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Abstract—This paper contains several results about the structure of the congruence kernel
C(S)(G) of an absolutely almost simple simply connected algebraic group G over a global field K
with respect to a set of places S of K. In particular, we show that C(S)(G) is always trivial
if S contains a generalized arithmetic progression. We also give a criterion for the centrality
of C(S)(G) in the general situation in terms of the existence of commuting lifts of the groups
G(Kv) for v /∈ S in the S-arithmetic completion Ĝ(S). This result enables one to give simple
proofs of the centrality in a number of cases. Finally, we show that if K is a number field and
G is K-isotropic, then C(S)(G) as a normal subgroup of Ĝ(S) is almost generated by a single
element.
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1. INTRODUCTION

Let G be an absolutely almost simple simply connected algebraic group defined over a global
field K, and let S be a nonempty subset of the set V K of all places of K containing the set V K

∞ of
archimedean places. We fix a K-embedding G ↪→ SLn and define

G(O(S)) = G(K) ∩ SLn(O(S)),

where O(S) is the ring of S-integers in K. One then introduces two topologies, τa and τc,
on the group of K-rational points G(K), called the S-arithmetic topology and the S-congru-
ence topology, respectively, by taking for a fundamental system of neighborhoods of the iden-
tity all normal subgroups of finite index N ⊂ G(O(S)) for τa, and the congruence subgroups
G(O(S), a) = G(K) ∩ SLn(O(S), a) corresponding to nonzero ideals a of O(S)1 for τc. One shows
that these topologies in fact do not depend on the choice of a K-embedding of G into SLn, and
furthermore, the group G(K) admits completions with respect to both τa and τc. These comple-
tions will be denoted Ĝ(S) and G(S) and called respectively the S-arithmetic and the S-congruence
completions. As the topology τa is finer than τc, there is a natural continuous homomorphism
π(S) : Ĝ(S) → G(S), which turns out to be surjective. Its kernel C(S)(G) is called the S-congruence
kernel. Clearly, C(S)(G) is trivial if and only if every normal subgroup N ⊂ G(O(S)) contains a
congruence subgroup G(O(S), a) for some a, which means that we have an affirmative answer to the
classical congruence subgroup problem for the group G(O(S)). In general, C(S)(G) measures the
deviation from the affirmative answer, so by the congruence subgroup problem in a broader sense
one means the task of computing C(S)(G). (In the sequel, we will omit the superscript (S) if this
cannot lead to confusion.)
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The investigation of the congruence subgroup problem has two parts: the first is to prove that
in certain cases C(S)(G) is finite and then determine it precisely, and the other is to understand
the structure of C(S)(G) in the cases where it is infinite. We recall that the expected conditions for
C(S)(G) to be finite/infinite are given in the following conjecture of Serre [58]:

C(S)(G) should be finite if rkS G :=
∑

v∈S rkKv G is ≥ 2 and G is Kv-isotropic for all
v ∈ S \ V K

∞ , and C(S)(G) should be infinite if rkS G = 1.

(In the sequel, we will always assume that rkS G > 0 as otherwise the group G(O(S)) is finite
and hence C(S)(G) is trivial.) The results of the current paper contribute to both aspects of the
congruence subgroup problem. (We refer the reader to the surveys [39, 43] and references therein
for information about the very impressive body of work in this area.)

To give the precise formulations, we need to recall the statement of the Margulis–Platonov
conjecture (MP) for the group G(K):

Let A = {v ∈ V K \ V K
∞ | rkKv G = 0} be the set of nonarchimedean places of K where G is

anisotropic, let GA =
∏

v∈A G(Kv), and let δ : G(K) → GA be the diagonal map. Then for
any noncentral normal subgroup N of G(K), there is an open normal subgroup U of GA
such that N = δ−1(U); in particular, if A = ∅ (which is always the case if G is not of
type An), then G(K) does not contain any proper noncentral normal subgroups.

We note that (MP) has been established in all cases where G is K-isotropic (see [15]) and also in
many cases where G is K-anisotropic (see [31, Ch. 9] and [54, Appendix A]). Throughout this paper,
we reserve the notation A = A(G) for the set of anisotropic places, i.e. the nonarchimedean places
of K where G is anisotropic, and assume that (MP) holds for G(K) and that A ∩ S = ∅. (As shown
in [40, § 6], the general case can be reduced to the case where A ∩ S = ∅, but if this condition fails
then C(S)(G) is always infinite.) It is known that C(S)(G) is finite if and only if it is central (i.e., is
contained in the center of Ĝ(S)), in which case it is isomorphic to the Pontryagin dual of the metaplec-
tic kernel M(S,G) (cf. [39, § 3]). Since the metaplectic kernel has completely been determined in [36]
in all cases relevant for the congruence subgroup problem (for example, we know that M(S,G) is
trivial if S is infinite), the first of the two aspects of the congruence subgroup problem we mentioned
above reduces to proving that C(S)(G) is central in the expected cases. Our first basic result (The-
orem 4.3) is the following. This result was proved in [36, § 9] in the case where K is a number field.

Theorem. Let G be an absolutely almost simple simply connected algebraic group over a global
field K, and assume that (MP) holds for G(K). Then for any finite set V of nonarchimedean
places of K that contains the set A of anisotropic places and for S = V K \ V, the congruence
kernel C(S)(G) is central and hence trivial.

This result will be used to prove the following theorem which provides a new, and particularly
effective, criterion for the centrality of C(S)(G). We observe that since rkS G > 0, it follows from the
strong approximation property (cf. [26, 29, 33]; see also [52] for a recent survey) that the congruence
completion G(S) can be naturally identified with the group of S-adeles G(A(S)), which enables us
to view the group G(Kv) for any v ∈ V K \ S as a subgroup of G(S). As above, we let π : Ĝ → G
denote the natural continuous homomorphism (we suppress the superscript (S)).

Theorem A. Let G be an absolutely almost simple simply connected algebraic group over
a global field K, and let S be any subset of V K \ A containing V K

∞ . Assume that for every v /∈ S,
there is a subgroup Gv of Ĝ so that the following conditions are satisfied :

(i) π(Gv) = G(Kv) for all v /∈ S;

(ii) Gv1 and Gv2 commute elementwise for all v1, v2 /∈ S, v1 �= v2;

(iii) the subgroup generated by the Gv , for v /∈ S, is dense in Ĝ.
Then C(S)(G) is central in Ĝ.
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(We note that this theorem was already stated in [50, Theorem 7] and that Proposition 4.5
contains a somewhat more general result which is sometimes useful.) We will show in Section 4 how
Theorem A can be used to establish the centrality of the congruence kernel for G = SLn, n ≥ 3,
and G = SL2 when rkS G ≥ 2 (i.e., when the group of units O(S)× is infinite)—see Examples 4.6
and 4.7.

To formulate our next result, we need to recall the definition of a generalized arithmetic pro-
gression. For a global field K, we let V K

f denote the set of all nonarchimedean places of K (i.e.,
V K

f = V K \ V K
∞ ). Now, let F/K be a Galois extension (not necessarily abelian) with Galois group

G := Gal(F/K). Given v ∈ V K
f which is unramified in F , for every extension w|v one defines

the Frobenius automorphism FrF/K(w|v) ∈ G; recall that FrF/K(w|v) for all extensions w|v fill a
conjugacy class of G (cf. [2, Ch. VII]). Now, fix a conjugacy class C of G.

