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SUBNORMAL SUBGROUPS OF THE GROUPS OF RATIONAL
POINTS OF REDUCTIVE ALGEBRAIC GROUPS

GOPAL PRASAD AND ANDREI S. RAPINCHUK

(Communicated by Rebecca Herb)

Abstract. We prove that for a reductive algebraic group G over an infinite
field K, the group of rational points G(K) does not contain any noncentral
finitely generated normal subgroups.

1. Introduction

We recall that a subgroup N of an abstract group G is said to be subnormal if
there exists a descending chain of subgroups (called a subnormal series)

G = G0 ⊃ G1 ⊃ · · · ⊃ Gs = N

such that Gi+1 C Gi for all i = 0, 1, . . . , s−1. Papers [1]-[2] were devoted to various
particular cases of the question of whether the group G = GLn(D), where D is
a division algebra and n > 1, can have finitely generated noncentral subnormal
subgroups. Finally, it was proven in [10] that if D is finite dimensional over its
center, then any finitely generated subnormal subgroup of GLn(D) must be central.
The goal of this note is to show that the latter result is a particular case of a general
statement about finitely generated subnormal subgroups in the group of rational
points of reductive algebraic groups (and not only over fields, but also over semi-
local rings arising from valuations).1

Before stating our main theorem, we would like to state some conventions and
notations to be used throughout the paper. All valuations considered will be real-
valued (in other words, will have height one). Given a nonarchimedean valuation v
of a field K, we let Ov denote the corresponding valuation ring. We tacitly assume
that every linear algebraic K-group G comes with a certain fixed K-embedding
G ⊂ GLn which will allow us to consider freely the group G(A) := G ∩GLn(A) of
A-points for any subring A ⊂ K. It should be noted that although the group G(A)
may depend on the choice of an embedding G ⊂ GLn, all our results remain true
for any embedding.

Received by the editors March 5, 2001.
2000 Mathematics Subject Classification. Primary 20G15, 20G30, 22E46.
1Unfortunately, extending results about normal subgroups from the group D∗, where D is

a finite dimensional divison algebra, to the groups of points of arbitrary connected reductive
algebraic groups is not always this simple. More specifically, it was shown in [16] that any finite
quotient of D∗ is solvable; whether or not this fact generalizes to the group G(K), where G is an
arbitrary connected reductive group over an infinite field K, is an interesting and difficult open
problem.
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Theorem 1. Let G be a connected reductive algebraic group defined over an infinite
field K, S be a finite (possibly, empty) set of nontrivial inequivalent nonarchimedean
valuations of K, and O =

⋂
v∈S Ov. If N is a subnormal subgroup of G(O), not

contained in the center Z(G), then N cannot be contained in a finitely generated
subgroup of G(K).

When S = ∅, then by definition O = K, so we immediately obtain the following.

Corollary 1. Let G, K be as in Theorem 1. Then no noncentral subnormal sub-
group of G(K) is contained in a finitely generated subgroup of G(K).

Applying this corollary to the group G = GLn,D associated with a finite dimen-
sional division algebra D, we recover the result of [10].

The proof of Theorem 1 is based on the possibility to embed any finitely gener-
ated integral domain into either the ring of p-adic integers (in characteristic zero)
or the ring of formal power series in one variable over a finite field (in positive
characteristic); see Proposition 1. The first application of this method (known to
us) is due to Platonov [12] who established with its help the nonsurjectivity (on the
groups of rational points) of an isogeny between two algebraic groups over finitely
generated fields. Later it was also used for different purposes (cf., for example, [15],
§4). Proposition 1 is proven in §3 by a suitable adaptation of Platonov’s argument.
The first-named author would like to thank Adrian Wadsworth and Brian Conrad
who supplied him with two different proofs of this proposition. Richard Pink has
pointed out that results from Appendix B of his paper [11] can be used to give yet
another proof.

