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Overview

A quantum system is said to be many-body localized (MBL) if it remains close to its
initial state, i.e., it fails to thermalize. In 2016, I published a proof that certain
one-dimensional spin chains have an MBL phase (the proof depended on a certain
assumption on level statistics). Some recent numerical studies have raised questions
about whether there is a true MBL phase. I will attempt to summarize the issues
raised, but the fact remains that the mechanisms for the breakdown of MBL phase are
well understood theoretically. In recent work with Morningstar and Huse (PRB, 2020),
we develop specific RG flow equations. These are similar to the Kosterlitz-Thouless
(KT) flow as previously shown, but there are important differences that place the MBL
transition in a new universality class.
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Phenomenology of MBL

For a many-body quantum system with disorder, we may observe the following, which
may be thought of as essential features of many-body localization (MBL):

1. Absence of transport

2. Anderson localization in configuration space (as in, e.g. IPR measures)

3. Area law entanglement

4. Violation of ETH (eigenstate thermalization hypothesis)

5. Absence of level repulsion

6. Logarithmic growth of entanglement for an initial product state



Typical example: disordered spin chain

Spin chain with random interactions and a weak transverse field on Λ = [−K ,K ] ∩ Z :
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operating on the i th variable.

Assume γi = γΓi with γ small. Random variables hi , Γi , Ji are independent and
bounded, with bounded probability densities.



Ergodicity breaking and the emergence of an extensive set of local
integrals of motion (LIOMs)

A fully MBL system has a complete set of of conserved quantities (quasilocal in nature) – a
complete failure of ergodicity.

How do we know if a system has a complete set of quasilocal LIOMs? Can we construct them?

We seek a quasilocal unitary that diagonalizes H. That is, D = U?HU is diagonal, and
quasilocality means that the effect of U on a set of spins that span a distance L in the lattice
should be (identity) + (exponentially small in L). There may be rare, nonpercolating regions
where this property fails (resonant regions).

Then we may define LIOMs τi = USz
i U

?.

It is clear that [H, τi ] = [D,Sz
i ] = 0.

Likewise [τi , τj ] = 0.

Properties 1-6 listed above for MBL should follow if one can find a complete set of LIOMs1

1Huse, Nandkishore, Oganesyan, PRB ’14; Serbyn, Papic, Abanin, PRL ’13



One spin

For guidance, consider what happens for a single spin. Then

H =

(
h γ
γ −h

)

and for γ � h the eigenfunctions are close to ( 1
0 ) and ( 0

1 ). The eigenfunctions
resemble the basis vectors. This means the basis vectors can be used to label the
eigenfunctions.

At the other extreme, if γ � h the eigenfunctions are close to ( 1
1 ) and

(
1
−1

)
. With

complete hybridization, there is no meaningful way to associate eigenfunctions with
basis vectors.



Perturbative and non-perturbative approaches

One may construct LIOMs perturbatively2.

But rare regions where perturbation theory breaks down have the potential to spoil
MBL. I gave a nonperturbative proof of MBL in a 1d spin chain3 (which, however,
depends on a physically reasonable assumption on eigenvalue statistics – essentially
that the level spacings in a system of n spins are no smaller than some exponential in
n.)

It is especially important to have a nonperturbative proof of an MBL phase, as some
are questioning the numerical evidence for MBL4.

2Integrals of motion in the many-body localized phase, Ros, Müller, Scardicchio NP ’15
3Imbrie, On many-body localization for quantum spin chains, JSP ’16
4Quantum chaos challenges many-body localization, S̆untajs, Bonc̆a, Prosen, Vidmar arXiv:1905



Percolation picture validated for large disorder or weak interactions in 1d

Proof controls the probability of resonance for processes, and shows that the graph of
resonances is non-percolating.

Then is possible to define quasilocal similarity transformations on H that diagonalize
it, deforming the tensor product basis vectors into the exact eigenfunctions.



Resonant regions (= Griffiths regions) need buffer zones
These are regions where we have failure of the bounds needed to control the rotations.