Definition. A generalized arithmetic progression P(F/K,C ) is the set of all v ∈ V K
f such that

v is unramified in F/K and for some (equivalently, any) extension w|v, the Frobenius automorphism
FrF/K(w|v) is in the conjugacy class C .

We can now formulate our next result.

Theorem B. Let G be an absolutely almost simple simply connected algebraic group over a
global field K, and let L be the minimal Galois extension of K over which G is an inner form of
a split group. Let S be a subset of V K which is disjoint from A, contains V K

∞ , and also contains
all but finitely many places belonging to a generalized arithmetic progression P(F/K,C ) such that
σ|(F ∩ L) = idF∩L for some (equivalently, any) σ ∈ C (which is automatically true if G is an inner
form of a split group over K). Then C(S)(G) is central, and hence in fact trivial.

In Section 6 we will give a new proof of Lubotzky’s conjecture on the congruence subgroup
property for arithmetic groups with adelic profinite completion. A profinite group Δ is called adelic
if for some n ≥ 1, there exists a continuous embedding ι : Δ ↪→ GLn(Ẑ), where Ẑ =

∏
q prime Zq. It

was conjectured by A. Lubotzky that if for Γ = G(O(S)) the profinite completion Γ̂ is adelic then Γ
has the congruence subgroup property (CSP), i.e. the congruence kernel C(S)(G) is finite. This was
proved by Platonov and Sury in [32] using some rather technical constructions developed earlier
in [30] to establish (CSP) for arithmetic groups with bounded generation. Subsequently, Liebeck
and Pyber [19] showed that any finitely generated subgroup of GLn(Ẑ) has bounded generation,
which allows one to prove Lubotzky’s conjecture by directly quoting the results of [22, 30] on (CSP)
for arithmetic groups with bounded generation. We note that it is essential in both [19] and [32]
that Γ be finitely generated (i.e., S be finite). We give a rather short proof of Lubotzky’s conjecture
that does not rely on finite generation (hence is applicable even when S is infinite).

Theorem C. Let G be an absolutely almost simple simply connected algebraic group defined
over a number field K, S ⊂ V K \ A be a subset containing V K

∞ , and Γ = G(O(S)). If the profinite
completion Γ̂ is adelic, then C(S)(G) is central, hence finite.

Our last result addresses the second aspect of the congruence subgroup problem, viz. the struc-
ture of the congruence kernel C = C(S)(G) when it is infinite. It is known (cf. Proposition 2.9)
that in this case the group C is not finitely generated; for its precise structure in certain cases
see [21, 27, 28, 71, 72]. Lubotzky [24] showed however that the congruence kernel C is always
finitely generated as a normal subgroup of Γ̂. We will prove that when K is a number field and G
is K-isotropic, C as a normal subgroup of Ĝ is almost generated by one element (this result was
announced more than ten years ago and is mentioned in [24], but its proof given below appears in
print for the first time).

Theorem D. Let G be an absolutely almost simple simply connected algebraic group over
a number field K with rkK G = 1. Then there exists c in C := C(S)(G) such that if D is the
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closed normal subgroup of Ĝ generated by c, then the quotient C/D is a quotient of the metaplectic
kernel M(S,G); in particular, it is a finite cyclic group.

(We note that if G is K-isotropic and rkS G ≥ 2, then C(S)(G) is known to be central (Raghu-
nathan [40, 41]) and hence isomorphic to M(S,G), so the theorem trivially holds with c = 1. Thus,
the core case in the theorem is where rkS G = 1.)

2. PRELIMINARIES ON THE CONGRUENCE KERNEL

Let G (↪→ SLn) be an absolutely almost simple simply connected algebraic group over a global
field K, A be the finite set of nonarchimedean places of K where G is anisotropic, and S ⊂ V K

be a nonempty subset containing V K
∞ when K is a number field and such that A ∩ S = ∅ and

rkS G > 0. Let Γ = G(O(S)). The discussion in Section 1 leads to the following exact sequence of
topological groups for the congruence kernel C := C(S)(G):

1 → C → Ĝ
π−→ G → 1 (C)

(we omit the superscript (S) whenever possible). It is an immediate consequence of the definitions
that (C) splits over the subgroup G(K) of K-rational points in the category of abstract groups (with
the image of this splitting being dense in Ĝ). Furthermore, as we already pointed out in Section 1,
it follows from the strong approximation property that the S-congruence completion G can be
naturally identified with the group of S-adeles G(A(S)). We now recall the following universal
property of (C).

Proposition 2.1. Let
1 → D → E

ρ−→ G(A(S)) → 1

be an exact sequence of locally compact topological groups with D a profinite group. Assume that
there exists a splitting ϕ : G(K) → E for ρ over G(K) whose image is dense in E. Then there
exists a continuous surjective homomorphism σ : C → D. In particular, if C is trivial then so is D.

Proof. Since the closure Γ of Γ in G is an open profinite subgroup and the group D is also
profinite, we see that Ω := ρ−1(Γ) is an open profinite subgroup of E. Then

ϕ(G(K)) ∩ Ω = ϕ(G(K) ∩ Γ) = ϕ(Γ)

is a dense subgroup of Ω. By the universal property of the profinite completion, there exists a
continuous surjective homomorphism ϕ̂ : Γ̂ → Ω which coincides with ϕ on Γ. As ϕ is a section
for ρ over G(K), the composition ρ ◦ ϕ̂ : Γ̂ → Γ restricts to the identity map on Γ and therefore
coincides with π on Γ̂. Since ϕ̂ : Γ̂ → Ω is surjective, we now conclude that

D = ϕ̂(ϕ̂−1(D)) = ϕ̂(C),

so σ := ϕ̂|C is as required. �
The goal of this section is to develop some techniques that will be used later to establish the

centrality of C in certain situations. For further use, it is convenient to deal not only with the
extension (C) itself, but also with its quotients. So, let D ⊂ Ĝ be a closed normal subgroup
contained in C. Consider the quotient of (C) by D:

1 → F = C/D → H = Ĝ/D
θ−→ G(A(S)) → 1. (F)

We note that just like (C), the sequence (F) splits over the group G(K), and the map θ is open
and closed. The following set of places plays an important role in examining when (F) is a central
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extension:
Z(F ) =

{
v ∈ V K \ (S ∪ A)

∣∣ θ(ZH(F )) ⊃ G(Kv)
}

where ZH(F ) denotes the centralizer of F in H, the set A consists of those nonarchimedean v ∈ V K

where G is anisotropic, and G(Kv) is naturally identified with a subgroup of G = G(A(S)). We will
write Z for Z(C) if this will not lead to confusion. We note that Proposition 2.1 is independent of
the Margulis–Platonov conjecture (MP), but in the rest of this section we do invoke our standing
assumption that (MP) holds for G(K) and S ∩ A = ∅.

We begin with a couple of results that give sufficient conditions for a place v ∈ V K \ (S ∪ A) to
belong to Z(F ).

Proposition 2.2. Let v ∈ V K \ (S ∪ A). Assume there exists a noncentral a ∈ G(Kv) such
that a ∈ θ(ZH(x)) for every x ∈ F . Then v ∈ Z(F ).

Proof. Let F be the set of conjugacy classes in F . The conjugation action of H on F gives
rise to a group homomorphism G

τ−→ Perm(F) to the group of permutations of F . Our assumption
means that τ(a) = idF . Since G(Kv) does not have proper noncentral normal subgroups (cf. [29] and
also [15, 35, 66]), this implies that τ(G(Kv)) = {idF}. In particular, any open normal subgroup
W ⊂ F is normalized by Hv := θ−1(G(Kv)), so the latter acts on the finite group F/W . Let
λW : Hv → Aut(F/W ) be the corresponding group homomorphism, and set LW = KerλW . We
need the following lemma.

