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1 Introduction

1.1. Let M be a Riemannian manifold. In differential geometry one considers the
following sets of data associated with M :

• E(M), the spectrum of the Laplace-Beltrami operator (for the purposes of this
article, the spectrum is the collection of eigenvalues with their multiplicities);

• L(M), the length spectrum, i.e. the collection of lengths of all closed geodesics
in M with multiplicities;

• L(M), the weak length spectrum, i.e. the collection of lengths of all closed
geodesics without multiplicities.

(Of course, in order to ensure that the multiplicities in the definition of E(M) and
L(M) are finite, one needs to impose some additional conditions on M ; however we
will not discuss these technicalities here particularly because in the case of compact
locally symmetric spaces, which are the most important classes of manifolds to be
considered in this article, problems of this nature do not arise.) Two Riemannian
manifolds M1 and M2 are called commensurable if they admit a common finite-
sheeted cover M , i.e. if there is a diagram

M
π1

����
��

��
�� π2

���
��

��
��

�

M1 M2

in which M is a Riemannian manifold and π1, π2 are finite-sheeted locally isometric
covering maps.

We can now formulate the following question that has attracted the attention
of mathematicians working in different areas of analysis and geometry for quite
some time:
Let M1 and M2 be Riemannian manifolds. Are M1 and M2 necessarily isomet-
ric/commensurable if:

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

(2) L(M1) = L(M2) (or L(M1) = L(M2)), i.e. M1 and M2 are iso-length spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are length-commensurable.

Among conditions (1)–(3), the condition of isospectrality is definitely the most
famous one. In fact, the question of whether (or when) isospectrality implies
isometricity is best known in its informal formulation due to Mark Kac [16] (1966),
which is “Can you hear the shape of a drum?” For historical accuracy, we should



Weakly Commensurable Groups 497

point out that the question itself was analyzed in various forms long before [16],
and this analysis had provided substantial evidence in favor of the affirmative
answer. In particular, H. Weyl in 1911 proved a result, which was subsequently
sharpened and generalized by various authors and is currently known as Weyl’s
Law. It states that if M is an n-dimensional compact Riemannian manifold, and
0 � λ0 � λ1 � λ2 � · · · is the sequence of the eigenvalues of the Laplacian of M ,
then

N(λ) =
vol(M)

(4π)n/2Γ
(

n
2 + 1

)λn + o(λn),

where
N(λ) = #{j | √λj � λ}

and Γ(s) is the Γ-function (see [3], [25] for a discussion of Weyl’s Law, its history
and applications in mathematics and physics). This implies that the distribution
of the eigenvalues alone allows one to recover such invariants of M as its dimension
and volume, and therefore these invariants are shared by all isospectral Rieman-
nian manifolds. Moreover, isospectral compact Riemannian manifolds share the
heat kernel invariants (see [39] and references therein). These powerful analytic
techniques and results led one to believe that isospectral manifolds should indeed
be isometric. In 1964, however, Milnor [24] gave an example of two isospectral,
but not isometric, flat 16-dimensional tori. Then in 1980, M.-F. Vignéras [43]
used the arithmetic of quaternion algebras to construct nonisometric isospectral
Riemann surfaces. A few years later, Sunada [40] found a different method for
constructing isospectral and iso-length spectral, but not isometric, Riemannian
manifolds. Sunada’s method relied on rather simple group-theoretic properties of
the fundamental group, which made it applicable in many situations. In fact, since
its discovery, this method has been implemented in a variety of situations to pro-
duce examples of nonisometric manifolds for which various geometric invariants are
equal (cf., for example, [20]). Notice, however, that the constructions of Vignéras
and Sunada always produce commensurable manifolds. So, it appears that the
“right question” regarding isospectral manifolds should be whether two isospectral
(compact Riemannian) manifolds are necessarily commensurable. While the an-
swer to this question is still negative in the general case (cf. Lubotzky et al. [21]),
our results [30], [31], [32] show that the answer is in the affirmative for many com-
pact arithmetically defined locally symmetric spaces (cf. Theorem 6.8). Before our
work, such results were available only for arithmetically defined hyperbolic 2- and
3-manifolds, cf. [9] and [36].

Next, we turn to the isometricity question formulated in terms of condition
(2) of iso-length spectrality. It is worth pointing out that this question is dictated
even by (näıve) geometric intuition. Indeed, if we take Mi to be the 2-dimensional
Euclidean sphere of radius ri for i = 1, 2, then L(Mi) = {2πri}. So, in this case
the condition of iso-length spectrality L(M1) = L(M2) does imply the isometricity
of M1 and M2, and it is natural to ask if this sort of conclusion can be drawn in a
more general situation. Superficially, this question does not seem to be connected
with isospectrality, but in fact using the trace formula one proves that if M1 and
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M2 are compact locally symmetric spaces of nonpositive curvature then

E(M1) = E(M2) ⇒ L(M1) = L(M2)

(cf. [30, Theorem 10.1]). It follows that nonisometric isospectral locally symmetric
spaces (in particular, those constructed by Vignéras, Sunada and Lubotzky et al.)
automatically provide examples of nonisometric iso-length spectral manifolds, and
again one should ask about commensurability rather than isometricity of iso-length
spectral manifolds.

While there are important open questions about commensurability expressed
in terms of the classical conditions of isospectrality and iso-length spectrality (the
most famous one being whether two isospectral Riemann surfaces are necessarily
commensurable), it seems natural to suggest that a systematic study of commensu-
rability should involve (or even be based upon) conditions that are invariant under
passing to a commensurable manifold. From this perspective, one needs to point
out that conditions (1) and (2), of isospectrality and iso-length spectrality, respec-
tively, do not possess this property, while condition (3) of length-commensurability
does. Note that (3) is formulated in terms of the set Q ·L(M) which is sometimes
called the rational length spectrum. While this set is not as closely related to
the geometry of M as L(M), it nevertheless has several very convenient features.
First, it indeed does not change if M is replaced by a commensurable manifold.
Second, unlike L(M), which has been completely identified in very few situations,
Q · L(M) can be described in more case. Here is one example.

1.2. Example. Let H = {x+iy ∈ C|y > 0} be the upper half-plane with the stan-
dard hyperbolic metric ds2 = y−2(dx2 + dy2). It is well-known that the standard
isometric action of SL2(R) on H by fractional linear transformations allows us to
identify H with the symmetric space SO2(R)\SL2(R). Let π : SL2(R) → PSL2(R)
be the canonical projection. Given a discrete subgroup Γ ⊂ SL2(R) containing
{±1} with torsion-free image π(Γ), the quotient M = H/Γ is a Riemann surface.
It is well-known that closed geodesics in M correspond to nontrivial semi-simple
elements in Γ (cf. [33, 2.1]); the precise nature of this correspondence is not impor-
tant for us as we only need information about the length. One shows that if cγ is
the closed geodesic in M corresponding to a semi-simple element γ ∈ Γ, γ �= ±1,
then its length is given by

�(cγ) =
2
nγ

· | log |tγ || (1)

where tγ is an eigenvalue of γ (note that since π(Γ) is discrete and torsion-free,
any semi-simple γ ∈ Γ is automatically hyperbolic, i.e. tγ ∈ R), and nγ � 1 is an
integer which geometrically is the winding number and algebraically is the index
[CΓ(γ) : {±1} · 〈γ〉], where CΓ(γ) is the centralizer of γ in Γ (in other words,
CΓ(γ) = T ∩ Γ where T is the maximal R-torus of SL2 containing γ). So, the
length spectrum L(M) consists of the values �(cγ) where γ runs over semi-simple
elements in Γ \ {±1} with the property that CΓ(γ) = {±1} · 〈γ〉 (primitive semi-
simple elements), while the rational length spectrum Q ·L(M) is the union of the
sets Q · log |tγ |, where γ runs over all semi-simple γ ∈ Γ \ {±1}, and in fact it
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suffices to take just one element out of every class of elements having the same
centralizer in Γ, i.e. one element in (T ∩Γ) \ {±1} for every maximal R-torus T of
SL2 such that the latter set is non-empty. Now, let us recall the following example
which demonstrates the well-known fact that the problem of identifying primitive
semi-simple elements is extremely difficult.

Let D be a quaternion division over Q that splits over R, and let Γ be a torsion-
free arithmetic subgroup of G(Q) where G = SL1,D. One can view Γ as a discrete
subgroup of G(R) � SL2(R). Set M = H/Γ. It is well-known that the maximal
subfields of D are of the form K = Q(

√
d) with d satisfying d /∈ Q×

p
2 for primes

p where D is ramified (thus, the relevant values of d can be easily characterized
in terms of congruences). Clearly, the problem of describing primitive semi-simple
elements in Γ contains the problem of identifying the fundamental unit ε(d) in
every such subfield with d > 0 (or more precisely, the smallest unit with norm 1),
which is beyond our reach. On the other hand, there is a well-known formula that
gives some unit in a real quadratic field Q(

√
d) (assuming that d is square-free)

η(d) =
d−1∏
r=1

[
sin

(πr

d

) ]−( d
r )

, (2)

where
(

d

r

)
is the Kronecker symbol (or the character associated with the quadratic

extension), cf. [6, Ch. V, §4, Theorem 2]. (Recall that ε(d) and η(d) are related by
the equation η(d) = ε(d)2h(d), where h(d) is the class number of Q(

√
d), indicating

that a systematic description of ε(d) for a sufficiently general infinite sequence of
d’s is nearly impossible.) So, in this case the rational length spectrum can be
described as the set of all rational multiples of log η(d), where η(d) is given by (2)
and d runs through positive square-free integers described by certain congruences.
(It would be interesting to see if one can give a similar description of the rational
length spectrum for other arithmetically defined locally symmetric spaces — see
[30, Proposition 8.5] regarding the formula for the length of a closed geodesic in the
general case. Obviously, this will require an intrinsic construction of (sufficiently
many) units in a Q-torus, which has not been offered so far.)