Buffer zones are needed so that the smallness ∼ γL of a graph crossing the buffer is
much smaller than the typical ∆E = 2−R in the resonant region.

Resonant Region

R

Buffer zoneBuffer zone

The buffer zone is expected to be thermalized by the resonant region.

In 1-d the buffer zone has volume comparable to that of the resonant block, so we can
diagonalize H in the combined region, eliminating internal interactions while keeping
the level-spacing larger than the interactions with spins outside.



Renormalization group picture
In RG terms, the rotations removing terms in the Hamiltonian up to order γL is
analogous to “integrating out” short distance degrees of freedom in traditional RG.

At the same time, resonant regions up to some size R are “eliminated” once L is large
enough so that the remaining interaction terms are smaller than the level spacing in
the region (with its buffer zone, total size R + 2L). At that point, the region hosts a
“metaspin” which takes 2R+2L values, but the interactions are so small that there is
little hybridization with spins elsewhere.

Deep in the localized region, this RG has the property that the density of remaining
resonant regions (including their buffer zones with width given by the running RG
length L) goes to zero with L.

Note two effects are in play:
(1) Elimination of smaller resonant regions reduces the density.
(2) Fattening of the buffer zones on the remaining regions increases the density.
My MBL proof shows that (1) dominates (2) deep in the weak coupling/strong
disorder region, and the density goes to zero as L→∞.



Moving toward the transition: the avalanche effect

For weaker disorder/stronger interactions, the decay rate can be reduced to the point
where no buffer size can insulate the resonant region from the rest of the chain: the
avalanche instability5.

Flip rates for off-diagonal matrix elements connecting the resonant region with spins
outside the buffer zone should behave as 2−2L/ζ for some decay length ζ. For this to
be small compared with the level spacing ∼ 2−(R+2L), we need ζ−1 > 1. Let
x = ζ−1 − 1 be the excess decay rate. The buffer size must satisfy

L ≥ R

2x
.

As γ increases, the excess decay rate x → 0 and then the buffer size L will diverge.

At some point, then, increasing γ causes (2) to dominate (1); i.e. the fattening effect
dominates the eliminations, and the density of resonant regions grows with L.

5Many-body delocalization as a quantum avalanche. Thiery, Huveneers, Müller, De Roeck, PRL ’18



Many-body localization and its discontents, I

S̆untajs et al, PRE 20206., argued that the numerics show a scaling collapse when
W ∼ L, meaning that any fixed disorder strength would thermalize for sufficiently large
L.

But Abanin et al, Ann. Phys 20217 disputed this conclusion, pointing out that some
drift of W with L is expected and in fact occurs in systems known to have a transition.

Furthermore, if W ∼ L then the system would be in the regime covered by my proof
when L exceeds some threshold. The fact that there is drift for the small L’s accessible
to numerics does not imply continued drift for all L.

6Quantum chaos challenges many-body localization, S̆untajs, Bonc̆a, Prosen, Vidmar
7Distinguishing localization from chaos: challenges in finite-size systems, Abanin, Bardarson, De

Tomasi, Gopalakrishnan, Khemani, Parameswaran, Pollmann, Potter, Serbyn, Vasseur



Many-body localization and its discontents, II

More recently, Sels and Polkovnikov, PRE 20218, found further evidence in numerics
(using novel measures) to support the view that there is no transition.

However, these alternative views do not actually take into account that the system
sizes studied are insufficient to see the predicted phenomena (avalanches) that we
believe actually drive the transition. In the avalanche picture there are rare events that
can have a profound effect, thermalizing the entire system. If they are rare, then they
will be hard to see in small systems. To get past the infinite volume transition, one
would need to crank up the disorder (or reduce interactions) well past what one would
think based on small system observations.

8Dynamical obstruction to localization in a disordered spin chain



Many-body localization and its discontents, III

It seems that at modest system sizes one is only probing crossover phenomena, and
that the nature of the transition can only be probed by going to much larger system
sizes – too large to be done on the computer. In order to at least partially get around
the problem of the need for extremely large L, Morningstar, et al arxiv:21079 probe a
measure of avalanche instability, i.e. system is avalanche-ready even if there is no
trigger to set it off. (Also other intermediate measures that go beyond the traditional
RM to Poisson level statistics measures.) The conclusion is that the L =∞ transition
is quite far from the regimes studied in numerics. One should not assume that the drift
of the apparent transition continues forever – eventually you would get to the regime
covered by my proof.