The two authors proved the above theorem independently. As the ideas used by
them were similar, they decided to write this note jointly. Both the authors were
partially supported by the NSF and BSF (Israel-USA). The first author proved
the theorem while he visited the Forschungsinstitut für Mathematik, ETH, Zurich.
He would like to thank this institute for its hospitality and support. We are also
grateful to the referee for his suggestions that helped to improve the exposition.

2. On weak approximation in algebraic groups

The proof of Theorem 1 uses some information about weak approximation in
reductive algebraic groups which we will recall now. Let G be a connected reductive
algebraic group defined over an infinite field K. Given a K-variety X and a finite
set S of (nontrivial) inequivalent valuations of K, we let

X(S) :=
∏
v∈S

X(Kv),

where Kv is the completion of K with respect to v, endowed with the direct product
topology. The closure of the diagonally embedded X(K) in X(S) will be denoted

by X(K)
(S)

.

It was shown by Harder [8] that G(K)
(S)

contains
∏
v∈S Nv for some open normal

subgroups Nv ⊂ G(Kv). Availing this opportunity, we would like to point out

another feature of G(K)
(S)

here (we note, however, that the proof of Theorem 1
does not actually require the full strength of this statement).

Theorem 2. There exists an integer m > 0 (m depending only on the absolute
rank of G) such that for any finite set S = {v1, . . . , vd} of inequivalent valuations

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUBNORMAL SUBGROUPS 2221

of K, the closure G(K)
(S)

contains G(S)(m), the subgroup generated by the m-th
powers xm, x ∈ G(S).

We need the following.

Lemma 1. Let T be a K-torus with the splitting field L, and l = [L : K]. Given a

finite set S of inequivalent valuations of K, the closure T (K)
(S)

contains T (S)l.

Proof. The idea of this proof goes back to Serre and Harder (see Hauptlemma
in [8]). We give the argument here for the sake of completeness (cf. the proof
of Lemma 9.3 in our paper [14]). We let N = RL/K(T ), and consider the exact
sequence

1→M −→ N
η−→ T → 1,(1)

in which η is the “norm” map (cf., for example, the proof of Proposition 6.7 in [13]);
note that M := Ker η is a K-torus. Corresponding to (1), we have the following
commutative diagram with exact rows:

N(K)
ηK−→ T (K) −→ H1(K,M)

↓ ↓ ↓
N(S)

ηS−→ T (S) −→
∏
v∈S H

1(Kv,M),
(2)

where for an extension K/K, H1(K,M) denotes the first Galois cohomology

H1(Gal(Ks/K),M(Ks)),
Ks being the separable closure of K. Since T is L-isomorphic to (GL1)r, r = dimT,
we have a K-isomorphism

N ' RL/K(GL1)r .(3)

We need the following two consequences of (3). First, N, and therefore also M,
splits over L. Hence, by Hilbert’s Theorem 90,

H1(K,M) = H1(LK/K,M),

so the exponent of H1(K,M) divides l = [L : K], for any extension K/K. In
particular, the exponent of

∏
v∈S H

1(Kv,M) divides l. This, in view of (2), implies
that T (S)l ⊆ ηS(N(S)). Secondly, (3) implies thatN is a smoothK-rational variety,
hence it has the weak approximation property with respect to any finite set of
inequivalent valuations (cf. Proposition 7.3 in [13]), i.e., N(K)

(S)
= N(S). Thus,

T (S)l ⊆ ηS(N(S)) ⊆ ηK(N(K))
(S) ⊆ T (K)

(S)
,

as claimed.

Proof of Theorem 2. As in the proof of Lemma 9.3 of [14], we observe that there
exists an integer m > 0 such that for any maximal K-torus T of G, the degree
[L : K] of its minimal splitting field L divides m. Indeed, the (finite) Galois group
Gal(L/K) injects into Aut X(T ), where X(T ) is the character group of T. Since
Aut X(T ) ' GLr(Z), where r = dimT is the rank of G, the order of Gal(L/K)
will divide, for example, m = [GLr(Z) : GLr(Z, 3)] as the congruence subgroup
GLr(Z, 3) is torsion-free by Minkowski’s Lemma (see, for example, Lemma 4.19 in
[13]). We will show that this number m will work.

