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Abstract. Let G be a semisimple algebraic group over a finitely generated field K of
characteristic zero, and let Γ ⊂ G(K) be a finitely generated Zariski-dense subgroup.
In this paper we prove that the set of K-generic elements of Γ (whose existence
was established earlier by the authors in Existence of irreducible R-regular elements

in Zariski-dense subgroups, Math. Res. Lett. 10 (2003), no. 1, 21–32, is open in
the profinite topology of Γ. We then extend this result to the fields of positive
characteristic, and also prove the existence of generic elements in this case.

1. Introduction

This is a companion paper to [PR03] where we first proved the existence of generic
elements in an arbitrary Zariski-dense subgroup of the group of points of a semi-simple
algebraic group over a finitely generated field of characteristic zero. Since then generic
elements have been used in a variety of situations, in particular, to resolve some long-
standing problems about isospectral locally symmetric spaces [PR09] (see also [PR14] for
a survey). This prompted us to try to understand the structure of the set of all generic
elements in a given (finitely generated) Zariski-dense subgroup. The goal of this paper
is to establish a rather surprising fact that this set is open in the profinite topology of
the subgroup — see below for a more general/precise statement which applies to fields
of any characteristic. We begin by recalling the relevant definitions.

Let G be a semi-simple algebraic group over a field K. Fix a maximal K-torus T
of G, and let Φ(G, T ) and W (G, T ) denote the corresponding root system and the Weyl
group. The natural action of the absolute Galois group Gal(Ksep/K), where Ksep is
a fixed separable closure of K, on the character group X(T ) of T gives rise to a group
homomorphism

θT : Gal(Ksep/K) → Aut(Φ(G, T ))

that factors through the Galois group Gal(KT /K) of the minimal splitting field KT of T
in Ksep inducing an injective homomorphism θ̄T : Gal(KT /K) → Aut(Φ(G, T )). We say
that T is generic over K if θT (Gal(Ksep/K)) ⊃ W (G, T ). Furthermore, a regular semi-
simple element g ∈ G(K) is called K-generic if the K-torus T = ZG(g)

◦ (the connected
component of the centralizer of g) is generic over K (recall that g ∈ T (K)). Some
possible variations of this definition are discussed in [PR14, 9.4], but all the versions
are equivalent for semi-simple elements without components of finite order (where the
components are understood in terms of the decomposition G = G1 · · ·Gd as an almost
direct product of absolutely almost simple groups).
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Now, fix a matrix K-realization G ⊂ GLn, and let R be a subring of K. Quite often,
by the congruence topology on the group G(R) := G(K) ∩GLn(R) one understands the
topology having as a fundamental system of neighborhoods of the identity the family of
congruence subgroups

G(R, a) := G(R) ∩GLn(R, a),

where

GLn(R, a) = {X ∈ GLn(R) | X ≡ In (mod a)},
in the obvious notation, for all nonzero ideals a of R. However, in this note we reserve this
term for the (generally) weaker topology defined by the congruence subgroup G(R, a),
where a ⊂ R is an ideal of finite index, that is the quotient R/a is finite. Any such
congruence subgroup is obviously a normal subgroup of finite index in G(R), and conse-
quently the topology induced by the congruence topology in this sense on any subgroup
Γ ⊂ G(R) is generally coarser than the profinite topology of Γ defined by all normal
subgroups N ⊂ Γ of finite index.

We can now formulate the main result.

Theorem 1. Let G be a semisimple algebraic group defined over a finitely generated
field K of any characteristic, R ⊂ K be a finitely generated subring and let Γ ⊂ G(R) be
a subgroup which is Zariski-dense in G. Then the set Δ(Γ,K) of regular semisimple K-
generic elements is open in Γ in the congruence topology defined by ideals a ⊂ R of finite
index. In particular, Δ(Γ,K) is open in Γ in the profinite topology.

Corollary. Let G be a semisimple algebraic group defined over a finitely generated
field K, and let Γ ⊂ G(K) be a finitely generated Zariski-dense subgroup. Then the
set Δ(Γ,K) is open in Γ in the profinite topology.

The proof of Theorem 1 requires a suitable generalization of Chebotarev’s Density
Theorem, and in § 2 we give this generalization for fields of characteristic zero — see
Proposition 2.1. Then in § 3 we combine this proposition with some techniques developed
earlier in [PR03] to prove Theorem 1 in characteristic zero. The argument easily extends
to positive characteristic provided that one can generalize Chebotarev’s Theorem to this
case; we establish the required generalization in § 4.

While Theorem 1 gives the openness of the set Δ(Γ,K) of regular semi-simple K-
generic elements in the profinite topology of a finitely generated Zariski-dense subgroup
Γ ⊂ G(K), its proof does not automatically yield the nonemptiness of Δ(Γ,K). As we
already pointed out, the existence of generic elements was first established in [PR03] over
fields of characteristic zero — for the reader’s convenience we summarize this argument
in Remark 3.2. One of its essential components is a form of weak approximation that
asserts that for a finite set V of discrete valuations of K that is constructed in the proof,
the closure of the image of the diagonal embedding

Γ ↪→ GV =
∏
v∈V

G(Kv)

is open. In characteristic zero V is selected so that the completions Kv for v ∈ V are
the p-adic fields Qp for pairwise distinct primes p, and then the required openness is
an easy consequence of the Zariski-density of Γ. In characteristic p > 0, this property
becomes significantly more delicate. If p > 3, then the argument from [PR03] can still
be made to work using the strong approximation theorem of B.Weisfeiler [Wei84]. Addi-
tional complications in characteristics 2 and 3 come from so-called exceptional isogenies,
whose existence render the openness statement invalid even after passing to the universal
cover. For this reason, the existence of generic elements over fields of positive character-
istic remained unproven until recently. J. Schwartz in his dissertation [Sch14] used the
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approximation results of R. Pink [Pin98,Pin00] to prove the existence of generic elements
over global fields of all characteristics. Here we will establish the following general result
for all absolutely almost simple groups.

Theorem 2. Let G be a connected absolutely almost simple algebraic group over a finitely
generated field K (of any characteristic), and let Γ′ be a Zariski-dense subsemigroup of
G(K) that contains an element of infinite order. Then Γ′ contains a regular semisimple
element γ′ ∈ Γ′ of infinite order that is K-generic.

We will prove Theorem 2 in § 5. The argument heavily relies on the results of Pink
[Pin98] which we will briefly review below for the reader’s convenience.

Notation. Given a variety X defined over a field K, and a field extension L of K, we will
denote by XL, or (X)L, the L-variety obtained from X by base change K ↪→ L. If X is
an algebraic K-group, by L-torus of X, we will mean a L-torus of XL.

