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1. Introduction

We are concerned with the spectral theory of canonical differential systems, which
we write in the form

dY

dx
= izJH(x)Y, 0 ≤ x ≤ `,

Y1(0, z) = 0.
(1.0.1)

We assume that H(x), the Hamiltonian, has 2m× 2m selfadjoint matrix values,

J =
[

0 Im

Im 0

]
, Y (x, z) =

[
Y1(x, z)
Y2(x, z)

]
, (1.0.2)

where Y1(x, z) and Y2(x, z) are m-dimensional vector-valued functions, and z is a
complex parameter. It is assumed throughout that ‖H(x)‖ is integrable on [0, `].
In a natural way, we shall define L2(Hdx) as a Krĕın space of (equivalence classes
of) 2m-dimensional vector-valued functions with inner product

〈f1, f2〉H =
∫ `

0

f∗2 (t)H(t)f1(t) dt.

Let W (x, z) be the unique 2m× 2m matrix-valued function satisfying

dW

dx
= izJH(x)W, 0 ≤ x ≤ `,

W (0, z) = I2m .
(1.0.3)

The eigentransform for (1.0.1) is defined by V f = F ,

F (z) =
∫ `

0

[
0 Im

]
W ∗(x, z̄) H(x)f(x) dx,

for any f in L2(Hdx). For fixed f , F = V f is an m-dimensional vector-valued
entire function.

Our purpose here is to construct inner products 〈·, ·〉τ on vector-valued entire
functions such that 〈f1, f2〉H = 〈F1, F2〉τ for suitable transform pairs F1 = V f1,
F2 = V f2. The quantities τ used to define such inner products are constructed
with the aid of boundary conditions at the right endpoint of [0, `], and they are
called pseudospectral data for the system (1.0.1). In general, we allow Hamiltonians
satisfying H(x) = H∗(x) a.e., and the inner product 〈·, ·〉τ is indefinite. In the
definite case, that is, when H(x) ≥ 0 a.e., L2(Hdx) is a Hilbert space, and the
inner product identity becomes∫ `

0

f∗2 (x)H(x)f1(x) dx =
∫ ∞

−∞
F ∗2 (x) dτ(x) F1(x), (1.0.4)

where τ(x) is a nondecreasing m ×m matrix-valued function of real x. However,
(1.0.4) is not asserted for all f1, f2 in L2(Hdx), and in general V is a partial
isometry. For this reason we call τ(x) a pseudospectral function for (1.0.1). We
call τ(x) a spectral function if V is an isometry. In some cases, the pseudospectral
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functions that we construct are spectral functions. These results appear in §4
and depend on properties of eigenfunctions and resolvent operators for constant
boundary conditions.

Basic notions of eigenfunction and resolvent operators relative to variable
boundary conditions are introduced in §3. With variable boundary conditions, in
the definite case H(x) ≥ 0 a.e., in place of (1.0.4) we have the weaker result that∫ ∞

−∞
F ∗(x) dτ(x) F (x) ≤

∫ `

0

f∗(x)H(x)f(x) dx (1.0.5)

whenever F = V f for some f in L2(Hdx).
This paper is a continuation of our study of indefinite generalizations of

some results of [15]. It differs in two key ways from our previous work. Whereas
operator identities and the inverse problem are central in [10, 11, 12], here operator
identities do not appear, and we are concerned now with the direct problem.
The approach using eigenfunctions is similar in spirit to Atkinson [2, Chapter
9] but is technically different. Our methods are most closely related to A. L.
Sakhnovich [13]. The study of canonical differential equations is a large and old
one and owes much to fundamental work of L. de Branges and M. G. Krĕın. For
different approaches, historical remarks, and many additional references, see Arov
and Dym [1], de Branges [3, 4], Gohberg and Krĕın [5], Kaltenbäck and Woracek
[8], and the second author [14, 15].

2. Preliminaries

Assume given a system (1.0.1) where H(x) is a measurable 2m×2m matrix-valued
function satisfying

(i) H(x) = H∗(x) a.e. on [0, `];

(ii)
∫ `

0
‖H(x)‖ dx < ∞;

(iii) the only g in Cm such that H(x)
[
0
g

]
= 0 a.e. on [0, `] is g = 0.

In the definite case, that is, when H(x) ≥ 0 a.e., (iii) is equivalent to:

(iii′)
∫ `

0
H22(t) dt ≥ δIm for some δ > 0, where H(x) =

[
H11(x) H12(x)
H∗

12(x) H22(x)

]
.

In fact, if (iii′) is false, we can find g 6= 0 in Cm such that H22(x)g = 0 a.e. on
[0, `]. Hence for any x such that H(x) ≥ 0 and any u ∈ Cm and z ∈ C,

0 ≤
[
zu
g

]∗
H(x)

[
zu
g

]
= r2A + re−iθB + reiθB̄,

where z = reiθ, A = u∗H11(x)u, and B = u∗H12(x)g. This is only possible if
B = 0. Since u is arbitrary, H12(x)g = 0, and hence (iii) is false. Thus (iii) implies
(iii′). The reverse implication is easy and omitted.
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2.1. Fundamental solution

Let W (x, z) be the unique solution of (1.0.3). In standard terminology, this is the
fundamental solution of (1.0.1) whose value for x = 0 is the identity matrix. For
fixed x in [0, `], W (x, z) is an entire function of z satisfying

W ∗(x, z̄)JW (x, z) = W (x, z)JW ∗(x, z̄) = J (2.1.1)

for all complex z. The Lagrange identity∫ x

0

W ∗(u, w)H(u)W (u, z) du =
W ∗(x,w)JW (x, z)− J

i(z − w̄)
(2.1.2)

holds for all x in [0, `] and all complex z and w. When w = z̄, (2.1.2) becomes∫ x

0

W ∗(u, z̄)H(u)W (u, z) du = iW1(x, z̄)∗JW (x, z)

= −iW (x, z̄)∗JW1(x, z), (2.1.3)

where W1(x, z) = d W (x, z)/dz. For by (2.1.2) and (2.1.1),∫ x

0

W ∗(u, z̄)H(u)W (u, z) du = lim
w→z̄

∫ x

0

W ∗(u, w)H(u)W (u, z) du

= lim
w→z̄

W (x,w)∗JW (x, z)−W (x, z̄)∗JW (x, z)
i(z − w̄)

= i

[
lim
w→z̄

W (x,w)−W (x, z̄)
w − z̄

]∗
JW (x, z)

= iW1(x, z̄)∗JW (x, z),

which is the first equality in (2.1.3). The second equality follows from the first on
taking adjoints and replacing z by z̄.

Throughout the paper we write

A(z) = W ∗(`, z̄) =
[
a(z) b(z)
c(z) d(z)

]
. (2.1.4)

Here a(z), b(z), c(z), d(z) are m×m matrix-valued entire functions. By (2.1.1) and
(2.1.3), for all complex z,

a(z)b∗(z̄) + b(z)a∗(z̄) = 0, a∗(z̄)c(z) + c∗(z̄)a(z) = 0,

a(z)d∗(z̄) + b(z)c∗(z̄) = Im, a∗(z̄)d(z) + c∗(z̄)b(z) = Im,

c(z)d∗(z̄) + d(z)c∗(z̄) = 0, b∗(z̄)d(z) + d∗(z̄)b(z) = 0,

(2.1.5)

and∫ `

0

W ∗(u, z̄)H(u)W (u, z) du

= i

[
a′(z)b(z̄)∗ + b′(z)a(z̄)∗ a′(z)d(z̄)∗ + b′(z)c(z̄)∗

c′(z)b(z̄)∗ + d′(z)a(z̄)∗ c′(z)d(z̄)∗ + d′(z)c(z̄)∗

]
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= −i

[
a(z)b′(z̄)∗ + b(z)a′(z̄)∗ a(z)d′(z̄)∗ + b(z)c′(z̄)∗

c(z)b′(z̄)∗ + d(z)a′(z̄)∗ c(z)d′(z̄)∗ + d(z)c′(z̄)∗

]
. (2.1.6)

2.2. Transform V

Given a 2m-dimensional vector-valued function f , we define its transform F = V f
as the m-dimensional vector-valued function

F (z) =
∫ `

0

[
0 Im

]
W ∗(x, z̄) H(x)f(x) dx. (2.2.1)

The functions f which we consider here are assumed to belong to the Krĕın space
L2(Hdx) which is defined below. For each f in L2(Hdx), the transform F = V f
is an entire function with values in Cm.

In the definite case, L2(Hdx) is the well-known Hilbert space of (equivalence
classes) of 2m-dimensional vector-valued functions f on [0, `] with

‖f‖2H =
∫ `

0

f∗(t)H(t)f(t) dt < ∞.

To define L2(Hdx) in the general case, we write H(x) = H+(x) −H−(x), where
H±(x) are measurable functions on [0, `] such that H±(x) ≥ 0 and H+(x)H−(x) =
0 a.e. As a linear space L2(Hdx) is defined to be L2((H++H−)dx). This is a Krĕın
space in the inner product

〈f1, f2〉H =
∫ `

0

f∗2 (x)H(x)f1(x) dx, f1, f2 ∈ L2(Hdx).

We have L2(Hdx) = L2(H+dx)⊕L2(H−dx), and this direct sum is a fundamental
decomposition. Two elements f1 and f2 of the space are considered identical if
H(x)[f1(x) − f1(x)] = 0 a.e. The elements of L2(Hdx) are thus cosets, but in
the usual abuse of terminology we treat L2(Hdx) as a space of functions. We use
standard notions of orthogonality, continuity, and boundedness for operators on a
Krĕın space.

Proposition 2.2.1. Let G(z) = [F (z) − F (z0)]/(z − z0) where F = V f for some
f ∈ L2(Hdx) and some z0 ∈ C. Then G = iV g, where g(x) = g(x, z0) is the
unique solution of

dg

dx
= iz0JH(x)g + JH(x)f, 0 ≤ x ≤ `,

g(`) = 0.
(2.2.2)

The equation (2.2.2) is solved by setting g(x) = W (x, z0)U(x). We get

g(x, z0) = −W (x, z0)
∫ `

x

W (t, z0)−1JH(t)f(t) dt. (2.2.3)
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Proof. The Lagrange identity (2.1.2) can be used to show that

W ∗(x, z̄)−W ∗(x, z̄0)
z − z0

= −i

∫ x

0

W ∗(u, z̄)H(u)W (u, z0) du JW ∗(x, z̄0).