Let R =
∏
v∈S R(v), where R(v) ⊂ G(Kv) is the set of elements xv ∈ G(Kv)

such that there exists a maximal Kv-torus Tv of G for which xv ∈ T (Kv)m. We
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claim that R ⊂ G(K)
(S)
. Take any x ∈ R, x = (xmv ), where xv ∈ Tv(Kv) for some

maximal Kv-torus Tv of G. We fix a neighborhood W of x and pick a neighborhood
of the identity Ω =

∏
v∈S Ωv in G(S) such that {ω−1xω | ω ∈ Ω} ⊂ W. Let T

be the variety of maximal tori of G. We observe that for any valuation v of K
and any torus T ∈ T (Kv), the map φ : G(Kv) → T (Kv) given by: g

φ7→ g · T,
where g · T = g−1Tg, is open in the v-adic topology. Indeed, since T is a quotient
of G, the differential dgφ : Tg(G) → Tφ(g)(T ) is surjective for any g ∈ G, so the
required openness follows from the implicit (or inverse) function theorem (see, for
example, [17], p. 85). Thus, for any v ∈ S, the set Ωv · Tv is open in T (Kv). On
the other hand, since T is rational over K (a theorem due to Grothendieck, cf. [5],
Theorem 7.9, and also [6] for characteristic zero case) and smooth, it has the weak
approximation property (Proposition 7.3 in [13]), and therefore there exists a torus

T ∈ T (K) ∩
∏
v∈S

(Ωv · Tv).

Then there exists ω = (ωv) ∈ Ω such that T = ω−1
v Tvωv for each v ∈ S, implying

that ω−1xω ∈ T (S)m. In view of Lemma 1 and our choice of m, we have that

ω−1xω ∈ T (K)
(S)
, and therefore W, being a neighborhood of ω−1xω, meets T (K),

hence also G(K). This proves the claim.
Now, we will show that R

(S)
contains the set G(S)m of the m-th powers of

elements of G(S). For this, it suffices to show that the closure R(v)
(v)

of R(v)
in G(Kv) contains G(Kv)m. It is well-known that the subset U of G of regular
semi-simple elements is a Zariski-open K-subvariety (this is obvious from the fact
that an element g ∈ G is regular semi-simple if, and only if, the multiplicity of the
root 1 of the characteristic polynomial of Ad g is minimal possible, i.e. it is equal
to the rank of G). Then by Lemma 3.2 of [13], U(Kv) is dense in G(Kv), and
therefore (U(Kv))m is dense in G(Kv)m, for any v ∈ S. However, if x = ym with
y ∈ U(Kv), then T = CG(y)◦, the identity component of the centralizer of y, is a
maximal Kv-torus and y ∈ T (Kv) (cf. [4], 11.12), and the required fact follows.

Now as G(K)
(S)

is a subgroup containing G(S)m, it contains the subgroup
G(S)(m) generated by the latter. This completes the proof of Theorem 2.

Corollary 2. Let V be a finite set of (nontrivial) nonarchimedean valuations of
K, Γ = G(OV ), where OV =

⋂
v∈V Ov. For any nontrivial valuation v0 /∈ V, the

closure Γ
(v0)

of Γ in G(Kv0) contains G(Kv0)(m), where m is as in Theorem 2.

Indeed, let S = V ∪ {v0} and

U =
∏
v∈V

G(Õv)×G(Kv0),

where Õv is the valuation ring of Kv. Since U is an open and closed subgroup of
G(S), we conclude that

G(K)
(S) ∩ U = G(K) ∩ U (S)

= Γ
(S)
.

It follows now from Theorem 2 that Γ
(S)

contains {1} × · · · × {1} ×G(Kv0)(m), so
the closure of Γ in G(Kv0) contains G(Kv0)(m).
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3. Embedding finitely generated integral domains

into compact rings

Proposition 1. Let R be a finitely generated infinite integral domain, K be its field
of fractions, and L/K be a finite separable extension. Then there exists a discrete
valuation v of K such that:

1) the completion Kv is locally compact;
2) R ⊂ Õv, the valuation ring of v in Kv;
3) Lw = Kv for any extension w | v.