2. A generalization of Chebotarev’s density theorem

Proposition 2.1. Let R be a finitely generated subring of a finitely generated field K
of characteristic zero, and let L be a finite Galois extension of K with Galois group
G = Gal(L/K). Fix a conjugacy class C of G. Then there exists an infinite set of
primes Π such that for each p ∈ Π there exists an embedding ιp : K ↪→ Qp with the
following properties:

(1) ιp(R) ⊂ Zp,
(2) if v denotes the discrete valuation of K obtained by pulling back the p-adic valuation

of Qp (so that Kv = Qp), then any extension w|v to L is unramified and the Frobenius
automorphism of Lw/Kv belongs to C.

Proof. In this argument, for a (monic) polynomial f(x) ∈ A[x] over an integral domain A
we let δf ∈ A denote its discriminant. Without loss of generality, we may assume that K
is the field of fractions of R. Using Noether’s Normalization Theorem, we can find
algebraically independent t1, . . . , tr ∈ QR so that QR is integral over Q[t1, . . . , tr]. In
fact, we may further assume t1, . . . , tr ∈ R and then pick a finite set of primes S such
that for pS :=

∏
p∈S p, the localization ZS = Z[p−1

S ] of Z away from S, we have that ZSR

is integral over ZS [t1, . . . , tr]. Now, set k = Q(t1, . . . , tr) and let E denote the Galois
closure of L over k with Galois group H = Gal(E/k). We can pick a primitive element α
for E over k whose minimal polynomial f is of the form

f(x) = xn + zn−1(t1, . . . , tr)x
n−1 + · · ·+ z0(t1, . . . , tr)

with zi(t1, . . . , tr) ∈ Z[t1, . . . , tr]. Now, fix σ ∈ C, and let σ̃ ∈ H be an automorphism
that acts trivially on K and restricts to σ on L. Pick polynomials g0, . . . , gn−1 and
h ∈ ZS [t1, . . . , tr] so that

(1) σ̃(α) =

n−1∑
j=0

cjα
j , where cj =

gj
h
.

Using Hilbert’s Irreducibility Theorem (cf. [Ser92b, Ch. 3] and references therein), we
can find (a01, . . . , a

0
r) ∈ Qr such that h(a01, . . . , a

0
r) �= 0 and the polynomial

f0(x) := xn + zn−1(a
0
1, . . . , a

0
r)x

n−1 + · · ·+ z0(a
0
1, . . . , a

0
r) ∈ Q[x]

is irreducible. Then, if we write the discriminant δf as a polynomial in t1, . . . , tr, we
automatically have δf (a

0
1, . . . , a

0
r) �= 0. Let m0 be the maximal ideal of Q[t1, . . . , tr]

generated by t1 − a01, . . ., tr − a0r, let A be the corresponding local ring Q[t1, . . . , tr]m0

with the maximal ideal m = m0A, and let B be the integral closure of A in E. By
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construction, α ∈ B and the discriminant of the basis 1, α, . . . , αn−1 is a unit in A.
So, a standard argument using traces shows that in fact B = A[α]. The specialization
homomorphism ψ : A → Q with kernel m that sends ti to a0i for i = 1, . . . , r, extends

to a homomorphism ψ̃ : B → Q into the algebraic closure of Q (see [Lan02, Ch.VII,
Proposition 3.1]); note that M := Ker ψ̃ is a maximal ideal of B lying above m. Let
E0 = ψ̃(B) 	 B/M; clearly, E0 = Q(α0), where α0 = ψ̃(α) is a root of f0. Since f0 is
irreducible, we have

(2) [E0 : Q] = n = [E : k].

Furthermore, by [Lan02, Ch.VII, Proposition 2.5], the extension E0/Q is normal and
if we let H(M) denote the decomposition subgroup of M in H, then the reduction of
automorphism modulo M yields a surjective homomorphism

ρ : H(M) → Gal(E0/Q) =: H0.

Since according to (2) we have |H| = |H0|, we conclude that H(M) = H, and ρ : H → H0

is actually an isomorphism. Let σ̃0 := ρ(σ̃) ∈ H0.
Enlarging S if necessary, we may assume that a01, . . . , a

0
r ∈ ZS and δf (a

0
1, . . . , a

0
r)

and h(a01, . . . , a
0
r) are p-adic units for all primes p /∈ S. Let Π be the set of all primes

p /∈ S such that the extension E0/Q is unramified at p and for a suitable extension u
of the p-adic place to E0, the Frobenius automorphism Fr(u|p) of (E0)u/Qp is σ̃0. By
Chebotarev’s Density Theorem (cf. [CF10, Ch.VII, 2.4]), the set Π is infinite, and we
will show that it is as required.

Let p ∈ Π. By our construction, we can then pick an extension of the p-adic valuation u
to E0 such that (E0)u/Qp is unramified with the Frobenius automorphism Fr(u|p) equal
to σ̃0. Then u corresponds to an embedding ε : E0 ↪→ Qp into the algebraic closure of Qp,
and we set E = Qp(ε(α0)) (clearly, E is naturally identified with the completion (E0)u)
and let ϕ be the Frobenius automorphism of E/Qp. Let O (resp., p) be the valuation
ring (resp., valuation ideal) in E .

Now, pick a1i ∈ a0i+pZp for i = 1, . . . , r so that a11, . . . , a
1
r are algebraically independent

over Q, and then let

f1(x) := xn + zn−1(a
1
1, . . . , a

1
r)x

n−1 + · · ·+ z0(a
1
1, . . . , a

1
r) ∈ Zp[x].

Note that f1(x) ≡ f0(x) (mod p), so δf1 ≡ δf0 (mod p) and therefore δf1 �≡ 0 (mod p).
By construction f0(ε(α0)) = 0, and consequently f1(ε(α0)) ≡ 0 (mod p). Since δf1 �≡ 0
(mod p), we have f ′

1(ε(α0)) �≡ 0 (mod p), and therefore by Hensel’s Lemma, there exists
a root α1 ∈ O of f1 such that α1 ≡ ε(α0) (mod p). We note that since δf0 �≡ 0 (mod p),
we have O = Zp[ε(α0)] (cf. [Jan96, Ch. I, Theorem 7.5]), and therefore the residue field
of E is generated over the prime subfield Fp by the image ε(α0) = ᾱ1. Since E/Qp is
unramified, it follows that E = Qp(α1). Since a11, . . . , a

1
r are algebraically independent

over Q, there is an embedding k ↪→ Qp sending ti to a1i for i = 1, . . . , r. This embedding
extends to a (dense) embedding ι : E ↪→ E sending α to α1.

Claim. For a ∈ E, we have ι(σ̃(a)) = ϕ(ι(a)).

Indeed, it is enough to prove this for a = α. It follows from (1) that

(3) ι(σ̃(α)) =
n−1∑
j=0

cj(a
1
1, . . . , a

1
r)(α1)

j .

Clearly, we have

h(a11, . . . , a
1
r) ≡ h(a01, . . . , a

0
r) (mod p),
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and in particular, h(a11, . . . , a
1
r) is a p-adic unit. It follows that for all j = 0, . . . , n − 1,

the elements cj(a
0
1, . . . , a

0
r) and cj(a

1
1, . . . , a

1
r) both lie in Zp and are congruent modulo p.