Thus by (2.2.1), G(z) = [F (z)− F (z0)]/(z − z0) is given by

G(z) =
∫ `

0

[
0 Im

] W ∗(t, z̄)−W ∗(t, z̄0)
z − z0

H(t)f(t) dt

= −i
[
0 Im

] ∫ `

0

∫ t

0

W ∗(u, z̄)H(u)W (u, z0) du JW ∗(t, z̄0) H(t)f(t) dt.

On interchanging the order of integration and using the second equality in (2.1.1),
we obtain

G(z) = −i

∫ `

0

[
0 Im

]
W ∗(u, z̄)H(u)W (u, z0)

∫ `

u

W (t, z0)−1JH(t)f(t) dt du.

By (2.2.3), G(z) = i
∫ `

0

[
0 Im

]
W ∗(u, z̄)H(u)g(u, z0) du, that is, G = iV g. �

2.3. Nevanlinna pairs

By a Nevanlinna pair we mean a pair R(z), Q(z) of m×m matrix-valued functions
which are analytic on a region ΩR,Q containing C+ ∪ C− such that

(i) R∗(z̄)Q(z) + Q∗(z̄)R(z) ≡ 0 on ΩR,Q;
(ii) the kernel i

[
R∗(ζ)Q(z) + Q∗(ζ)R(z)

]
/(z − ζ̄) is nonnegative on ΩR,Q.

When R(z) ≡ R and Q(z) ≡ Q are constant, ΩR,Q = C is the complex plane.

Proposition 2.3.1. Let R(z), Q(z) be a Nevanlinna pair of functions analytic on
ΩR,Q such that c(z)R(z) + d(z)Q(z) is invertible except at isolated points. Then
the meromorphic function

v(z) = i [a(z)R(z) + b(z)Q(z)] [c(z)R(z) + d(z)Q(z)]−1 (2.3.1)

satisfies v(z) = v∗(z̄) at all points of analyticity. If K(z) = c(z)R(z) + d(z)Q(z),
then

v(z)− v∗(ζ)

z − ζ̄
= K∗(ζ)−1 R(ζ)∗Q(z) + Q(ζ)∗R(z)

i(ζ̄ − z)
K(z)−1

+
∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt (2.3.2)

for z, ζ ∈ ΩR,Q such that z 6= ζ̄ and K(z) and K(ζ) are invertible.

Proof. By (2.1.2) and (2.1.4),∫ `

0

W ∗(t, ζ)H(t)W (t, z) dt =
A(ζ̄)JA∗(z̄)− J

i(z − ζ̄)
.

Hence
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[
I iv∗(ζ)

]A(ζ̄)JA∗(z̄)− J

i(z − ζ̄)

[
I

−iv(z)

]
=

∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt.

Breaking the left side into two parts and rearranging terms, we obtain

v(z)− v∗(ζ)

z − ζ̄
= −

[
I iv∗(ζ)

]
J

[
I

−iv(z)

]
i(z − ζ̄)

=

[
I iv∗(ζ)

]
A(ζ̄)JA∗(z̄)

[
I

−iv(z)

]
i(ζ̄ − z)

+
∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt . (2.3.3)

Recall that K(z) = c(z)R(z) + d(z)Q(z). In addition, set H(z) = a(z)R(z) +
b(z)Q(z). Then by (2.3.1), v(z) = iH(z)K(z)−1. By (2.1.4),[

H(z)
K(z)

]
=

[
a(z)R(z) + b(z)Q(z)
c(z)R(z) + d(z)Q(z)

]
= A(z)

[
R(z)
Q(z)

]
,

and therefore

A(z)
[
R(z)
Q(z)

]
=

[
H(z)K(z)−1

I

]
K(z) =

[
−iv(z)

I

]
K(z).

By (2.1.1), A(z)JA∗(z̄) = J . Hence A(z)−1 = JA∗(z̄)J and[
R(z)
Q(z)

]
K(z)−1 = A(z)−1

[
−iv(z)

I

]
= JA∗(z̄)

[
I

−iv(z)

]
.

Thus by (2.3.3),

v(z)− v∗(ζ)

z − ζ̄
=

[
I iv∗(ζ)

]
A(ζ̄)JJJA∗(z̄)

[
I

−iv(z)

]
i(ζ̄ − z)

+
∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt

=
K∗(ζ)−1

[
R∗(ζ) Q∗(ζ)

]
J

[
R(z)
Q(z)

]
K(z)−1

i(ζ̄ − z)

+
∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt
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= K∗(ζ)−1 R(ζ)∗Q(z) + Q(ζ)∗R(z)

i(ζ̄ − z)
K(z)−1

+
∫ `

0

[
I iv∗(ζ)

]
W ∗(t, ζ)H(t)W (t, z)

[
I

−iv(z)

]
dt ,

which is (2.3.2). The identity v(z) = v∗(z̄) is easily deduced from (2.3.2). �

3. Systems with boundary conditions

Let R(z), Q(z) be a Nevanlinna pair of functions analytic on ΩR,Q such that
c(z)R(z) + d(z)Q(z) is invertible except at isolated points. We study the eigen-
functions and resolvent operators for the system

dY

dx
= izJH(x)Y, 0 ≤ x ≤ `,

Y1(0, z) = 0, R∗(z̄)Y1(`, z) + Q∗(z̄)Y2(`, z) = 0,
(3.0.1)

where z ∈ ΩR,Q and the Hamiltonian H(x) satisfies the conditions in §2.

3.1. Eigenfunctions and resolvents

Consider a system (3.0.1) with Hamiltonian H(x) = H∗(x).

Definition 3.1.1. For every ζ ∈ ΩR,Q, let Lζ be the linear subspace of L2(Hdx)
consisting of all solutions of (3.0.1) with z = ζ.

We call a point ζ ∈ ΩR,Q an eigenvalue for (3.0.1) if Lζ contains a function
Y (x, ζ) such that Y 6= 0 as an element of L2(Hdx). In this case, we call any such
Y an eigenfunction and Lζ the eigenspace for the eigenvalue ζ.

Proposition 3.1.2. For any ζ ∈ ΩR,Q, Lζ is the set of functions of the form

Y (x, ζ) = W (x, ζ)
[
0
g

]
, g ∈ Cm,

[R∗(ζ̄)c∗(ζ̄) + Q∗(ζ̄)d∗(ζ̄)]g = 0 .

(3.1.1)

Hence Lζ = {0} except at isolated points of ΩR,Q.

Proof. Let Y = Y (x, ζ) ∈ Lζ , and set

Y (0, ζ) =
[
Y1(0, ζ)
Y2(0, ζ)

]
=

[
g̃
g

]
.

Since dY/dx = iζJH(x)Y on [0, `] and W (0, ζ) = I2m,

Y (x, ζ) = W (x, ζ)
[
g̃
g

]
.
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The condition Y1(0, ζ) = 0 says that g̃ = 0, so[
Y1(`, ζ)
Y2(`, ζ)

]
=

[
a∗(ζ̄) c∗(ζ̄)
b∗(ζ̄) d∗(ζ̄)

][
0
g

]
=

[
c∗(ζ̄)g
d∗(ζ̄)g

]
.

From R∗(ζ̄)Y1(`, ζ) + Q∗(ζ̄)Y2(`, ζ) = 0, we get [R∗(ζ̄)c∗(ζ̄) + Q∗(ζ̄)d∗(ζ̄)]g = 0.
Thus Y has the form (3.1.1). These steps are reversible. �

Lemma 3.1.3. Let ζ ∈ ΩR,Q. Assume that R∗(ζ)R(ζ)+Q∗(ζ)Q(ζ) and R∗(ζ̄)R(ζ̄)+
Q∗(ζ̄)Q(ζ̄) are invertible. Set

Mζ = ran
[
R(ζ)
Q(ζ)

]
and Mζ̄ = ran

[
R(ζ̄)
Q(ζ̄)

]
. (3.1.2)

Then dim Mζ = dim Mζ̄ = m, M⊥
ζ = JMζ̄ , and M⊥

ζ̄
= JMζ .

Proof. Our assumptions imply that

ker
[
R(ζ)
Q(ζ)

]
= ker

[
R(ζ̄)
Q(ζ̄)

]
= {0},

and this implies dim Mζ = dim Mζ̄ = m. By the definition of a Nevanlinna pair,
R∗(ζ̄)Q(ζ) + Q∗(ζ̄)R(ζ) = 0, and hence JMζ̄ ⊆ M⊥

ζ . Equality holds because Mζ

and Mζ̄ have dimension m. Similarly, M⊥
ζ̄

= JMζ . �

Lemma 3.1.4. Let ζ ∈ ΩR,Q. Assume that R∗(ζ)R(ζ)+Q∗(ζ)Q(ζ) and R∗(ζ̄)R(ζ̄)+
Q∗(ζ̄)Q(ζ̄) are invertible. Then c(ζ)R(ζ) + d(ζ)Q(ζ) is invertible if and only if
c(ζ̄)R(ζ̄) + d(ζ̄)Q(ζ̄) is invertible.

Proof. Suppose that c(ζ̄)R(ζ̄)+d(ζ̄)Q(ζ̄) is not invertible. Then there is a nonzero
vector g in Cm such that [R∗(ζ̄)c∗(ζ̄) + Q∗(ζ̄)d∗(ζ̄)]g = 0. Therefore[

R∗(ζ̄) Q∗(ζ̄)
][c∗(ζ̄)g

d∗(ζ̄)g

]
= 0 and

[
c∗(ζ̄)g
d∗(ζ̄)g

]
∈ M⊥

ζ̄ = JMζ ,

where Mζ and Mζ̄ are as in Lemma 3.1.3. Hence there is g1 in Cm such that[
c∗(ζ̄)g
d∗(ζ̄)g

]
= J

[
R(ζ)g1

Q(ζ)g1

]
=

[
Q(ζ)g1

R(ζ)g1

]
.

Thus by (2.1.5),

[c(ζ)R(ζ) + d(ζ)Q(ζ)]g1 = c(ζ)d∗(ζ̄)g + d(ζ)c∗(ζ̄)g = 0.

