤ P(Y = 1 | S∗
= 1) − P(Y = 1 | S∗

= 0).

In the absence of classification errors, these probabilities are
revealed by the sampling process. In that case, the ATE is identified
to be no larger than P(Y = 1 | S = 1) − P(Y = 1 | S = 0).
Otherwise, we can write

ATE(1, 0) ≤
P(Y = 1, S = 1) + θ−

1 − θ+

1

P(S∗ = 1)

−
P(Y = 1, S = 0) + θ+

1 − θ−

1

P(S∗ = 0)
. (6)

With information on the true participation rate, P(S∗
= 1), we

can bound these conditional probabilities under the restrictions in
Eq. (4). In particular, the following upper bound applies.

MTS upper bound on the ATE given restrictions (4a)–(4c) on partici-
pation misreporting:

ATE(1, 0)

≤



P(Y = 0)
P(S∗ = 0)

if 0 < P(S∗
= 1) < P(Y = 1, S = 1)

P(Y = 1, S = 1) + θUB−∗

1

P(S∗ = 1)

−
P(Y = 1, S = 0) − θUB−∗

1

P(S∗ = 0)
if P(Y = 1, S = 1) ≤ P(S∗

= 1) < 1,

(7)

where θUB−∗

1 ≡ min{P(Y = 1, S = 0)P(S∗
= 1) − P(Y = 1,

S = 1)}.
See KPGJ for a proof of this result.

This MTS assumption has a notable impact on the upper bound
of the ATE. Without classification errors, the upper bound equals
the observed difference in the poor health outcomes between
recipients and nonrecipients, as revealed in Table 1. For example,
the upper bound on the impact of the free lunch program
on rates of food insecurity is estimated to be 0.136, notably
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Table 2
Means and standard deviations by National School Lunch Program eligibility groups.

Income-eligible Income-eligible Income-eligible Income-ineligible
Children attending NSLP schoolsa Children attending non-NSLP schools Dropouts
(1) (2) (3) (4)

Age in years 11.1 11.5 14.3∗∗ 11.4∗

(3.30) (4.01) (3.39) (3.24)

Ratio of income to the poverty line 0.980 1.059 1.01 2.41∗∗

(0.472) (0.492) (0.467) (0.329)

NSLP recipient 0.743 0.000∗∗ 0.000∗∗ 0.235∗∗

(0.437) (0.000) (0.000) (0.424)

Outcomes:
Food-insecure 0.364 0.337 0.410 0.130∗∗

Household (0.481) (0.476) (0.494) (0.337)

Poor or fair health 0.072 0.107 0.086 0.018∗∗

(0.258) (0.311) (0.281) (0.135)

Obese (BMI ≥ 95th percentile) 0.193 0.149 0.125 0.191
(0.395) (0.358) (0.333) (0.393)

N 2693 84 120 899
Sample estimatesweightedwith themedical examweight. The estimatedmeans for columns (2) through (4) are superscriptedwith ∗∗ or ∗ to indicate that they are statistically
significantly different from themeans for the income-eligible population in column (1) with p-values less than 0.01 and 0.05, respectively (based onWald statistics corrected
for the complex design).

a Children residing in households with income less than 185% of the federal poverty line (FPL) are classified as income eligible, whereas those with income between
185%–300% of the FPL are classified as income ineligible. Among the income-eligible households, some attend schools without the NSLP and some have dropped out of
school. All calculations are based on observations without any missing information for the variables in the table.

improved compared with the worst-case upper bound of 0.486.
With classification errors, the MTS assumption reduces the upper
bound from 0.621 to 0.490 if there is no net misreporting and from
0.475 to 0.409 when there is underreporting with P∗

= 0.89 (see
Fig. 1A and the corresponding table).