Proof. Let K0 (resp., R0) be the prime subfield of K (resp., the prime subring of
R). Since K0 is perfect, there exists a transcendence basis s1, . . . , sl, where l > 0,
of K over K0 such that K is separable over P := K0(s1, . . . , sl) (cf. [9], Ch. X,
§6). Then L/P is also separable; in particular, L = P [α] for some α ∈ L. Let
A := R0[s1, . . . , sl] and B := A[α]. Since R is finitely generated, there exists a ∈ A
such that

R ⊂ B
[

1
a

]
.(1)

By adjusting a, we can assume in addition that f(x), the minimal polynomial of α

over P, has all the coefficients in A[
1
a

]. The polynomial f(x) is prime to its derivative

f ′(x), so there exist polynomials p(x), q(x) ∈ A[x] such that

p(x)f(x) + q(x)f ′(x) = b(2)

for some nonzero b ∈ A. Set c = ab.
Let C denote Z if K is of characteristic zero, and K0[t], where t is an indetermi-

nate, if K is of positive characteristic. Pick c1, . . . , cl ∈ C, not all in K0 if this field
is of positive characteristic, such that for the homomorphism ε : A→ C, defined by
si 7→ ci, one has ε(c) 6= 0. Then F := the field of fractions of ε(A), is a global field.
We now observe that given a finite separable extension F/F, there exist infinitely
many valuations u of F such that for any extension w of u to F , the completions Fw
and Fu coincide. (This can be easily seen by applying the Tchebotarev’s Density
Theorem (cf. [7], Ch. 5) to the minimal Galois extension of F containing F .) We
also recall that given an element r ∈ F ∗, for all but finitely many nonarchimedean
valuations u of F , one has u(r) > 0 (cf. [3], Ch. II, Lemma 12.1), i.e. r belongs to
the valuation ring of u. Using the first of these facts for the splitting field F (over
F ) of the polynomial g(x) = fε(x) obtained by applying the natural extension of
ε to the coefficients of f(x), in combination with the second fact, one can find a
valuation u of F such that ε(c1), . . . , ε(cl) lie in the valuation ring of u, u(c) = 0,
and g(x) splits over the (locally compact) completion Fu into linear factors. Let
Õu be the valuation ring of u in Fu, Pu be its maximal ideal, and ku = Õu/Pu

be the (finite) residue field. We observe that all the roots of g(x) belong, in fact,
to Õu (because g(x) is monic with coefficients in Õu, and Õu is integrally closed),
implying that the residue polynomial ḡ(x) is a product of linear factors over ku.

Since Õu is uncountable, one can pick t1, . . . , tl ∈ Õu to be algebraically inde-
pendent over K0 and satisfy ti ≡ ci(mod Pu) for all i = 1, . . . , l. Let σ : P → Fu be
the embedding which sends si to ti. We claim that the polynomial h(x) := fσ(x)
splits over Fv into linear factors. Indeed, by our construction h̄(x) = ḡ(x). On the
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other hand, it follows from (2) that

pσ(x)h̄(x) + qσ(x)h̄′(x) = b̄ 6= 0̄,

which implies that h̄(x) is prime to its derivative h̄′(x). It follows now from Hensel’s
Lemma that h splits over Õu into linear factors. Then, for any embedding σ̄ of L
into the algebraic closure Fu extending σ, one has σ̄(L) ⊂ Fu. Now, if v is the
valuation of K obtained by pulling back u under one of these embeddings, then
Kv = Fu and Õv = Õu; moreover, Lw = Fu = Kv for any extension w | v. Since
σ̄(α) is a root of h(x), we have σ̄(α) ∈ Õv, and then (1) implies that R ⊂ Õv as
v(a) = 0. The proof of the proposition is complete.

Remark. In his paper [12], Platonov established that any finitely generated field
can be embedded into a locally compact field. Proposition 1 gives a slightly more
refined result, i.e. that a finitely generated integral domain can be embedded into
the valuation ring of such a field. This was achieved by minor modifications of his
argument.