We show that g1 6= 0. In fact, if g1 = 0, then d∗(ζ̄)g = c∗(ζ̄)g = 0, which
by (2.1.5) implies that g = [a(ζ)d∗(ζ̄) + b(ζ)c∗(ζ̄)]g = 0, a contradiction. Since
c(ζ)R(ζ) + d(ζ)Q(ζ) has a nontrivial kernel, it is not invertible. The result follows
on interchanging the roles of ζ and ζ̄. �

The next result prepares the way for the definition of a resolvent operator in
Definition 3.1.6.
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Proposition 3.1.5. Suppose that z ∈ ΩR,Q and c(z)R(z)+d(z)Q(z) and c(z̄)R(z̄)+
d(z̄)Q(z̄) are invertible. Then for any f ∈ L2(Hdx), the system

dV

dx
= izJH(x)V + JH(x)f(x), 0 ≤ x ≤ `,

V1(0, z) = 0, R∗(z̄)V1(`, z) + Q∗(z̄)V2(`, z) = 0,
(3.1.3)

has a unique solution given by

V (x, z) = W (x, z)
{[

0 Im

0 −iv(z)

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt

+
[

0 0
−Im −iv(z)

] ∫ `

x

W ∗(t, z̄)H(t)f(t) dt

}
, (3.1.4)

where v(z) is defined by (2.3.1).

Proof. If a solution V (x, z) exists and V (x, z) = W (x, z)U(x, z), then by (1.0.3)
and (2.1.1),

dU

dx
= W (x, z)−1JH(x)f(x) = JW ∗(x, z̄)JH(x)f(x),

and so

U(x, z) = U(0, z) +
∫ x

0

JW ∗(t, z̄)H(t)f(t) dt. (3.1.5)

The boundary condition V1(0, z) = 0 and relation V (0, z) = W (0, z)U(0, z) =
U(0, z) imply that U1(0, z) = 0, and hence

U(0, z) =
[

0
U2(0, z)

]
. (3.1.6)

The boundary condition R∗(z̄)V1(`, z) + Q∗(z̄)V2(`, z) = 0 can be written in the
form

[
R∗(z̄) Q∗(z̄)

]
V (`, z) = 0. Here V (`, z) = W (`, z)U(`, z), and so by (2.1.4),

(3.1.5), and (3.1.6),

0 =
[
R∗(z̄) Q∗(z̄)

][a∗(z̄) c∗(z̄)
b∗(z̄) d∗(z̄)

]
U(`, z)

=
[
R∗(z̄)a∗(z̄) + Q∗(z̄)b∗(z̄) R∗(z̄)c∗(z̄) + Q∗(z̄)d∗(z̄)

]
·

·
{[

0
U2(0, z)

]
+

∫ `

0

W (t, z)−1JH(t)f(t) dt

}
.

By (2.1.1),

0 =
[
R∗(z̄)a∗(z̄) + Q∗(z̄)b∗(z̄) R∗(z̄)c∗(z̄) + Q∗(z̄)d∗(z̄)

]
·

·
{[

0
U2(0, z)

]
+

∫ `

0

JW ∗(t, z̄)H(t)f(t) dt

}
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= [R∗(z̄)c∗(z̄) + Q∗(z̄)d∗(z̄)]U2(0, z)

+
[
R∗(z̄)a∗(z̄) + Q∗(z̄)b∗(z̄) R∗(z̄)c∗(z̄) + Q∗(z̄)d∗(z̄)

]
·

·
∫ `

0

W ∗(t, z̄)H(t)f(t) dt.

Solving for U2(0, z), we get

U2(0, z) = −
[
Im ϕ(z)

] ∫ `

0

W ∗(t, z̄)H(t)f(t) dt,

where ϕ(z) = i(−i)[R∗(z̄)c∗(z̄)+Q∗(z̄)d∗(z̄)]−1[R∗(z̄)a∗(z̄)+Q∗(z̄)b∗(z̄)] = iv∗(z̄),
that is, ϕ(z) = iv(z). Thus

U(0, z) =
[

0 0
−iv(z) −Im

]
J

∫ `

0

W ∗(t, z̄)H(t)f(t) dt. (3.1.7)

Then by (3.1.5) and (3.1.7),

V (x, z) = W (x, z)
{[

0 0
−iv(z) −Im

]
J

∫ `

0

W ∗(t, z̄)H(t)f(t) dt

+
[
Im 0
0 Im

]
J

∫ x

0

W ∗(t, z̄)H(t)f(t) dt

}

= W (x, z)
{[

Im 0
−iv(z) 0

]
J

∫ x

0

W ∗(t, z̄)H(t)f(t) dt

+
[

0 0
−iv(z) −Im

]
J

∫ `

x

W ∗(t, z̄)H(t)f(t) dt

}

= W (x, z)
{[

0 Im

0 −iv(z)

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt

+
[

0 0
−Im −iv(z)

] ∫ `

x

W ∗(t, z̄)H(t)f(t) dt

}
,

which is one direction of the theorem. The other direction follows on reversing the
steps. �

Definition 3.1.6. Let Ωv be the maximum domain of analyticity of the function
v(z) defined by (2.3.1). For each z in Ωv, define a resolvent operator B(z) on
L2(Hdx) by

B(z)f = V (x, z), f ∈ L2(Hdx), (3.1.8)

where V (x, z) is given by (3.1.4).

The domain Ωv contains all removable singularities of (2.3.1) as well as real
intervals across which this function has an analytic extension.
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Proposition 3.1.7. The resolvent B(z) is analytic as a function of z, has compact
values, and satisfies B∗(z̄) = −B(z) on Ωv.

Proof of Proposition 3.1.7. The fact that B(z) is analytic and has compact values
follows from (3.1.4). We show that B∗(z̄) = −B(z). First use (3.1.8) and (3.1.4)
to write B(z) = B1(z) + B2(z), where

B1(z)f = W (x, z)
[
0 Im

0 −iv(z)

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt, (3.1.9)

B2(z)g = W (x, z)
[

0 0
−Im −iv(z)

] ∫ `

x

W ∗(t, z̄)H(t)g(t) dt, (3.1.10)

for any f, g ∈ L2(Hdx). By (3.1.9),

〈B1(z)f, g〉H =
∫ `

0

g∗(x)H(x)W (x, z)
[
0 Im

0 −iv(z)

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt dx

=
∫ `

0

h∗(t)H(t)f(t) dt,

where

h(x) = W (x, z̄)
[

0 0
Im iv∗(z)

] ∫ `

x

W ∗(u, z)H(u)g(u) du.

By (3.1.10),

h(x) = −W (x, z̄)
[

0 0
−Im −iv(z̄)

] ∫ `

x

W ∗(u, z)H(u)g(u) du = −B2(z̄)g.

Therefore B∗
1(z) = −B2(z̄), and the assertion follows. �

Proposition 3.1.8. For each f ∈ L2(Hdx) and z in Ωv,

i〈B(z)f, f〉H = F ∗(z̄)v(z)F (z) + iΓf (z), (3.1.11)

where F (z) is given by (2.2.1), and

Γf (z) = −Γf (z̄) =
∫ `

0

∫ `

0

f∗(x)M(x, t, z)H(t)f(t) dt dx,

M(x, t, z) =


W (x, z)

[
0 Im

0 0

]
W ∗(t, z̄), x > t,

W (x, z)
[

0 0
−Im 0

]
W ∗(t, z̄), x < t.
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Proof. By (3.1.8) and (3.1.4),

〈B(z)f, f〉H =
∫ `

0

f∗(x)H(x)W (x, z)
{[

0 Im

0 −iv(z)

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt

+
[

0 0
−Im −iv(z)

] ∫ `

x

W ∗(t, z̄)H(t)f(t) dt

}
dx.

The parts of the two integrals on the right containing −iv(z) combine to give

〈B(z)f, f〉H =
∫ `

0

f∗(x)H(x)W (x, z)
{[

0 0
0 −iv(z)

] ∫ `

0

W ∗(t, z̄)H(t)f(t) dt

+
[
0 Im

0 0

] ∫ x

0

W ∗(t, z̄)H(t)f(t) dt

+
[

0 0
−Im 0

] ∫ `

x

W ∗(t, z̄)H(t)f(t) dt

}
dx

= −iF ∗(z̄)v(z)F (z) +
∫ `

0

∫ `

0

f∗(x)H(x)M(x, t, z)H(t)f(t) dt dx.

This yields the formula for Γf (z) in (3.1.11). The equality Γf (z) = −Γf (z̄) follows
from the identities B∗(z̄) = −B(z) and v∗(z̄) = v(z). �

3.2. Definite case: V as a contraction operator

We again assume given a system (3.0.1), but now in addition we assume that
H(x) ≥ 0 a.e. Then L2(Hdx) is a Hilbert space. There are no nonreal eigenvalues
in this case (Proposition 3.2.1). We derive a Cauchy representation for the resolvent
and show its consequence for the transform V (Theorem 3.2.4).

Proposition 3.2.1. If R∗(z)R(z)+Q∗(z)Q(z) is invertible for every nonreal z, then
(3.0.1) has no nonreal eigenvalues.

Proof. Fix ζ 6= ζ̄, and suppose that Y (t, ζ) ∈ Lζ . We show that Y = 0 in L2(Hdx).
We borrow a formula from the proof of Proposition 4.1.1, which is valid under the
present assumptions as well:

i(ζ − ζ̄)
∫ `

0

Y ∗(t, ζ)H(t)Y (t, ζ) dt = Y ∗(`, ζ)JY (`, ζ). (3.2.1)

Define Mζ and Mζ̄ by (3.1.2). The boundary condition at ` in (3.0.1) implies that
Y (`, ζ) is orthogonal to Mζ̄ . Since we assume that R∗(ζ)R(ζ) + Q∗(ζ)Q(ζ) and
R∗(ζ̄)R(ζ̄) + Q∗(ζ̄)Q(ζ̄) are invertible, it follows from Lemma 3.1.3 that Y (`, ζ) ∈
M⊥

ζ̄
= JMζ . Therefore

Y (`, ζ) = J

[
R(ζ)
Q(ζ)

]
g

for some g ∈ Cm. Then by (3.2.1) and the definition of a Nevanlinna pair,
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∫ `

0

Y ∗(t, ζ)H(t)Y (t, ζ) dt = g∗
R∗(ζ)Q(ζ) + Q∗(ζ)R(ζ)

i(ζ − ζ̄)
g

= −g∗ i
R∗(ζ)Q(ζ) + Q∗(ζ)R(ζ)

ζ − ζ̄
g ≤ 0.

Since H(x) ≥ 0 a.e., the left side is nonnegative and hence equal to zero. �

In the definite case, it follows from (2.3.2) that

v(z) = i [a(z)R(z) + b(z)Q(z)] [c(z)R(z) + d(z)Q(z)]−1 (3.2.2)

is a Nevanlinna function. This means that all nonreal singularities of v(z) are
removable, v(z) = v∗(z̄) for all nonreal z, and v(z) has nonnegative imaginary
part on C+. Hence v(z) has a Nevanlinna representation

v(z) = α + βz +
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dτ(t). (3.2.3)

Here α and β are m ×m matrices such that α = α∗, β ≥ 0, and τ(t) is a nonde-
creasing m×m matrix-valued function such that

∫∞
−∞ dτ(t)/(1+ t2) is convergent.