9Avalanches and many-body resonances in many-body localized systems, Morningstar, Colmenarez,
Khemani, Luitz, Huse



Simplified strong-disorder RG picture
At a given cutoff Λ, the line consists of alternating localized intervals (L-blocks) and
thermalized intervals (T-blocks). Assumes bimodality is strongly attractive near
transition. Assume the decay rate deficit x is constant in space.10

I L-blocks represent intervals where quasilocal basis changes have been defined.

I T-blocks have minimum length Λ; they represent intervals where the basis change
cannot be defined due to too-strong interactions with the environment.

I As Λ→ Λ + dΛ, T-blocks of length ∈ [Λ,Λ + dΛ] are erased (absorbed into
neighboring L-blocks) if they are isolated, that is, separated by more than the
buffer size Λ/x from other T-blocks.

I If a T-block is not isolated, then it pairs with a neighboring T-block that lies
within the distance Λ/x to form a larger T-block (eliminating the intervening
L-block). Such blocks do not have enough room to localize separately.

I The avalanche parameter x flows downward with the RG because erased T-blocks
interrupt the decay of interactions.

10This approximation can be justified near the transition using Chayes-Harris arguments, once we
have solved for the length divergence.



Functional RG
Due to the quenched (iid) randomness, we can assume that T-blocks appear ”at
random” with an exponential distribution in space for each subsequent T-block
(outside of the minimum distance Λ/x as determined by the RG rules). Letting RΛ

denote the rate for this exponential distribution, we have that RΛ exp(−RΛw)dw is the
probability that length of an L-block lies in [Λ/x + w ,Λ/x + w + dw ].

This rate can be broken down according to the length ` of the T-block that appears
after the L-block: RΛ =

∫∞
Λ rΛ(`)d`.

The full functional RG describes the flow with Λ of the function rΛ(`) and x

5

For large negative z, we may neglect the 2 in Eqn. (9),
and the resulting exponential growth reproduces Eqn. (8)
after replacing t with log Λ.

Above the separatrix, it is evident that once δ is O(1),
both the recursion and the flow leave, in finite RG time,
the regime of their validity (that is, x and y/x small). We
presume, then, that within a finite RG time, the majority
of space will be covered by T-blocks, and the system is
decidedly approaching complete thermalization.

Recall that rΛ(`) ≈ r`(`) for Λ ≤ ` ≤ Λ/x (see
also Eqn. (16) below). This means that any solution
(x(t), y(t)) to the flow determines r`(`) = y`/`

2 as the
(unnormalized) distribution of T-block sizes in [Λ,Λ/x]
when the cutoff is Λ. We assumed from the beginning
that this distribution is dominated by ` near Λ, and this
is evidently true on the separatrix (where y` ∼ 1/(log `)2)
and below (where y` decreases more rapidly). We see
that the critical theory exhibits a 1/`2 distribution, with
a logarithmic correction. This is consistent with all of
the previous RGs, which found a distribution of T-block
sizes approaching a power law ∝ `−α at criticality, with
α & 2 [21, 22, 27]. Noting that x−1

Λ ≈ t = log Λ, we see
that the average size of T-blocks for the critical theory
at cutoff Λ is approximately

R−1
Λ

∫ Λ/x

Λ

`r`(`)d` = R−1
Λ

∫ Λ/x

Λ

d`

`(log `)2
(10)

≈ R−1
Λ

log x−1

(log Λ)2
≈ R−1

Λ

log log Λ

(log Λ)2
.

Recalling that RΛ ≈ yΛ/Λ, the average size of I-blocks is
Λ/x+R−1

Λ = R−1
Λ (y/x+ 1) ≈ R−1

Λ . Thus for the critical
theory the fraction of the system in T-blocks decreases
as (log log Λ)/(log Λ)2.