This example suggests that at least in some cases the rational length spectrum
Q · L(M) may be more tractable than the length spectrum L(M) or the spec-
trum E(M) of the Laplace-Beltrami operator. But then the question arises if the
rational length spectrum retains enough information to characterize the commen-
surability class of M . So, we would like to point out that our entire work that
resolved many questions about isospectral and iso-length spectral arithmetically
defined locally symmetric spaces of absolutely simple real algebraic groups is based
on an analysis of the rational length spectrum and length-commensurability. In
fact, with just one exception, length-commensurability and the (much) stronger
condition of isospectrality lead to the same new results about isospectral locally
symmetric spaces (see Theorem 6.8 and the subsequent discussion). So, we hope
that the analysis of the rational length-spectrum and the associated notion of
length-commensurability will become a standard tool in the investigation of lo-
cally symmetric spaces. Furthermore, the notion of length-commensurability has
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an algebraic counterpart, which we termed weak commensurability (of Zariski-
dense subgroup) — see §2. What is interesting is that the study of the geometric
problems mentioned earlier has led to a number of algebraic problems of consid-
erable independent interest such as characterization of absolutely almost simple
algebraic K-groups in terms of the isomorphism classes of their maximal K-tori,
and in particular, characterizing finite-dimensional division K-algebras in terms
of the isomorphism classes of their maximal subfields. These questions have been
completely resolved for algebraic groups over number fields and their arithmetic
subgroups, and we will review these results in §§3–4, but remain an area of active
research over general fields, with some important results obtained very recently
(cf. §4). Thus, in broad terms, our project can be described as the analysis of
the consequences of length-commensurability for locally symmetric spaces and of
related algebraic problems involving classification of algebraic groups over general
(finitely-generated) fields and the investigation of their Zariski-dense subgroups.

1.3. Hyperbolic manifolds. Cumulatively, our papers [30], [31], [32] and the
results of Garibaldi [12] and Garibaldi-Rapinchuk [13] answer the key questions
about length-commensurable arithmetically defined locally symmetric spaces of
absolutely simple real algebraic groups of all types. In particular, we know when
length-commensurability implies commensurability (the answer depends on the
Killing-Cartan type of the group), and that in all cases the arithmetically defined
locally symmetric spaces that are length-commensurable to a given arithmetically
defined locally symmetric space form finitely many commensurability classes. We
will postpone the technical formulations of these results until §6, and instead
showcase the consequences of these results for real hyperbolic manifolds.

Let Hd be the real hyperbolic d-space. The isometry group of Hd is G =
PO(d, 1), and by an arithmetic hyperbolic d-manifold we mean the quotient M =
Hd/Γ by an arithmetic subgroup Γ of G (see §3 regarding the notion of arithmetic-
ity). Previously, results about iso-length spectral arithmetically defined hyperbolic
d-manifolds were available only for d = 2 (Reid [36]) and d = 3 (Reid et al. [9]). We
obtained the following for length-commensurable (hence, isospectral) arithmetic
hyperbolic manifolds of any dimension d �= 3.

Theorem 1.4. Let M1 and M2 be arithmetically defined hyperbolic d-manifolds.
(1) Suppose d is either even or ≡ 3(mod 4). If M1 and M2 are not commensu-

rable, then after a possible interchange of M1 and M2, there exists λ1 ∈ L(M1)
such that for any λ2 ∈ L(M2), the ratio λ2/λ1 is transcendental; in partic-
ular, M1 and M2 are not length-commensurable. Thus, in this case length-
commensurability implies commensurability.

(2) For any d ≡ 1(mod 4) there exist length-commensurable, but not commensu-
rable, arithmetic hyperbolic d-manifolds.

Furthermore, one can ask about how different are L(M1) and L(M2) (or
Q · L(M1) and Q · L(M2)) given the fact that M1 and M2 are not length-
commensurable. For example, can the symmetric difference L(M1) � L(M2) be
finite? Under some minor additional assumptions, we proved in [32] that if M1 and
M2 are non-length commensurable arithmetically defined hyperbolic d-manifolds
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(d �= 3), and Fi is the subfield of R generated by L(Mi) (i = 1, 2), then the com-
positum F1F2 has infinite transcendence degree over at least one of the fields F1

or F2. (Informally, this means that if M1 and M2 are not length-commensurable
then the sets L(M1) and L(M2) are very different.) In fact, the same conclusion
holds true for quotients Mi = Hdi/Γi (i = 1, 2) by any Zariski-dense subgroups
Γi of PO(di, 1) if d1 �= d2 (assuming that d1, d2 �= 3). We have similar results for
complex and quaternionic hyperbolic spaces.

2 Weakly commensurable Zariski-dense subgroups

2.1. The method developed for studying the consequences of the length-commen-
surability of two locally symmetric spaces is based on translating the problem
into a study of the implications of weak commensurability of their fundamental
groups. To motivate the formal definition, let us return for a moment to the
case of Riemann surfaces which we considered in Example 1.2. Let M1 = H2/Γ1

and M2 = H2/Γ2 be two Riemann surfaces where Γ1, Γ2 ⊂ SL2(R) are discrete
subgroups with torsion-free images in PSL2(R). For i = 1, 2, let cγi be a closed
geodesic in Mi corresponding to a semi-simple element γi ∈ Γi \ {±1}. Then it
follows from (1) that

�Γ1(γ1)/�Γ2(γ2) ∈ Q ⇔ ∃ m, n ∈ N such that tmγ1
= tnγ2

,

or equivalently, the subgroups generated by the eigenvalues have nontrivial inter-
section. This leads us to the following.

2.2. Definition. Let G1 ⊂ GLN1 and G2 ⊂ GLN2 be two semi-simple algebraic
groups defined over a field F of characteristic zero.
(a) Semi-simple elements γ1 ∈ G1(F ) and γ2 ∈ G2(F ) are said to be weakly com-

mensurable if the subgroups of F
×

generated by their eigenvalues intersect
nontrivially.

(b) (Zariski-dense) subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are weakly commen-
surable if every semi-simple element γ1 ∈ Γ1 of infinite order is weakly com-
mensurable to some semi-simple element γ2 ∈ Γ2 of infinite order, and vice
versa.

It should be noted that in [30] we gave a more technical, but equivalent, defini-
tion of weakly commensurable elements, viz. we required the existence of maximal
F -tori Ti of Gi for i = 1, 2 such that γi ∈ Ti(F ) and for some characters χi ∈ X(Ti)
we have

χ1(γ1) = χ2(γ2) �= 1.

This reformulation of (a) demonstrates that the notion of weak commensurability
does not depend on the choice of matrix realizations of the Gi’s (and is in fact
more convenient in our proofs).

The above discussion of Riemann surfaces implies that if two Riemann surfaces
M1 = H2/Γ1 and M2 = H2/Γ2 are length-commensurable, then the corresponding
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fundamental groups Γ1 and Γ2 are weakly commensurable. As we will see later, the
same conclusion remains valid for general locally symmetric spaces of finite volume
(cf. Theorem 6.2), but now we would like to depart from geometry and discuss
some algebraic aspects of weak commensurability, along with a few problems of
independent interest that its analysis leads to.

From a purely algebraic point of view, the investigation of weakly commen-
surable Zariski-dense subgroups fits into the classical framework of characterizing
linear groups in terms of the spectra (eigenvalues) of its elements. However in the
set-up described in Definition 2.2 it is not obvious at all how one should match the
eigenvalues of (semi-simple) elements γ1 ∈ Γ1 and γ2 ∈ Γ2 as generally speaking
γ1 has N1 eigenvalues and γ2 has N2. In the theory of complex representations of
finite groups, one combines the eigenvalues of elements into the character values,
and organizes the information about eigenvalues into the character table which
involves all representations. This approach appears problematic for Zariski-dense
subgroups of semi-simple algebraic groups as the ambient groups G1 and G2 have
infinitely many inequivalent representations, so matching somehow their represen-
tations and requiring two elements to have the same eigenvalues in all respective
representations is not practical, to say the least. On the other hand, instead
of considering all representations, one could try to match the eigenvalues in a
“canonical” matrix realization of the ambient group, but unfortunately it is not
clear which matrix realization should be considered canonical. A reasonable al-
ternative to these two extreme approaches would be to match the eigenvalues of
γ1 ∈ Γ1 and γ2 ∈ Γ2 in some two representations of G1 and G2, respectively. This,
however, actually brings us back to the notion of weak commensurability. Indeed,
given an algebraic F -group G ⊂ GLN and a (semi-simple) element γ ∈ G(F )
with eigenvalues λ1, . . . , λN ∈ F