In particular, the resolvent B(z) is analytic on Ωv ⊇ C+ ∪ C−.

Lemma 3.2.2. For each z ∈ C+ and f ∈ L2(Hdx),

Re 〈B(z)f, f〉H ≥ Im z 〈B(z)f,B(z)f〉H ≥ 0. (3.2.4)

Proof. Without loss of generality, we can assume that c(z)R(z) + d(z)Q(z) and
c(z̄)R(z̄) + d(z̄)Q(z̄) are invertible. Then B(z)f = V is the unique solution of
(3.1.3), and thus

〈JV ′, V 〉L2
2m(0,`) = iz〈H(x)V, V 〉L2

2m(0,`) + 〈H(x)f, V 〉L2
2m(0,`)

= iz〈V, V 〉H + 〈f, V 〉H .

Hence

2 Re 〈f, V 〉H = 2 Im z 〈V, V 〉H +
∫ `

0

[
V ∗(t, z)JV ′(t, z) + V ′∗(t, z)JV (t, z)

]
dt

= 2 Im z 〈V, V 〉H + V ∗(`, z)JV (`, z)− V ∗(0, z)JV (0, z)

= 2 Im z 〈V, V 〉H + V ∗(`, z)JV (`, z),

since V ∗(0, z)JV (0, z) = 0 by the boundary condition at 0 in (3.1.3). Let Mz and
Mz̄ be as in Lemma 3.1.3, so JMz = M⊥

z̄ . By the boundary condition at `,〈
V (`, z),

[
R(z̄)
Q(z̄)

]
g

〉
C2m

= 0, g ∈ Cm.

Hence V (`, z) ∈ M⊥
z̄ = JMz, so V (`, z) =

[
Q(z)
R(z)

]
gz for some gz ∈ Cm. Thus

V ∗(`, z)JV (`, z) = 2 Im z g∗z
Q∗(z)R(z) + R∗(z)Q(z)

i(z̄ − z)
gz ≥ 0



Pseudospectral functions 15

for Im z ≥ 0 by the definition of a Nevanlinna pair (see §2.3). Recalling that
V = B(z)f , we deduce (3.2.4). �

Lemma 3.2.3. The resolvent operators have a representation

iB(z) =
∫ ∞

−∞

dG(t)
t− z

, z ∈ C+ ∪ C−, (3.2.5)

where G(x) is a nondecreasing function of real x whose values are operators on
L2(Hdx) such that G(x) = 1

2

[
G(x+0)−G(x−0)

]
for all real x and

∫∞
−∞ dG(t) ≤ I.

Proof. By Lemma 3.2.2 and the identity B∗(z̄) = −B(z), iB(z) is a Nevanlinna
function and hence has a representation

iB(z) = C1 + C2z +
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dG(t), (3.2.6)

where C1 = C∗
1 , C2 ≥ 0, and G(x) is a nondecreasing function satisfying G(x) =

1
2

[
G(x + 0)−G(x− 0)

]
for all real x such that the integral

∫∞
−∞ dG(t)/(1 + t2) is

weakly convergent. By Lemma 3.2.2, if f ∈ L2(Hdx),

‖iB(iy)f‖2H ≤ 1
y
‖iB(iy)f‖H‖f‖H ,

and hence y‖iB(iy)‖ ≤ 1 for y > 0. It follows that C2 = 0. Therefore

iB(iy) = C1 +
∫ ∞

−∞

[
1

t− iy
− t

1 + t2

]
dG(t)

= C1 +
∫ ∞

−∞

[
t(1− y2)

(t2 + y2)(1 + t2)
+ i

y

t2 + y2

]
dG(t),

and so ∫ ∞

−∞

y2

t2 + y2
dG(t) = y Im [iB(iy)].

Since y‖iB(iy)‖ ≤ 1 for y > 0,
∫∞
−∞ dG(t) ≤ I. The representation (3.2.6) can thus

be written in the form

iB(z) = C1 +
∫ ∞

−∞

dG(t)
t− z

−
∫ ∞

−∞

t

1 + t2
dG(t). (3.2.7)

Since y‖iB(iy)‖ is bounded for y > 0, C1 =
∫∞
−∞ t(1 + t2)−1 dG(t) and so (3.2.7)

reduces to (3.2.5). �

Theorem 3.2.4. For any f ∈ L2(Hdx),

〈iB(z)f, f〉H =
∫ ∞

−∞

F ∗(t)dτ(t)F (t)
t− z

, z ∈ C+ ∪ C−, (3.2.8)

where τ(x) is as in (3.2.3) and F (z) is given by (2.2.1). Moreover,∫ ∞

−∞
F ∗(t)dτ(t)F (t) ≤

∫ `

0

f∗(t)H(t)f(t) dt. (3.2.9)
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That is, the transform V acts as a contraction from L2(H) into L2(dτ).

Proof. Apply Lemma 3.2.3 and Proposition 3.1.8 to write

〈iB(z)f, f〉H =
∫ ∞

−∞

d〈G(t)f, f〉H
t− z

= F ∗(z̄)v(z)F (z) + iΓf (z).

By the Livšic-Stieltjes inversion formula, for any a, b, −∞ < a < b < ∞,

〈[G(b)−G(a)]f, f〉H = lim
y↓0

1
π

∫ b

a

Im
[
F ∗(t− iy)v(t + iy)F (t + iy)

]
dt

+ lim
y↓0

1
π

∫ b

a

iΓf (t + iy) dt =
∫ b

a

F ∗(t)dτ(t)F (t).

In the last equality the term involving Γf (z) makes no contribution because Γf (z)
is continuous and real on the real axis. This proves (3.2.8). We deduce (3.2.9) from
the inequality

∫∞
−∞ dG(t) ≤ I in Lemma 3.2.3. �

4. Constant boundary conditions and main results

Our main results construct pseudospectral data and pseudospectral functions for
a system (1.0.1) by considering boundary conditions as in §3. For this purpose it
is necessary to assume that the Nevanlinna pair R(z) ≡ R and Q(z) ≡ Q in (3.0.1)
is constant. In this case, the domain of analyticity of the pair is ΩR,Q = C. Thus
throughout this section we assume given a system

dY

dx
= izJH(x)Y, 0 ≤ x ≤ `,

Y1(0, z) = 0, R∗Y1(`, z) + Q∗Y2(`, z) = 0,
(4.0.1)

where R,Q are m × m matrices such that R∗Q + Q∗R = 0, the entire function
c(z)R+d(z)Q is invertible except at isolated points, and z is any complex number.
As usual, we assume that the Hamiltonian H(x) satisfies the conditions in §2.
Notice that R∗R + Q∗Q is invertible, since otherwise c(z)R + d(z)Q cannot be
invertible at any point.

4.1. Construction of pseudospectral data

Assume given a system (4.0.1) with Hamiltonian H(x) = H∗(x). The goal of this
section is Theorem 4.1.11, which is the basis for the notion of pseudospectral data.
We also derive additional properties of eigenfunctions and resolvents that will be
important for later results.

By Proposition 3.1.2, for each ζ ∈ C, Lζ is the set of functions

Y (x, ζ) = W (x, ζ)
[
0
g

]
, g ∈ Cm,

[R∗c∗(ζ̄) + Q∗d∗(ζ̄)]g = 0 .

(4.1.1)
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Proposition 4.1.1. For any ζ1, ζ2 ∈ C and Y (x, ζ1) ∈ Lζ1 and Y (x, ζ2) ∈ Lζ2 ,

i(ζ1 − ζ̄2)
∫ `

0

Y ∗(t, ζ2)H(t)Y (t, ζ1) dt = 0. (4.1.2)

Hence Lζ1 ⊥ Lζ2 if ζ1 6= ζ̄2, and Lζ is a neutral subspace of L2(Hdx) if ζ 6= ζ̄.

Proof. By the differential equation in (4.0.1),

i(ζ1−ζ̄2)
∫ `

0

Y ∗(t, ζ2)H(t)Y (t, ζ1) dt

=
∫ `

0

Y ∗(t, ζ2)J [iζ1JH(t)Y (t, ζ1)] dt +
∫ `

0

[iζ2JH(t)Y (t, ζ2)]∗JY (t, ζ1) dt

=
∫ `

0

[
Y ∗(t, ζ2)JY ′(t, ζ1) + Y ∗′(t, ζ2)JY (t, ζ1)

]
dt

= Y ∗(`, ζ2)JY (`, ζ1)− Y ∗(0, ζ2)JY (0, ζ1)

= Y ∗(`, ζ2)JY (`, ζ1),

where at the last stage we used the initial conditions Y1(0, ζ1) = Y1(0, ζ2) = 0.
Applying Lemma 3.1.3 to the subspace

M = ran
[
R
Q

]
⊆ C2m, (4.1.3)

we see that dim M = m and M⊥ = JM . Since R∗Y1(`, ζ1) + Q∗Y2(`, ζ1) = 0
and R∗Y1(`, ζ2) + Q∗Y2(`, ζ2) = 0, Y (`, ζ1) and Y (`, ζ2) are orthogonal to M .
Therefore Y (`, ζ1) ∈ M⊥ = JM and JY (`, ζ1) ∈ M . Since Y (`, ζ2) ∈ M⊥,
Y ∗(`, ζ2)JY (`, ζ1) = 0. This proves (4.1.2).

The last part of the lemma follows in a straightforward way from (4.1.2),
provided that whenever (4.1.2) is applied with ζ1 = ζ2 = ζ then Y (x, ζ1) and
Y (x, ζ2) are understood to be possibly different elements of Lζ . �

Given a linear operator T on some linear space and an eigenvalue γ for T ,
let R0(T, γ) = ker(T − γI). If Rj(T, γ) has been defined for j = 0, . . . , k, let
Rk+1(T, γ) be the set of all vectors f such that (T − γI)f ∈ Rk(T, γ). We call
R0(T, γ),R1(T, γ), . . . the root subspaces for T for the eigenvalue γ.

Lemma 4.1.2. Given a linear operator T with eigenvalue γ,

(i) the subspaces R0(T, γ),R1(T, γ), . . . are invariant for T ;
(ii) {0} ⊆ R0(T, γ) ⊆ R1(T, γ) ⊆ · · · , and if equality holds at one stage, it holds

at all later stages;
(iii) if R0(T, γ) is finite dimensional, so is Rk(T, γ) for every k = 0, 1, 2, . . . ;
(iv) if R0(T, γ) is finite dimensional and γ 6= 0, then T is a one-to-one mapping

from Rk(T, γ) onto itself for each k = 0, 1, 2, . . . .