IV. A CONCRETE RG AND ITS FLOW
EQUATIONS

In this section we introduce the RG of Ref. [22], which
was, in turn, a modification of the RGs of Refs. [20, 21],
and modify it so as to work in the approximation of spa-
tially uniform x within the insulating regions. The result-
ing flow equations for x and rΛ(`) can be written down
exactly. We examine these under the assumption that x
and y/x are small, and show that our fundamental re-
cursion relation Eqn. (2) follows. For definiteness, let us

assume that y ≤ x3/2.
Following Ref. [22], the line is divided into a sequence

of alternating T-blocks (thermalized blocks) and I-blocks
(insulating blocks). At a given RG cutoff length scale Λ,
the T-blocks have lengths ` ≥ Λ. The I-blocks are char-
acterized by two lengths, the physical length ` and the
“deficit” d. The latter can be interpreted as the length
of the shortest T-block that can, by itself, thermalize
that I-block. At this point the parameter x, which de-
scribes how close an I-block is to the avalanche instabil-
ity [26, 31, 33, 34], is given by x = d/` and varies from
one I-block to another. When the cutoff is Λ, all I-blocks
have deficit d ≥ Λ and physical length ` ≥ Λ/x. As the
cutoff is raised from Λ to Λ +dΛ, all T-blocks with ` and
I-blocks with d in that range are “erased” or absorbed,
along with the two adjacent blocks, into a single new
block whose physical length is the sum of the individual
physical lengths. These “moves” are either TIT→T or
ITI→I. In the latter case, one sets dnew = d1 − Λ + d2,
where d1 and d2 are the deficits of the two I-blocks.

From this starting point, we modify the RG to have
the same x across all I-blocks, or equivalently, the same
decay length ζ. The order of moves is as described above:
when the cutoff length is Λ, TIT→T moves happen when
the middle block has d = Λ (i.e., ` = Λ/x), and ITI→I
moves happen when the middle block has ` = Λ. The
TIT→T moves do not change the global x, since they do
not make new I-blocks, but the ITI→I moves do. When
an ITI→I move happens, the new I-block is first gener-
ated as defined above. But that I-block then has a new
value of d/` that is different from the global value of x, so
we “average” over all I-blocks to compute a new global x
and use that to reset the deficit d of all I-blocks to d = x`.
This ensures the total length of the system is preserved.
When the RG length cutoff is Λ, TIT→T moves gener-
ate T-blocks of size > (2 + x−1)Λ ≈ Λ/x and the ITI→I
moves generate I-blocks of size > (2x−1 + 1)Λ ≈ 2Λ/x.
Both types of moves are capturing processes at physical
time exp(cΛ/x) for some order-one constant c, because
they are both associated with an avalanche running for a
distance Λ/x (either across the I-block as an I-block ther-
malizes or into I-blocks as a T-block localizes). Interblock
correlations are not generated by these RG rules because
the order of moves is determined only by the properties
of the middle blocks in any candidate move.

In the context of this RG, one may define as in Sec. II
the rate functions rΛ(`) and RΛ =

∫∞
Λ
rΛ(`)d`. In terms

of these quantities, the exact flow equations are as fol-
lows:

dx

dΛ
= −ΛrΛ(Λ)(1 + x)

1 + ΛRΛ/x
(11)

drΛ(L)

dΛ
=

1

x

(
dx

dΛ
−RΛ

)
rΛ(L) +

1

x
Θ(L− [2 + x−1]Λ)

∫ L−(1+x−1)Λ

Λ

d`rΛ(`)rΛ(L− `− Λ/x). (12)



Reduction to two parameters
The rate rΛ(Λ) has dimensions 1/(length)2, so let us define a dimensionless rate

y = yΛ = Λ2rΛ(Λ).

We anticipate that y = 0, x ≥ 0 will be the MBL fixed line, due to the vanishing
density of T-blocks. The phase transition will be governed by the point x = y = 0,
where the fixed line becomes unstable because the interaction decay rate reaches the
critical value for avalanches.