Applying to (1) the specialization map ψ̃, we obtain that

(4) σ̃0(α0) =

n−1∑
j=0

cj(a
0
1, . . . , a

0
r)(α0)

j .

Since α1 ≡ ε(α0) (mod p), we have

ϕ(ι(α)) = ϕ(α1) ≡ ϕ(ε(α0)) (mod p).

On the other hand, since Fr(u|p) = σ̃0, we have ϕ(ε(α0)) = ε(σ̃0(α0)). Combining this
with (3), (4) and the fact that α1 ≡ ε(α0) (mod p), we conclude that

(5) ϕ(ι(α)) ≡ ι(σ̃(α)) (mod p).

Now, both ι(σ̃(α)) and ϕ(ι(α)) are roots of f1(x). But since δf1 �≡ 0, the polynomial f1
has no multiple roots modulo p, so (5) implies that ι(σ̃(α)) = ϕ(ι(α)) as required.

By construction, σ̃ acts on K trivially. So, it follows from the above claim that ι(K) ⊂
Eϕ = Qp because ϕ generates the Galois group Gal(E/Qp). Since ι(ZS[t1, . . . , tr]) ⊂ Zp

and ZSR is integral over ZS [t1, . . . , tr], we conclude that ι(R) ⊂ Zp, so for ιp we can take
the restriction of ι to K. It follows from our construction that if we let w0 denote the
pullback to L of the extension of the p-adic valuation to E so that the completion Lw0

can be identified with the compositum ι(L)Qp inside E , then Lw0
/Kv is unramified and

with the Frobenius automorphism Fr(w0|v) = σ. Since L/K is a Galois extension, we
conclude that any extension w|v is unramified and the Frobenius Fr(w|v) belongs to the
conjugacy class C. �

Remark 2.2. Proposition 2.1 can be derived from a generalization of Chebotarev’s Theo-
rem to the case of schemes of finite type over Z (see [Ser12, Ch. 9] and references therein).
The above argument, however, shows a way to bypass this (rather technical) generaliza-
tion and obtain the required proposition using only the classical form of Chebotarev’s
Theorem.

3. Proof of Theorem 1

Lemma 3.1. Let G be a semisimple algebraic group over a field K which is complete
with respect to a discrete valuation v. Fix a maximal K-torus T of G, let Treg denote the
Zariski-open set of regular elements, and consider the regular map

ψ : G× Treg → G, (g, t) 
→ gtg−1.

Then the map

ψK : G(K)× Treg(K) → G(K)

induced by ψ on K-points is open for the topology defined by v.

Indeed, a direct computation shows that the differential d(g,t)ψ is surjective for any
(g, t) ∈ G×Treg. So, our assertion follows from the Inverse Function Theorem (cf. [PR94,
§ 3.1], [Ser92a, Part II, Ch. III]).

We will now recall one construction introduced in [PR03]. Let G be a semisimple K-
group, and let T1 and T2 be two maximal tori of G defined over some extension F/K.
Then there exists g ∈ G(F ) such that T2 = ιg(T1), where ιg(x) = gxg−1. Then ιg induces
an isomorphism between the Weyl groups W (G, T1) andW (G, T2). A different choice of g
will change this isomorphism by an inner automorphism of the Weyl group, implying that
there is a canonical bijection between the sets [W (G, T1)] and [W (G, T2)] of conjugacy
classes in the respective groups; we will denote this bijection by ιT1,T2

. Moreover, if we let
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ι∗g : X(T2) → X(T1) denote the corresponding isomorphism of the character groups, then
ι∗g takes Φ(G, T2) to Φ(G, T1), and if we identify Aut(Φ(G, T1)) with Aut(Φ(G, T2)) using

ι�g : α 
→ (ι∗g)
−1 ◦ α ◦ ι∗g, for α ∈ Aut(Φ(G, T1)), then the following holds: if g ∈ G(E),

where E is an extension of F , then for any σ ∈ Gal(Ē/E) we have

(6) ι�g(θT1
(σ)) = θT2

(σ)

in the above notations.

Proof of Theorem 1. It is enough to show that the set Δ(Γ,K) of regular semisimple K-
generic elements in Γ = G(R) is open in Γ in the congruence topology defined by ideals
a ⊂ R of finite index. Let g0 ∈ Δ(Γ,K). Then for the maximal K-torus T0 = Z(g0)

◦ we
have the inclusion

θ̄T0
(Gal(KT0

/K)) ⊃ W (G, T0)

in the above notations. Let w1, . . . , wr be a set representative of all nontrivial conjugacy
classes of W (G, T0), let σ̃i ∈ Gal(K̄/K) be such that θT0

(σ̃i) = wi for i = 1, . . . , r, and let
σi be the image of σ̃i in Gal(KT0

/K) (so that θ̄T0
(σi) = wi). Applying Proposition 2.1 to

L = KT0
, we can find r distinct primes p1, . . . , pr such that for each i ∈ {1, . . . , r} there

is an embedding ιpi
: K ↪→ Qpi

such that ιpi
(R) ⊂ Zpi

and for a suitable extension ui|vpi
,

where vpi
is the pullback of the pi-adic valuation on Qpi

, the extension Lui
of Kvpi

= Qpi

is unramified with the Frobenius automorphism σi. According to Lemma 3.1, for each
i ∈ {1, . . . , r}, the set

Upi
:= ψQpi

(
G(Qpi

)× (T0)reg(Qpi
)
)
, where ψQpi

(g, t) = gtg−1

is open and obviously contains g0. So, we can find i � 1 such that the coset g0G(Zpi
,

p�ii Zpi
) of the corresponding congruence subgroup is contained in Upi

. Set

a =

r⋂
i=1

(
R ∩ ι−1

pi
(p�ii Zpi

)
)
.

Clearly, a is an ideal of R having finite index, and to conclude the proof we will show that
g0Γ(a) ⊂ Δ(Γ,K). Let g ∈ g0Γ(a). Then by construction g ∈ Upi

for all i = 1, . . . , r, and
in particular g is a regular semi-simple element. Furthermore, if T = ZG(g)

◦, then for
each i = 1, . . . , r there exists gi ∈ G(Qpi

) such that ιgi(T0) = T . It follows from (6) that
ι�gi(θT0

(σ̃i)) = θT (σ̃i), and therefore the conjugacy class ιT0,T ([wi]) of W (G, T ) intersects

θT (Gal(Qpi
/Qpi

)) ⊂ θT (Gal(K̄/K)).