4. Proof of Theorem 1

We begin with the following two lemmas.

Lemma 2. Let G be a connected K-simple K-group. If a subgroup F ⊂ G(K) is
Zariski-dense in G, then any subnormal subgroup N of F, not contained in Z(G),
is also Zariski-dense in G.

Indeed, let

F = N0 ⊃ N1 ⊃ · · ·Ns−1 ⊃ Ns = N

be a subnormal series. Taking the closure (denoted )̌ in the Zariski K-topology,
we obtain the following subnormal series

G = F̌ = Ň0 ⊃ Ň1 ⊃ · · · ⊃ Ňs−1 ⊃ Ňs = Ň .

However, each of the Ňi’s is defined over K ([4], AG.14.4), so since G is K-simple,
we obtain by induction

G = Ň0 = . . . = Ňs = Ň ,

as claimed.

Lemma 3. Let K be an infinite field, S be a finite set of nontrivial inequivalent
valuations of K, and O =

⋂
v∈S Ov. For any connected reductive K-group G, the

group G(O) is Zariski-dense in G.

Proof. This statement is well-known for S = ∅, i.e. for O = K; cf. [4], Corollary
18.3. The general case is obtained by minor modifications and uses the same idea,
viz. that the variety G is unirational over K which means that there exists a
dominant K-rational map f : Al → G of the affine space Al of an appropriate
dimension ([4], Theorem 18.2). Without any loss of generality we may assume that
f(0, . . . , 0) = e (the identity). Clearly, f induces a continuous map fS : U(S) →
G(S), where U ⊂ Al is a Zariski K-open subset (the domain of f) containing
(0, . . . , 0). Since G(O) is open in G(K) with respect to the topology induced from
G(S), there exists r > 0 such that for

a := {x ∈ K | v(x) > r ∀v ∈ S} ∪ {0},
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one has f(a, . . . , a) ⊂ G(O). But since the valuations in S are nontrivial and
inequivalent, it easily follows from the weak approximation theorem (cf. [9], Ch.XII,
§1) that a is infinite. This implies that a× · · · × a is Zariski-dense in Al, and since
f is dominant, we obtain the Zariski density of G(O) in G.

Proof of Theorem 1. We let N ⊂ G(O) denote a subnormal subgroup, not con-
tained in Z(G), where G, K, and O are as in the statement of the theorem. Thus,
there exist a subnormal series

G(O) = N0 ⊃ N1 ⊃ · · · ⊃ Ns−1 ⊃ Ns = N,(1)

where Ni+1 C Ni for i = 0, . . . , s − 1. From now on, we assume in addition that
N is contained in some finitely generated subgroup Γ of G(K). Then there exists
a finitely generated subring R of K such that: 1) Γ ⊂ G(R), and 2) G is defined
over the field of fractions K ′ of R. To ensure the first condition, it is sufficient to
pick a finite system of generators x1, . . . , xr of Γ and include in R the entries of
the matrices x±1

i , 1 6 i 6 r. For the second condition, we observe that by Hilbert’s
Basis Theorem, the ideal a ⊂ K[x11, . . . , xnn, (det(xij))−1] of K-regular functions
on GLn vanishing on G is generated by a finite system of polynomials, and it is
sufficient to include in R the coefficients of all these polynomials. It is now clear that
there exists a finitely generated subring R satisfying both conditions. Replacing K
with K ′, O with O′ = O ∩K ′, and observing that O′ =

⋂
v∈S′ O′v, where S′ is the

finite set of valuations of K ′ obtained by first restricting the valuations in S to K ′

and then dropping all trivial valuations and picking one representative from each
class of equivalent ones, and O′v is the valuation ring for v ∈ S′, we may assume that
K is the field of fractions of its finitely generated subring R such that N ⊂ G(R).