4.2. Ineligible comparison groups as MIVs

In this section, we introduce a new way to conceptualize the
MIV assumption using eligibility criteria asmonotone instruments.
Many program evaluations rely on ineligible respondents to reveal
the outcome distribution under nonparticipation. In our applica-
tion, we observe three groups of ineligible respondents based on
information in the NHANES: income-eligible children who have
dropped out of school, income-eligible children attending schools
that do not offer the NSLP, and children whose household income
is between 185% and 300% of the poverty line. Table 2 displays
descriptive statistics for these ineligible groups of children side-
by-side with the group of eligible children. This table reveals that
health outcomes of children in schools that do not offer the NSLP
are similar to those of eligible children, dropouts are less likely to
be obese but aremore likely to be food insecure and in poor health,
and income-ineligible children are better off with respect to food
security and general health.

These comparison groups are unlikely to satisfy the standard
instrumental variable restriction that the latent health outcomes
are mean independent of eligibility status. However, the MIV
assumption holding that mean response varies monotonically
across these subgroups seems credible, especially for the food
insecurity and poor health outcomes. As a group, children in
households with incomes above the eligibility cutoff for the NSLP
(i.e., above 185% of the poverty line), for example, are likely to
have noworse average latent health outcomes than children below
this line. Likewise, children attending schools without the NSLP –
which are primarily private schools – are thought to have better
outcomes, and dropouts might be assumed to have relatively
poor latent health outcomes.17 We apply these monotonicity

17 The NSLP offers lunches in 99% of US public schools and in 83% of private and
public schools combined (USDA/ERS, 2004).

restrictions to the food insecurity and poor health outcomes, but
not to obesity, since relationships between the three subgroups
and latent measures of obesity are less certain.

To formalize the notion that the latent probability of poor
health, P[Y (t) = 1], is known to be monotonically related to these
observed ineligible subgroups, let v2 be the monotone instrumen-
tal variable such that:

(A3) Ineligible comparison group MIV

i. P[Y (t) = 1] ≥ P[Y (t) = 1 | v2 = income ineligible],
ii. P[Y (t) = 1] ≥ P[Y (t) = 1 | v2 = no school lunch program],

and
iii. P[Y (t) = 1] ≤ P[Y (t) = 1 | v2 = dropped out].

Notice that these ineligible-MIV bounds on P[Y (t) = 1] can be
rewritten to reflect the same structure as the income-MIV restric-
tion in (A1). The income-ineligible assumption in (A3i), for exam-
ple, can be rewritten as P[Y (t) = 1 | v2 = income eligible] ≥

P[Y (t) = 1 | v2 = income ineligible].
If the subgroups defined by v2 are known to be accurately

classified as ineligible, then by definition S∗
= 0 within these

groups and there is no selection or participation classification error
problem. In this case, the data point-identify P[Y (0) = 1 | v2]

but provide no information on P[Y (1) = 1 | v2]. Thus, the MIV
restriction in Assumption (A3) implies that

max{P(Y = 1 | υ2 = income-ineligible),
P(Y = 1 | υ2 = no school lunch program)}

≤ P[Y (0) = 1] ≤ P(Y = 1 | υ2 = dropped out). (8)

Errors in classifying income-ineligible respondents, however,
may contaminate some portion of this subgroup. As discussed
above, income is known to be measured with error and, even
if correctly measured, there may be differences in the timing
of the survey and eligibility determination. In our data, nearly
one-quarter of the households in this subgroup report receiving
assistance from the free lunch program. Rather than assuming that
all of these reports of receipt are inaccurate, we allow for the
possibility that self-reports of participation among this supposedly
ineligible subgroup may be accurate; i.e., the ineligibility label
may be inaccurate.We assume that reports of nonparticipation are
accurate.
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Table 3
Bounds on the ATE with accurately reported participation status.

Food insecurity Poor health Obesity

Worst case: [−0.514, 0.486]a [−0.710, 0.290] [−0.645, 0.355]
[−0.534 0.505]b [−0.730 0.310] [−0.665 0.375]

+ MTS [−0.514, 0.136] [−0.710, −0.004] [−0.645, 0.011]
[−0.534 0.178] [−0.730 0.017] [−0.665 0.044]

+ Income-MIV [−0.490, −0.014] [−0.708, −0.031] [−0.645, −0.032]
[−0.533 0.160] [−0.719 0.017] [−0.659 0.044]

With Ineligible-MIV: [−0.114, 0.216] [−0.055, 0.202]
[−0.187 0.312] [−0.109 0.269]

+ MTS [−0.114, 0.062] [−0.055, −0.036]
[−0.187 0.149] [−0.117 0.029]

+ Income-MIV [−0.090, −0.014] [−0.053, −0.037]
[−0.182 0.149] [−0.117 0.000]

a Point estimates of the population bounds.
b 90% confidence intervals around ATE calculated using methods from Imbens and Manski (2004) with 1000 pseudosamples.