This being true for each i = 1, . . . , r, we conclude that the subgroup

θT (Gal(K̄/K)) ∩W (G, T )

intersects every conjugacy class of W (G, T ). Applying an elementary fact (Jordan’s
theorem) from group theory, we obtain that

θT (Gal(K̄/K)) ⊃ W (G, T ),

as required. �

Remark 3.2. We would like to indicate that the above argument is parallel to the argu-
ment developed in [PR03] in order to prove the existence of K-generic elements in any
Zariski-dense subgroup (and in fact those with special properties such as R-regularity if
K ⊂ R). This indicates that the construction of generic elements from [PR03] in fact
enables one to obtain all of them. More precisely, fix a K-torus T0 of G and as above
let [w1], . . . , [wr] be all nontrivial conjugacy classes of W (G, T0). It follows from Propo-
sition 2.1 that one can pick r distinct primes p1, . . . , pr such that for each i = 1, . . . , r
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there exists an embedding ιi : K ↪→ Qpi
such that ιi(R) ⊂ Zpi

and G splits over Qpi
.

Then one shows that there is a maximal Qpi
-torus Ti of G/Qpi

such that

θTi
(Gal(Qpi

/Qpi
)) ∩ ιT0,Ti

([wi]) �= ∅.

Let

Upi
= ψQpi

(
G(Qpi

)× (Ti)reg(Qpi
)
)
, where ψQpi

(g, t) = gtg−1.

We observe that Upi
intersects every open subgroup of G(Qpi

). Since the pi are distinct,
a standard approximation argument shows that since Γ is Zariski-dense, its closure in∏ r

i=1 G(Qpi
) is open, and therefore Γ ∩

∏ r
i=1 Upi

�= ∅. Then the argument used in the
proof of the above theorem shows that any element of this intersection is generic over K.

4. Positive characteristic case: Theorem 1

The argument given in § 3 is independent of the characteristic of the base field. So, to
prove Theorem 1 in positive characteristic we only need to provide a suitable analogue
of Proposition 2.1. It suffices to prove the following.

Proposition 4.1. Let R be a finitely generated subring of an infinite finitely generated
field K of characteristic p > 0, and let L/K be a finite Galois extension with Galois
group G = Gal(L/K). Fix a conjugacy class C of G. Then there exists a (nontrivial)
discrete valuation v on K such that the completion Kv is locally compact, R lies in the
corresponding valuation ring Ov, and for any extension w|v, the Frobenius automorphism
of Lw/Kv belongs to C.

We will only indicate the changes that need to be made in the proof of Proposition 2.1.
Again, we may (and we will) assume that the field of fractions of R coincides with K, and
then find in R a separable transcendence basis t0, . . . , tr for K over the prime subfield
Fp (which means that K is a finite separable extension of k := Fp(t0, . . . , tr)). Let E
denote the Galois closure of L over k with Galois group H = Gal(E/k). Set A = Fp[t0]
and k0 = Fp(t0), and pick a primitive element α ∈ E over k whose minimal polynomial
is of the form

f(x) = xn + zn−1(t1, . . . , tr)x
n−1 + · · ·+ z0(t1, . . . , tr),

where zi(t1, . . . , tr) ∈ A[t1, . . . , tr]. We can find h1 ∈ A[t1, . . . , tr] so that the extension of
the corresponding localizations Rh1

/A[t1, . . . , tr]h1
is integral. Next, pick a representative

σ ∈ C and let σ̃ ∈ H be such that σ̃|L = σ. There exist g0, . . . , gn−1 and h2 ∈ A[t1, . . . , tr]
such that

σ̃(α) =
n−1∑
j=0

cjα
j , where cj = gj/h2.

Set h = h1h2. By Hilbert’s Irreducibility Theorem, one can find (a01, . . . , a
0
r) ∈ (k0)

r such
that h(a01, . . . , a

0
r) · δf (a01, . . . , a0r) �= 0, where δf ∈ A[t1, . . . , tr] is the discriminant of f ,

and the polynomial

f0(x) = xn + zn−1(a
0
1, . . . , a

0
r)x

n−1 + · · ·+ z0(a
0
1, . . . , a

0
r) ∈ k0[x]

is irreducible. We can find a finite set of places S of k0, that includes the place at infinity,
such that for any place v /∈ S and the corresponding valuation ring Ok0,v, we have the
inclusions

a01, . . . , a
0
r ∈ Ok0,v and h(a01, . . . , a

0
r), δf (a

0
1, . . . , a

0
r) ∈ O×

k0,v
.

We then consider the extension E0 = k0(α0), where α0 is a root of f0. As in the proof
of Proposition 2.1, we see that E0/k0 is a Galois extension such that the specialization
ti 
→ a0i for i = 1, . . . , r yields a natural isomorphism between H and the Galois group
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H0 = Gal(E0/k0). We let σ̃0 ∈ Gal(E0/k0) denote the automorphism corresponding to
σ̃ under this isomorphism. Applying Chebotarev’s Density Theorem, we find a place
v0 /∈ S of k0 which is unramified in E0 and such that for a suitable extension w0, the
Frobenius automorphism Fr(w0|v0) is σ̃0. The valuation w0 corresponds to an embedding
ε : E0 ↪→ ((k0)v0)

sep into the separable closure of the completion (k0)v0 , and we set
E = (k0)v0(ε(α0)) observing that it is naturally identified with the completion (E0)w0

.
Let O0 be the valuation ring in (k0)v0 , and let p0 be its maximal ideal. Since the

latter is uncountable, we can find a1i ∈ a0i + p0 for i = 1, . . . , r so that the elements
t0, a

1
1, . . . , a

1
r ∈ (k0)v0 are algebraically independent over Fp. Then there is an embedding

ι0 : k ↪→ (k0)v0 that sends t0 to t0 and ti to a1i for i = 1, . . . , r. Consider the polynomial

f1(x) := xn + zn−1(a
1
1, . . . , a

1
r)x

n−1 + · · ·+ z0(a
1
1, . . . , a

1
r) ∈ O0[x].

Applying Hensel’s Lemma as in the proof of Proposition 2.1, we see that there is a root α1

of f1 in the valuation ringO(E) of E which is congruent to ε(α0) modulo the corresponding
valuation ideal. Then ι0 extends to a dense embedding ι̃ : E ↪→ E that sends α to α1. Let ι
be the restriction of ι̃ toK, and let v be the pullback of w0 toK. Then the completion Kv

can be identified with the compositum ι(K)(k0)v0 inside E , hence it is locally compact.
It follows from our construction that ι(A[t1, . . . , tr]) ⊂ Ov (= the valuation ring of Kv)
and h1(a

1
1, . . . , a

1
r) ∈ O×

v . Since the ring extension Rh1
/A[t1, . . . , tr]h1

is integral, we
conclude that ι(R) ⊂ Ov. Finally, repeating verbatim the argument given in the proof of
Proposition 2.1, we see that if w is the pullback to L of the valuation on E with respect to
the restriction ι̃|L, then Lw/Kv is unramified and the Frobenius automorphism Fr(w|v)
is σ. Now, the fact that L/K is a Galois extension implies that any extension w|v is
unramified with Fr(w|v) belonging to the conjugacy class C, as required.