The details are elementary and omitted. We introduce an analogous notion
for canonical systems.
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Definition 4.1.3. Assume given a system (4.0.1) with eigenvalue ζ. Let L
(0)
ζ = Lζ

be the corresponding eigenspace. If the subspaces L
(0)
ζ , . . . ,L

(k)
ζ have been defined,

let L
(k+1)
ζ be the set of all functions Y which satisfy

dY

dx
= iζJH(x)Y + JH(x)Y (k),[

Im 0
]
Y (0) = 0,

[
R∗ Q∗]Y (`) = 0,

(4.1.4)

for some Y (k) ∈ L
(k)
ζ . We call L

(0)
ζ ,L

(1)
ζ , . . . the root subspaces for (4.0.1) for the

eigenvalue ζ.

It is easy to see that for any eigenvalue ζ of (4.0.1), L
(0)
ζ ⊆ L

(1)
ζ ⊆ · · · , and if

equality holds at one stage, it holds at all subsequent stages.

Theorem 4.1.4. Let z0 ∈ C, and assume that c(z0)R + d(z0)Q is invertible.

(i) The nonzero eigenvalues of the resolvent operator B(z0) coincide with the set
of numbers i/(z0 − ζ) where ζ is an eigenvalue of (4.0.1).

(ii) For each eigenvalue ζ of (4.0.1) and every k = 0, 1, 2, . . . ,

L
(k)
ζ = Rk(B(z0), i/(z0 − ζ)).

Proof. Let ζ be an eigenvalue for (4.0.1). Thus L
(0)
ζ = Lζ 6= {0}. If Y ∈ L

(0)
ζ , then

dY

dx
= iζJH(x)Y = iz0JH(x)Y + JH(x)[i(ζ − z0)Y ],[

Im 0
]
Y (0) = 0, and

[
R∗ Q∗]Y (`) = 0. Therefore B(z0)[i(ζ − z0)Y ] = Y . It

follows that i/(z0 − ζ) is a nonzero eigenvalue of B(z0), and

L
(0)
ζ ⊆ R0(B(z0), i/(z0 − ζ)).

On the other hand, if Y ∈ R0(B(z0), i/(z0 − ζ)), we can reverse these steps to
show that Y ∈ L

(0)
ζ . Thus i/(z0 − ζ) is a nonzero eigenvalue of B(z0), and

L
(0)
ζ = R0(B(z0), i/(z0 − ζ)).

Conversely, suppose that γ is a nonzero eigenvalue of B(z0). Consider any
eigenvector Y . Then B(z0)[γ−1Y ] = Y . This means that

dY

dx
= iz0JH(x)Y + JH(x)[γ−1Y ],[

Im 0
]
Y (0) = 0,

[
R∗ Q∗]Y (`) = 0.

Define ζ by γ = i/(z0 − ζ). Then

dY

dx
= iz0JH(x)Y + JH(x)[i(ζ − z0)Y ] = iζJH(x)Y,[

Im 0
]
Y (0) = 0, and

[
R∗ Q∗]Y (`) = 0. Hence Y is an eigenvector for (4.0.1).
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Thus far we have proved (i). We have also proved (ii) for k = 0. In particular,
for any eigenvalue ζ of (4.0.1),

dim R0(B(z0), i/(z0 − ζ)) = dim L
(0)
ζ < ∞

by the representation (4.1.1) of the elements of an eigenspace. It remains to com-
plete the proof of (ii). Suppose we know that

Rk(B(z0), i/(z0 − ζ)) = L
(k)
ζ

for some k ≥ 0. Let Y ∈ L
(k+1)
ζ . Choose Y (k) ∈ L

(k)
ζ satisfying (4.1.4). Then

dY

dx
= iz0JH(x)Y + JH(x)[i(ζ − z0)Y + Y (k)],[
Im 0

]
Y (0) = 0,

[
R∗ Q∗]Y (`) = 0,

which means that B(z0)[i(ζ − z0)Y + Y (k)] = Y , or[
B(z0)−

i

z0 − ζ
I

]
Y = − i

z0 − ζ
B(z0)Y (k). (4.1.5)

Since Y (k) ∈ L
(k)
ζ = Rk(B(z0), i/(z0 − ζ)), by (4.1.5) and Lemma 4.1.2(iv),[

B(z0)−
i

z0 − ζ
I

]
Y ∈ Rk(B(z0), i/(z0 − ζ)), (4.1.6)

and so Y ∈ Rk+1(B(z0), i/(z0 − ζ)). Thus

L
(k+1)
ζ ⊆ Rk+1(B(z0), i/(z0 − ζ)). (4.1.7)

To prove the reverse inclusion, consider any Y ∈ Rk+1(B(z0), i/(z0− ζ)). Then Y
satisfies (4.1.6). Using Lemma 4.1.2(iv), we deduce (4.1.5) for some

Y (k) ∈ Rk(B(z0), i/(z0 − ζ)) = L
(k)
ζ .

Now we can reverse the steps and conclude that Y ∈ L
(k+1)
ζ . Therefore equality

holds in (4.1.7), and the proof of (ii) is complete. �

We say that a real interval (a, b) is H-indivisible if

H(x) = ηh(x)η∗ a.e. on (a.b), η =
[
α
β

]
, (4.1.8)

where h(x) is a measurable function with selfadjoint m×m matrix values, and α
and β are m × m matrices such that η∗Jη = α∗β + β∗α = 0. The notion of an
H-indivisible interval is due to Kac [7]. See also Hassi, de Snoo, and Winkler [6]
and Kaltenbäck and Woracek [8, Part IV]. It should be noted that some authors
use a trace-normed Hamiltonian, and their formulas have a different appearance.

Definition 4.1.5. Let L̂2(Hdx) be the subspace of L2(Hdx) consisting of all f such
that for every H-indivisible interval (a, b), there is a c ∈ C2m satisfying

H(x)f(x) = H(x)c a.e. on (a.b).
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When H(x) ≥ 0 a.e., L2(Hdx) is a Hilbert space, and an argument in Kac
[7] can be used to show that the subspace L̂2(Hdx) is closed. In the general case
H(x) = H∗(x), the inner product of L2(Hdx) is indefinite, and we make no similar
assertion.

Proposition 4.1.6. (1) Let F = V f be given by (2.2.1) for some f in L2(Hdx). If
f is orthogonal to the subspace L̂2(Hdx), then F (z) ≡ 0.
(2) The root subspaces L

(0)
ζ ,L

(1)
ζ , . . . of (4.0.1) are contained in L̂2(Hdx).

Proof. (1) Let g ∈ Cm and z ∈ C. By (2.2.1),

g∗F (z) =
〈

f(x),W (x, z̄)
[
0
g

]〉
H

. (4.1.9)

We show that the function

Y (x) = W (x, z̄)
[
0
g

]
belongs to L̂2(Hdx). Consider an H-indivisible interval (a, b), and suppose that
H(x) is represented as in (4.1.8) on (a, b). By (1.0.3), dY/dx = iz̄JH(x)Y a.e. By
(4.1.8) and the identity η∗Jη = 0,

d

dx
(η∗Y (x)) = iz̄η∗Jηh(x)η∗Y (x) = 0

a.e. on (a, b). Therefore η∗Y (x) ≡ const. on (a, b). The constant belongs to the
range of η∗, and so η∗Y (x) = η∗c on (a, b) for some c ∈ C2m. Then

H(x)Y (x) = ηh(x)η∗Y (x) = ηh(x)η∗c = H(x)c

a.e. on (a, b). Hence Y ∈ L̂2(Hdx). Since f is orthogonal to L̂2(Hdx), g∗F (z) = 0
by (4.1.9). By the arbitrariness of g, F (z) ≡ 0.

(2) Eigenfunctions have the form (4.1.1) and hence belong to L̂2(Hdx) by the
proof of (1). Thus L

(0)
ζ ⊆ L̂2(Hdx). Let Y = Y (x) ∈ L

(k+1)
ζ , k ≥ 0. Then Y satisfies

an equation (4.1.4). Let (a, b) be an H-indivisible interval with H(x) represented
in the form (4.1.8) on (a, b). By (4.1.4) and (4.1.8),

d

dx
(η∗Y (x)) = iζη∗Jηh(x)η∗Y (x) + η∗Jηh(x)η∗Y (k)(x) = 0

a.e. on (a, b) because η∗Jη = 0. Therefore η∗Y (x) ≡ const. on (a, b). As in the
proof of (1), we deduce that Y ∈ L̂2(Hdx). �

Proposition 4.1.7. The identity B(z) − B(w) = i(z − w)B(z)B(w) holds at all
points w, z such that B(z) and B(w) are defined. Hence the subspace K = kerB(z)
is independent of z.

Proposition 4.1.7 is a statement about resolvent operators for systems (4.0.1)
with constant boundary conditions. The resolvent identity does not hold in general
for systems (3.0.1) with variable boundary conditions.
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Proof. Fix f ∈ L2(Hdx). Without loss of generality assume that c(z)R + d(z)Q
and c(w)R + d(w)Q are invertible. Then according to Definition 3.1.6, B(z)f and
B(w)f are determined by Proposition 3.1.5. Set

B(w)f = h =
[
h1

h2

]
.

By Proposition 3.1.5,

dh

dx
= iwJH(x)h(x) + JH(x)f(x), 0 ≤ x ≤ `,

h1(0) = 0, R∗h1(`) + Q∗h2(`) = 0,

Hence
dh

dx
= izJH(x)h(x) + JH(x)

[
f(x)− i(z − w)h(x)

]
, 0 ≤ x ≤ `,

h1(0) = 0, R∗h1(`) + Q∗h2(`) = 0,

Therefore B(z)
[
f − i(z − w)h

]
= h, and the result follows. �

Proposition 4.1.8. For any complex number ζ, the following are equivalent:

(i) ζ is an eigenvalue for (4.0.1);
(ii) c(ζ)R + d(ζ)Q is not invertible.

Proof. (ii) ⇒ (i) If c(ζ)R + d(ζ)Q is not invertible, neither is c(ζ̄)R + d(ζ̄)Q by
Lemma 3.1.4. Hence we can choose g 6= 0 in Cm such that [R∗c∗(ζ̄)+Q∗d∗(ζ̄)]g = 0.
Thus (see (4.1.1))

Y (x, ζ) = W (x, ζ)
[
0
g

]
∈ Lζ .