Lemma 2.3. Let κ : H → G and λ : H → M be two continuous homomorphisms of locally
compact topological groups with kernels K and L, respectively. Assume that

(1) κ is closed and surjective, K is compact, and G does not have proper closed normal subgroups
of finite index ;

(2) M is profinite.

Then H = KL, or equivalently κ(L) = G.
Proof. Assume that N := KL is properly contained in H. Then, since K is compact, the image

λ(N ) = λ(K) is a closed subgroup of M that is properly contained in λ(H). Since M is profinite,
there exists a proper open subgroup U ⊂ M that contains λ(N ) but not λ(H). Then V := λ−1(U )
is a proper open subgroup of H of finite index that contains N . It follows that κ(V) is a proper
closed subgroup of G of finite index. Then the intersection of all conjugates of κ(V) would be a
proper normal closed subgroup of G of finite index, but by our assumption such a subgroup cannot
exist. A contradiction. �

Applying the lemma to the homomorphisms Hv
θ−→ G(Kv) and Hv

λW−−→ Aut(F/W ), we find
that θ(LW ) = G(Kv) for every open normal subgroup W of F . Thus, for any g ∈ G(Kv), the fiber
θ−1(g) meets the closed subgroup LW . Using the fact that LW1 ∩ . . . ∩ LWd

= LW1∩...∩Wd
for any

open normal subgroups W1, . . . ,Wd of F and the compactness of θ−1(g), we conclude that

θ−1(g) ∩
(⋂

W

LW

)
�= ∅,

where W runs through all open normal subgroups of F . But
⋂

W LW clearly coincides with
θ−1(G(Kv)) ∩ ZH(F ). So, g ∈ θ(ZH(F )), implying that G(Kv) ⊂ θ(ZH(F )); hence v ∈ Z(F ). �

Proposition 2.4. Let V be a subset of V K \ S, and let T = V K \ V . Assume that the
congruence kernel C(T\A)(G) is trivial and there exist subgroups H1 and H2 of H such that

(i) θ(H1) and θ(H2) are dense subgroups of G(A(S ∪ V )) and G(A(T )), respectively ;
(ii) H1 and H2 commute elementwise and together generate a dense subgroup of H.

Then H2 centralizes F, and therefore V \ A is contained in Z(F ).
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Proof. We note that G(A(S)) = G(A(T )) ×G(A(S ∪ V )). Replacing the subgroups H1 and H2

with their closures, we may assume that they are actually closed. Since θ is a closed map, we then
see that

θ(H1) = G(A(S ∪ V )) and θ(H2) = G(A(T )).

Now, we define the following closed normal subgroup of H1:

H ′
1 = H1 ∩ θ−1(G(A(S ∪ V ∪A))).

It follows from condition (ii) that the normalizer NH(H ′
1) contains H1 and H2 and hence coincides

with H. Thus, we can take the quotient of the extension (F) by H ′
1, which yields the following

exact sequence:
1 → F/(F ∩H ′

1) → H/H ′
1 → G(A(T \ A)) → 1.

We now observe that this sequence inherits from (F) a splitting over G(K) whose image is dense
in H/H ′

1. Since the congruence kernel C(T\A)(G) is trivial by assumption, we conclude from Propo-
sition 2.1 that F ⊂ H ′

1, which implies that H2 centralizes F . Then for any v ∈ V we have

G(Kv) ⊂ θ(H2) ⊂ θ(ZH(F )),

proving that v ∈ Z(F ) and establishing the inclusion V \ A ⊂ Z(F ). �
Next, we will show how information about Z(F ) can be used to conclude that (F) is a central

extension.
Proposition 2.5. If there exists a subset V of Z(F ) such that the congruence kernel C(S∪V )(G)

is trivial, then the extension (F) is central. In particular, (F) is central whenever Z(F ) = V K \
(S ∪A).

We begin with the following elementary lemma.
Lemma 2.6. Let

1 → F → H ν−→ G → 1 (2.1)

be an exact sequence of groups. Given a subgroup H′ ⊂ H that centralizes F and an element a ∈ H
such that ν(a) centralizes ν(H′), the map

γa : x �→ [a, x] = axa−1x−1 for x ∈ H′

is a group homomorphism H′ → F .
Proof. For x ∈ H′ we have ν([a, x]) = [ν(a), ν(x)] = 1, implying that γa(x) ∈ F . Furthermore,

for x, y ∈ H′ we have

γa(xy) = [a, xy] = [a, x](x[a, y]x−1) = γa(x)γa(y),

as required. �
Corollary 2.7. Assume that (2.1) is a central extension. Then for any elementwise commuting

subgroups G1,G2 ⊂ G, the map

c : G1 × G2 → F , (x, y) �→ [x̃, ỹ ] for x̃ ∈ ν−1(x), ỹ ∈ ν−1(y),

is a well-defined bimultiplicative pairing.
Indeed, since F is central in H, the commutator [x̃, ỹ ] does not depend on the choice of lifts x̃

and ỹ, making the map c well-defined. It follows from the lemma that c(G1,G2) ⊂ F and that for
any x ∈ G1 and y1, y2 ∈ G2 we have

c(x, y1y2) = γx̃(ỹ1ỹ2) = γx̃(ỹ1)γx̃(ỹ2) = c(x, y1)c(x, y2),

proving that c is multiplicative in the second variable. The multiplicativity in the first variable is
established by a similar computation.
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Proof of Proposition 2.5. To prove the first claim, we need to construct subgroups H1 and H2

of H with the properties similar to those described in Proposition 2.4. Set H1 = θ−1(G(A(S ∪ V ))).
To define H2, we first consider H ′ = θ−1(G(A(T ))) ∩ ZH(F ), where T = V K \ V . Clearly, the
groups G(Kv) for v ∈ V generate a dense subgroup of G(A(T )). This fact has two implications
relevant to our argument. First, since V ⊂ Z(F ) and θ is a closed map, the image θ(H ′) is a closed
subgroup of G(A(T )) containing G(Kv) for all v ∈ V ; hence θ(H ′) = G(A(T )). Second, for any
v ∈ V , the group G is Kv-isotropic, and therefore G(Kv) contains no proper normal subgroup of
finite index (as we already mentioned above). It follows that G(A(T )) contains no proper closed
normal subgroup of finite index. Now, it follows from Lemma 2.6 that for any a ∈ H1, the map
γa : x �→ [a, x] is a (continuous) group homomorphism H ′ → F . We now consider the profinite
group

M =
∏
a∈H1

Fa, where Fa = F for all a ∈ H1,

define a continuous homomorphism λ : H ′ → M , x �→ (γa(x)), and let H2 = Kerλ. Applying
Lemma 2.3, we see that θ(H2) = G(A(T )). This easily implies that H = H1H2, and on the other
hand, by our construction the subgroups H1 and H2 commute elementwise. In particular, H2 is
normal in H, and hence (F) gives rise to the following exact sequence:

1 → F/(F ∩H2) → H/H2 → G(A(S))/G(A(T )) = G(A(S ∪ V )) → 1.

Since C(S∪V )(G) is trivial by assumption, Proposition 2.1 implies that F ⊂ H2. It follows that H1

centralizes F , and therefore so does H = H1H2 as H2 ⊂ ZH(F ) by our construction. (While this
can be derived directly from Proposition 2.4, we gave an independent argument in order to avoid
cumbersome notations.)