Remark 4.2. The proof of Proposition 4.1 actually gives an infinite number of inequivalent
valuations v having the properties indicated in the statement.

5. Positive characteristic: Existence of generic elements

The goal of this section is to prove Theorem 2 (of the introduction). The argument
relies heavily on the results of Pink [Pin98] which we briefly summarize below. But first
we would like to reduce the proof to the case where Γ′ is finitely generated. We recall
that an abstract semigroup is called locally finite if every finitely generated subsemigroup
of it is finite.

Lemma 5.1. Let G be an absolutely almost simple algebraic K-group, and let Γ′ be
a Zariski-dense subsemigroup of G(K). If Γ′ is not locally finite, then it contains a finitely
generated Zariski-dense subsemigroup Δ′.

Proof. Pick a finitely generated subsemigroup Δ′ ⊂ Γ′ for which the Zariski closure H =
Δ′ has maximum possible dimension. We note that the Zariski closure of a subsemigroup
is actually a subgroup, and since Γ′ is not locally finite, H is of positive dimension. Take
any γ′ ∈ Γ′, and let H ′ be the Zariski closure of the subsemigroup generated by Δ′

and γ′. By construction, dimH = dimH ′, and therefore the connected components H◦

and (H ′)◦ coincide. It follows that γ′ normalizes H◦. Since γ′ ∈ Γ′ is arbitrary, H◦ is
normalized by all of Γ′, hence by Γ′ = G. Now, since dimH◦ > 0, the fact that G is
absolutely almost simple implies that H◦ = G, so Δ′ is Zariski-dense. �

Since a semigroup containing an element of infinite order is not locally finite, it follows
from the lemma that Γ′ as in Theorem 2 always contains a finitely generated subsemi-
group Δ′ which is Zariski-dense in G. Then it is enough to establish the existence
of K-generic semisimple elements of infinite order in Δ′. Thus, we may (and we will)
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henceforth assume that Γ′ is finitely generated and will denote by Γ the subgroup of G(K)
generated by Γ′.

Before we proceed with the proof of the theorem, we would like to point out that
a theorem due to Schur (cf. [Lam01, Theorem 9.9]) implies that the condition that Γ′

is not locally finite is in fact equivalent to the condition that it contains an element
of infinite order. (Technically, Schur’s theorem treats linear groups, so we note that
a semigroup consisting of elements of finite order is automatically a group.)

On Pinks’ approximation results. In this subsection, we will review the notions
involved in the results of Pink [Pin98, Pin00] and then give a precise statement of his
main result in [Pin98] in the form needed for our purpose. For i = 1, . . . , r, let Gi

be a connected absolutely simple adjoint group over a local (i.e. nondiscrete locally
compact) field Fi. Let G denote the group scheme over the commutative semisimple ring
F =

∏ r
i=1 Fi with fibers Gi so that G(F ) =

∏ r
i=1 Gi(Fi). Let Γ ⊂ G(F ) be a subgroup

with compact closure and with Zariski-dense projections in all factors. Following Pink
[Pin98], we say that a triple (E,H,ϕ) consisting of a closed semisimple subring E ⊂ F
such that F is a module of finite type over E, a group scheme H over E whose fibers
over factor fields of E are connected absolutely simple adjoint groups, and an isogeny
ϕ : H ×E F → G such that Γ ⊂ ϕ(H(E)), is a weak quasi-model of the triple (F,G,Γ). If
in addition the derivative of ϕ does not vanish on any fiber, the triple (E,H,ϕ) is called
a quasi-model. The triple (F,G,Γ) is called minimal if for any quasi-model (E,H,ϕ) we
necessarily have E = F and ϕ is an isomorphism. Now, if (E,H,ϕ) is a quasi-model
then the fact that the fibers of H over factor fields of E are adjoint makes the isogeny ϕ
purely inseparable. It follows that the induced map H(E) → G(F ) is injective, which
enables us to identify Γ with its pre-image in H(E). Then the triple (E,H,Γ) satisfies
the same assumptions as (F,G,Γ). A (weak) quasi-model (E,H,ϕ) is said to be minimal
if the triple (E,H,Γ) is minimal in the above sense. Pink [Pin98, Theorem 3.6] proves
that every triple (F,G,Γ) has a minimal quasi-model (E,H,ϕ); the subring E in this
model is unique, and H and ϕ are determined up to unique isomorphism.

Now, let (E,H,ϕ) be a minimal model of (F,G,Γ), and view Γ as a subgroup of H(E).

Let H̃ be the universal cover of H (it is the direct product of the universal covers of the

factors of H). Then the commutator morphism of H̃ factors through a unique morphism

[ , ]∼ : H ×H → H̃. Let Γ̃ be the subgroup of H̃(E) generated by [Γ,Γ]∼.

Theorem 3 ([Pin98, Main Theorem 0.2]). The closure of Γ̃ in H̃(E) is open.

We can now state the key proposition that leads to the existence of generic elements.
In the rest of this paper G will denote a connected absolutely simple adjoint group defined
over a finitely generated field K and Γ ⊂ G(K) a Zariski-dense subgroup that contains
an element of infinite order. For a discrete valuation v of K such that the completion
Kv is locally compact and Γ has compact closure in G(Kv), we let (Ev, Hv, ϕv) denote
a minimal quasi-model of (Kv, G,Γ). Let r be the number of conjugacy classes in the
Weyl group of (a maximal torus of) G.

Proposition 5.2. Assume that there exist a subfield K ′ ⊂ K such that K/K ′ is a purely
inseparable extension and valuations v1, . . . , vr of K satisfying the following properties.

(0) Each completion Kvi is locally compact and Γ has compact closure in G(Kvi).
(1) For each i ∈ {1, . . . , r}, the group Hvi is Evi-split and Evi contains K ′.
(2) Set V = {v1, . . . , vr}, KV =

∏
v∈V Kv, EV =

∏
v∈V Ev (⊂ KV ), HV =

∏
v∈V Hv,

and ϕV =
∏

v∈V ϕv; then (EV , HV , ϕV ) is a minimal quasi-model of (KV , G,Γ) (here Γ
is diagonally embedded into G(KV ) =

∏
v∈V G(Kv)).

Then Γ′ (⊂ Γ) contains regular semisimple elements of infinite order that are generic
over K.
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Proof. For v ∈ V, we let �v : H̃v → Hv denote the universal Ev-cover, and set πv =

ϕv ◦ (�v)Kv
. Since Hv is Ev-split, H̃v is also Ev-split. As above, we can unambiguously

identify Γ with a subgroup of

HV (EV ) =
∏
v∈V

Hv(Ev).

Furthermore, for each v ∈ V, let [ , ]∼v : Hv × Hv → H̃v be the Ev-morphism obtained
from the commutator map, and let

[ , ]∼ =
∏
v∈V

[ , ]∼v

be the product of these morphisms regarded either as a morphism of EV -schemes

HV ×HV → H̃V :=
∏
v∈V

H̃v,

or simply as a map

HV (EV )×HV (EV ) → H̃V (EV ) =
∏
v∈V

H̃v(Ev).

