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Overview

For disordered quantum systems such as the Anderson model, degeneracies provide
avenues for long-range tunneling, and hence are a barrier to localization. In order to
control the likelihood of degeneracies or near-degeneracies, one needs to understand in
detail the way eigenvalues and eigenvalue gaps depend on the disorder. Using
multiscale analysis, one can build up smoothness of eigenvalue distributions even in the
case of discrete disorder distributions.
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Problems with degeneracies show up in the MBL Proof

Consider the following spin chain with random interactions and a weak transverse field
on Λ = [−K ,K ] ∩ Z :
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K∑

i=−K
hiS

z
i +

K∑
i=−K

γiS
x
i +

K∑
i=−K−1

JiS
z
i S

z
i+1.

This operates on the Hilbert space H =
⊗

i∈Λ C2, with

Sz
i =

(
1 0
0 −1

)
,Sx

i =

(
0 1
1 0

)
operating on the i th variable.

Assume γi = γΓi with γ small. Random variables hi , Γi , Ji are independent and
bounded, with bounded probability densities.



Need control of minimum level spacing in order to demonstrate failure of
thermalization:

Assumption LLA(ν,C ). Consider the Hamiltonian H in boxes of size n. Its eigenvalues
satisfy

P

(
min
α 6=β
|Eα − Eβ| < δ

)
≤ δνCn,

for all δ > 0 and all n.

Theorem
Let ν, C be fixed. There exists a κ > 0 such that for γ sufficiently small, LLA(ν,C)
implies the following estimate:

E Avα |〈Sz
0 〉α| = 1− O(γκ), (1)

where E denotes the disorder average, Avα denotes an average over α, and 〈·〉α
denotes the expectation in the eigenstate α.



Controlling degeneracies in subsystems

∆E ∆E
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One needs to show that subsystems with near-degeneracies are rare. Perturbative
methods break down in such regions.

To obtain that, one needs to know that energy differences within a block vary with the
randomness.

This is a difficult open problem. But with Assumption LLA(ν,C ), we have a minimum
level spacing, with high probability. Then since all three terms of H are random, one
can show that energy differences do vary with the randomness.



A challenge for minimum level spacing and localization: the Anderson
model with discrete disorder

Consider the Anderson model in Zd :

H = −γ∆ + v with γ � 1.

The potentials {vx}x∈Zd are iid random variables, each uniformly distributed on
{0, 1

N−1 ,
2

N−1 , . . . , 1}, with N � 1.

For N = 2, this is the Anderson-Bernoulli model, the “Ising model” of random
Schrödinger operators.

We are interested in showing exponential decay of eigenfunctions (localization). We
would also like to control the probability of degeneracies or near-degeneracies in the
spectrum of H.

Related work: Bourgain, Kenig, Invent. Math. 2005: Localization for the continuum
version of Anderson-Bernoulli (N = 2, Zd → Rd) for energies near the bottom of the
spectrum, E = 0.



The problem with discrete disorder

Consider a single site. For a continuous distribution for v , shrinking the energy interval
shrinks the probability of spectrum ( = v) in the interval.

Not so for a discrete distribution.

This forces one to use potentials at other sites to move spectrum away from E .
Eigenvalues should exhibit at least a weak dependence on vj , j 6= i .

On Rd , unique continuation estimates =⇒ an eigenfunction ψ cannot vanish in a
small ball where the potential is moving. Consequently, the eigenvalue moves with the
disorder.



Some recent results in dimensions 2 and 3 based on “unique continuation”
in the lattice

Dimension 2:

Liouville theorem in Z2: A function harmonic and bounded on a 1− ε fraction of sites
must be constant. Buhovsky, Logunov, Malinnikova, Sodin, arXiv:1712.07902.

Localization near the edge for Anderson-Bernoulli in Z2: Ding, Smart, Invent. Math.
2019. (Unique continuation on Z2: an eigenfunction is supported on set of size ∼ L3/2

in any box of size L2.)

Dimension 3:

Extension of Ding-Smart method to Z3: Li, Zhang, arXiv:1906.04350.

This talk:

We work in any dimension by making the most of a much thinner set of sites where an
eigenfunction has a lower bound. We obtain also a minimum level-spacing result, but
have not yet pushed the method to N = 2.



Large N result: Localization and minimum level spacing in any dimension

Let Iδ(E ) denote the interval [E − δ,E + δ], and let N (I ) denote the number of
eigenvalues of H in I .

Theorem [arXiv:1705.01916]. Choose a sufficiently large p. Then for N sufficiently
large (depending on p) and γ sufficiently small (depending on N),

EN (Iδ(E )) ≤ |Λ|(logγ δ)−p,

and
P
(

min
α 6=β
|Eα − Eβ| < δ

)
≤ |Λ|2(logγ δ)−p.

for any rectangle Λ and any δ ∈ [γdiam(Λ)/2, 1].