×
, for any rational representation ρ : G → GLN ′ ,

every eigenvalue of ρ(γ) is of the form λm1
1 · · ·λmN

N (where m1, . . . , mN are some
integers), in other words, it is an element of the subgroup of F

×
generated by the

eigenvalues of γ in the original representation. Conversely, any element of this
subgroup can be realized as an eigenvalue of ρ(γ) in some rational representation
ρ. Thus, in the above notations, semi-simple γ1 ∈ Γ1 and γ2 ∈ Γ2 are weakly com-
mensurable if one nontrivial eigenvalue of ρ1(γ1) in some rational representation
ρ1 : G1 → GLN ′

1
equals an eigenvalue of ρ2(γ2) in some rational representation

ρ2 : G2 → GLN ′
2
. Consequently, weak commensurability provides a way of match-

ing the eigenvalues of semi-simple elements in Γ1 and Γ2 that is independent of
the choice of the original representations of G1 and G2. (Using the fact that a
finitely generated linear group over a field of characteristic zero contains a neat
subgroup of finite index (cf. [34, Theorem 6.11]), one shows that if Γ1 and Γ2 are
finitely generated and Δi ⊂ Gi(F ) is commensurable with Γi then Γ1 and Γ2 are
weakly commensurable if and only if Δ1 and Δ2 are weakly commensurable (see
Lemma 2.3 of [30]). Consequently, in the analysis of weak commensurability of
finitely generated subgroups Γ1 and Γ2, one can assume that the subgroups are
neat, and we would like to observe that in this case the weak commensurability
of γ1 ∈ Γ1 and γ ∈ Γ2 implies the weak commensurability of γm

1 and γn
2 for any

nonzero m and n.)
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Thus, the relation of weak commensurability of two Zariski-dense subgroups of
semi-simple algebraic groups very loosely corresponds to the relation between two
finite groups under which each column of the character table of one group contains
an element that appears in the character table for the other group, and vice versa.
Clearly, the latter relation is inconsequential for finite groups, viz. it may hold for
infinitely many pairs of nonisomorphic groups, and therefore does not impose any
significant restrictions on the finite groups at hand.

So, we find it quite remarkable that the weak commensurability of Zariski-dense
subgroups enables one to recover some characteristics of Γ1 and Γ2 (and/or G1

and G2) — this is made possible by the existence in Γ1 and Γ2 of special elements
called generic elements, see §4 and [33, §9] . We begin our account of the results
for weakly commensurable Zariski-dense subgroups with the following.

Theorem 2.3 ([30, Theorem 1]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero. Assume
that there exist finitely generated Zariski-dense subgroups Γi of Gi(F ) which are
weakly commensurable. Then either G1 and G2 are of the same Killing-Cartan
type, or one of them is of type Bn and the other is of type Cn for some n � 3.

By a famous theorem of Tits [41], for any semi-simple group G over a field
F of characteristic zero, the group G(F ) contains a free Zariski-dense subgroup.
So, one or both subgroups in Theorem 2.3 may very well be free, and hence
carry no structural information about the ambient algebraic group. Nevertheless,
the information about the eigenvalues of elements expressed in terms of weak
commensurability allows one to see the type of the ambient algebraic group — we
refer to this type of phenomenon as eigenvalue rigidity.

There is one more important characteristic that can be seen through the lense
of weak commensurability. Given a Zariski-dense subgroup Γ of G(F ), where G is
an absolutely almost simple algebraic group defined over a field F of characteristic
zero, we let KΓ denote the subfield of F generated by the traces Tr Ad γ for all
γ ∈ Γ (the so-called trace field). According to a theorem of E. B. Vinberg [42],
K = KΓ is the minimal field of definition of Ad Γ, i.e. the minimal subfield of F
such that one can pick a basis in the Lie algebra of G in which all elements of AdΓ
are (simultaneously) represented by matrices with entries in K.

Theorem 2.4 ([30, Theorem 2]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero. For
i = 1, 2, let Γi be a finitely generated Zariski-dense subgroup of Gi(F ), and KΓi

be the subfield of F generated by the traces Tr Ad γ, in the adjoint representation,
of γ ∈ Γi. If Γ1 and Γ2 are weakly commensurable, then KΓ1 = KΓ2 .

What would be the strongest, hence most desirable, consequence of weak com-
mensurability? We recall that two subgroups Δ1 and Δ2 of an abstract group Δ
are called commensurable if

[Δi : Δ1 ∩ Δ2] < ∞ for i = 1, 2.

In our set-up of Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) in different
groups, this notion needs to be modified as follows. Let πi : Gi → Gi be the isogeny
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onto the corresponding adjoint group. We say that Γ1 and Γ2 are commensurable
up to an F -isomorphism between G1 and G2 if there exists an F -isomorphism
σ : G1 → G2 such that the subgroups σ(π1(Γ1)) and π2(Γ2) are commensurable in
the usual sense (we note that the commensurability of locally symmetric spaces
is consistent with this notion of commensurability for the corresponding funda-
mental groups). It is easy to see that Zariski-dense subgroups commensurable up
to an isomorphism between the corresponding adjoint groups are always weakly
commensurable. So, the central question is to determine when the converse is true.
As the following example shows, the desired conclusion may not be valid even if
one of the groups is arithmetic.

Example 2.5 (cf. [30, Remark 5.5]). Let Γ be a torsion-free Zariski-dense sub-
group of G(F ). For an integer m > 1, we let Γ(m) denote the subgroup generated
by the mth powers of elements of Γ. Clearly, Γ(m) is weakly commensurable to
Γ for any m. On the other hand, in many situations, Γ(m) is of infinite index in
Γ for all sufficiently large m. This is, for example, the case if Γ is a nonabelian
free group, in particular, a finite index subgroup of SL2(Z). It is also the case for
finite index subgroups of SL2(Od) where Od is the ring of integers in the imaginary
quadratic field Q(

√−d), and for cocompact lattices in semi-simple Lie groups of
R-rank 1. In all these examples, Γ(m) (for m � 0) is weakly commensurable, but
not commensurable to Γ.

This example indicates that an “ideal” result asserting that the weak com-
mensurability of Γ1 and Γ2 implies their commensurability, generally speaking, is
possible only if both subgroups Γ1 and Γ2 are “large” (e.g., arithmetic subgroups
or at least lattices). Such results were indeed obtained in [30] (with the help of
the results from [12] and [31]) for S-arithmetic groups, and we will review these
results in the next section. For general Zariski-dense subgroups, one should focus
on characterizing the “minimal” algebraic group containing the subgroup (in fact,
this is precisely the approach that has led to the definitive results in the arith-
metic situation). More precisely, let Γ ⊂ G(F ) be a Zariski-dense subgroup, and
let K = KΓ be the corresponding trace field. Assuming that G ⊂ GLN is adjoint,
we know by Vinberg’s theorem that one can pick a basis of the N -dimensional
space such that in this basis Γ ⊂ GLN (K). Then the Zariski-closure G of Γ is
an algebraic K-group that becomes isomorphic to G over F ; in other words, G is
an F/K-form of G such that Γ ⊂ G (K). Moreover, if G ′ is another F/K-form
with this property, there exists an F -isomorphism G → G ′ that induces the “iden-
tity” map on Γ, and then the Zariski-density of Γ implies that this isomorphism
is defined over K. Thus, the F/K-form G is uniquely defined. We would now like
to formulate the following finiteness conjecture (which can be compared with the
result that there are only finitely many finite groups with a given character table).

Conjecture 2.6. Let G1 and G2 be absolutely simple algebraic F -groups of adjoint
type, let Γ1 be a finitely generated Zariski-dense subgroup of G1(F ) with trace field
K = KΓ1 . Then there exists a finite collection G

(1)
2 , . . . , G

(r)
2 of F/K-forms of

G2 such that if Γ2 is a finitely generated Zariski-dense subgroup of G2(F ) that
is weakly commensurable to Γ1, then it is conjugate to a subgroup of one of the
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G
(i)
2 (K)’s (⊂ G2(F )).

In §5, we will present a previously unpublished result that implies the truth
of this conjecture when K is a number field. We recall that if G is a simple
algebraic R-group different from PGL2, then for any lattice Γ of G(R), the trace
field KΓ is a number field, so to prove this conjecture for all lattices in simple
groups, it remains to consider the group G = PGL2. This has not been done
yet, but we will discuss some related results in this direction in §4 (specifically,
see Theorems 4.11 and 4.14). Of course, one is interested not only in qualitative
results in the spirit of Conjecture 2.6, but also in more quantitative ones asserting
that in certain situations r = 1, i.e. a K-form is uniquely determined by the
weak commensurability class of a finitely generated Zariski-dense subgroup with
trace field K. We refer the reader to Theorem 3.4 regarding results of this kind
for arithmetic groups; more general cases have not been considered so far — see,
however, Theorem 4.9 and Corollary 4.10.

3 Results on weak commensurability of

S-arithmetic groups

3.1. The definition of arithmeticity. Our results on weakly commensurable
S-arithmetic subgroups in absolutely almost simple groups rely on a specific form
of their description, so we begin with a review of the relevant definitions. Let G
be an algebraic group defined over a number field K, and let S be a finite subset
of the set V K of all places of K containing the set V K

∞ of archimedean places. Fix
a K-embedding G ⊂ GLN , and consider the group of S-integral points

G(OK(S)) := G ∩ GLN (OK(S)).