Let Γ̃ be the subgroup of H̃V (EV ) generated by [Γ,Γ]∼. Since by our assumption
(EV , HV , ϕV ) is a minimal quasi-model of (KV , G,Γ), the approximation theorem of

Pink stated above tells us that the closure of Γ̃ in H̃V (EV ) is open.

Now, for i � r, let T̃i be a maximal Evi -split torus of H̃vi , and let Si = πvi((T̃i)Kvi
)

be the corresponding maximal Kvi -torus of G. We extend the associated comorphism

π∗
i : X(Si) → X(T̃i)

of the character groups to an isomorphism of vector spaces

τi : Vi := X(Si)⊗Z Q → X(T̃i)⊗Z Q =: Ṽi.

We consider the automorphism groups of the root systems Φ(H̃vi , T̃i) and Φ(G,Si) as
subgroups of GL(Ṽi) and GL(Vi), respectively. Then by [Che85, Prop. 4], the isomor-
phism

λi : GL(Ṽi) → GL(Vi), g 
→ τ−1
i ◦ g ◦ τi

induces an isomorphism W (H̃vi , T̃i) → W (G,Si) of the Weyl groups.
We fix a maximal K-torus S of G and let [w1], . . . , [wr] be the distinct nontrivial

conjugacy classes in the Weyl group W (G,S). We use ιSi,S to identify conjugacy classes
in the Weyl group W (G,Si) with conjugacy classes in W (G,S). For i � r, we pick

w̃i ∈ W (H̃vi , T̃i) so that [λi(w̃i)] = [wi]. Since H̃vi is Evi-split for all i, the argument
used in [PR03] to prove Lemma 1 (this argument works in all characteristics) shows that

for i � r, one can find a maximal Evi -torus T̃i of H̃vi such that

(7) θ
˜Ti
(Gal(Esep

vi /Evi)) ∩ ι
˜Ti, ˜Ti

([w̃i]) �= ∅.

Let Si = πvi((T̃i)Kvi
). Then Si is a maximal Kvi -torus of G. Let

Ũi = ψ̃i

(
H̃vi(Evi)× (T̃i)reg(Evi)

)
,

where
ψ̃i : H̃vi × T̃i → H̃vi , (h̃, t̃ ) 
→ h̃ t̃ h̃−1,

and
Ui = ψi

(
G(Kvi)× (Si)reg(Kvi)

)
,

where
ψi : G× Si → G, (g, s) 
→ gsg−1.
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Observe that by the Open Mapping Theorem, Ũi and Ui are open in H̃vi(Evi) and
G(Kvi), respectively, and they clearly intersect every open subgroup of the respective
ambient groups. Let Ω be a compact-open subgroup of

G(KV ) :=
∏
v∈V

G(Kv)

that does not contain any element whose v-component, for some v ∈ V, is of finite order

but not unipotent. Let Ω̃ be a compact-open subgroup of H̃V (EV ) that is contained in

the inverse image of Ω under the continuous homomorphism H̃V (KV ) → G(KV ) induced

by πV :=
∏

v∈V πv. Since the closure of Γ̃ is an open subgroup of H̃V (EV ), we see that

Γ̃ ∩
(
Ω̃ ∩

r∏
i=1

Ũi

)
�= ∅.

Let γ̃ be an element of this intersection, and let γ (∈ Ω∩
∏ r

i=1 Ui) be the corresponding
element of Γ. We note that as the subsemigroup Γ′ generates Γ, and the closure of the
latter in G(KV ) is a compact subgroup, the closure of Γ′ in G(KV ) is a subgroup and so
it contains Γ. Now since Ω ∩

∏ r
i=1 Ui is an open neighborhood of γ (∈ Γ) in G(KV ),

Γ′ ∩
(
Ω ∩

r∏
i=1

Ui

)
�= ∅.

Let γ′ = (γ′
1, . . . , γ

′
r), with γ′

i ∈ Ui, be an element of this intersection. This element is
clearly of infinite order; we will now show that it is generic. Let S = ZG(γ

′)◦; this is
a maximal K-torus of G. Let Si = ZG(γ

′
i)

◦. Then Si is conjugate to Si by an element of
G(Kvi), and moreover, SKvi

= Si.

Since K ′ ⊂ Evi , K/K ′ is purely inseparable, SKvi
= Si is conjugate to Si by an

element of G(Kvi) and πvi((T̃i)Kvi
) = Si, it follows from (7) by applying πvi that

(8) θSKvi
(Gal(Ksep

vi
/Kvi)) ∩ ιSi,SKvi

([wi]) �= ∅.

Thus, the image θS(Gal(Ksep/K)) (⊂ AutΦ(G, S)) intersects every conjugacy class of
W (G, S), and therefore it contains W (G, S). So, γ′ is generic, as required. �

In applying the preceding proposition, condition (0) is easy to achieve while conditions
(1) and (2) require more work. The subtlety of condition (1) is that while it is easy to
construct valuations v such that G is split overKv, this may not imply automatically that
Hv is Ev-split. More precisely, given a K-isogeny π : H → G of connected absolutely
almost simple algebraic groups over a field K of positive characteristic, H need not
be K-split when G is unless π is a central isogeny.1 We note that over nondiscrete locally
compact fields all groups of type F4 and G2 are split, so in our situation this problem can
arise only for isogenies between groups of types Bn and Cn over fields of characteristic
two. However, treating just this case does not appear to be simpler then treating the
general case, which is what we are going to do. We begin with two simple lemmas.

Lemma 5.3 (cf. Vinberg [Vin71, Lemmas 2 and 3]). Let Δ ⊂ Mn(K) be an absolutely
irreducible multiplicative semigroup, and let E be a subfield of K such that tr δ ∈ E for
all δ ∈ Δ. Then the characteristic polynomial of every δ ∈ Δ has coefficients in E.

1To construct an example, let q be a “nondegenerate” quadratic form of defect 1 on a (2n + 1)-
dimensional vector space V over a field k of characteristic 2. Then the induced bilinear form on V/Rad(q)
is a nondegenerate alternating form in 2n variables which is invariant under SO(q). Thus we get the
isogeny SO(q) → Sp(2n). Now, over a locally compact field k, the form q can be chosen to be of Witt
index n− 1, so SO(q) is not k-split, but Sp(2n) is k-split.

Note that if the absolute root system of G is simply-laced then π is a central isogeny.
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(In characteristic zero this, of course, immediately follows from Newton’s formulas.)

Proof. Let A be the E-span of Δ; clearly, A is an E-algebra. We will first show that A is
an E-form ofMn(K), i.e. A⊗EK 	 Mn(K). Indeed, since Δ is absolutely irreducible, by
Burnside’s Theorem, we can pick δ1, . . . , δn2 ∈ Δ that are linearly independent over K.
Set

B =

n2∑
i=1

Eδi.