The dominant mode of production of T-blocks of size Λ/x should be the combination
of component T-blocks of size close to Λ. This leads to a recursion relation

rΛ(Λ/x) = R2
Λ. (1)

For similar reasons, rΛ(`) should depend weakly on Λ between x` and `. This means
that rΛ(`) ≈ y`/`

2 for Λ ≤ ` ≤ Λ/x and RΛ ≈ ΛrΛ(Λ). Combining these facts with the
recursion (1), we obtain a recursion for y :

yΛ/x =

(
yΛ

xΛ

)2

. (2)



Behavior of the recursion/flow

As is customary, we use t = log Λ to parametrize the RG.
The recursion/flow can then be written as:

dx

dt
= −y , yΛ/x =

(
yΛ

xΛ

)2

, (3)

with the equation for x representing the decrease in decay rate due to the erasure of
T-blocks at the cutoff Λ.

If we start on the curve y = x2+δ, then the image under the recursion is close to the
curve y = x2+2δ. Hence the separatrix is asymptotic to the curve y = x2.

The flow along the separatrix is then determined, with x ∼ t−1, y ∼ t−2.



Diverging length

A diverging length may be defined as the point where an orbit departs the vicinity of
the separatrix, from an initial small displacement δ0. We find that this length is

Λ = et = δ
− log2 log2 δ

−1
0

0 .

This evidently diverges faster than any power of δ0, so we have in effect ν =∞.

This may be distinguished from the KT form: Λ = exp(const · δ−1/2
0 ).

Like the KT flow, there is logarithmic slowdown along the separatrix and ν =∞.
However in that case progress is slow both along the separatrix and orthogonal to it.

Here we have exponential divergence from the separatrix, albeit proceeding through
the logarithmically-slowed RG time that is dictated by the separatrix flow.



Equivalent flow equations

The following flow equation for y
leads to the same critical
behavior as the recursion:

dy

dt
= −(log 2)yδ

= −(log 2)y

(
log y

log x
− 2

)
.

The flow equation for x remains
as before:

dx

dt
= −y 0.0 0.1 0.2

x

0.0

0.1

0.2

√
y



Parallels with the KT transition
KOSTERLITZ-THOULESS SCALING AT MANY-BODY … PHYSICAL REVIEW B 99, 094205 (2019)

at all steps [45]. This avalanche process is supported by
exact diagonalization studies on toy models that incorporate
“random-matrix-type” inclusions [47,48]; however, it remains
to be tested for fully microscopic lattice models.

We emphasize that the growth of ETH bubbles by ab-
sorbing spins is controlled by the effective interaction matrix
elements of these resonances, which have to be carefully
considered. Tracking the evolution of the effective coupling
strengths and the degree of instability to thermalization at long
distances is the purview of RG methods, to which we now
turn.

B. Kosterlitz-Thouless scaling

We now argue that the basic ingredients of the avalanche
discussed above give rise to a Kosterlitz-Thouless scaling at
the MBL transition, with minimal additional assumptions.
Already implicit in the avalanche discussion is a degree of
coarse graining, due to the presence of fully thermal regions
at intermediate scales that arise out of microscopic configura-
tions. We shall proceed with this picture, which we emphasize
is not tied to any specific model, and will comment further on
its validity below.

Given the presence of thermal regions that grow to drive the
delocalization transition, it is natural to work with variables
that capture the distributions of individual locally thermal
blocks and their effectiveness in thermalizing neighboring
regions. First, we identify the average density of thermal
blocks ρ(�) as a scaling variable. Here, � = �0e−� is the RG
scale at which we are probing the system and �0 ∼ 1/a is
the cutoff scale set by the lattice spacing a. As the second
scaling variable, we identify the length scale ζ (�) that governs
the effective matrix element �(�) ∼ e−x/ζ (�) at a distance x
from the boundary of a thermal block. These scaling variables
control the distributions of physical observables, that are
themselves broad at criticality due to the strong randomness
inherent to the MBL transition.