Then, for any field extension F/K, the subgroups of G(F ) that are commensurable
(in the usual sense) with G(OK(S)) are called S-arithmetic, and in the case where
S = V K

∞ simply arithmetic (note that OK(V K
∞ ) = OK , the ring of algebraic integers

in K). It is well-known that the resulting class of S-arithmetic subgroups does
not depend on the choice of K-embedding G ⊂ GLN (cf. [28]). The question,
however, is what we should mean by an arithmetic subgroup of G(F ) when G is
an algebraic group defined over a field F of characteristic zero that is not equipped
with a structure of K-group over some number field K ⊂ F . For example, what is
an arithmetic subgroup of G(R) where G = SO3(f) and f = x2 + ey2 − πz2? For
absolutely almost simple groups the “right” concept that we will formalize below
is given in terms of forms of G over the subfields K ⊂ F that are number fields.
In our example, we can consider the following rational quadratic forms that are
equivalent to f over R:

f1 = x2 + y2 − 3z2 and f2 = x2 + 2y2 − 7z2,

and set Gi = SO3(fi). Then for each i = 1, 2, we have an R-isomorphism Gi �
G, so the natural arithmetic subgroup Gi(Z) ⊂ Gi(R) can be thought of as an
“arithmetic” subgroup of G(R). Furthermore, one can consider quadratic forms
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over other number subfields K ⊂ R that again become equivalent to f over R; for
example,

K = Q(
√

2) and f3 = x2 + y2 −
√

2z2.

Then for G3 = SO3(f3), there is an R-isomorphism G3 � G which allows us to
view the natural arithmetic subgroup G3(OK) ⊂ G3(R), where OK = Z[

√
2], as

an “arithmetic” subgroup of G(R). One can easily generalize such constructions
from arithmetic to S-arithmetic groups by replacing the rings of integers with the
rings of S-integers. So, generally speaking, by an S-arithmetic subgroup of G(R)
we mean a subgroup which is commensurable to one of the subgroups obtained
through this construction for some choice of a number subfield K ⊂ R, a finite set
S of places of K containing all the archimedean ones, and a quadratic form f̃ over
K that becomes equivalent to f over R. The technical definition is as follows.

Let G be a connected absolutely almost simple algebraic group defined over a
field F of characteristic zero, G be its adjoint group, and π : G → G be the natural
isogeny. Suppose we are given the following data:

• a number field K with a fixed embedding K ↪→ F ;
• an F/K-form G of G, which is an algebraic K-group such that there exists an

F -isomorphism F G � G, where F G is the group obtained from G by extension
of scalars from K to F ;

• a finite set S of places of K containing V K∞ but not containing any nonar-
chimedean places v such that G is Kv-anisotropic1.

We then have an embedding ι : G (K) ↪→ G(F ) which is well-defined up to an
F -automorphism of G (note that we do not fix an isomorphism F G � G). A
subgroup Γ of G(F ) such that π(Γ) is commensurable with σ(ι(G (OK(S)))), for
some F -automorphism σ of G, will be called a (G , K, S)-arithmetic subgroup2,
or an S-arithmetic subgroup described in terms of the triple (G , K, S). As usual,
(G , K, V K∞ )-arithmetic subgroups will simply be called (G , K)-arithmetic. The key
observation is that the description of S-arithmetic subgroups in terms of triples
is very convenient for determining when two such subgroups Γ1 ⊂ G1(F ) and
Γ2 ⊂ G2(F ) are commensurable up to an isomorphism between G1 and G2.

Proposition 3.2 ([30, Proposition 2.5]). Let G1 and G2 be connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero, and
for i = 1, 2, let Γi be a Zariski-dense (Gi, Ki, Si)-arithmetic subgroup of Gi(F ).
Then Γ1 and Γ2 are commensurable up to an F -isomorphism between G1 and G2

if and only if K1 = K2 =: K, S1 = S2, and G1 and G2 are K-isomorphic.

It follows from the above proposition that the arithmetic subgroups Γ1, Γ2,
and Γ3 constructed above, of G(R), where G = SO3(f), are pairwise noncommen-
surable: indeed, Γ3, being defined over Q(

√
2), cannot possibly be commensurable

1We note that if G is Kv-anisotropic then G (OK(S)) and G (OK(S∪{v})) are commensurable,
and therefore the classes of S- and (S∪{v})-arithmetic subgroups coincide. Thus, this assumption
on S is necessary if we want to recover it from a given S-arithmetic subgroup.

2This notion of arithmetic subgroups coincides with that in Margulis’ book [22] for absolutely
simple adjoint groups.
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to Γ1 or Γ2 as these two groups are defined over Q; at the same time, the non-
commensurability of Γ1 and Γ2 is a consequence of the fact that SO3(f1) and
SO3(f2) are not Q-isomorphic since the quadratic form f1 is anisotropic over Q3,
and f2 is not.

In view of Proposition 3.2, the central question in the analysis of weak com-
mensurability of S-arithmetic subgroups is the following: Suppose we are given two
Zariski-dense S-arithmetic subgroups that are described in terms of triples. Which
components of these triples coincide given the fact that the subgroups are weakly
commensurable? As the following result demonstrates, two of these components
must coincide.

Theorem 3.3 ([30, Theorem 3]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero. If
Zariski-dense (Gi, Ki, Si)-arithmetic subgroups Γi of Gi(F ) (i = 1, 2) are weakly
commensurable, then K1 = K2 and S1 = S2.

In general, the forms G1 and G2 do not have to be K-isomorphic (see [30],
Examples 6.5 and 6.6 as well as the general construction in §9). In the next
theorem we list the cases where it can nevertheless be asserted that G1 and G2 are
necessarily K-isomorphic, and then give a general finiteness result for the number
of K-isomorphism classes.

Theorem 3.4 ([30, Theorem 4]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero, of
the same type different from An, D2n+1, with n > 1, or E6. If for i = 1, 2,
Gi(F ) contain Zariski-dense (Gi, K, S)-arithmetic subgroup Γi which are weakly
commensurable to each other, then G1 � G2 over K, and hence Γ1 and Γ2 are
commensurable up to an F -isomorphism between G1 and G2.

In this theorem, type D2n (n � 2) required special consideration. The case
n > 2 was settled in [31] using the techniques of [30] in conjunction with results
on embeddings of fields with involutive automorphisms into simple algebras with
involution. The remaining case of type D4 was treated by Skip Garibaldi [12],
whose argument actually applies to all n and explains the result from the perspec-
tive of Galois cohomology, providing thereby a cohomological insight (based on
the notion of Tits algebras) into the difference between the types D2n and D2n+1.
We note that the types excluded in the theorem are precisely the types for which
the automorphism α �→ −α of the corresponding root system is not in the Weyl
group. More importantly, all these types are honest exceptions to the theorem
— a general Galois-cohomological construction of weakly commensurable, but not
commensurable, Zariski-dense S-arithmetic subgroups for all of these types is given
in [30, §9].

Theorem 3.5 ([30, Theorem 5]). Let G1 and G2 be two connected absolutely al-
most simple groups defined over a field F of characteristic zero. Let Γ1 be a Zariski-
dense (G1, K, S)-arithmetic subgroup of G1(F ). Then the set of K-isomorphism
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classes of K-forms G2 of G2 such that G2(F ) contains a Zariski-dense (G2, K, S)-
arithmetic subgroup weakly commensurable to Γ1 is finite.

In other words, the set of all Zariski-dense (K, S)-arithmetic subgroups of
G2(F ) which are weakly commensurable to a given Zariski-dense (K, S)-arithmetic
subgroup is a union of finitely many commensurability classes.

A noteworthy fact about weak commensurability is that it has the following
implication for the existence of unipotent elements in arithmetic subgroups (even
though it is formulated entirely in terms of semi-simple ones). We recall that a
semi-simple K-group is called K-isotropic if rkK G > 0; in characteristic zero, this
is equivalent to the existence of nontrivial unipotent elements in G(K). Moreover,
if K is a number field then G is K-isotropic if and only if every S-arithmetic
subgroup contains unipotent elements, for any S.

Theorem 3.6 ([30, Theorem 6]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a field F of characteristic zero. For
i = 1, 2, let Γi be a Zariski-dense (Gi, K, S)-arithmetic subgroup of Gi(F ). If Γ1

and Γ2 are weakly commensurable then rkKG1 = rkKG2; in particular, if G1 is
K-isotropic, then so is G2.

We note that in [30, §7] we prove a somewhat more precise result, viz. that
if G1 and G2 are of the same type, then the Tits indices of G1/K and G2/K are
isomorphic, but we will not get into these technical details here.

The following result asserts that a lattice3 which is weakly commensurable with
an S-arithmetic group is itself S-arithmetic.

Theorem 3.7 ([30, Theorem 7]). Let G1 and G2 be two connected absolutely
almost simple algebraic groups defined over a nondiscrete locally compact field F
of characteristic zero, and for i = 1, 2, let Γi be a Zariski-dense lattice in Gi(F ).
Assume that Γ1 is a (K, S)-arithmetic subgroup of G1(F ). If Γ1 and Γ2 are weakly
commensurable, then Γ2 is a (K, S)-arithmetic subgroup of G2(F ).