To formally account for measurement error in classifying inel-
igibles, we begin as in Eq. (2) by decomposing the latent health
probability among households classified as ineligible as follows:

P[Y (0) = 1 | v2] = P(Y = 1, S = 0 | v2) + θ+

v1

+ P[Y (0) = 1 | S∗
= 1, v2][P(S = 1 | v2) − θ+

v1 − θ+

v0],

where θ+

vi = P(Y = i, S = 1, S∗
= 0 | v2). Setting P[Y (0) = 1 |

S∗
= 1, v2] to 0 and 1, respectively, for the lower and upper bound

implies the following.
Ineligible-MIV bounds on P[Y (0) = 1 | v2] accounting for potentially
mislabeled ineligibility:

P(Y = 1, S = 0 | v2) ≤ P[Y (0) = 1 | v2]

≤ P(Y = 1, S = 0 | v2) + P(S = 1 | v2). (9)

Intuitively, P[Y (0) = 1 | v2] is no longer point-identified unless
all households in the ‘‘ineligible’’ group confirm that they are not
participating in the school lunch program; i.e., P(S = 1 | v2) =

0. In that case, the lower and upper bounds in Eq. (9) revert
back to P(Y = 1 | v2). This is the case for dropouts and for
children attending schools without the NSLP. In contrast, 23.5% of
respondents classified as income ineligible report receiving free
or reduced-price lunches. Combining Assumption (A3) with the
bounds on P[Y (0) = 1 | v2] in Eq. (9) weakly narrows the bounds
on the ATE.

In our application, this ineligible-MIV assumption has substan-
tial identifying power. For the food insecurity outcome, for exam-
ple, P[Y (0) = 1] is constrained to liewithin [0.337, 0.410]with this
MIV assumption and, in the case of no classification errors, [0.068,
0.811] otherwise. Thus, this MIV assumption reduces the width of
the bounds on P[Y (0) = 1] under fully accurate reporting from
0.743 to 0.073 and the width of the bounds on the ATE from 1 to
0.330. For the poor health rate, the width of the bound on the ATE
declines by about three-quarters, from 1 to 0.257.

4.3. Main results

The partial identification approach developed above allows us
to evaluate bounds on the ATE of the free lunch program under
different assumptions about the selection and measurement er-
ror problems. This effectively allows one to assess the sensitivity
of inferences to different identifying restrictions. We begin by ex-
amining the estimated ATE under the assumption of fully accurate
reporting of participation in the NSLP. This no-classification error
assumption is the norm in the literature, and thus serves as a useful
benchmark.

Without classification errors, ambiguity still arises from the
selection problem. Table 3 displays the estimated MIV bounds

for all three outcomes under the various MIV assumptions. For
the food insecurity and poor health outcomes, we apply the (A1)
income-MIV, (A2) MTS, and (A3) ineligible-MIV assumptions. For
obesity, we apply only the income-MIV and MTS assumptions.

By layering on different sets of assumptions, the results clearly
illustrate the sensitivity of inferences on the ATE to the different
MIV assumptions. In some cases, we learn very little about the ATE,
whereas in others the ATE is nearly point-identified. Consider, for
example, inferring the impact of the free and reduced-price lunch
program on the rate of food insecurity. The estimated bounds are
[−0.514, 0.136] under the MTS assumption and [−0.114, 0.216]
under the ineligible-MIV assumption. While both of these MIV
assumptions substantially reduce the ambiguity created by the
selection problem, there still remains much uncertainty about the
ATE under both models. Under the combined MTS and ineligible-
MIV assumptions, the bounds narrow to [−0.114, 0.062] and
then narrow further to [−0.090, −0.014] if we also impose the
income-MIV assumption. Thus, given all three MIV assumptions,
the bounds on the ATE narrow to an 8 percentage point range
with the sign of the ATE identified as negative: that is, the impact
of the free lunch program on food insecurity appears to be at
least somewhat beneficial. While this estimated bound is strictly
negative, the confidence interval covers zero; we cannot reject
the hypothesis that the program is ineffective in reducing food
insecurity.