Clearly, the map

τ : Mn(K) → Kn2

, a 
→ (tr(aδ1), . . . , tr(aδn2)),

is an isomorphism of K-vector spaces. Since E contains the traces of all elements of Δ,

we obtain that τ (Δ) ⊂ En2

and the matrix of the trace form in the basis δ1, . . . , δn2 has
entries in E. It follows that Δ ⊂ B, and therefore A = B; in particular, dimE A = n2.
Then the natural homomorphism A⊗EK → Mn(K) is clearly an isomorphism, implying
that A is a central simple E-algebra. So, the characteristic polynomial of δ ∈ Δ ⊂ A can
be viewed as its reduced polynomial, and therefore has coefficients in E. �

To formulate the next lemma, we need to introduce one additional technical notion.
Let γ ∈ G(K) be a regular semisimple element, and T = ZG(γ)

◦ be the corresponding
maximal torus. We say that γ is super-regular if the values a(γ), for a ∈ Φ(G, T ), are all
distinct. We note that the set of super-regular elements is Zariski-open.

Lemma 5.4. Let H be an absolutely almost simple algebraic group over a field E (⊂ K),
and let ϕ : HK → G (⊂ GLn) be an isogeny. Let γ ∈ H(E) be a semisimple element
such that ϕ(γ) is super-regular and has eigenvalues in E. Then γ is regular and the
corresponding torus T = ZH(γ)◦ is E-split; in particular, H splits over E.

Proof. Let T be a maximal E-torus of H containing γ, and let S = ϕ(TK). We let
Φ = Φ(G,S) and Φ′ = Φ(H,T ) denote the corresponding root systems. Set p = 1 if
charE = 0, and p = charE otherwise. Chevalley [Che85, p. 5] proves that there exists
a bijection ψ : Φ → Φ′ such that

(9) ϕ∗(a) = pd(a)ψ(a) for all a ∈ Φ,

where d(a) is an integer � 0. Since

ϕ∗(a)(γ) = a(ϕ(γ)) for any a ∈ Φ,

and ϕ(γ) is regular, it follows from (9) that, first, for all b ∈ Φ′, b(γ) �= 1, and hence γ is
regular. Moreover, since d(a) is the same integer for all roots a of a given length (which
follows from the fact that the Weyl group acts transitively on the roots of the same
length), we see that the values b(γ), for b ∈ Φ′

short, are all distinct (we set Φ′
short = Φ′

if all roots have the same length). Second, b(γ) ∈ E1/p∞
. At the same time, b(γ) lies

in a separable closure Esep of E, so in fact b(γ) ∈ E for all b ∈ Φ′. Then for any
σ ∈ G := Gal(Esep/E) we have

(σ(b))(γ) = σ(b(σ−1(γ))) = b(γ).

It follows that σ(b) = b for all b ∈ Φ′
short and all σ ∈ G. Since Φ′

short span X(T ), we
obtain that G acts on X(T ) trivially, i.e., T is E-split. �

We will use the above two lemmas in the proof of Theorem 2 to verify condition (1)
in Proposition 5.2. We will now address condition (2) in this proposition.
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Proposition 5.5. Let V = {v1, . . . , vr} be a finite set of discrete valuations of K with
locally compact completions, and for each v ∈ V let (Ev, Hv, ϕv) be a minimal quasi-
model of (Kv, G,Γ). As above, let KV =

∏
v∈V Kv, EV =

∏
v∈V Ev, HV =

∏
v∈V Hv,

and ϕV =
∏

v∈V ϕv. If the fields Ev are pairwise nonisomorphic as topological fields
then (EV , HV , ϕV ) is a minimal quasi-model of (KV , G,Γ).

Proof. Let (E,H,ϕ) be a quasi-model of (EV , HV ,Γ), where Γ is identified with its lift via

ϕV . We need to show that E = EV and ϕ is an isomorphism. Write E =
∏ d

i=1 Evi and

H =
∏ d

i=1 Hi, where Ei is a local field and Hi is a connected absolutely simple adjoint
Ei-group. It is enough to show that d = r. Indeed, then, by analyzing idempotents, we
see that after a possible reindexing of the Ei’s we may assume that Ei ⊂ Evi . In this
case, for each i ∈ {1, . . . , r}, the triple (Ei, Hi, ϕi), where ϕi is the restriction of ϕ, is
a quasi-model of (Evi , Hvi ,Γ). So, the minimality of the latter implies that Ei = Evi

and ϕi is an isomorphism, hence the required result.
Now, if d < r, then some Ei0 has nontrivial projections to Evi and Evj for some i, j ∈

{1, . . . , r}, i �= j. So, (Ei0 , Hi0 ,Γ) is a model of both (Evi , Hvi ,Γ) and (Evj , Hvj ,Γ). Since
these models are minimal, we have Evi = Ei0 = Evj , contradicting our assumption. �

The final preparatory step for the proof of Theorem 2 provides a construction of
valuations with the required properties.

Lemma 5.6. Let K be a finitely generated field, F an infinite subfield of K, and R ⊂ K
be a finitely generated subring. Then there exists a subfield K ′ ⊂ K containing F such
that the extension K/K ′ is purely inseparable and for any r � 1 one can find r discrete
valuations v1, . . . , vr of K such that:

(1) for each i = 1, . . . , r, the completion Kvi is locally compact, the ring R is con-
tained in the valuation ring O(Kvi), and the completions of F and K ′ with respect to the
restrictions of vi (i.e. the closures of F and K ′ in Kvi) coincide;

(2) for i �= j, the residue fields of Kvi and Kvj have different sizes.

Proof. We only need to consider the case where K has characteristic p > 0. Pick a sep-
arable transcendence basis s0, . . . , sa of F over the prime subfield Fp (a � 0 since F is
infinite), and let t1, . . . , tb be any transcendence basis of K/F . We then let K ′ denote
the separable closure of F (t1, . . . , tb) in K. Then K ′ is a finite separable extension of
L = Fp(s0, . . . , sa, t1, . . . , tb), and K/K ′ is a finite purely inseparable extension. Since R
is finitely generated, we can find a nonzero h ∈ C := Fp[s0, . . . , sa, t1, . . . , tb] such that
all elements of R are integral over Ch := C[1/h].

Let α ∈ K ′ be a primitive element over L. We may assume without loss of generality
that the minimal polynomial of α is of the form

f(x) = xn + pn−1x
n−1 + · · ·+ p0 with pi ∈ C.

Set A = Fp[s0] and k = Fp(s0), and then think of the pi’s as elements of C = A[s1, . . . , sa,
t1, . . . , tb]. Let q = q(s1, . . . , sa, t1, . . . , tb) ∈ C be the discriminant of f ; note that q �= 0
as f is separable. We then pick s01, . . . , s

0
a, t

0
1, . . . , t

0
b ∈ A so that q(s01, . . . , s

0
a, t

0
1, . . . , t

0
b) �=

0 and h(s0, s
0
1, . . . , s

0
a, t

0
1, . . . , t

0
b) �= 0, and let

f0(x) = xn + pn−1(s
0
1, . . . , s

0
a, t

0
1, . . . , t

0
b)x

n−1 + · · ·+ p0(s
0
1, . . . , s

0
a, t

0
1, . . . , t

0
b) ∈ A[x].