According to Theorem 2.3, if G1 and G2 contain weakly commensurable finitely
generated Zariski-dense subgroups then either the groups are of the same Killing-
Cartan type, or one of them is of type Bn and the other is of type Cn for some n � 3.
Weakly commensurable S-arithmetic subgroups in the first case were analyzed in
Theorem 3.4 (see also the discussion thereafter). We conclude this section with
a recent result of Skip Garibaldi and the second-named author [13] which gives a
criterion for two Zariski-dense S-arithmetic subgroups in the groups of type Bn

and Cn to be weakly commensurable. To formulate the result we need the following
definition. Let G1 and G2 be absolutely almost simple algebraic groups of types
Bn and Cn with n � 2, respectively, over a number field K. We say that G1 and
G2 are twins (over K) if for each v ∈ V K , either both groups are split or both
are anisotropic over the completion Kv. (We note that since groups of these types

3A discrete subgroup Γ of a locally compact topological group G is said to be a lattice in G if
G/Γ carries a finite G-invariant Borel measure.
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cannot be anisotropic over Kv when v is nonarchimedean, our condition effectively
says that G1 and G2 must be Kv-split for all nonarchimedean v.)

Theorem 3.8. ([13, Theorem 1.2]) Let G1 and G2 be absolutely almost simple
algebraic groups over a field F of characteristic zero of Killing-Cartan types Bn

and Cn (n � 3) respectively, and let Γi be a Zariski-dense (Gi, K, S)-arithmetic
subgroup of Gi(F ) for i = 1, 2. Then Γ1 and Γ2 are weakly commensurable if and
only if the groups G1 and G2 are twins.

(We recall that according to Theorem 3.3, if Zariski-dense (G1, K1, S1)- and
(G2, K2, S2)-arithmetic subgroups are weakly commensurable then necessarily K1 =
K2 and S1 = S2, so Theorem 3.8 in fact treats the most general situation.)

4 Absolutely almost simple algebraic groups
having the same maximal tori

4.1. The analysis of weak commensurability leads to, and also depends on, prob-
lems of an algebraic nature that in broad terms can be described as characterizing
absolutely almost simple algebraic groups over a given (nice) field K having the
same isomorphism/isogeny classes of maximal K-tori. While these problems are
not new (for example, in the context of finite-dimensional central simple algebras
they can be traced back to such classical algebraic results as Amitsur’s Theorem
[2] on generic splitting fields — cf. §4.4 below), there has been a noticeable resur-
gence of interest in them in recent years. One should mention [11] and [17] where
some aspects of the problem were considered over local and global fields; the local-
global principles for embedding tori into absolutely almost simple algebraic groups
as maximal tori (in particular, for embedding commutative étale algebras with in-
volutive automorphisms into simple algebras with involution) have been analyzed
in [5], [12], [19], [31]; some number-theoretic applications have been given in [10].
In this section, we will focus primarily on those aspects of the problem that are
related to the study of weak commensurability and particularly to Conjecture 2.6.
The most recent results here analyze division algebras having the same maximal
subfields and/or the same splitting fields [7], [8], [14], [18], [35]. These results pro-
vide, in particular, substantial supporting evidence for the Finiteness Conjecture
4.12 about absolutely almost simple algebraic K-groups having the same isomor-
phism classes of maximal tori, and hence also for Conjecture 2.6. We will return
to weak commensurability in the next section and present a result that indicates
a unified approach to both Conjectures 2.6 and 4.12 (cf. §5).

4.2. Generic elements and the Isogeny Theorem. We begin by describing
in more precise terms the connection between weak commensurability and study
of absolutely almost simple algebraic groups having the same isomorphism classes
of maximal tori. This connection is based on the Isogeny Theorem (see below) to
formulate which we need to recall the notion of generic tori and generic elements.

Let G be a connected absolutely almost simple algebraic group defined over an
infinite field K. Fix a maximal K-torus T of G, and, as usual, let Φ = Φ(G, T )
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denote the corresponding root system, and let W (G, T ) be its Weyl group. Fur-
thermore, we let KT denote the (minimal) splitting field of T in a fixed separable
closure K of K. Then the natural action of the Galois group Gal(KT /K) on the
character group X(T ) of T induces an injective homomorphism

θT : Gal(KT /K) → Aut(Φ(G, T )).

We say that T is generic (over K) if

θT (Gal(KT /K)) ⊃ W (G, T ). (3)

(Note that such a torus is automatically K-irreducible, i.e. it does not contain
proper K-subtori.) For example, any maximal K-torus of G = SLn/K is of the
form T = R(1)

E/K(GL1) for some n-dimensional commutative étale K-algebra E.
Then such a torus is generic over K if and only if E is a separable field extension
of K and the Galois group of the normal closure L of E over K is isomorphic to
the symmetric group Sn. Furthermore, a regular semi-simple element g ∈ G(K)
is called generic (over K) if the K-torus T = ZG(g)◦ (the identity component of
the centralizer ZG(g) of g in G) is generic (over K) in the sense defined above.
We are now in a position to formulate a result that enables one to pass from the
weak commensurability of two generic elements to an isogeny, and in most cases
even to an isomorphism, of the ambient tori.

Theorem 4.3 (Isogeny Theorem, [30, Theorem 4.2]). Let G1 and G2 be two
connected absolutely almost simple algebraic groups defined over an infinite field
K, and let Li be the minimal Galois extension of K over which Gi becomes an
inner form of a split group. Suppose that for i = 1, 2, we are given a semi-simple
element γi ∈ Gi(K) contained in a maximal K-torus Ti of Gi. Assume that (i)
G1 and G2 are either of the same Killing-Cartan type, or one of them is of type
Bn and the other is of type Cn, (ii) γ1 has infinite order, (iii) T1 is K-irreducible,
and (iv) γ1 and γ2 are weakly commensurable. Then

(1) there exists a K-isogeny π : T2 → T1 which carries γm2
2 to γm1

1 for some integers
m1, m2 � 1;

(2) if L1 = L2 =: L and θT1(Gal(LT1/L)) ⊃ W (G1, T1), then π∗ : X(T1) ⊗Z Q →
X(T2)⊗Z Q has the property that π∗(Q ·Φ(G1, T1)) = Q ·Φ(G2, T2). Moreover,
if G1 and G2 are of the same Killing-Cartan type different from B2 = C2, F4

or G2, then a suitable rational multiple of π∗ maps Φ(G1, T1) onto Φ(G2, T2).

It follows that in the situations where π∗ can be, and has been, scaled so that
π∗(Φ(G1, T1)) = Φ(G2, T2), the isogeny π induces K-isomorphisms π̃ : T̃2 → T̃1

and π : T 2 → T 1 between the corresponding tori in the simply connected and
adjoint groups G̃i and Gi. Thus, in most situations, the fact that Zariski-dense
torsion-free subgroups Γ1 ⊂ G1(K) and Γ2 ⊂ G2(K) are weakly commensurable
implies (under some minor technical assumptions) that G1 and G2 have the same
K-isogeny classes (and under some minor additional assumptions — even the same
K-isomorphism classes) of generic maximal K-tori that nontrivially intersect Γ1

and Γ2, respectively. Since over finitely generated fields generic tori, and also
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generic elements in a given (finitely generated) Zariski-dense subgroup, exist in
abundance (cf. [29], and also [33, §9]), this relates G1 and G2 in a significant way
and leads to important results (cf., for example, Theorem 5.1). So, while the
problem of understanding algebraic groups with the same isomorphism/isogeny
classes is not completely equivalent to the investigation of weak commensurabil-
ity of Zariski-dense subgroups (for one thing, not every maximal torus necessarily
intersects a given Zariski-dense subgroup), in practice it does capture most intri-
cacies of the latter, and in fact the connection between the problems goes both
ways. The next theorem (cf. [30, Theorem 7.5] and [13, Proposition 1.3]), which
is a consequence of the results on weak commensurability (cf. §3), illustrates this
point.

Theorem 4.4. (1) Let G1 and G2 be connected absolutely almost simple algebraic
groups defined over a number field K, and let Li be the smallest Galois extension
of K over which Gi becomes an inner form of a split group. If G1 and G2 have
the same K-isogeny classes of maximal K-tori then either G1 and G2 are of the
same Killing-Cartan type, or one of them is of type Bn and the other is of type
Cn, and moreover, L1 = L2.

(2) Fix an absolutely almost simple K-group G. Then the set of isomorphism
classes of all absolutely almost simple K-groups G′ having the same K-isogeny
classes of maximal K-tori is finite.

(3) Fix an absolutely almost simple simply connected K-group G whose Killing-
Cartan type is different from An, D2n+1 (n > 1) or E6. Then any K-form G′

of G (in other words, any absolutely almost simple simply connected K-group
G′ of the same type as G) that has the same K-isogeny classes of maximal
K-tori as G, is isomorphic to G.

The construction described in [30, §9] shows that the types excluded in (3) are
honest exceptions, i.e., for each of those types one can construct non-isomorphic
absolutely almost simple simply connected K-groups G1 and G2 of this type over
a number field K that have the same isomorphism classes of maximal K-tori.

The situation where one of the groups is of type Bn and the other is of type
Cn with n � 3 was analyzed in [13].

Theorem 4.5 ([13, Theorem 1.4]). Let G1 and G2 be absolutely almost simple
algebraic groups over a number field K of types Bn and Cn respectively for some
n � 3.
(1) The groups G1 and G2 have the same isogeny classes of maximal K-tori if and

only if they are twins4.
(2) The groups G1 and G2 have the same isomorphism classes of maximal K-tori

if and only if they are twins, G1 is adjoint and G2 is simply connected.