For the second assertion, we observe that for V = V K \ (S ∪ A), the triviality of C(S∪V )(G) is
equivalent to our standing assumption that (MP) holds for G(K) and S ∩ A = ∅. �

Proposition 2.8. Assume that A ∩ S = ∅ and there is a partition V K \ (S ∪ A) =
⋃

i∈I Vi

such that one can find subgroups HA and Hi (i ∈ I) of H satisfying the following conditions:

(i) for each i ∈ I and V ′
i :=

⋃
j �=i Vj , the congruence kernel C(S∪V ′

i )(G) is trivial ;
(ii) θ(HA) is a dense subgroup of GA =

∏
v∈A G(Kv), and θ(Hi) is a dense subgroup of

G(A(V K \ Vi)) for all i ∈ I;

(iii) any two of the subgroups HA and Hi for i ∈ I commute elementwise;
(iv) the subgroups HA and Hi for i ∈ I generate a dense subgroup of H.

Then (F) is a central extension.

Proof. Fix i ∈ I, and let V = A ∪ Vi; then the corresponding T in Proposition 2.4 is S ∪ V ′
i .

Now to apply Proposition 2.4, we let H1 denote the subgroup generated by the Hj , j �= i, and
let H2 denote the subgroup generated by HA and Hi. From Proposition 2.4, we conclude that
Vi ⊂ Z(F ). Since this is true for all i ∈ I, we see that actually Z(F ) = V K \ (S ∪ A). Then (F)
is central by Proposition 2.5. (We note that in the case A = ∅, the proof in fact does not require
Proposition 2.5.) �

The following assertion goes back to [48] (see also [22; 25, Proposition 7.1.3; 30]).

Proposition 2.9. If (F) is not central then F possesses closed subgroups F2 ⊂ F1, both of
which are normal in H, such that the quotient F/F1 is finite and the quotient F1/F2 is isomorphic
to

∏
i∈I Φi where I is an infinite set and Φi = Φ, the same finite simple group, for all i ∈ I.

Consequently, if F is finitely generated then it is central, hence finite.
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3. A CRITERION FOR CENTRALITY

We begin with one additional notation. Let v ∈ V K , fix a maximal Kv-torus T of G, and let
T reg denote its Zariski-open subvariety of regular elements. It follows from the implicit function
theorem that the map

ϕv,T : G(Kv)× T reg(Kv) → G(Kv), (g, t) �→ gtg−1, (3.1)

is open; in particular,
U (v, T ) := ϕv,T

(
G(Kv)× T reg(Kv)

)
is an open subset of G(Kv). It follows from the definition that U (v, T ) is conjugation-invariant and
solid ; i.e., it intersects every open subgroup of G(Kv) (the latter property is primarily used when v
is nonarchimedean). Let θ be as in the short exact sequence (F) of the preceding section.

Theorem 3.1. (i) If the extension (F) is central, then there exists a positive integer n such
that for any maximal K-torus T of G and any t ∈ T (K), we have the inclusion

θ(ZH(t)) ⊃ T (A(S))n (3.2)

(here we view the group of S-adeles T (A(S)) as a subgroup of G(A(S)) = G, and use t to denote
also the lift of t ∈ T (K) in H provided by the splitting of (F) over G(K)).

(ii) Conversely, assume that there is an integer n > 1, a finite subset V ⊂ V K \ S, and maximal
Kv-tori T (v) of G for v ∈ V such that for any element t ∈ G(K) ∩ U with U =

∏
v∈V U (v, T (v))

which is regular semi-simple,2 the inclusion (3.2) holds with T = ZG(t)
◦. Then (F) is a central

extension.
Proof of (i). Assume (F) is central. Then the finiteness of the metaplectic kernel M(S,G) [36,

Theorem 2.7] implies that F is finite (cf. [39, Sects. 3.4–3.6]). Set n = |F |. Now, let T be a maximal
K-torus of G, let t ∈ T (K), and let T = θ−1(T (A(S))). By Lemma 2.6, the map γt : x �→ [t, x]
yields a group homomorphism T → F . It follows that γt(T

n) = {1}, i.e. T n ⊂ ZH(t). On the
other hand, θ(T n) = T (A(S))n, and our assertion follows. �

For the proof of part (ii) we need the following proposition in which we use X and X̂ to denote
the closure of a subset X of G(K) in G and Ĝ, respectively.

Proposition 3.2 (cf. [42, Proposition 3.2]). Assume that there exists a positive integer n, a
finite set of places V ⊂ V K \ S, and maximal Kv-tori T (v) of G for v ∈ V such that for every
regular semi-simple element t ∈ G(K) ∩ U, where U =

∏
v∈V U (v, T (v)), the inclusion (3.2) holds

for T = ZG(t)
◦. Then for any normal subgroup N of Γ = G(O(S)) of finite index and any

x ∈ N ∩ Γ, we have
Z(N,x)(N ∩ Γ) ⊃ (Γ ∩ U)n, (3.3)

where Z(N,x) := {γ ∈ Γ | [x, γ] ∈ N}.
(Note that Z(N,x) is simply the pullback of the centralizer of xN in Γ/N under the canonical

homomorphism Γ → Γ/N .)
Proof. For proving (3.3), we may replace N with a smaller normal subgroup of Γ of finite index

to assume that N =
∏

v/∈S Nv, where Nv ⊂ G(Ov) is an open normal subgroup for all v /∈ S and
Nv = G(Ov) for all v ∈ V K \ (S ∪ V ′) for a suitable finite nonempty subset V ′ ⊂ V K \ S.

We need to show that for any z ∈ Γ ∩ U , we have

zn ∈ Z(N,x)(N ∩ Γ). (3.4)
2Of course, any t ∈ G(K) ∩ U is automatically regular semi-simple if V �= ∅.
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If V �= ∅, then z is automatically regular semi-simple. If V = ∅, then Γ ∩ U = Γ, and using
the Zariski-density of N in G in conjunction with the fact that the set of regular semi-simple
elements is Zariski-open in G, we see that the coset zN contains a regular semi-simple element
z′ ∈ Γ ∩ U . Hence, in proving (3.4), we may assume z to be regular semi-simple. Let T0 = ZG(z)

◦

be the maximal K-torus of G containing z. For v ∈ V ′′ := V ∪ V ′ consider the open set Wv :=
ϕv,T0(Nv × T reg

0 (Kv)) of G(Kv) (see (3.1)), and then set

W =
∏
v∈V ′′

Wv and N =
∏
v∈V ′′

Nv.

Since Nv is an open subgroup, it meets T reg
0 (Kv) for every v ∈ V ′′, which implies that W ∩N is a

nonempty open subset of N , and hence N ⊂ WN . Since x ∈ N ∩ Γ, there exists y ∈ N such that

xy = gbg−1 (3.5)

for some g = (gv) and b = (bv), with gv ∈ Nv and bv ∈ T reg
0 (Kv) for v ∈ V ′′. As V ′′ �= ∅, the

element t := xy is automatically regular semi-simple. Let T = ZG(t)
◦ be the maximal K-torus of G

containing t.
For v /∈ S, define

av =

{
gvz

ng−1
v if v ∈ V ′′,

1 if v /∈ S ∪ V ′′.