The most striking finding revealed in Table 3 is that the joint
income-MIV–MTS model identifies the ATE as strictly negative for
all three health outcomes. Under the assumption that participation
is accurately reported, these estimates suggest that the free lunch
program reduces food insecurity by at least 1.4 percentage points,
poor health by 3.1 percentage points, and obesity by 3.2 percentage
points. These percentage point declines are especially large for
poor health and obesity. In the absence of the NSLP, our estimates
of P[Y (0) = 1] indicate that at least 10.7% of eligible children
would be in poor health, and at least 18.5% would be obese. Thus,
these estimates indicate that the program has reduced the rate of
poor health by at least 29% (=3.1/10.7) and the rate of obesity by
at least 17% (=3.2/18.5). The impact on food insecurity is smaller,
but these estimates still suggest at least a 3.8% (=1.4/37.2) decline.

While these findings indicate that the NSLP plays an important
role in improving children’s health, there are two reasons to
temper conclusions based on this evidence. First, even with fully
accurate reporting, the 90% confidence intervals include zero. Thus,
we cannot reject the hypothesis that the program is ineffective in
promoting healthy outcomes. Second, allowing for classification
errors will increase the width of the bounds. Even though we saw
earlier that the presence of classification errors can actually reduce
the upper bound given knowledge about the true participation
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rate, P∗, identification of the sign of the ATE may nevertheless be
precluded in models with classification errors.

Returning to Figs. 1A–1C, the estimated bounds on the ATE
are traced out for the three outcomes under the different MIV
assumptions and for classification error models where the true
participation rate, P∗, varies from 0 to 1. These figures reveal the
sensitivity of inferences on the ATE to this value. When P∗

= 0.89,
consistent with the administrative data, we can still identify under
the joint ineligible-MIV–MTS model that the NSLP reduces poor
health by at least 2.6 percentage points, or 24% (compared with
a 29% decline above under no misreporting). This result does not
depend on whether we impose the income-MIV restriction.

The estimated MIV bounds do not identify the sign of the ATE
for the food insecurity and obesity outcomes, however, for any
conjectured true participation rate, P∗. The results are especially
sensitive for obesity, where the upper bound on the ATE under the
MTSmodel increases from 0.011 when there are no errors to 0.218
when the true participation rate is known to equal 0.89. In contrast,
under various ineligible-MIV models, the estimated upper bounds
on the food insecurity outcome are not as sensitive to the presence
of classification errors when the true participation rate is relatively
large. For example, under the joint ineligible-MIV–MTS model, the
estimated bounds change from [−0.114, 0.062] when there are
no errors to [−0.225, 0.072] when the true participation rate is
known to equal 0.89. Thus, while the lower bound is quite sensitive
to classification errors, the upper bound rises only slightly. While
these findings do not identify the sign of the ATE for poor health
and obesity outcomes, the ambiguity created by the selection
and measurement problems is notably reduced under these MIV
models.

5. Monotone treatment response

Despite the observed positive correlations in the data, there is
a general consensus among policymakers and researchers that the
food assistance programs such as the NSLP would not increase the
rate of food insecurity (Currie, 2003). Long (1991) finds that each
additional dollar of benefits leads to about a 50 cent increase in
total food expenditures. If food is a normal good, providing in-kind
food benefits shouldweakly increase the consumption of food and,
in turn, decrease the prevalence of food insecurity and poor health.

Given this general consensus about the effect of the NSLP, we
apply themonotone treatment response (MTR) assumption (Manski,
1995, 1997), which formalizes the common idea that the free lunch
program would not lead to a reduction in health status.