Pick a maximal K-torus T of G, and let L denote its minimal splitting field. By
Proposition 1, one can find a valuation v0 of K such that R is contained in the
valuation ring Õv0 of v0 in Kv0 and L ⊂ Kv0 . Then N ⊂ G(Õv0 ), and T splits over
Kv0 . As N 6⊂ Z(G), one can find a K-morphism π : G→ H onto a K-simple adjoint
group H such that π(N) 6⊂ Z(H). Then it follows from Lemma 3 that π(G(O)) is
Zariski-dense in H, so by Lemma 2, N ′ := π(N) is also dense in H. Consider the
subnormal series obtained by applying π to (1):

π(G(O)) = N ′0 ⊃ N ′1 ⊃ · · · ⊃ N ′s−1 ⊃ N ′s = N ′,(2)

where N ′i := π(Ni), 1 6 i 6 s. To complete the proof, we need one lemma. Prior
to stating the lemma we recall that given a field K with a real-valued valuation v,
a subset X ⊂Mn(K) is said to be bounded if there exists r ∈ R such that for every
matrix (aij) ∈ X, one has v(aij) > r for all i, j ∈ {1, . . . , n}.

Lemma 4. Let H be a semi-simple adjoint algebraic group over a field K endowed
with a valuation v. If a Zariski-dense subgroup ∆ ⊂ H(K) is bounded (in terms of
some matrix K-realization of H),2 then so is its normalizer N := NH(K)(∆).

Proof. We fix a matrix K-realization H ↪→ GLn, and let A denote the subalgebra
of the matrix algebra Mn spanned by H. The adjoint action of H on A gives rise to
a morphism of algebraic groups φ : H → GL(A) which is, in fact, an isomorphism
onto the image as H is adjoint. Since ∆ is Zariski-dense in H, it also spans A.

2As isomorphisms between algebraic groups are given by polynomial functions, this notion of
boundedness, in fact, does not depend on the choice of a matrix realization.
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We pick a basis {e1, . . . , ed}, where d = dimA, of A contained in ∆, and use it to
identify GL(A) with GLd in the sequel. Then φ is defined over K.

Now, let O be the valuation ring of v, and let Λ be the O-submodule of Mn(K)
generated by ∆. Since ∆ is bounded, then so is Λ (the “bound” that works for ∆
will also work for Λ). This implies that there exists s ∈ R such that for any a ∈ Λ,
the coefficients in the expansion a =

∑d
i=1 αiei satisfy v(αi) > s for all i = 1, . . . , d.

(Indeed, the expansions of the elements of Λ have bounded coefficients with respect
to the standard basis of Mn(K), so the same remains true for any other basis
of Mn(K); on the other hand, the set {e1, . . . , ed} can be enlarged to a basis of
Mn(K), but the expansion of the elements of Λ will not involve other elements of
the basis.) For x ∈ N , as φ(x) stabilizes Λ, the entries of the matrix φ(x) := (xij)
satisfy v(xij) > s. Hence, φ(N ) is bounded. Since φ is an isomorphism, N itself is
bounded.

Returning to the series (2), we have N ′ ⊂ π(G(Õv0 )), so N ′ is a bounded
subgroup of H(Kv0) with respect to the valuation v0 of K := Kv0 . Since N ′ is
also Zariski-dense, we obtain from Lemma 4 that N ′s−1 is bounded. Continu-
ing by induction, we obtain that all the terms of (2) are bounded; in particu-

lar, π(G(O)) is bounded, and therefore its closure π(G(O))
(v0)

in H(Kv0) is also
bounded. On the other hand, let T ′ = π(T ), and let t be the order of the tor-
sion subgroup of the quotient X(T )/π∗(X(T ′)) of the character group X(T ) of T .
Then π(T (Kv0)) ⊃ T ′(Kv0)t. At the same time, according to Corollary 2, we have

T (Kv0)m ⊂ G(O)
(v0)

for some integer m > 0. These two facts together imply that

T ′(Kv0)mt ⊂ π(G(O))
(v0)

,

and therefore π(G(O))
(v0)

is not bounded as T , and hence also T ′, splits over Kv0 .
A contradiction, which proves the theorem.
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