It follows from (3.5) that the S-adele a = (av) belongs to T (A(S))n. So, by (3.2) there exists
s ∈ ZH(t) such that θ(s) = a. In fact, a ∈ Γ, so s ∈ Γ̂, and therefore Γ ∩ sN̂ is nonempty. Pick
c ∈ Γ ∩ sN̂ . Then

[x, c] ∈ [t, c]N̂ = [t, s]N̂ = N̂ ,

implying that c ∈ Z(N,x) (note that, being of finite index in Γ, the normal subgroup N is open
(and hence closed) in the profinite topology on the former, so Γ ∩ N̂ = N). On the other hand,

c ∈ θ(s)N = aN = znN

as az−n ∈N because avz
−n =[gv , z

n]∈Nv since gv ∈Nv for v ∈V ′′, and avz
−n= z−n ∈G(Ov)=Nv

for v ∈ V K \ (S ∪ V ′′). �
Proof of Theorem 3.1(ii). First, we will derive from Proposition 3.2 that for any x ∈ F we

have the inclusion
θ(ZH(x)) ⊃ (Γ ∩ U)n. (3.6)

Consider the profinite group Δ = θ−1(Γ), which is a quotient of Γ̂, and take any γ ∈ Γ ∩ U . We
identify Γ with a dense subgroup of Δ using the splitting of θ over G(K). Let R be the family of
all open normal subgroups of Δ. For R ∈ R, set

NR := Γ ∩R and R̃ := θ−1(NR)

and pick xR ∈ Γ ∩ (xR). Applying Proposition 3.2 to NR and xR, we find that

γnR̃ ∩ Z̃(R,x) �= ∅ for any R ∈ R, (3.7)

where Z̃(R,x) := {δ ∈ Δ | [x, δ] ∈ R} = {δ ∈ Δ | [xR, δ] ∈ R}. Using the compactness of F , one
easily derives from this that

γnF ∩ ZΔ(x) �= ∅. (3.8)
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Indeed, one observes that ⋂
R∈R

R̃ = F,
⋂
R∈R

Z̃(R,x) = ZΔ(x),

and for any R1, . . . , Rd ∈ R, we have

Z̃(R1, x) ∩ . . . ∩ Z̃(Rd, x) = Z̃(R1 ∩ . . . ∩Rd, x).

So, if (3.8) does not hold, there exists R′ ∈ R such γnF ∩ Z(R′, x) = ∅. Next, using the com-
pactness of Z(R′, x), we see that there exists R′′ ∈ R such that γnR′′ ∩ Z(R′, x) = ∅. Then for
R = R′ ∩R′′, (3.7) fails to hold, a contradiction.

We have proved that (Γ ∩ U)n ⊂ θ(ZΔ(x)). Since θ(ZΔ(x)) is closed, passing to the closure, we
obtain (3.6). Furthermore, we have Γ ∩ U =

∏
v/∈S Ωv, where Ωv = G(Ov) ∩ U (v, T (v)) for v ∈ V

and Ωv = G(Ov) for v ∈ V K \ (S ∪ V ). For all v, Ωv is a nonempty open subset of G(Kv); hence it
is Zariski-dense. It follows that (Ωv)

n is always infinite. Now, we conclude from (3.6) and Proposi-
tion 2.2 that Z(F ) equals V K \ (S ∪A). Then the extension (F) is central by Proposition 2.5. �

4. FIRST APPLICATIONS AND PROOF OF THEOREM A

To verify the inclusion (3.2) in Theorem 3.1, we observe that for t ∈ T (K), the centralizer ZH(t)

contains T (K) and hence the closure T̂ (K), and therefore θ(ZH(t)) contains θ(T̂ (K)) = T (K). So,
we could immediately derive the centrality of (F) using Theorem 3.1 if we knew that there exists
an integer n > 0 such that for any maximal K-torus T of G (or at least for any maximal K-torus
with specified local behavior at finitely many places), the quotient T (A(S))/T (K) has exponent
dividing n (“almost strong approximation property” up to exponent n). Unfortunately, when S is
finite, the latter quotient may have infinite exponent (cf. [37, Proposition 4]), which forces us to use
some additional considerations (cf. Proposition 4.5 and Examples 4.6 and 4.7 below). In the next
section, we will establish the almost strong approximation property in the case where S contains
all but finitely many elements of a generalized arithmetic progression (see Theorem 5.3), which will
lead to Theorem B of the Introduction. In this section we will consider separately a basic case
where V := V K \ S is finite (i.e., S is cofinite) as this case has some interesting consequences (like
Theorem A of the Introduction). Since in this case the corresponding ring of S-integers O(S) is the
intersection of finitely many discrete valuation subrings of K corresponding to the places in V , and
hence is semi-local, we will refer to this case as semi-local.

We begin with the following proposition which was already implicitly established in [36, § 9].
Proposition 4.1 (almost weak approximation). For every d ≥ 1, there exists an integer n =

n(d) ≥ 1 such that given a K-torus T of dimension ≤ d, for any finite set of places V ⊂ V K , the
quotient TV /T (K), where TV =

∏
v∈V T (Kv) and T (K) denotes the closure of T (K) in TV , has

exponent dividing n.
Proof. Pick a positive integer n = n(d) which is divisible by the order of any finite subgroup of

the group GLd(Z) (it follows from Minkowski’s lemma that one can take n to be the index in GLd(Z)
of the principal congruence subgroup modulo 3). Let T be an arbitrary K-torus of dimension ≤ d.
We let E := KT denote the minimal splitting field of T over K, and set G = Gal(E/K). The
natural action of G on the character group X(T ) defines its faithful representation in GLm(Z), so
the order |G| divides n(d). Then, for the dual module of co-characters X∗(T ), there is a surjective
homomorphism φ : Z[G]� → X∗(T ). Let M = Kerφ. Let T ′ and T ′′ be the K-tori that split
over E and have Z[G]� and M as their co-character modules; clearly, T ′ = RE/K(GL1)

�; hence it is
quasi-split. We have the following exact sequence of K-tori:

1 → T ′′ → T ′ η−→ T → 1.
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This sequence gives rise to the following commutative diagram with exact bottom row:

T ′(K)
ηK

T (K)

T ′
V

ηV
TV

∏
v∈V H1(Kv , T

′′)

Being quasi-split, hence rational over K, the torus T ′ has the weak approximation property with
respect to any finite set of places (cf. [31, Proposition 7.3]), i.e. T ′(K) = T ′

V . It follows that T (K)
contains ηV (T

′
V ). On the other hand, the quotient TV /ηV (T

′
V ) embeds into

∏
v∈V H1(Kv , T

′′). But
for v ∈ V , as a consequence of Hilbert’s Theorem 90 for tori we have H1(Kv , T

′′) = H1(Gw, T
′′(Ew))

where Gw is the decomposition group Gal(Ew/Kv) for some extension w|v. By our construction, the
order |Gw| divides n. Therefore, the quotient TV /ηV (T

′
V ) has exponent dividing n, and our claim

follows. (We note that the proof enables us to somewhat optimize our choice of n: all we need is
that n be divisible by the order of any finite solvable subgroup of GLd(Z).) �

Corollary 4.2. Let G be a reductive K-group. There exists n ≥ 1 such that for any maxi-
mal K-torus T of G and any finite set of places V ⊂ V K , the quotient TV /T (K) has exponent
dividing n.