4.6. Division algebras with the same maximal subfields. As we already
mentioned, questions related to the problem of characterizing absolutely almost

4See the definition of twins prior to the statement of Theorem 3.8.
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simple algebraic K-groups by the isomorphism/isogeny classes of their maximal K-
tori were in fact raised and investigated a long time ago, particularly in the context
of finite-dimensional central simple algebras. We recall that given a central simple
algebra A of degree n (i.e., of dimension n2) over a field K, a field extension F/K
is called a splitting field if A ⊗K F � Mn(F ) as F -algebras; furthermore, if A
is a division algebra then the splitting fields of degree n over K are precisely the
maximal subfields of A. It is well-known that the splitting fields/maximal subfields
of a central simple K-algebra A play a huge role in the analysis of its structure
(cf., for example, [15]), which suggests the question: to what extent do these fields
actually determine A? The answer to this question in the situation where one
considers all splitting fields is given by the famous theorem of Amitsur [2]: Let A1

and A2 be finite-dimensional central simple algebras over a field K. Assume that
a field extension F/K splits A1 if and only if it splits A2. Then the classes [A1]
and [A2] in the Brauer group Br(K) generate the same subgroup: 〈[A1]〉 = 〈[A2]〉
(the converse is obvious). The proof of Amitsur’s Theorem (cf. [2], [15, Ch. 5])
uses generic splitting fields which are infinite extensions of K. At the same time,
it is important to point out that the situation changes dramatically if instead of all
splitting fields one considers only finite-dimensional ones or just maximal subfields.

Example 4.7. Fix r � 2, and pick r distinct primes p1, . . . , pr. Let ε =
(ε1, . . . , εr) be any r-tuple with εi = ±1 such that

∑r
i=1 εi ≡ 0(mod 3). By

class field theory (the Albert-Brauer-Hasse-Noether Theorem — to be referred to
as (ABHN) in the sequel, cf. [1, Ch. VII, 9.6], [26, 18.4], and also [37] for a histori-
cal perspective), corresponding to ε, we have a central cubic division algebra D(ε)
over Q with the following local invariants (considered as elements of Q/Z):

invp D(ε) =

{ εi

3
, p = pi for i = 1, . . . , r;

0, p /∈ {p1, . . . , pr} (including p = ∞).

Then for any two r-tuples ε′ and ε′′ as above, the algebras D(ε′) and D(ε′′) have the
same finite-dimensional splitting fields, hence the same maximal subfields (cf. [26,
18.4, Corollary b]), and are non-isomorphic if ε′ �= ε′′. Obviously, the number
of admissible r-tuples ε grows with r, so this method enables one to construct
an arbitrarily large (but finite) number of pairwise nonisomorphic cubic division
algebras over Q having the same maximal subfields.

A similar construction can be implemented for division algebras of any degree
d > 2. On the other hand, it follows from (ABHN) that any two quaternion
division algebras over a number field K with the same quadratic subfields are
necessarily isomorphic. This suggests the following question:

(∗) What can one say about two finite-dimensional central division algebras D1

and D2 over a field K given the fact that they have the same (isomorphism
classes of) maximal subfields?

(We say that central division K-algebras D1 and D2 have the same isomorphism
classes of maximal subfields if they have the same degree n and a degree n field



Weakly Commensurable Groups 513

extension F/K admits a K-embedding F ↪→ D1 if and only if it admits a K-
embedding F ↪→ D2.)

It should be noted that (∗) is closely related (although not equivalent) to the
question of understanding the relationship between D1 and D2 when the groups
G1 = SL1,D1 and G2 = SL1,D2 have the same isomorphism classes of maximal K-
tori, and we will comment on this a bit later (cf. Theorem 4.14 and the discussion
thereafter). Our next immediate goal, however, is to present some recent results
on (∗), for which we need the following definition.

Definition 4.8. Let D be a central division K-algebra of degree n. The genus
gen(D) is the set of all classes [D′] ∈ Br(K) represented by central division K-
algebras D′ having the same maximal subfields as D.

The following basic questions about the genus represent two aspects of the
general question (∗).
Question 1. When does gen(D) reduce to a single class?

(This is another way of asking whether D is determined uniquely up to iso-
morphism by its maximal subfields.)

Question 2. When is gen(D) finite?

Regarding Question 1, we note that |gen(D)| = 1 is possible only if D has
exponent 2 in the Brauer group. Indeed, the opposite algebra Dop has the same
maximal subfields as D. So, unless D � Dop (which is equivalent to D being of
exponent 2), we have |gen(D)| > 1. On the other hand, as we already mentioned,
it follows from (ABHN) that for any quaternion algebra D over a global field
K (and hence any central simple K-algebra of exponent 2 over a global field is
known to be a quaternion algebra), gen(D) does reduce to a single element. So,
Question 1 really asks about other fields with this property. More specifically, we
had asked earlier if the field of rational functions K = Q(x) is such a field. This
question (in the context of quaternion algebras) was answered in the affirmative by
D. Saltman. Then, in [14], Garibaldi and Saltman extended the result to fields of
the form K = k(x), where k is any number field (and also to some other situations).
Recently, the following Stability Theorem was proved in [8] for algebras of exponent
2 (the case of quaternion algebras was considered earlier in [35]).

Theorem 4.9 ([8, Theorem 3.5]). Let k be a field of characteristic �= 2. If
|gen(D)| = 1 for any central division k-algebra D of exponent 2 then the same
property holds for any central division algebra of exponent 2 over the field of ra-
tional functions k(x).

Corollary 4.10. If k is either a number field or a finite field of char �= 2, and
K = k(x1, . . . , xr) is a purely transcendental extension then for any central division
K-algebra D of exponent 2 we have |gen(D)| = 1.

Furthermore, if k is a field of char �= 2 such that 2Br(k) = 0, then the field
of rational functions K = k(x1, . . . , xr) again satisfies the property described in
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Theorem 4.9. The existence of various examples in which the genus of a division
algebra of exponent 2 always reduces to one element naturally leads to the question
of whether the genus of a quaternion algebra can ever be nontrivial. The answer
is “yes”, and the following construction of examples (described in [14, §2]) was
offered by several people including Wadsworth, Shacher, Rost, Saltman, Garibaldi
... We will describe only the basic idea referring to [14] for the details.

We start with two nonisomorphic quaternion division algebras D1 and D2 over a
field k of char �= 2 that have a common quadratic subfield (e.g., one can take k = Q

and D1 =
(−1, 3

Q

)
and D2 =

(−1, 7
Q

)
). If D1 and D2 already have the same

quadratic subfields, we are done. Otherwise, there exists a quadratic extension
k(
√

d) that embeds into D1 but not into D2. Then, using either properties of
quadratic forms or the “index reduction formulas”, one shows that there exists an
extension k(1) of k (which is the field of rational functions on a certain quadric)
such that

• k(1) ⊗k D1 and k(1) ⊗k D2 are non-isomorphic division algebras over k(1), but

• k(1)(
√

d) embeds into k(1) ⊗k D2.

One deals with other subfields (in the algebras obtained from D1 and D2 by
applying the extension of scalars built at the previous step of the construction),
one at a time, in a similar fashion. This process generates an ascending chain of
fields

k(1) ⊂ k(2) ⊂ k(3) ⊂ · · · ,

and we let K be the union (direct limit) of this chain. Then K ⊗k D1 and K ⊗k

D2 are non-isomorphic quaternion division K-algebras having the same quadratic
subfields; in particular |gen(D1 ⊗k K)| > 1. Note that the resulting field K has
infinite transcendence degree over k, hence is infinitely generated. Furthermore,
some adaptation of the above construction (cf. [23]) enables one to start with an
infinite sequence D1, D2, D3, . . . of division algebras over a field k of characteristic
�= 2 that are pairwise non-isomorphic but share a common quadratic subfield (e.g.,

one can take k = Q and consider the family of algebras of the form
(−1, p

Q

)
where

p is a prime ≡ 3(mod 4)), and then build an infinitely generated field extension
K/k such that the algebras Di ⊗k K become pairwise non-isomorphic division
algebras with any two of them having the same quadratic subfields. This makes
the genus gen(D1 ⊗k K) infinite, and therefore brings us to Question 2 of when
one can guarantee the finiteness of the genus. Here we have the following finiteness
result.

Theorem 4.11 ([7, Theorem 3]). Let K be a finitely generated field. If D is a
central division K-algebra of exponent prime to char K, then gen(D) is finite.

One of the questions about the genus of a division that remains open after
Theorems 4.9 and 4.11 is whether one can find a quaternion division algebra over
a finitely generated field of characteristic �= 2 with nontrivial genus.



Weakly Commensurable Groups 515

4.12. The genus of an algebraic group. We will now discuss a possible
generalization of the concept of the genus from finite-dimensional central divi-
sion algebras to arbitrary absolutely almost simple algebraic groups obtained by
replacing maximal subfields with maximal tori.