Also,
∑

α |ψα(x)ψα(y)| decays exponentially, and its disorder average is bounded by
C |x − y |−p.



Resonant set and block decomposition of H
Given an energy E , we expect eigenfunctions whose eigenvalues are close to E will be
localized near sites where vx − E is small. Eigenfunctions should decay rapidly away
from such sites.

Resonant Set: Let ε = 1
3N and γ ≤ ε20. The resonant set for the first step is

R(1) = {i ∈ Λ : |vi − E | ≤ ε}.

Connected components of the resonant set: Decompose the resonant set into
connected components or supersites using proximity conditions. The components are
well separated:



Focus on a single component X

Work in a neighborhood of X. Call it X̄ . It should be a large neighborhood but still
well-separated from other components. Let HX̄ be the Hamiltonian restricted to X̄ .

Block decomposition: HX̄ =
(
A B
C D

)
where A, D are HX̄ restricted to X , X̄ \ X , respectively, and B, C contain the
nearest-neighbor terms from the Laplacian that connect the two regions.

Schur complement: Fλ ≡ A− B(D − λ)−1C .

Here we take λ near E , i.e. |λ− E | ≤ ε/2.



Properties

Note that (D − λ)−1 is the resolvent in X̄ \ X .

As D operates on the subspace associated with nonresonant sites, where |vi − E | ≤ ε,
one has that ‖(D − λ)−1‖ ≤ 3/ε for |λ− E | ≤ ε/2.

Combes-Thomas: (D − λ)−1(x , y) decays exponentially in |x − y |.

Schur complement properties: If ψ is an eigenvector of HX̄ with eigenvalue

λ ∈ Iε/2(E ) then ψ =
(

ϕ
−(D−λ)−1ϕ

)
with ϕ an eigenvector of Fλ = A− B(D − λ)−1C .

Decay of (D − λ)−1(x , y) =⇒ ψ(x) decays rapidly with dist(x ,X ).

Find eigenvalues of HX̄ in Iε/2(E ) by solving λ ∈ specFλ.



Fröhlich-Spencer-style analysis of resonant regions
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in particular,

and Ra

k is an admissible set. The existence of regions Rl with the above properties is
checked in Appendix D. Our first technical result in this section is

Lemma 3.1. Let R = Rl be as above, and choose d0 and \E\ + ]/'δ sufficiently large,
independently of k. If

then

where
(3.9)

Proof Let C = Ca

k,C = Cl [see (2.7)], and let B be a (k- Inadmissible set such that
R~B is (fc— l)-admissible, as well, and

CJBDC,

dist(5 BΛx,y))Zdk (3.10)

J
Since \x — y\^dk+ί, at most one site, x or y may be contained in any one of the
sets C, B, C, while the other one is at a distance > dk from C. The existence of a set
B with the above properties is verified in Appendix D. We set

y = dC, y = dB, and Q = R~B.

The geometrical situation envisaged here is depicted in Fig. 1.
We define Γ and Γ to be the operators corresponding to y and y, respectively

[see (2.9)]. To prove (3.9) we now distinguish the following two cases:
(1) XGQ, yeQ; and
(2) xeB, yeQ,

[the case yeB, XEQ is clearly analogous to (2)]. We first study (1): By using

Fig. 1

From Fröhlich-Spencer 1983

Initially, A, the upper-left block of H, is
defined by restricting H to the sites with
|vx + 2dγ − E | ≤ ε1 ≡ 1

3(N−1) .

In later steps, components of the resonant
region are well separated, and H can be
well approximated by a block diagonal
matrix, each block based on a resonant
component.



Obtain eigenvalues of H by sequential approximation
The error in the approximation drops exponentially with the size of the box.
Reason: the change in Fλ when going from X̄k−1 to X̄k produces a connection from X
to X̄k \ X̄k−1 (geometric resolvent identity.)



Eigenfunctions of −γ∆ + v cannot grow faster than exponentially on Zd

Kagome lattice: Compactly supported e-fns Zd : normalized e-fn ≥ γr somewhere on ∂Br



Find the site in X̄2 \ X̄1 with the greatest influence on Fλ
As we go from one box to the next, we need to show that some site ȳ is influential, i.e.
vȳ moves eigenvalues.

Fix the disorder in X̄1. We have an eigenfunction ψ of HX̄1
with eigenvalue near E .

If we find a point where |ψ| is maximal over the boundary of X̄1, then the neighbor of
that site in X̄2 \ X̄1 will be the site of greatest influence. Call that site ȳ .

IMPORTANT: The choice of ȳ is based only on HX1 , so it does not depend on the
potentials in X̄2 \ X̄1.



Upper bound on higher order graphs must fit inside lower bound on
leading term

Consider the vȳ -dependent part of the change in Fλ as X̄1 is enlarged to X̄2.

Leading term (left) is ψ2
maxγ

2. Lower bound on |ψmax| means vȳ definitely moves
eigenvalue.

Higher order term (right) is ψmaxψ̃γ
3, and since |ψ̃| ≤ |ψmax|, it is smaller than the

leading term.