Now, let G be an absolutely almost simple simply connected algebraic group over a global field K,
and let V be a finite set of nonarchimedean places of K containing the set A of anisotropic places.
Set S = V K \ V . Then for any maximal K-torus T of G the group T (A(S)) can be identified with
the group TV in the above notation. Thus, Corollary 4.2 asserts the existence of n ≥ 1 (independent
of T ) such that the closure T (K) of T (K) in T (A(S)) contains T (A(S))n for any maximal K-torus T
of G. Let us use this fact to analyze the congruence sequence (C) appearing in Section 2. As we
observed at the beginning of this section, for a maximal K-torus T of G and any t ∈ T (K), the
image π(Z

̂G(t)) of the corresponding centralizer contains T (K) and hence T (A(S))n. This enables
us to use Theorem 3.1 to conclude that the congruence kernel C(S)(G) is central. Furthermore, it
follows from our computations of the metaplectic kernel [36] that in the situation at hand M(S,G)
is trivial, so being central, C(S)(G) is actually trivial (provided that (MP) holds for G(K), which
we assume). Thus, we obtain the following:

Theorem 4.3. Let G be an absolutely almost simple simply connected algebraic group over a
global field K, and assume that (MP) holds for G(K). Then for any finite set V of nonarchimedean
places of K that contains the set A of anisotropic places and for S = V K \ V, the congruence kernel
C(S)(G) is central and hence trivial.

Remark 4.4. Sury [62] showed that for absolutely almost simple simply connected anisotropic
groups of type A1 as well as for simply connected groups of classical types associated with bilinear
and certain hermitian/skew-hermitian forms, the methods used to prove (MP) (see [31, Ch. 9]) can
be adapted to prove Theorem 4.3. This does not appear to be the case for the anisotropic inner
forms of type An with n > 1, i.e. for the groups of the form G = SL1,D, where D is a central division
algebra over K of degree d > 2. Indeed, in this case the proof of (MP) is derived from the following
result which is valid over any field: Let D be a finite-dimensional division algebra over a field K.
Then D× cannot have a nonabelian finite simple group as a quotient (see [57] and also [54]). In
fact, every finite quotient of D× is solvable [55]. (See also [51] for another proof of (MP) along
these lines.) All these results rely on the following fact: For a finite index subgroup N of D×, we
have D = N −N [4, 69]. However, there is no analog of this fact for finite-index subgroups of D×,
where D is an order in D over a semi-local subring O of K that has finite homomorphic images
(see [4] regarding the case where D has no such images).

Combining Theorem 4.3 with Proposition 2.8, we obtain the following.
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Proposition 4.5. Assume that A ∩ S = ∅ and there is a partition V K \ (S ∪ A) =
⋃

i∈I Vi,
with all Vi’s finite, such that one can find subgroups HA and Hi (i ∈ I) of H satisfying the following
conditions:

(i) θ(HA) is a dense subgroup of GA =
∏

v∈A G(Kv), and θ(Hi) is a dense subgroup of
G(A(V K \ Vi)) for all i ∈ I;

(ii) any two of the subgroups HA and Hi for i ∈ I commute elementwise;
(iii) the subgroups HA and Hi for i ∈ I generate a dense subgroup of H.

Then (F) is a central extension.
Proof of Theorem A. We apply Proposition 4.5 to H = Ĝ(S) and F = C(S)(G) by considering

the partition of V K \ (S ∪ A) into one-element subsets (singletons). We let HA be the subgroup
generated by Gv (notations as in the statement of Theorem A) for v ∈ A, and set Hv = Gv for
v ∈ V K \ (S ∪ A). Then the assumptions of Theorem A immediately show that the conditions of
Proposition 4.5 are satisfied and the centrality of C(S)(G) follows. �

We will now show how Theorem A can be used to establish the centrality of C(S)(G) in some
known cases.

Example 4.6. Let G = SLn with n ≥ 3 and S ⊂ V K be an arbitrary subset containing V K
∞ .

The first proof of centrality in this case was given by Bass, Milnor, and Serre in [3]. In order to
apply Theorem A and give an alternative argument, for 1 ≤ i, j ≤ n, i �= j, we consider the cor-
responding 1-dimensional unipotent subgroup Uij of G together with its canonical parametrization
eij : Ga → Uij . The following commutation relation for elementary matrices is well-known:

[eij(s), elm(t)] =

⎧⎪⎨⎪⎩
1, i �= m, j �= l,

eim(st), j = l, i �= m,

elj(−st), j �= l, i = m.

(4.1)

It is easy to see that the topologies τa and τc of G(K) induce the same topology on each Uij(K)

(cf. [3, Theorem 7.5(e)]). So, if Ûij and Uij denote the closures of Uij(K) in Ĝ and G, respectively,
then Ĝ

π−→ G restricts to an isomorphism Ûij
πij−−→ Uij. By the strong approximation property

for the additive group Ga, the isomorphism (eij)K : K+ → Uij(K) extends to an isomorphism
eij : A(S) → Uij . Then êij := π−1

ij ◦ eij is an isomorphism A(S) → Ûij . We will let Gv for v /∈ S

denote the subgroup of Ĝ generated by êij(t) for all t ∈ Kv ⊂ AS and all i �= j. Clearly, the Gv’s
satisfy condition (i) of Theorem A. Since Kv for v ∈ V K \ S additively generate a dense subgroup
of A(S), the closed subgroup of Ĝ generated by the Gv, v /∈ S, contains êij(A(S)) for all i �= j. In
particular, it contains êij(K) for all i �= j, hence G(K), and therefore coincides with Ĝ, verifying
condition (iii). Finally, to check (ii), we observe that the density of K in A(S) implies that (4.1)
entails a similar expression for [êij(s), êlm(t)] for any s, t ∈ A(S). Now, for s ∈ Kv1 and t ∈ Kv2 ,
where v1 �= v2, we have st = 0 in A(S), which implies that êij(s) and êlm(t) commute except
possibly when l = j and m = i. In the latter case, as n ≥ 3, we can pick l �= i, j and then write
êji(t) = [êjl(t), êli(1Kv2

)]. Since êij(s) is already known to commute with êjl(t) and êli(1Kv2
), it

commutes with êji(t) as well. This shows that Gv1 and Gv2 commute elementwise, which verifies
condition (ii) of Theorem A. Then the latter yields the centrality of C(S)(G).

(We note that the idea of using commuting lifts of “local” groups is useful in the analysis of the
congruence subgroup problem not only in the context of algebraic groups over the rings of S-integers
in global fields; it was used in [53] together with the result of M. Stein [61] on the centrality of K2

over semi-local rings to prove the centrality of the congruence kernel for elementary subgroups of
Chevalley groups of rank > 1 over arbitrary Noetherian rings. It is worth noting that the argument
in [53] which is based on almost weak approximation in maximal tori and the action of the group
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of rational points on the congruence kernel enables one to bypass the rather technical computations
of Stein, but the exact trade-off between these two approaches is not apparent.)