It remains to deduce the RG equations that describe how
ρ, ζ , transform as the RG flows to longer length scales.
Following the avalanche scenario outlined above, we first
demand that at any scale, the density of thermal regions ρ

increases (decreases) under the RG if the typical localization
length ζ at that scale is larger (smaller) than some critical
value ζc, corresponding to the onset (absence) of avalanche
processes. The simplest flow equation consistent with this is

dρ

d�
= bρ(ζ − ζc) + . . . , (2)

where b ∼ O(1) is a positive constant, and the ellipsis denote
higher order terms in ρ and (ζ − ζc). In RG language, Eq. (2)
indicates that thermal resonances are relevant if ζ > ζc; they
proliferate even when they are asymptotically rare. Accord-
ingly, we set ζ−1

c = ln 2 [32].
Next, we consider the effect of the resonant regions on

the matrix elements. Intuitively, ζ should be renormalized by
thermal spots, and must grow under coarse-graining. Thermal
inclusions can “shortcut” the exponential decay of matrix el-
ements in the MBL phase, leading to an effective localization
length ζ that is larger than the microscopic one. To leading

Thermal

MBL
ζ−1

ζ−1
c

ρ

FIG. 2. Kosterlitz-Thouless RG flow obtained by integrating
Eqs. (2) and (3). The MBL phase corresponds to a line of fixed
points with ρ = 0 for ζ < ζc. For ζ > ζc, even an infinitesimally
small bare density of resonances grows under RG, driving the flow
to the thermal phase. The dotted line denotes a schematic line of
microscopic parameters, tuned, e.g., by decreasing disorder strength
W . Note that many RG trajectories initially approach the MBL
fixed line even if they eventually flow to the thermal phase; this
nonmonotonicity naturally explains why numerical simulations often
overestimate the extent of the MBL phase.

order, the simplest RG equation consistent with this reads

dζ−1

d�
= −cρζ−1 + . . . , (3)

where c is a positive constant, and we assumed that ζ is not
renormalized in the absence of thermal regions (ρ = 0). A
similar equation can be derived from the “law of halted decay”
of Ref. [32].

Equations (2) and (3) yield RG flows of the Kosterlitz-
Thouless form (Fig. 2), whose physical interpretation we now
discuss. For ζ−1 > ζ−1

c , these RG equations admit a line of
stable fixed points corresponding to the MBL phase, where
the effective density of the thermal regions vanishes at long
wavelengths, i.e., ρ∞ ≡ ρ(� → ∞) → 0. Points along this
line may be parameterized by the fixed-point value of the
typical localization length ζ∞ = ζ (� → ∞). For ζ−1 < ζ−1

c ,
ρ is relevant and flows to infinity, indicating the proliferation
of thermal spots: this is the delocalized, thermal phase. At
the critical point, ζ−1

∞ jumps discontinuously, analogous to
the stiffness discontinuity in the usual XY transition [49].
Assuming that the disorder strength W is the parameter that
tunes across the transition, ζ−1 evolves as

ζ−1
∞ = ζc

−1 + c1
√

W − Wc + . . . , (4)

for W > Wc, whereas it is formally 0 in the delocalized phase.
We emphasize that ζ−1

c = ln 2 is a universal number in this
scenario, which does not depend on microscopic details other
than the dimension of the on-site Hilbert space. In general, it is
given by the entropy density of the system at infinite effective
temperature—corresponding to the level spacing in the middle
of the many-body spectrum.

Whereas the typical localization length ζ remains finite
up until the transition, finite-size scaling is controlled by an

094205-3

Like the vortices, T-blocks represent
nonperturbative effects, and the tendency
of these effects to grow or shrink with the
flow determines the phase reached from
any starting point in the diagram. Vortex
binding is analogous to T-block erasure as
discussed above.

When bound, vortices renormalize the
stiffness (screening). Likewise, when
eliminated, T-blocks renormalize the decay
rate (anti-screening).

Note: Earlier works (Dumitrescu et al, Goremykina et al., 2019) suggested a KT picture
for the transition but assumed analytic flow equations. Our flow involves a factor
(log y)/(log x)− 2, which puts this problem in a different universality class from KT.
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