Breakup of degeneracies: the essence of the level-spacing estimate
In the general step k, we have Lk = 2k and the energy window is εk = γ1.6Lk = ε2

k−1.

We can use such a tiny window because corrections to Fλ when increasing X̄k−1 → X̄k

involve graphs going from X to X̄k \ X̄k−1 and back, at least 2Lk−1 long.

Here we see graphically how a near-degeneracy in step k is broken down in response to
the leading-order perturbation (from the expansion X̄k → X̄k+1). This perturbation is
rank 1. For at least N − 1 choices of vȳ , the perturbation has size ∼ γ2|ψmax|2 � εk+1.

Weyl’s inequality =⇒ at least one eigenvalue is ejected from the new interval of size
εk+1 (with probability at least 1− 1/N).

IMPORTANT: Spectrum from outside the big interval cannot move into the small
interval because the latter is centered at a point well inside the big interval.



Breakup of degeneracies: the essence of the level-spacing estimate, cont.

This is the essence of DOS estimates: randomness pushes spectrum out of an interval
as it shrinks, so that EN (Iδ(E )) decreases at δ → 0.

Also, we obtain level-spacing bounds because Borel-Cantelli =⇒ the degeneracy
keeps decreasing until the eigenvalue is isolated for all k > k0.

Quantitatively we find that that the probability of finding spectrum in Iεk (E ) decreases

as N−k = 2−k log2 N = L
− log2 N
k . Hence for N large enough, this will be summable.

(This forms the basis for arguments as in Fröhlich-Spencer ’83 establishing
non-percolation of resonant sets.)

When looking at level-spacing estimates, we allow E to follow successive
approximations to eigenvalues. Then a similar decay of probabilities with Lk occurs for
the probability of finding a second eigenvalue in the interval.



Result: Cantor-like splitting of the eigenvalue distribution

But we can use only one potential per annulus of size Lk = 2k , because we need upper
bounds in step k + 1 to fit inside the lower bounds from step k.

This leads to log-Hölder continuity of the
density of states:

EN (Iδ(E )) ≤ |Λ|(logγ δ)−p.



Energy-following procedure: intelligent search

To control the minimum level-spacing, we need to check that each eigenvalue is
suitably isolated. Blind search is impractical because probabilities are not small enough
to sum over all possible intervals.

Intelligent search: Define a sequence of energies E1,E2, . . . .

E1 = vi for some i ∈ Λ.

The site i joins up with other nearby sites j such that |vj − E1| ≤ ε1.

The result is the block B1 containing i .

Perform the Schur complement and localize to the neighborhood B̄1.

Find the eigenvalues of HB̄1
in the window Iε1/2(E1) by solving λ ∈ spec F̃

(1)
λ (B1).

These are the choices for E2 (group choices if within ε2).

And so on . . . .



Energy-following procedure

Blocks may combine as
proximity conditions
are extended

Sum over choices for Ek+1

so that εk+1-neighborhoods
cover spectrum



Controlling the energy-following procedure

One can show that every eigenvalue of H can be obtained through a sequence of
choices E1,E2, . . . arising in this procedure.

The tree of choices for {Ek} and the possbilities for the expanding sequence of blocks
{Bk} are controlled inside the expectation E over the potentials.

Control comes from the small probability of remaining resonant to Ek when expanding
the neighborhood B̄k → B̄k+1.



The Anderson-Bernoulli model (work in progress with Svitlana Mayboroda)

H = −∆ + v with v ∈ {0, 1} on Zd .

A plethora of degeneracies have the potential for spoiling localization.

To combat the problem, take E > 0 small (Lifshitz tail regime).

To get spectrum near E one needs a region of size `0 ∼ E−1/2 with mostly 0’s.

Large deviation arguments =⇒ probability ∼ exp(−Ed/2)
=⇒ separation of resonant spots as in the large N case.

0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 1

← exp(Ed/2) →
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0



Issues with N = 2

1. Recall that in the large N case, we used the potential at one site per annulus
(because of the “Cantor” condition: we need the upper bound for next-generation
effects γ.85Lk+1 = γ1.7Lk to fit inside the lower bound on the current effect γLk .)

We reach length scale Lk after k eigenvalue splittings (using the potential at one
site per annulus), and then each atom has probability ∼ N−k = 2−kp = L−pk ,
where p = log2 N.

To prevent percolation of resonances we need p > d .
But L−pk is no longer integrable when N = 2.

So we need Lk to grow linearly, rather than exponentially with k.

To retain the Cantor condition, use ψ2
max as “gateway” so it works as a bound for

next-generation effects.

2. Decay length is many lattice steps =⇒ it is difficult to pin down the location of
a site where the eigenfunction is guaranteed to be big (the location should not
depend on the randomness in the “new” annulus).

Pigeonhole principle: one choice will work with a positive probability.
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