(A4) Monotone treatment response (MTR): Y (0) ≥ Y (1).
TheMTR assumption implies that the ATEmust be nonnegative:

the free lunch program, by assumption, cannot increase the
probability of a poor health outcome.

Both theMTS andMTR assumptions reduce the upper bound on
P[Y (1) = 1] and the lower bound on P[Y (0) = 1].18 Combining
the MTS and MTR assumptions implies the following.
Bounds on P[Y (1) = 1] and P[Y (0) = 1] under the joint MTR–MTS
assumptions:

P[Y (1) = 1] ≤ min{P[Y (1) = 1 | S∗
= 1], P(Y = 1)}

18 Manski and Pepper (2000) show that the joint MTR–MTS assumption is
testable when these two restrictions impact different sides of the/ bounds. In their
application, for example, the joint MTR–MTS assumption implies that

E[Y (0) | S = 0] ≤ E[Y (1) | S = 0] ≤ E[Y (1) | S = 1],

where the observed lower bound reflects the MTR assumption and the observed
upper bound reflects the MTS assumption. In that case, the MTR–MTS assumption
can be tested by confirming that E[Y | S = 0] ≤ E[Y | S = 1]. In our application,
however, the joint MTR–MTS model implies that E[Y (1) | S = 0] ≤ min{E[Y (0) |

S = 0], E[Y (1) | S = 1]}, which does not yield a testable restriction.

and

P[Y (0) = 1] ≥ max{P[Y (0) = 1 | S∗
= 0], P(Y = 1)}.

Under this joint assumption,which canbe combinedwith the other
MIV assumptions, the upper bound on the ATE is nonpositive. The
lower bound on the average treatment effect is unaffected.

While the MTR assumption may be relatively noncontroversial
in the context of food insecurity and general health, there is much
debate about whether the NSLP might decrease obesity. Because
NSLP administrators must adhere to nutritional guidelines, one
might expect the free lunch program to reduce obesity. Yet, the
evidence provides a mixed picture suggesting that school lunches
lead to some improved nutrient intake but also a higher portion
of fat-related calories associated with obesity (see, e.g., Millimet
et al., 2010). Moreover, the receipt of free or reduced-price meals
through the NSLP allows families to purchase more food, which
in turn could contribute to obesity, but also better quality food,
whichmight lead to reductions in obesity. Overall, we find theMTR
assumption to be less credible for the obesity outcome than for the
other two outcomes.

Table 4 displays the estimated bounds on the ATE when com-
bining the MTR assumption with the MIV assumptions at selected
values of P∗ and for the case of no misreporting. Under this joint
MIV–MTS–MTR model, the estimated bounds are strictly negative
even when we allow for classification errors. For example, the es-
timated bounds on ATE for the food insecurity rates vary from the
23-point range [−0.266, −0.032] under the assumption of no net
misreporting to the 13-point range [−0.158, −0.032] when the
true participation rate is known to equal 0.89. Without errors, the
ATE is estimated to lie within the 7-point range [−0.090, −0.023].
Under these models, we find that the free lunch program is esti-
mated to reduce food insecurity by at least 2.3 percentage points
or 6% (2.3/37.2) and perhaps much more.

The estimated average treatment effects are also negative for
both the poor health and obesity outcomes. For poor health
outcomes, the ATE is estimated to lie within the narrow range of
[−0.053, −0.037] if there are no classification errors and [−0.072,
−0.035] when the true participation rate is known to equal
0.89. Thus, we estimate that the free lunch program reduces the
incidence of poor health by at least 3.5 percentage points or 33%
(3.5/10.7) and as much as 7.2 percentage points or 67% (7.2/10.7).
There is much more uncertainty for obesity where the eligibility
criteria MIV assumptions are not applied, but we still estimate a
strictly beneficial effect of the program under the MIV–MTS–MTR
assumption. In particular, we find that the free lunch program
reduces obesity by at least 4 percentage points, or 21 percentage
(4.0/18.5).