So, let G be an absolutely almost simple (simply connected or adjoint) algebraic
group over a field K. We define the genus gen(G) to be the set of K-isomorphism
classes of K-forms G′ of G that have the same isomorphism classes of maximal
K-tori as G. Two remarks are in order. First, if D is a finite-dimensional central
division algebra over a field K and G = SL1,D is the corresponding group defined
by elements of norm 1 in D, then only maximal separable subfields of D correspond
to the maximal K-tori of G. So, to avoid at least the obvious discrepancies between
the definitions of gen(D) and gen(G), one should probably define the former
in terms of maximal separable subfields. We don’t know however whether the
definitions of gen(D) in terms of all and only separable maximal subfields would
actually be distinct (these problems do not arise in Theorems 4.9 and 4.11 as
these treat only division algebras whose degree is prime to the characteristic of
the center). Second, one can give several alternative definitions of gen(G) by
working only with maximal generic K-tori, and on the other hand by replacing
K-isomorphisms of tori with K-isogenies. It would be interesting to determine
the precise relationship between the various definitions; at this point, we will just
mention without further elaboration that the definitions given in terms of generic
tori and K-isomorphism vs. K-isogeny in practice lead to basically the same
qualitative results (for the reasons contained in Theorem 4.3 and the subsequent
discussion).

Building on Theorem 4.11, we would like to propose the following conjecture.

Conjecture 4.13. Let G be an absolutely almost simple (simply connected or
adjoint) algebraic group over a finitely generated field K. Assume that the char-
acteristic of K is either zero or is “good” for G. Then the genus gen(D) is finite.

The “bad” characteristics for each type are expected to be the following:
• A� — all prime divisors p of (� + 1), 2A� — same primes and also p = 2;
• B�, C�, D� — p = 2 (and possibly p = 3 for 3,6D4);
• E6, E7, E8, F4 and G2 — all prime divisors of the order of the Weyl group.

The Isogeny Theorem 4.3 establishes some connections between Conjectures 2.6
and 4.13, but more importantly, we anticipate that the methods developed to deal
with Conjecture 4.13 will be useful also in analyzing Conjecture 2.6 (in fact both
conjectures will be consolidated in §5 into a single conjecture — see Conjecture
5.4). Now, Theorem 4.4 confirms the conjecture in the situation where K is a
number field. For general fields, the conjecture is known at this point only for
inner forms of type A�.

Theorem 4.14. ([8, Theorem 5.3]) Let G be a simply connected inner form of
type A� over a finitely generated field K, and assume that the characteristic of K
is either zero or does not divide (� + 1). Then gen(G) is finite.

The group G in this theorem is of the form SL1,A for some central simple K-
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algebra A of dimension n2. While every maximal K-torus of G corresponds to
some n-dimensional commutative étale subalgebra of A (and the same is true for
any inner K-form G′ of G), the existence of a K-isomorphism between the tori a
priori may not imply the existence of an isomorphism between the étale algebras
(it would be interesting to construct such examples!). For this reason, Theorem
4.14 is not an automatic consequence of Theorem 4.11. The proof of Theorem
4.14 uses generic tori, the isomorphisms between which after appropriate scaling
do extend to an isomorphism between the étale algebras.

We mention in passing that there are other interesting approaches to the def-
inition of the genus. For example, Krashen and McKinnie [18] defined the genus
gen′(D) of a central division K-algebra D of prime degree based on all finite-
dimensional splitting fields. Furthermore, Merkurjev proposed to define the mo-
tivic genus genm(G) of an absolutely almost simple algebraic K-group G along the
lines suggested by Amitsur’s Theorem, viz. as the set of K-isomorphism classes of
K-forms G′ such that for any field extension F/K the groups G and G′ have the
same F -isomorphism classes of maximal F -tori. Since this concept is less related
to weak commensurability, we will not discuss it here referring the reader to [8,
Remark 5.6] for the details (including an explanation of the term “motivic”).

5 A finiteness result

The goal of this section is to try to establish a more direct connection between
the Finiteness Conjectures 2.6 and 4.13: while such a connection undoubtedly
exists, it has manifested itself so far primarily through the fact that the techniques
developed for one of them are typically also useful for the other, and not through
any formal implications. We begin with a new finiteness result over number fields
which implies the truth of both conjectures in this situation. We then formulate
and discuss a conjecture which says that a similar statement should be true over
general fields (with some restrictions on the characteristic).

Theorem 5.1. Let G be an absolutely almost simple algebraic group over a number
field K, and let Γ be a finitely generated Zariski-dense subgroup of G(K) with trace
field K. Denote by gen(G, Γ) the set of isomorphism classes of K-forms G′ of G
having the following property: any generic maximal K-torus T of G that contains
an element of Γ of infinite order is isogenous to some maximal K-torus T ′ of G′.
Then gen(G, Γ) is finite.

Proof. We begin with a statement which is valid over any finitely generated field
K of characteristic zero as its proof relies only on the facts established in this
generality.

Lemma 5.2. Let G′ ∈ gen(G, Γ), and let L (resp., L′) denote the minimal Galois
extension of K over which G (resp., G′) is of inner type, i.e., is an inner form of
a split group. Then L = L′, and hence G′ is an inner form of G over K.

Proof. According to [29] (cf. also [33, Theorem 9.6]), there exists a regular semi-
simple element γ ∈ Γ of infinite order such that the torus T := ZG(γ)◦ is generic
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over L := LL′. By our assumption, there exists a maximal K-torus T ′ of G′ for
which there is a K-isogeny ν : T → T ′. We then have the following commutative
diagram:

GL(X(T ) ⊗Z Q)

ν̃

��

Gal(K/K)

θT

��������������

θT ′
��������������

GL(X(T ′) ⊗Z Q),

where K is an algebraic closure of K and ν̃ is the isomorphism induced by ν.
We note that for any field extension F of K contained in K, the map ν̃ gives an
isomorphism between the images of Gal(K/F ) under θT and θT ′ , hence

|θT (Gal(K/F ))| = |θT ′(Gal(K/F ))|. (4)

Furthermore, since both G and G′ are of inner type over L, we have

θT (Gal(K/L)) = W (G, T ) and θT ′(Gal(K/L)) = W (G′, T ′) (5)

(cf. [30, Lemma 4.1]).
Now, assume that L′ �⊂ L, i.e. L � L. Again, since G is of inner type over L,

we have
θT (Gal(K/L)) = W (G, T ). (6)

On the other hand, it follows from (5) that θT ′(Gal(K/L)) contains W (G′, T ′) but
in fact is strictly larger as by our assumption G′ is not of inner type over L (cf. [30,
Lemma 4.1]). Thus,

|θT ′(Gal(K/L))| > |W (G′, T ′)| = |W (G, T )| = |θT (Gal(K/L))|,

which contradicts (4) for F = L. Similarly, the assumption L �⊂ L′ would imply
that

|θT (Gal(K/L′))| > |θT ′(Gal(K/L′)|,
contradicting (4) for F = L′.

By [28, Theorem 6.7], one can find a finite subset S1 ⊂ V K such that G is
quasi-split over Kv for any v ∈ V K \ S1. Now, let π : G̃ → G be the universal
cover. It follows from [44] that one can find a finite subset S2 ⊂ V K containing
V K
∞ such that Γ ⊂ G(O(S2)) and there exists a subgroup Δ of π−1(Γ) of finite

index contained in G̃(O(S2)) whose closure in the group of S2-adeles G̃(AS2) is
open. Set S = S1 ∪ S2.

Lemma 5.3. Every G′ ∈ gen(G, Γ) is quasi-split over Kv for v ∈ V K \ S.



518 Gopal Prasad and Andrei S. Rapinchuk

Proof. We first make the following general observation. Let G0 be a quasi-split
semi-simple group over a field K , and let G be an inner K -form of G0; then the
fact that

rkK G � rkK G0 (7)

implies that G is itself quasi-split (and hence in (7) we actually have equality).
Indeed, since G is an inner twist of G0, the ∗-actions on the Tits indices of G0 and
G are identical (cf. [30, Lemma 4.1(a)]). Since the K -rank of a semi-simple group
equals the number of distinguished orbits under the ∗-action in its Tits index, and
all the orbits in the Tits index of G0 are distinguished as the latter is K -quasi-split,
condition (7) implies that the same is true for G , making it quasi-split.

Returning to the proof of the lemma, let us fix v ∈ V K \ S, and set K = Kv.
By Lemma 5.2, the group G′ is an inner form of G over K, and hence over K .
It follows from the construction of S that the closure of Δ in G̃(K ) is open, and
then so is the closure of Γ in G(K ). Using Theorem 3.4 in [32], we find a regular
semi-simple element γ ∈ Γ of infinite order such that the torus T = ZG(γ)◦ is
generic over K and contains a maximal K -split torus of G, i.e. rkK T = rkK G.
By our assumption, T is K-isogenous to a maximal K-torus T ′ of G′. Then we
have

rkK G′ � rkK T ′ = rkK T = rkK G.

Since by construction G0 := G is quasi-split over K , applying the remark following
(7) to G := G′, we obtain that G′ is quasi-split over K , as required.