We show that Y 6= 0 as an element of L2(Hdx). Argue by contradiction. If Y is
equivalent to zero in L2(Hdx), then∫ `

0

f∗(t)H(t)Y (t, ζ) dt = 0

for all f ∈ L2(Hdx). This implies that H(x)Y (x, ζ) = 0 a.e., and hence dY/dx =
iζJH(x)Y = 0 a.e. on [0, `]. Therefore Y is constant, and so

Y (x, ζ) = Y (0, ζ) =
[
0
g

]
and H(x)

[
0
g

]
= 0 a.e.

By the nondegeneracy condition (iii) in our assumptions on H(x) in §2, g = 0, a
contradiction. Therefore Y 6= 0 in L2(Hdx) and ζ is an eigenvalue for (4.0.1).

(i) ⇒ (ii) If ζ is an eigenvalue for (4.0.1), there is a function (4.1.1) which
is not equivalent to zero in L2(Hdx). The vector g in (4.1.1) can therefore not be
zero, and so c(ζ̄)R + d(ζ̄)Q is not invertible. Then c(ζ)R + d(ζ)Q is not invertible
by Lemma 3.1.4. �
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Since the functions R(z) ≡ R and Q(z) ≡ Q in (2.3.1) are constant,

v(z) = i [a(z)R + b(z)Q] [c(z)R + d(z)Q]−1 (4.1.10)

is meromorphic in the complex plane. The remaining results in this section add
the hypothesis that v(z) has only simple poles.

Proposition 4.1.9. Assume that v(z) has only simple poles. Define γ(ζ) for every
by ζ ∈ C by

v(z) =
γ(ζ)
ζ − z

+ v1(z), (4.1.11)

where v1(z) is holomorphic at z = ζ. Then γ(ζ) = 0 except at the poles of v(z),
and γ(ζ̄) = γ(ζ)∗. For each ζ ∈ C,

[R∗c∗(ζ̄) + Q∗d∗(ζ̄)]γ(ζ) = 0, (4.1.12)

and hence for every g ∈ Cm,

Y (x, ζ) = W (x, ζ)
[

0
γ(ζ)g

]
∈ Lζ . (4.1.13)

Proof. Clearly γ(ζ) = 0 except at the poles of v(z). Since v(z) = v∗(z̄),

v(z) =
γ(ζ)
ζ − z

+ v1(z) =
γ(ζ)∗

ζ̄ − z
+ v∗1(z̄), (4.1.14)

and hence γ(ζ̄) = γ(ζ)∗. By (4.1.10) and (4.1.14),

i(ζ̄ − z)[a(z)R + b(z)Q] = [γ(ζ)∗ + (ζ̄ − z)v∗1(z̄)][c(z)R + d(z)Q].

Letting z → ζ̄, we deduce (4.1.12). Then (4.1.13) follows from (4.1.1). �

The eigenvalues of (4.0.1) are isolated in the complex plane and occur in
conjugate pairs by Proposition 4.1.8 and Lemma 3.1.4. Assuming again that v(z)
has only simple poles, we fix the following notation for these points.

• Let {λj}r
j=1 be the real eigenvalues of (4.0.1) (0 ≤ r ≤ ∞). For each j =

1, . . . , r, write

v(z) =
τj

λj − z
+ vj(z), τj = τ∗j = γ(λj).

• Let {µk, µ̄k}s
j=1 be the nonreal pairs of eigenvalues of (4.0.1) (0 ≤ s ≤ ∞).

For each k = 1, . . . , s, write

v(z) =
βk

µk − z
+ vk(z) =

β∗k

µ̄k − z
+ v∗k(z̄), βk = γ(µk).

• Let τ = τR,Q be the collection of all eigenvalues λj , µk, µ̄k together with the
matrices τj , βk, j = 1, . . . , r and k = 1, . . . , s.
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By Proposition 4.1.1, Lλj
⊥ Lλk

if j 6= k, Lλj
⊥ (Lµk

+Lµ̄k
), and Lµk

is a neutral
subspace of L2(Hdx) for all j = 1, . . . , r and k = 1, . . . , s.

Let L2
0(τ ) be the space of all Cm-valued functions defined on the points

λj , µk, µ̄k having only finitely many nonzero values, in the inner product

〈F,G〉L2
0(τ ) =

r∑
j=1

G(λj)∗τjF (λj) +
s∑

k=1

[
G(µ̄k)∗βkF (µk) + G(µk)∗β∗kF (µ̄k)

]
.

Equivalently, we can consider the elements of L2
0(τ ) as Cm-valued functions on

the complex plane in the inner product

〈F,G〉L2
0(τ ) =

∑
ζ∈C

G∗(ζ̄)γ(ζ)F (ζ). (4.1.15)

Two functions F1 and F2 are identified if

γ(ζ)[F1(ζ)− F2(ζ)] = 0, ζ ∈ C. (4.1.16)

The inner product in L2
0(τ ) is nondegenerate and in general indefinite.

We investigate the transform F = V f defined by (2.2.1) as a mapping from
L2(Hdx) into L2

0(τ ).

Lemma 4.1.10. Assume that v(z) has only simple poles. Let Y (x, ζ) belong to Lζ

and have the form (4.1.1). Then V Y belongs to L2
0(τ ) and is equivalent to the

function F defined by

F (z) =

{
∆ζ g, z = ζ,

0, z 6= ζ,
(4.1.17)

where
∆ζ = ∆∗

ζ̄ = i[c′(ζ)d∗(ζ̄) + d′(ζ)c∗(ζ̄)]. (4.1.18)

Proof. The identity ∆ζ = ∆∗
ζ̄

follows from (2.1.6). Let G = V Y . For z 6= ζ,

G(z) =
[
0 Im

] ∫ `

0

W (t, z̄)∗H(t)W (t, ζ) dt

[
0
g

]
=

[
0 Im

] W ∗(`, z̄)JW (`, ζ)− J

i(ζ − z)

[
0
g

]
=

1
i(ζ − z)

[
0 Im

] [
a(z) b(z)
c(z) d(z)

]
J

[
a∗(ζ̄) c∗(ζ̄)
b∗(ζ̄) d∗(ζ̄)

][
0
g

]
=

c(z)d∗(ζ̄) + d(z)c∗(ζ̄)
i(ζ − z)

g .

By (2.1.5), c(ζ)d∗(ζ̄) + d(ζ)c∗(ζ̄) = 0, and so

G(ζ) = lim
z→ζ

[c(z)− c(ζ)]d∗(ζ̄) + [d(z)− d(ζ)]c∗(ζ̄)
i(ζ − z)

g

= i[c′(ζ)d∗(ζ̄) + d′(ζ)c∗(ζ̄)]g = ∆ζ g.
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Thus F (ζ) = G(ζ). To show that G is equivalent to F in L2
0(τ ), by (4.1.17) we

must show that for all w 6= ζ, γ(w)[F (w)−G(w)] = 0, that is, γ(w)G(w) = 0, or

γ(w)
c(w)d∗(ζ̄) + d(w)c∗(ζ̄)

i(ζ − w)
g = 0 . (4.1.19)

Fix w 6= ζ and consider any g̃ ∈ Cm. Write

g̃∗γ(w)[c(w)d∗(ζ̄) + d(w)c∗(ζ̄)] g =
〈[

d∗(ζ̄)g
c∗(ζ̄)g

]
,

[
c∗(w)γ(w)∗g̃
d∗(w)γ(w)∗g̃

]〉
C2m

. (4.1.20)

Define M as in (4.1.3), so M⊥ = JM . By (4.1.12), [R∗c∗(w)+Q∗d∗(w)]γ(w)∗ = 0,
and hence [

c∗(w)γ(w)∗g̃
d∗(w)γ(w)∗g̃

]
∈ M⊥. (4.1.21)

By (4.1.1), [R∗c∗(ζ̄) + Q∗d∗(ζ̄)]g = 0, that is,
[
c∗(ζ̄)g
d∗(ζ̄)g

]
∈ M⊥ = JM . Hence[

d∗(ζ̄)g
c∗(ζ̄)g

]
= J

[
c∗(ζ̄)g
d∗(ζ̄)g

]
∈ M (4.1.22)

By (4.1.20), (4.1.21), and (4.1.22), g̃∗γ(w)[c(w)d∗(ζ̄)+ d(w)c∗(ζ̄)] g = 0. Since g̃ is
arbitrary, this proves (4.1.19), and the result follows. �

Theorem 4.1.11. Assume that v(z) has only simple poles.
(1) If f1 and f2 are finite linear combinations of eigenfunctions of (4.0.1), then∫ `

0

f∗2 (t)H(t)f1(t) dt = 〈V f1, V f2〉L2
0(τ ).

(2) If f ∈ L2(Hdx) and f is orthogonal to every eigenfunction of (4.0.1), then
V f = 0 as an element of L2

0(τ ).

Definition 4.1.12. By pseudospectral data for (1.0.1) we mean a collection τ of the
type considered above satisfying the properties (1) and (2) in Theorem 4.1.11.

Proof. (1) By linearity, we may assume that fj(x) = Y (ζj , x), where

Y (x, ζj) = W (x, ζj)
[

0
gj

]
∈ Lζj , j = 1, 2, (4.1.23)

as in (4.1.1) for some ζ1, ζ2 ∈ C. By Lemma 4.1.10, V Y (x, ζj) is equivalent to

Fj(z) =
{ ∆ζj gj , z = ζj ,

0, z 6= ζj ,
(4.1.24)

j = 1, 2, where ∆ζ is given by (4.1.18). To prove (1), we must show that∫ `

0

Y (t, ζ2)∗H(t)Y (t, ζ1) dt = 〈F1, F2〉L2
0(τ ) . (4.1.25)
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Case 1: ζ2 6= ζ̄1. Then
∫ `

0
Y (t, ζ2)∗H(t)Y (t, ζ1) dt = 0 by Proposition 4.1.1. By

(4.1.15),

〈F1, F2〉L2
0(τ ) =

∑
ζ∈C

F ∗2 (ζ̄)γ(ζ)F1(ζ) = F ∗2 (ζ̄1)γ(ζ)F1(ζ1),

since F1(ζ) = 0 for ζ 6= ζ1 by (4.1.24). In the same way, F2(ζ) = 0 for ζ 6= ζ2, and
hence F2(ζ̄1) = 0 because ζ̄1 6= ζ2. Thus F1 ⊥ F2 in L2

0(τ ), and (4.1.25) follows.