6. Conclusion

Children receiving free or reduced-price school lunches through
the National School Lunch Program tend to have worse health
outcomes on average than observationally similar childrenwho do
not participate, especially in the case of food insecurity. Whether
these puzzling correlations reflect causal impacts of the program
has become a matter of considerable debate among researchers
and policymakers. Much of the empirical literature maintains the
untenable exogenous selection assumption, and the systematic
classification error problem appears to have been completely
ignored. Reviewing the general literature on the causal impacts
of food assistance programs, Currie (2003) goes so far as to
conclude that ‘‘many studies have . . . simply ‘punted’ on the
issue of identification’’. Bhattacharya et al. (2006), in studying the
National School Breakfast Program, suggest that ‘‘no study has
dealt convincingly with endogenous participation’’.
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Table 4
Bounds on the ATE with misreported participation status: joint MTS, MIV, and MTR assumptions.

Selected values of P∗

P∗
= P = 0.74 : P∗

= P = 0.74 : P∗
= 0.89 :

No misreporting No net misreporting Underreporting

Food insecuritya: [−0.090, −0.023] [−0.266, −0.032] [−0.158,−0.032]
[−0.181 0.000] [−0.366 0.000] [−0.252 0.000]

Poor healtha: [−0.053, −0.037] [−0.107, −0.035] [−0.072, −0.035]
[−0.117 0.000] [−0.161 0.000] [−0.133 0.000]

Obesityb: [−0.645, −0.040] [−0.934, −0.040] [−0.889, −0.040]
[−0.659 0.000] [−0.951 0.000] [−0.939 0.000]

a Includes income-MIV and ineligible-MIV.
b Includes income-MIV but not ineligible-MIV.

Extending methods developed in KPGJ (who study the impacts
of SNAP), our analysis considers the impact of the free lunch pro-
gram on health-related outcomes using nonparametric methods
that allow us to simultaneously account for the selection and mis-
classification problems in a single unifying framework. To ad-
dress the classification error problem, we combine survey data
from the NHANES with administrative data from the USDA to
place constraints on the magnitudes and patterns of participation
reporting errors. To address the selection problem, we apply a
range of MIV assumptions as well as the MTR assumption. Most
notably, we introduce a new way to conceptualize the MIV as-
sumption using eligibility criteria as monotone instruments. The
ineligible-MIV assumption provides substantial identifying power,
even when allowing for potential mislabeling of ineligibility sta-
tus among households claiming to receive benefits. Beyond the
school lunch setting, the idea of using ineligible respondents
as MIVs may have wide applicability in the program evaluation
literature.

By successively layering stronger identifying assumptions into
the model, our approach makes transparent how assumptions
on the selection and reporting error processes shape inferences
about the causal impacts of the program. For our preferred MIV
models, the results imply that without classification errors the free
lunch program leads to substantial reductions in food insecurity,
poor health, and obesity. In particular, estimates from the joint
MIV–MTS model reveal that the program reduces the prevalence
of food insecurity by at least 3.8%, the rate of poor health by at least
29%, and the rate of obesity by at least 17%. This finding for obesity
stands in contrast to much of the food assistance literature that
finds that the program is associated with increases in childhood
obesity (e.g., Millimet et al. (2010)).

Although these results suggest that the NSLP leads to notable
improvements in health outcomes, we cannot reject the hypothe-
sis that the program is ineffective in promoting healthy outcomes.
Moreover, administrative data suggests an NSLP participation rate
of about 89%, implying systematic underreporting of benefits. Con-
straining patterns of false reports to be consistent with this partic-
ipation rate, we can no longer sign the average treatment effect
under the joint MIV–MTS model for the food insecurity and obe-
sity outcomes. For the case of poor health, we can still identify that
the program reduces the prevalence by at least 24%.

Finally, when we add the MTR assumption, the free lunch
program is estimated to reduce the incidence of all three poor
health outcomes even in models with classification errors. Under
the joint MIV–MTS–MTR model, we find that the program reduces
food insecurity by at least 6%, poor health by at least 33%, and
obesity by at least 21%.
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