Now, let G0 be the quasi-split inner K-form of G. Fix an arbitrary G′ ∈
gen(G, Γ). It follows from Lemma 5.2 that G′ is an inner K-form of G and so
it is an inner K-form of G0. Hence G′ is obtained by twisting G0 by a class
ζ ∈ H1(K, G0). This class lies in

ΣS := Ker
(
H1(K, G0) −→

⊕
v∈V K\S

H1(Kv, G0)
)
,

since for v /∈ S, G′, being quasi-split over Kv, is Kv-isomorphic to G0. (For this
one needs to observe that the map H1(F, G0) → H1(F, Aut G0) has trivial kernel
for any field extension F/K which follows from the fact that Aut G0 is a semi-
direct product of G0 and a K-subgroup of symmetries of the Dynkin diagram.)
However, ΣS is known to be finite for any finite subset S ⊂ V K (cf. [38, Ch. III,
§4, Theorem 7]), and the finiteness of gen(G, Γ) follows.

It is easy to see that Theorem 5.1 implies the truth of both Conjectures 2.6 and
4.13 over number fields — the connection with Conjecture 4.13 is obvious while
in order to connect with Conjecture 2.6 one needs to use the Isogeny Theorem
4.3. Moreover, this kind of implication would remain valid over a general field,
and we would like to end this section with the following conjecture that suggests
a uniform approach to Conjectures 2.6 and 4.13.
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Conjecture 5.4. Let G be an absolutely almost simple algebraic group over a
field K of “good” characteristic, and let Γ of G(K) be a finitely generated Zariski-
dense subgroup with field of definition5 K. Let gen(G, Γ) be the set of isomorphism
classes of K-forms G′ of G having the following property: any maximal generic
K-torus T of G that contains an element of Γ of infinite order is K-isogenous to
some maximal K-torus T ′ of G′. Then gen(G, Γ) is finite.

6 Back to geometry

6.1. Locally symmetric spaces. Let G be a connected adjoint semi-simple real
algebraic group, let G = G(R) considered as a real Lie group, and let X = K\G,
where K is a maximal compact subgroup of G, be the associated symmetric space
endowed with the Riemannian metric coming from the Killing form on the Lie
algebra of G. Furthermore, given a discrete torsion-free subgroup Γ of G, we let
XΓ := X/Γ denote the corresponding locally symmetric space. We say that XΓ is
arithmetically defined if the subgroup Γ ⊂ G(R) is arithmetic in the sense of §3.1.
Finally, we recall that Γ is called a lattice if XΓ (or equivalently G/Γ) has finite
volume. As in §1, we let L(XΓ) denote the (weak) length spectrum of XΓ.

Now, given two simple algebraic R-groups G1 and G2, and discrete torsion-
free subgroups Γi ⊂ Gi = Gi(R) for i = 1, 2, we will denote the corresponding
locally symmetric spaces by XΓi . The following statement establishes a connec-
tion between the length-commensurability of XΓ1 and XΓ2 (i.e. the condition
Q · L(XΓ1) = Q · L(XΓ2)) and the weak commensurability of Γ1 and Γ2.

Theorem 6.2 ([33, Corollary 2.8]). Assume that Γi is a lattice in Gi. If the locally
symmetric spaces XΓ1 and XΓ2 are length-commensurable, then the subgroups Γ1

and Γ2 are weakly commensurable.

Some remarks are in order. As for Riemann surfaces (cf. §1.2), closed geodesics
in XΓ correspond to (nontrivial) semi-simple elements of Γ, but in the general case
the equation for the length is significantly more complicated: instead of just the
logarithm of an eigenvalue, we get basically the square root of a sum of squares
of the logarithms of certain eigenvalues (see [30, Proposition 8.5] for the precise
formula), although for lattices in simple groups not isogenous to SL2(R) these
eigenvalues are actually algebraic numbers. Unfortunately, at this point there
are no results in transcendental number theory that would enable one to analyze
expressions of this kind — most available results are for linear forms in terms of
logarithms of algebraic numbers (cf. [4]). This forced us to base our analysis of
the lengths of closed geodesics on a conjecture in transcendental number theory,
known as Schanuel’s conjecture, which is widely believed to be true but has been
proven so far in very few situations (for the reader’s convenience, we recall its
statement below). The use of this conjecture is essential in the case of locally

5In characteristic zero the field of definition coincides with the trace field by Vinberg’s theorem
[42]; in positive characteristic, particularly in characteristics 2 and 3, the notion of the “right”
field of definition is more tricky — see [27], but we will not get into these details here.
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symmetric spaces of rank > 1, making our geometric results in this case conditional
on Schanuel’s conjecture. At the same time, the results for rank one spaces apart
from the following exceptional case

(E): G1 = PGL2 and Γ1 cannot be conjugated into PGL2(K) for any number
field K ⊂ R while G2 �= PGL2,

rely only on the Gel’fond-Schneider Theorem (as a replacement of Schanuel’s con-
jecture), hence are unconditional. Besides, a statement similar to Theorem 6.2
(and in fact more precise) can be proven under weaker conditions on Γ1 and Γ2 —
see [33, Theorem 2.7]. A detailed discussion of these issues is contained in [33, §2]
and will not be repeated here. So, we conclude simply by recalling the statement
of Schanuel’s conjecture.

6.3. Schanuel’s conjecture. If z1, . . . , zn ∈ C are linearly independent over Q,
then the transcendence degree (over Q) of the field generated by

z1, . . . , zn; ez1 , . . . , ezn

is � n.

In fact, we will only need the following consequence of this conjecture: for
nonzero algebraic numbers a1, . . . , an, (any values of) their logarithms

log a1, . . . , log an

are algebraically independent once they are linearly independent (over Q).

Theorem 6.2 enables us to “translate” the algebraic results from §§2–3 about
weakly commensurable Zariski-dense subgroups into the geometric setting. In
particular, applying Theorems 2.3 and 2.4 we obtain the following.

Theorem 6.4. Let G1 and G2 be connected absolutely simple real algebraic groups,
and let XΓi be a locally symmetric space of finite volume, of Gi, := Gi(R) for
i = 1, 2. If XΓ1 and XΓ2 are length-commensurable, then (i) either G1 and G2 are
of same Killing-Cartan type, or one of them is of type Bn and the other is of type
Cn for some n � 3, (ii) KΓ1 = KΓ2 .

It should be pointed out that assuming Schanuel’s conjecture in all cases, one
can prove this theorem (in fact, a much stronger statement — see [32, Theorem 1]
and [33, Theorem 8.1]) assuming only that Γ1 and Γ2 are finitely generated and
Zariski-dense.

Next, using Theorems 3.4 and 3.5 we obtain

Theorem 6.5. Let G1 and G2 be connected absolutely simple real algebraic groups,
and let Gi = Gi(R), for i = 1, 2. Then the set of arithmetically defined locally sym-
metric spaces XΓ2 of G2, which are length-commensurable to a given arithmetically
defined locally symmetric space XΓ1 of G1, is a union of finitely many commensu-
rability classes. In fact, it consists of a single commensurability class if G1 and
G2 have the same type different from An, D2n+1, with n > 1, or E6.
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Furthermore, Theorems 3.6 and 3.7 imply the following rather surprising result
which has so far defied all attempts to find a purely geometric proof.

Theorem 6.6. Let G1 and G2 be connected absolutely simple real algebraic groups,
and let XΓ1 and XΓ2 be length-commensurable locally symmetric spaces of G1 and
G2, respectively, of finite volume. Assume that at least one of the spaces is arith-
metically defined. Then the other space is also arithmetically defined, and the
compactness of one of the spaces implies the compactness of the other.

In fact, if one of the spaces is compact and the other is not, the weak length
spectra L(XΓ1) and L(XΓ2) are quite different — see [32, Theorem 5] and [33,
Theorem 8.6] for a precise statement (we note that the proof of this result uses
Schanuel’s conjecture in all cases).

Finally, we will describe some applications to isospectral compact locally sym-
metric spaces. So, in the remainder of this section, the locally symmetric spaces
XΓ1 and XΓ2 as above will be assumed to be compact. Then, as we discussed in
§1, the fact that XΓ1 and XΓ2 are isospectral implies that L(XΓ1) = L(XΓ2), so
we can use our results on length-commensurable spaces. Thus, in particular we
obtain the following.

Theorem 6.7. If XΓ1 and XΓ2 are isospectral, and Γ1 is arithmetic, then so is
Γ2.

(Thus, the spectrum of the Laplace-Beltrami operator can see if the funda-
mental group is arithmetic or not — to our knowledge, no results of this kind,
particularly for general locally symmetric spaces, were previously known in spec-
tral theory.)

The following theorem settles the question “Can one hear the shape of a drum?”
for arithmetically defined compact locally symmetric spaces.

Theorem 6.8. Let XΓ1 and XΓ2 be compact locally symmetric spaces associated
with absolutely simple real algebraic groups G1 and G2, and assume that at least
one of the spaces is arithmetically defined. If XΓ1 and XΓ2 are isospectral then
G1 = G2 := G. Moreover, unless G is of type An, D2n+1 (n > 1), or E6, the
spaces XΓ1 and XΓ2 are commensurable.

It should be noted that our methods based on length-commensurability or weak
commensurability leave room for the following ambiguity in Theorem 6.8: either
G1 = G2 or G1 and G2 are R-split forms of types Bn and Cn for some n � 3 —
and this ambiguity is unavoidable, cf. [32, Theorem 4] and the end of §7 in [33].
The fact that in the latter case the locally symmetric spaces cannot be isospectral
was shown by Sai-Kee Yeung [39] by comparing the traces of the heat operator
(without using Schanuel’s conjecture), which leads to the statement of the theorem
given above.
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