Case 2: ζ2 = ζ̄1. Write the two points as ζ1 = ζ and ζ2 = ζ̄. By (2.1.6),∫ `

0

Y (t, ζ̄)∗H(t)Y (t, ζ) dt =
[
0 g∗2

] ∫ `

0

W (t, ζ̄)∗H(t)W (t, ζ) dt

[
0
g1

]
=

[
0 g∗2

][∗ ∗
∗ i[c′(ζ)d∗(ζ̄) + d′(ζ)c∗(ζ̄)]

][
0
g1

]
= g∗2∆ζg1. (4.1.26)

Since

〈F1, F2〉L2
0(τ ) =

∑
z∈C

F ∗2 (z̄)γ(z)F1(z) = F ∗2 (ζ̄)γ(ζ)F1(ζ) = g∗2∆∗
ζ̄ γ(ζ)∆ζg1 ,

in order to verify (4.1.25), we must show that

g∗2∆∗
ζ̄ γ(ζ)∆ζg1 = g∗2∆ζg1. (4.1.27)

As in the proof of Lemma 4.1.10,
[
d∗(ζ̄)g1

c∗(ζ̄)g1

]
∈ ran

[
R
Q

]
. Hence

Rg̃1 = d∗(ζ̄)g1 and Qg̃1 = c∗(ζ̄)g1 (4.1.28)

for some g̃1 ∈ Cm. Thus

∆ζg1 = i [c′(ζ)d∗(ζ̄) + d′(ζ)c∗(ζ̄)]g1 = i [c′(ζ)R + d′(ζ)Q]g̃1. (4.1.29)

Next use (4.1.10) and (4.1.11) to write

i(ζ − z)[a(z)R + b(z)Q] = [γ(ζ) + (ζ − z)v1(z)][c(z)R + d(z)Q],

where v1(z) is holomorphic at z = ζ. On differentiating this relation with respect
to z and then setting z = ζ, we obtain

−i[a(ζ)R + b(ζ)Q] = −v1(ζ)[c(ζ)R + d(ζ)Q] + γ(ζ)[c′(ζ)R + d′(ζ)Q]. (4.1.30)

Therefore

g∗2∆∗
ζ̄ γ(ζ)∆ζg1

(4.1.29)
= g∗2∆∗

ζ̄ γ(ζ)i [c′(ζ)R + d′(ζ)Q]g̃1

(4.1.30)
= i g∗2∆∗

ζ̄

{
− i[a(ζ)R + b(ζ)Q] + v1(ζ)[c(ζ)R + d(ζ)Q]

}
g̃1

(4.1.28)
= g∗2∆∗

ζ̄

{
[a(ζ)d∗(ζ̄) + b(ζ)c∗(ζ̄)]g1

+ iv1(ζ)[c(ζ)d∗(ζ̄) + d(ζ)c∗(ζ̄)]g1

}
.



26 J. Rovnyak and L. A. Sakhnovich

Thus by (2.1.5) and (4.1.18), g∗2∆∗
ζ̄
γ(ζ)∆ζg1 = g∗2∆∗

ζ̄
g1 = g∗2∆ζg1. This proves

(4.1.27) and verifies (4.1.25) in Case 2.
(2) Let F = V f , where f ∈ L2(Hdx) and f ⊥ Lζ for all ζ ∈ C. To show that

F = 0 as an element of L2
0(τ ), by (4.1.16) we must show that γ(ζ)F (ζ) = 0 for

every ζ ∈ C. In fact, for every g ∈ Cm,

W (x, ζ̄)
[

0
γ(ζ)∗g

]
∈ Lζ̄ (4.1.31)

by Proposition 4.1.9. By assumption, f is orthogonal to (4.1.31), and so by (2.2.1),

g∗γ(ζ)F (ζ) = g∗γ(ζ)
∫ `

0

[
0 Im

]
W (t, ζ̄)∗H(t)f(t) dt = 0.

Since g is arbitrary, γ(ζ)F (ζ) = 0. �

4.2. Definite case: pseudospectral functions

Let a system (4.0.1) be given as before, and in addition assume that H(x) ≥ 0
a.e. Then the function v(z) defined by (4.1.10) is a Nevanlinna function by (2.3.2).
The main results of this section appear in Theorems 4.2.2, 4.2.4, and 4.2.5.

Proposition 4.2.1. The eigenvalues of (4.0.1) are real. For any complex number ζ,
the following are equivalent:

(i) ζ is an eigenvalue for (4.0.1);
(ii) c(ζ)R + d(ζ)Q is not invertible;
(iii) ζ is a pole of v(z).

Proof. Since H(x) ≥ 0, the eigenvalues of (4.0.1) are real by Proposition 4.1.1 (or
Proposition 3.2.1). The equivalence of (i) and (ii) is shown in Proposition 4.1.8.

(iii) =⇒ (ii) This is obvious from the definition of v(z) in (4.1.10).
(i) =⇒ (iii) If ζ is an eigenvalue of (4.0.1), then there is a Y 6= 0 in L2(Hdx)

of the form (4.1.1). By Lemma 4.1.10, V Y is equivalent to the function F (x) given
by (4.1.17). Since H(x) ≥ 0, by Theorem 4.1.11(1) and (4.1.15),

0 <

∫ `

0

Y ∗(t, ζ)H(t)Y (t, ζ) dt = 〈F, F 〉L2
0(τ ) = F ∗(ζ̄)γ(ζ)F (ζ).

So γ(ζ) 6= 0, and hence ζ is a pole of v(z) by (4.1.11). �

Since v(z) is meromorphic in C and a Nevanlinna function, its poles are real
and simple, and hence the pseudospectral data constructed in Theorem 4.1.11 take
a simpler form. By Proposition 4.2.1, the poles of v(z) coincide with the eigenvalues
{λj}r

j=1 of (4.0.1). Thus we have

v(z) =
τj

λj − z
+ vj(z),



Pseudospectral functions 27

where τj ≥ 0 and vj(z) is holomorphic at λj , j = 1, . . . , r, and

v(z) = α + βz +
∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
dτ(t), (4.2.1)

where τ(t) is a nondecreasing m ×m matrix-valued step function with jumps τj

at the points λj , j = 1, . . . , r. The inner product space L2
0(τ ) is positive and has

a Hilbert space completion to L2(dτ).

Theorem 4.2.2. The transform F = V f ,

F (z) =
∫ `

0

[
0 Im

]
W ∗(x, z̄) H(x)f(x) dx,

acts as a partial isometry from L2(Hdx) into L2(dτ) with initial space N equal to
the closed span N =

∨ r
j=0 Lλj of all eigenfunctions for the system (4.0.1).

It will be shown in Theorem 4.2.4 that the mapping in Theorem 4.2.2 is
always onto. Theorem 4.2.2 constructs a family of pseudospectral functions for the
system (1.0.1) in the sense of the following definition.

Definition 4.2.3. A pseudospectral function for (1.0.1) is a nondecreasing function
τ(t) of real t such that the transform

(V f)(z) =
∫ `

0

[
0 Im

]
W ∗(x, z̄) H(x)f(x) dx

acts as a partial isometry from L2(Hdx) into L2(dτ). If the partial isometry is an
isometry, we call τ(t) a spectral function for (1.0.1). We say that a pseudospectral
function τ(t) is orthogonal if the range of the partial isometry is all of L2(dτ).

Proof of Theorem 4.2.2. By Theorem 4.1.11(1), V acts isometrically from the lin-
ear span of all eigenfunctions into L2(dτ). Hence V acts isometrically from N
into L2(dτ). Theorem 4.1.11(2) asserts that every function in L2(Hdx) which is
orthogonal to all eigenfunctions is mapped by V to the zero element of L2(dτ). �

Alternate proof of part of Theorem 4.2.2. We give another proof that V is isomet-
ric on N, using resolvent operators and Theorems 4.1.4 and 3.2.4. This argument
avoids any use of Lemma 4.1.10 and Theorem 4.1.11.

By (3.2.9), V is a contraction from L2(Hdx) into L2(dτ). It is therefore
sufficient to show that for any eigenvalues λj and λk,

〈Y (x, λj), Y (x, λk)〉H = 〈Fj(t), Fk(t)〉L2(dτ), (4.2.2)

where Y (x, λj) and Y (x, λk) are corresponding eigenfunctions and Fj(z) and Fk(z)
are their transforms under V . By Theorem 4.1.4,

B(z)Y (x, λj) =
i

z − λj
Y (x, λj)
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for every z such that c(z)R + d(z)Q is invertible. For such z,

〈B(z)Y (x, λj), Y (x, λk)〉H =
i

z − λj
〈Y (x, λj), Y (x, λk)〉H .

We deduce that

lim
y→∞

y 〈B(iy)Y (x, λj), Y (x, λk)〉H = 〈Y (x, λj), Y (x, λk)〉H , (4.2.3)

where the limit is through points such that c(iy)R + d(iy)Q is invertible. By the
identity (3.2.8) in Theorem 3.2.4,

lim
y→∞

y 〈B(iy)Y (x, λj), Y (x, λk)〉H = lim
y→∞

∫ ∞

−∞

−iy

t− iy
F ∗j (t) dτ(t) Fk(t)

= 〈Fj(t), Fk(t)〉L2(dτ). (4.2.4)

We obtain (4.2.2) from (4.2.3) and (4.2.4). �

Theorem 4.2.4. The pseudospectral function τ(t) constructed in Theorem 4.2.2 is
orthogonal.

Proof. It is sufficient to show that for each j = 1, . . . , r, V Lλj = Mj , where Mj is
the subspace of functions in L2(dτ) which are supported at λj .

By Lemma 4.1.10, V Lλj
⊆ Mj . Since V |Lλj

is one-to-one and dim Mj =
rank τj , we only need to show that dim Lλj ≥ rank τj . For any g ∈ Cm,

Y (x, λj) = W (x, λj)
[

0
τjg

]
∈ Lλj

(4.2.5)

by Proposition 4.1.9. If Y = 0 as an element of L2(Hdx), then∫ `

0

Y ∗(t, λj)H(t)Y (t, λj) dt = 0. (4.2.6)

Since H(x) ≥ 0 on [0, `] we conclude that H(x)1/2Y (x, λj) = 0, and hence
dY

dx
= izJH(x)Y = 0

a.e. on [0, `]. Thus Y is constant, and so Y (x, λj) ≡
[

0
τjg

]
. Then by (4.2.6),

[
0 g∗τj

] ∫ `

0

H(t) dt

[
0

τjg

]
= 0,

and so τjg = 0 by the condition (iii′) at the beginning of §2. Therefore we can find
a linearly independent set of elements of Lλj of the form (4.2.5) containing rank τj

elements. Hence dim Lλj ≥ rank τj , and the result follows. �

Theorem 4.2.5. The following are equivalent.