By our construction, f0(x) is a separable polynomial. It follows from Chebotarev’s
Density Theorem that one can find discrete valuations v01 , . . . v

0
r of k corresponding to the

irreducible polynomials in A of pairwise distinct degrees such that for each j ∈ {1, . . . , r}
the residue polynomial f0(x)

(v0
j ) over the residue field κv0

j
is separable and splits into

linear factors, and the residue

h(s0, s01, . . . , s
0
a, t

0
1, . . . , t

0
b)

(v0
j ) �= 0 in κv0

j
.
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Let us show that for each j = 1, . . . , r, there exists an embedding

ιj : K ↪→ k̄v0
j
=: Kj (algebraic closure of kv0

j
)

extending the standard embedding of k such that ιj(K
′) ⊂ kv0

j
and ιj(R) is contained

in the valuation ring O(Kj). We let pj denote the valuation ideal in kv0
j
. Then one

can find elements s̃1, . . . , s̃a, t̃1, . . . , t̃b ∈ kv0
j
that are algebraically independent over k and

congruent, respectively, to s01, . . . , s
0
a, t

0
1, . . . , t

0
b modulo pj . This enables us to construct

an embedding of L = k(s1, . . . , sa, t1, . . . , tb) into kv0
j
sending s1, . . . , sa, t1, . . . , tb to

s̃1, . . . , s̃a, t̃1, . . . , t̃b. Next, we observe that the polynomial

f̃(x) := xn + pn−1(s̃1, . . . , s̃a, t̃1, . . . , t̃b)x
n−1 + · · ·+ p0(s̃1, . . . , s̃a, t̃1, . . . , t̃b)

has a root in kv0
j
. Indeed, the residue f̃(x)(v

0
j ) coincides with f0(x)(v

0
j ), hence is a product

of distinct linear factors over κv0
j
. So, the fact that f̃(x) has a root in kv0

j
follows

from Hensel’s Lemma, and in turn implies that the above embedding L ↪→ kv0
j
extends

to an embedding K ′ ↪→ kv0
j
. Now, for the required embedding ιj we take the unique

extension of the latter to K. We only need to show that ιj(R) ⊂ O(Kj). According
to our construction, we have the inclusion ιj(C) ⊂ O(kv0

j
) ⊂ O(Kj). Furthermore,

ιj(h) = h(s0, s̃1, . . . , s̃a, t̃1, . . . , t̃b) is a unit in O(kv0
j
), so ιj(Ch) ⊂ O(Kj). Since every

element of R is integral over Ch, the inclusion ιj(R) ⊂ O(Kj) follows.
Now, let vj is the pullback to K (via ιj) of the standard valuation on Kj . Since

ιj(K
′) ⊂ kv0

j
and K/K ′ is finite, the completion Kvj is locally compact. All other prop-

erties in (1) immediately follow from our construction. Furthermore, by our construction,
for i �= j, the local fields kv0

i
and kv0

j
have the residue fields of different sizes. Since Kvi

and Kvj are purely inseparable extensions of these fields while the residue fields are
perfect, (2) follows. �

Proof of Theorem 2. Let π : G → Ḡ be a central K-isogeny onto the corresponding ad-
joint group. It is easy to see that if γ′ ∈ Γ′ is such that π(γ′) is a regular semisimple
element of infinite order that is generic over K, then γ′ possesses all these properties
as well. Thus, we may assume from the beginning that G is adjoint. Next, as we have
seen at the beginning of this section, we may assume that Γ′ is finitely generated. Fixing
a faithful K-representation G ↪→ GLn, we can find a finitely generated subring R of K
so that Γ′ ⊂ GLn(R). Let g = L(G) be the Lie algebra of G. Any nontrivial K-isogeny
ϕ : H → G, with H connected and adjoint, is purely inseparable and the image of the
differential dϕ is either zero or contains the unique irreducible AdG-submodule m of g.
Let ρ : G → GL(m) denote the corresponding representation. Let F be the subfield of K
generated by the traces tr ρ(γ), γ ∈ Γ; clearly, F is infinite. Pick a super-regular γ0 ∈ Γ;
then ρ(γ0) is super-regular in ρ(G). Let χ(t) be the characteristic polynomial of ρ(γ0)
which by Lemma 5.3 has coefficients in F . Write χ(t) = (t− 1)af(t), where f(t) ∈ F [t]
is such that f(1) �= 0. Since γ0 is super-regular in G, the polynomial f(t) does not have
multiple roots. Expanding K, we may assume that f splits over K into linear factors.
Then, since f is separable, for any subfield K ′ ⊂ K containing F and such that K/K ′

is purely inseparable, the polynomial f splits into linear factors already over K ′.
Now, using Lemma 5.6, we find a subfield K ′ ⊂ K containing F such that K/K ′ is

purely inseparable and discrete valuations v1, . . . , vr (where r is the number of nontrivial
conjugacy classes in the Weyl group of G) of K satisfying conditions (1) and (2) therein.
Set V = {v1, . . . , vr}. Then for any v ∈ V, the completion Kv is locally compact by con-
struction and the closure of Γ in G(Kv) is compact due to the inclusions Γ ⊂ GLn(R) and
R ⊂ O(Kv), verifying condition (0) of Proposition 5.2. Let (Hv, Ev, ϕv) be a minimal
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quasi-model of (G,Kv,Γ). Since the representation ρ◦ϕv is contained in the adjoint rep-
resentation of Hv, we obtain from Proposition 3.10 of [Pin98] that Ev (⊂ Kv) contains F .
Since F and K ′ have the same closure in Kv and f splits over K ′ into linear factors, we
conclude that all eigenvalues of ρ(γ0) lie in Ev. On the other hand, by the definition of
a quasi-model, there exists γ ∈ Hv(Ev) such that ϕv(γ) = γ0. Applying Lemma 5.4 to
the isogeny ρ◦ϕv : Hv → ρ(G), we obtain that Hv is Ev-split, which verifies condition (1)
of Proposition 5.2. Finally, as we have seen, Ev contains K ′, and therefore the extension
Kv/Ev is purely inseparable. So, since the fields Kvj for j = 1, . . . , r have finite residue
fields of pairwise different sizes, the same is true for the fields Evj , making these fields
pairwise nonisomorphic. Applying Proposition 5.5, we see that (EV , HV , ϕV ) is a minimal
model of (KV , G,Γ), verifying condition (2) of Proposition 5.2. Now, the assertion of The-
orem 2 on the existence of generic elements immediately follows from Proposition 5.2. �
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