(i) The function τ(t) in Theorem 4.2.2 is an orthogonal spectral function for the
system (1.0.1).
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(ii) The eigenfunctions for (4.0.1) are complete in L2(Hdx).
(iii) For some and hence any z in the domain of the resolvent, ker B(z) = {0}.

Proof. (i) ⇔ (ii) This follows from Theorems 4.2.2 and 4.2.4.
(ii) ⇔ (iii) By Proposition 4.1.7, K = kerB(z) is independent of z in the

domain of the resolvent. Therefore in (iii) it is sufficient to consider some z = z0

such that z0 = z̄0 and c(z0)R+d(z0)Q is invertible. Then iB(z0) is a compact self-
adjoint operator by Proposition 3.1.7. By the spectral theorem, the eigenfunctions
for iB(z0) are complete in L2(Hdx). By Theorem 4.1.4, the eigenfunctions for
iB(z0) for its nonzero eigenvalues have the same closed span as the eigenfunctions
for (4.0.1).

Now assume (ii). Then L2(Hdx) is the closed span of the eigenfunctions for
iB(z0) for its nonzero eigenvalues. So the origin is not an eigenvalue of iB(z0).
Thus kerB(z0) = {0}, and (iii) follows. The proof that (iii) implies (ii) follows on
reversing these steps. �

Corollary 4.2.6. Conditions (i)–(iii) in Theorem 4.2.5 hold if H(x) has invertible
values a.e.

Proof. We verify condition (iii) in Theorem 4.2.5. Suppose f ∈ ker B(z0) for some
real number z0 such that c(z0)R + d(z0)Q is invertible. If H(x) has invertible
values, then a function in L2(Hdx) is equivalent to the zero element of the space
if and only if it is equal to zero a.e. Hence by Definition 3.1.6 and (3.1.4),

W (x, z0)
{[

Im 0
−iv(z0) 0

]
J

∫ x

0

W ∗(t, z0)H(t)f(t) dt

+
[

0 0
−iv(z0) −Im

]
J

∫ `

x

W ∗(t, z0)H(t)f(t) dt

}
≡ 0.

Multiply by W (x, z0)−1, then differentiate to get W ∗(x, z0)H(x)f(x) = 0 a.e.
Again since H(x) has invertible values a.e., it follows that f(x) = 0 a.e. This
verifies the condition (iii) in Theorem 4.2.5, and so the corollary follows. �

Recall that by Proposition 4.1.7, the subspace K = ker B(z) is independent
of z in the domain of the resolvent. Let L̂2(Hdx) be as in Definition 4.1.5.

Proposition 4.2.7. (1) The subspace K = kerB(z) contains L2(Hdx)	 L̂2(Hdx).
(2) The eigenfunctions for (4.0.1) are complete in L2(Hdx)	 K.

Proof. (1) Let f ∈ L2(Hdx)	 L̂2(Hdx). We must show that B(z)f = 0 for z in
the domain of the resolvent. We may suppose that z ∈ C+ ∪C−, in which case we
can use the representation (3.2.8). It follows from (3.2.8) that for any g ∈ L2(Hdx),

〈iB(z)f, g〉H =
∫ ∞

−∞

G∗(t)dτ(t)F (t)
t− z

,
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where F and G are the transforms of f and g as in (2.2.1). Since we assume that f is
orthogonal to L̂2(Hdx), F ≡ 0 by Proposition 4.1.6(1). Thus iB(z)f ⊥ L2(Hdx),
and hence B(z)f = 0.

(2) Write K = kerB(z0), where z0 is a real number such that c(z0)R+d(z0)Q
is invertible. As in the proof of Theorem 4.2.5, the eigenfunctions for (4.0.1) have
the same closed span as the eigenfunctions for iB(z0) for its nonzero eigenvalues.
This closed span is L2(Hdx)	 K because K = kerB(z0). �

In A. L. Sakhnovich [13], the term “pseudospectral function” is used in a
little different way from our definition. What is called a “pseudospectral function”
in [13] will be called a “strong pseudospectral function” here.

Definition 4.2.8. By a strong pseudospectral function for a system (1.0.1) we
mean a pseudospectral function τ(t) such that the kernel of V as an operator
from L2(Hdx) into L2(dτ) coincides with the set of all f in L2(Hdx) such that
(V f)(z) ≡ 0 for all z. A strong spectral function for (1.0.1) is a spectral function
τ(t) such that, whenever f belongs to L2(Hdx) and its transform F = V f is zero
in L2(dτ), then (V f)(z) ≡ 0 for all z. The term orthogonal applied to these notions
has the same meaning as in Definition 4.2.3.

Thus if τ(t) is a pseudospectral function, it may occur that the subspaces

K+ = {f : f ∈ L2(Hdx) and V f = 0 in L2(dτ)},
K− = {f : f ∈ L2(Hdx) and (V f)(z) = 0 for all z ∈ C},

(4.2.7)

do not coincide, although in every case K− ⊆ K+. The condition for τ(t) to be a
strong pseudospectral function is that K+ = K−.

The next result follows easily from Theorem 4 of A. L. Sakhnovich [13]. Set

v0(z) = i[a(z) + b(z)][c(z) + d(z)]−1. (4.2.8)

Since c(z) + d(z) is entire and has value Im for z = 0, it is invertible except at
isolated points. It is easy to see that Im v0(z) ≥ 0 on C+ (but v0(z) 6= v∗0(z̄)).

Proposition 4.2.9. The pseudospectral function τ(t) constructed in Theorem 4.2.2
is strongly pseudospectral if

lim
y→∞

1
y

[c∗(−iy)− d∗(−iy)][v(iy)− v0(iy)][c(iy)− d(iy)] = 0. (4.2.9)

In this case, the closed span N =
∨ r

j=0 Lλj of the eigenfunctions of (4.0.1) is equal
to the closed span of all functions

Y (x, z) = W (x, z)
[
0
g

]
, z ∈ C, g ∈ Cm. (4.2.10)

Proof. Define K+ and K− by (4.2.7). By Theorem 4.2.2, V acts as a partial isom-
etry from L2(Hdx) into L2(dτ) with initial space K⊥+ =

∨ r
j=0 Lλj . By [13, Theo-

rem 4(a)], the condition (4.2.9) implies that the isometric set of V coincides with
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K⊥−. Hence K⊥− = K⊥+ =
∨ r

j=0 Lλj . In particular, K− = K+, and therefore τ(t)
is a strong pseudospectral function. The last statement follows from the equality
(
∨ r

j=0 Lλj )
⊥ = K−. together with the observation that a function f in L2(Hdx)

belongs to K− if and only if f is orthogonal to all functions of the form (4.2.10). �

Example 4.2.10. A simple example, adapted from Orcutt [9], illustrates some of
our results. Take m = 1 and fix a number 0 < x0 < `. Consider a system (1.0.1)
with

H(t) =



[
1 0
0 0

]
, 0 ≤ t ≤ x0,[

0 0
0 1

]
, x0 < t ≤ `.

(4.2.11)

Then L2(Hdx) is an infinite-dimensional Hilbert space. The intervals (0, x0) and
(x0, `) are H-indivisible, and therefore the subspace L̂2(Hdx) of Definition 4.1.5
is two-dimensional. Straightforward calculations show that

W (t, z) =



[
1 0

izt 1

]
, 0 ≤ t ≤ x0,[

1− x0z
2(t− x0) iz(t− x0)

ix0z 1

]
, x0 < t ≤ `,

(4.2.12)

and

(V f)(z) =
∫ `

x0

f2(t) dt, f(x) =
[
f1(x)
f2(x)

]
∈ L2(Hdx). (4.2.13)

The functions (2.1.4) are given by[
a(z) b(z)
c(z) d(z)

]
=

[
1− x0z

2(`− x0) −ix0z

−iz(`− x0) 1

]
. (4.2.14)

As an illustration of Theorem 4.2.2, consider a system (4.0.1), where R and
Q are numbers not both zero such that R̄Q + Q̄R = 0. Set

v(z) = i
a(z)R + b(z)Q
c(z)R + d(z)Q

= i
[1− x0z

2(`− x0)]R− ix0zQ

−iz(`− x0)R + Q
.

When R 6= 0,

v(z) =
τ1

λ1 − z
+ x0z ,

where τ1 = 1/(` − x0), λ1 = ρ/(` − x0), and ρ = −iQ/R. Thus τ(x) is a step
function with a single jump at x = λ1. The eigenspace Lλ1 is one-dimensional and
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spanned by

Y (t, λ1) =



[
0
1

]
, 0 ≤ t ≤ x0,[

iλ1(t− x0)
1

]
, x0 ≤ t ≤ `.

(4.2.15)

We easily check that V is a partial isometry from L2(Hdx) onto L2(dτ) with
initial space Lλ1 . In particular, a pseudospectral function need not be a spectral
function. When R = 0, v(z) = x0z and τ(x) is constant. There are no poles and no
eigenvalues, and we interpret the span of the eigenfunctions to be the zero subspace
of L2(Hdx). Trivially V is the zero operator on L2(Hdx) to L2(dτ) = {0}.

The question arises if Theorem 4.2.2 generalizes to systems (3.0.1) with non-
constant functions R(z) and Q(z). That is, is the function τ(x) in (3.2.3) is always
a pseudospectral function? An example shows that this is not necessarily the case.
Choose the Nevanlinna pair

R(z) = 1, Q(z) = −iqz, z ∈ C,

where q > 0. By (4.2.14),

v(z) = i
a(z)R(z) + b(z)Q(z)
c(z)R(z) + d(z)Q(z)

= x0z −
1

`− x0 + q

1
z

,

and so

τ(x) =


1

`− x0 + q
, x ≥ 0,

0, x < 0.

By (4.2.13), the tranform F = V f of any f in L2(Hdx) is constant. The orthogonal
complement of kerV in L2(Hdx) is spanned by the element

f0(x) =


[
0
0

]
, 0 < x < x0,[

0
1

]
, x0 < x < `,

whose transform F0 = V f0 is given by F0(z) = `− x0. Thus

‖F0‖2L2(dτ) =
(`− x0)2

`− x0 + q
< `− x0 = ‖f0‖2H ,

so V is not isometric on the orthogonal complement of its kernel. Hence τ(x) is
not a pseudospectral function. We remark that the inequality ‖F0‖2L2(dτ) ≤ ‖f0‖2H
is a special case of (3.2.9).
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