Example 4.7. Let G = SL2, and let S ⊂ V K be a subset that contains V K
∞ and is of size

|S| > 1; by Dirichlet’s unit theorem (see [2, Ch. II, Theorem 18.1]), the latter is equivalent to
the existence of a unit ε ∈ O(S)× of infinite order. The centrality of C(S)(G) in this case was first
established by Serre [58]. We will now show that this can also be derived from Theorem A. (We note
that the argument below, unlike Serre’s original proof, does not use Chebotarev’s density theorem.)
We let U+, U−, and T denote the subgroups of upper and lower unitriangular matrices and of
diagonal matrices, respectively, and fix the following standard parametrizations of these groups:

u+(a) =

(
1 a
0 1

)
, u−(b) =

(
1 0
b 1

)
, h(t) =

(
t 0
0 t−1

)
(a, b ∈ Ga, t ∈ GL1). For a, b ∈ K such that ab �= 1, one easily verifies the following commutator
identity:

[u+(a), u−(b)] = u+
(
− a2b

1− ab

)
h

(
1

1− ab

)
u−

(
ab2

1− ab

)
. (4.2)

We let Û± and U± denote the closures of U±(K) in Ĝ and G, respectively. Again, it is easy to check
that the topologies τa and τc of G(K) induce the same topology on U+(K) and U−(K) (cf. [58,
n◦ 1.4, Proposition 1]), so Ĝ

π−→ G restricts to isomorphisms Û± π±
−−→ U±. Furthermore, (u±)K

extend to isomorphisms u± : A(S) → U±. So, the maps û± := (π±)−1 ◦ u± give isomorphisms
A(S) → Û±. For v ∈ V K \ S, we let Gv denote the subgroup of Ĝ generated by û+(Kv) and û−(Kv).
As in Example 4.6, one checks that the subgroups Gv clearly satisfy conditions (i) and (iii) of
Theorem A, so we only need to verify condition (ii). In other words, we need to show that for
v1 �= v2, the subgroups û+(Kv1) and û−(Kv2) commute elementwise.

First, we construct nonzero a0 ∈ Kv1 and b0 ∈ Kv2 such that û+(a0) and û−(b0) commute
in Ĝ. Let us enumerate the valuations in V K \ (S ∪ {v1, v2}) as v3, v4, . . . . If d is the class number
of O(S), then for each i = 1, 2, 3, . . . , we can pick an element pi ∈ O(S) such that vi(pi) = d and
vj(pi) = 0 for j �= i. Fix a unit ε ∈ O(S)× of infinite order. Then for any m ≥ 2 we can find an
integer n(m) divisible by m! so that

εn(m) ≡ 1 (mod (p1 . . . pm)2m).

We can then write 1− εn(m) = ambm with am, bm ∈ O(S) satisfying

am ≡ 0 (mod (p2 . . . pm)m), v1(am) < d, (a)

and
bm ≡ 0 (mod (p1p3 . . . pm)m), v2(bm) < d. (b)

Since am, bm ∈ O(S), there exists a subsequence {mj} such that amj → a0 and bmj → b0 in A(S).
In fact, it follows from (a) and (b) that a0 ∈ K×

v1 and b0 ∈ K×
v2 . To show that û+(a0) and û−(b0)

commute, we observe that

[û+(a0), û
−(b0)] = lim

j→∞
[u+(amj ), u

−(bmj )] in Ĝ.

On the other hand, using (4.2), we obtain

[u+(am), u−(bm)] = u+
(
−a2mbmε−n(m)

)
h
(
ε−n(m)

)
u−

(
amb2mε−n(m)

)
→ 1 in Ĝ,

because a2mbm, amb2m → 0 in A(S) and h(εn(m)) → 1 in Ĝ as n(m) is divisible by m! and hence
h(εn(m)) belongs to any given finite index normal subgroup N of G(O(S)) for all sufficiently large m.
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Thus, [û+(a0), û
−(b0)] = 1. Now, for t ∈ K×, the automorphism σt of G given by conjugation

by diag(t, 1) extends to an automorphism σ̂t of Ĝ. Then

1 = σt([û
+(a0), û

−(b0)]) = [û+(ta0), û
−(t−1b0)]

for any t ∈ K×. Since K× is dense in K×
v1 × K×

v2 by weak approximation, we find that
[û+(a), û−(b)] = 1 for all a ∈ Kv1 , b ∈ Kv2 , as required.

Remark 4.8. The argument given in Example 4.6 can be generalized to prove the centrality
of C(S)(G) for any absolutely almost simple simply connected algebraic K-group G with rkK G ≥ 2.
The first proof of this fact was given by M.S. Raghunathan in [40]; a shorter argument was given
in [43]. The case where rkK G = 1 and rkS G ≥ 2 (which generalizes Example 4.7) is more compli-
cated; it was treated by Raghunathan in [41] by a different method. One can give an alternative
(shorter) argument (at least when charK �= 2) based on Proposition 4.5; details will be pub-
lished elsewhere. Theorem A can also be used to simplify the proof of Serre’s conjecture for some
anisotropic exceptional groups [47].

5. STRONG APPROXIMATION PROPERTY IN TORI WITH RESPECT
TO ARITHMETIC PROGRESSIONS AND THE PROOF OF THEOREM B

Strong approximation property in tori with respect to (generalized) arithmetic progressions was
analyzed in [37], and we begin by reviewing some of the results obtained therein (we refer the reader
to [12] and references therein for the analysis of strong approximation from a different perspective).
Let P(F/K,C ) be a generalized arithmetic progression, where F/K is a finite Galois extension
with Galois group G and C is a conjugacy class in G (for definition see Section 1). For a finite
extension E/K, we let IE denote the group of ideles of E. Furthermore, given a subset S of V K ,
we let S denote the set of all extensions of places from S to E, and then let IE(S ) denote the group
of S-ideles and let E×(S ) be the closure of (the diagonally embedded) E× in IE(S ).

Proposition 5.1 (cf. [37, Proposition 3]). Let P(F/K,C ) be a generalized arithmetic pro-
gression, P0 ⊂ P(F/K,C ) be a finite (possibly, empty) subset, and let

S = (P(F/K,C ) \ P0) ∪ V K
∞ .

Furthermore, let E/K be a finite separable extension. If C contains an automorphism that acts
trivially on E ∩ F (in particular, if C = {e} or E ∩ F = K), then the index[

IE(S ) :E×(S )
]

is finite and divides [F :K].

Proof. By the reduction theory for ideles (cf. [2, Ch. II, § 16]), the quotient I1E/E
×, where I1E

is the group of ideles with content 1, is compact. On the other hand, for any w ∈ V E, the product
E×

w I
1
E is a closed subgroup and the quotient IE/E

×
w I

1
E is compact (in fact, this quotient is trivial if

w is archimedean and is finite in the function field case). It follows that for any nonempty T ⊂ V E ,
the quotient IE(T )/E×(T ) is compact. Since S contains V K

∞ , we conclude that, in our notation, the
quotient IE(S )/E×(S ) is a profinite group; hence

E×(S ) =
⋂

B,

where B runs through all open subgroups of IE(S ) that contain E× (note that these automatically
have finite index). Thus, it suffices to show that for any such B, the index [IE(S ) : B] divides
[F :E ∩ F ] = [EF :E]. Let M be the preimage of B under the natural projection IE → IE(S ). By
class field theory, for the norm subgroup N = NEF/E(IEF )E

×, the index [IE :N ] equals the degree
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of the maximal abelian subextension of EF/E and hence divides [EF :E]. So, it is enough to show
that M contains N , or equivalently, the abelian extension P of E with the norm subgroup M is
contained in EF . We note that by our construction for every w ∈ S, the multiplicative group E×

w

is contained in M , and hence the extension P/E splits at w (cf. [2, Exercise 3]).
Let R be the minimal Galois extension of K that contains E, F , and P . Let σ ∈ C be an

automorphism that acts trivially on E ∩ F ; then there exists σ̃ ∈ Gal(EF/E) whose restriction
to F is σ. We will now show that actually P ⊂ (EF )σ̃ . Assume the contrary. Then there
exists τ ∈ Gal(R/K) such that τ |EF = σ̃ and τ |P �= idP . (Indeed, let τ0 ∈ Gal(R/K) be some
lift of σ̃. If P ⊂ EF then we can simply take τ = τ0. So, suppose P �⊂ EF . If every lift
τ ∈ Gal(R/K) of σ̃ acted trivially on P , we would have the inclusion τ0Gal(R/EF ) ⊂ Gal(R/P ).
Then Gal(R/EF ) ⊂ Gal(R/P ); hence P ⊂ EF , a contradiction. This proves the existence of a
required lift τ in all cases.) By Chebotarev’s density theorem (cf. [2, Ch. VII, Sect. 2.4]), there exists
a nonarchimedean v ∈ V K \ P0 such that R is unramified at v and for a suitable extension u we
have FrR/K(u|v) = τ . Clearly, v ∈ P(F/K,C ) \ P0, so the restriction w of u to E lies in S. On the
other hand, since τ restricts to P nontrivially, we see that P does not split at w, a contradiction. �

Remark 5.2. The above argument is a modification of the argument given in [37] in the
case of arithmetic progressions defined by an abelian extension F/K. We note that our argument
here shows the index [IE(S ) : E×(S )] in fact divides the degree [F σ : K] for any σ ∈ C that acts
trivially on E ∩ F (for this one needs to observe that [(EF )σ̃ : E] equals [F σ : E ∩ F ] and hence
divides [F σ :K]). We also point out that [37, Proposition 4] provides a converse in the case where
F/K is abelian, viz. if C = {σ} and σ acts on E ∩ F nontrivially, then the quotient IE(S )/E×(S )

has infinite exponent.
Proposition 5.1 gives a form of the almost strong approximation property with respect to gener-

alized arithmetic progressions. We now combine this with the method used in the proof of Propo-
sition 4.1 to obtain the following.

Theorem 5.3 (almost strong approximation property, cf. [37, Theorem 3]). For every d,m≥ 1
there exists an integer n = n(d,m) ≥ 1 such that given a K-torus T of dimension ≤ d, a generalized
arithmetic progression P(F/K,C ) with [F :K] = m, and a finite subset P0 ⊂ P(F/K,C ), for the
set S = (P(F/K,C ) \ P0) ∪ V K

∞ , the closure T (K)(S) of T (K) in T (A(S)) contains T (A(S))n,
provided that some (equivalently, every) element of C acts trivially on KT ∩ F, where KT is the
splitting field of T .

Proof. Let n′ = n′(d) be an integer divisible by the order of any finite subgroup of the group
GLd(Z) (see the proof of Proposition 4.1). We will show that n(d,m) := n′(d) · m is as required.
Let T be a K-torus of dimension ≤ d such that for the splitting field E := KT some (equivalently,
every) element of C acts trivially on E ∩ F . As in the proof of Proposition 4.1, we can construct
an exact sequence of K-tori

1 → T ′′ → T ′ η−→ T → 1 (∗)

with T ′ = RE/K(GL1)
� for some � ≥ 1. Since all the tori in (∗) split over E, we have the exact

sequence of the groups of S-adeles, where S consists of all extensions of places from S to E:

1 → T ′′(AE(S )) → T ′(AE(S ))
η
AE (S )−−−−→ T (AE(S )) → 1. (∗∗)

This exact sequence induces the following commutative diagram with exact bottom row:

T ′(K)
ηK

T (K)

T ′(A(S))
ηA(S)

T (A(S)) H1
(
Gal(E/K), T ′′(AE(S ))

)
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Clearly, T (K)(S) contains ηA(S)(T ′(K)(S)). But it follows from Proposition 5.1 that T ′(K)(S) con-
tains T ′(A(S))m. By the exactness of the bottom row, T (A(S))/ηA(S)(T

′(A(S))) has exponent
dividing [E :K] and hence n′(d). So, our assertion follows. �

Remark 5.4. With some more work, one can prove the following full analog of Proposition 5.1
for arbitrary tori: There exists N = N(d,m) such that given a K-torus T of dimension ≤ d, a
generalized arithmetic progression P(F/K,C ) with [F :K] = m, and a finite P0 ⊂ P(F/K,C ),
for the set S = (P(F/K,C ) \ P0) ∪ V K

∞ , the index [T (A(S)) : T (K)(S)] is finite and divides N,
provided that some (equivalently, every) element of C acts trivially on KT ∩ F, where KT /K is
the splitting field of T . Since this more precise statement is not needed in the proof of centrality of
the congruence kernel, we will give the details elsewhere.

Proof of Theorem B. The assumption that S almost contains a generalized arithmetic pro-
gression P(F/K,C ), of course, means that there exists a finite set P0 ⊂ P(F/K,C ) such that
S contains S0 := (P(F/K,C ) \ P0) ∪ V K

∞ . Besides, we are assuming that every element of C
acts trivially on F ∩ L, where L is the minimal Galois extension of K over which G is an inner
form of a split group. Since S0 contains a nonarchimedean place v such that G is Kv-isotropic, our
computation of the metaplectic kernel shows that M(S,G) = 1 (see [36, Main Theorem]). This
means that once we know that C(S)(G) is central, we can actually conclude that it is trivial. We
will derive the centrality from Theorem 3.1, just as we did in the proof of Theorem 4.3; however,
the difference is that while almost weak approximation property holds uniformly for all maximal
K-tori T of G (see Corollary 4.2), Theorem 5.3 guarantees the almost strong approximation property
only in the case where C is trivial on KT ∩ F . To show that this information is still sufficient for
the proof of centrality, we need the following:

Lemma 5.5 (cf. [38, Theorem 2]). Let G be a semi-simple algebraic group over a global field K,
and let L be the minimal Galois extension of K over which G is an inner form of a split group.
Furthermore, suppose we are given a finite subset S ⊂ V K and a finite Galois extension F/K.
Then there exists a finite subset V ⊂ V K \ S and maximal Kv-tori T (v) of G for v ∈ V such that
for any maximal K-torus T of G which is G(Kv)-conjugate to T (v), the minimal splitting field KT

satisfies
KT ∩ F = L ∩ F. (5.1)

Proof. Let τ1, . . . , τt be all the nontrivial elements of Gal(F/(F ∩ L)). We extend each τi to
τ i ∈ Gal(FL/K) by letting it act trivially on L. There exists a finite subset V0 of V K such that
G is quasi-split over Kv for all v ∈ V K \ V0 (see [31, Theorem 6.7]). By Chebotarev’s density
theorem [2, Ch. VII, Sect. 2.4], we can find v1, . . . , vt ∈ V K

f \ (S ∪ V0) such that FL is unramified
at vi and for an appropriate extension wi|vi, one has FrFL/K(wi|vi) = τ i, for each i = 1, . . . , t. Set
V = {v1, . . . , vt}. Since τ i acts on L trivially, we conclude that L ⊂ Kvi . Combining this with the
fact that by our construction G is quasi-split over Kvi , we find that G actually splits over Kvi , and
we let T (vi) denote its maximal Kvi-split torus. We claim that these tori are as required. Indeed, let
T be a maximal K-torus of G as in the statement of the lemma. Then its splitting field KT satisfies
KT ⊂ Kvi for all i = 1, . . . , t. If we assume that KT ∩ F �⊂ L ∩ F , then there exists an i such that τi
acts nontrivially on KT ∩ F . Since τi = FrF/K(vi) lies in the local Galois group Gal(FKvi/Kvi), we
see that KT ∩ F �⊂ Kvi . A contradiction, proving the inclusion ⊂ in (5.1). The opposite inclusion
follows from the fact that L is contained in the splitting field of every maximal K-torus of G. �

To implement the above strategy (although with some variations) and prove Theorem B, we set
S = A(G) ∪ V K

∞ and use Lemma 5.5 to find a finite subset V ⊂ V K \ S and maximal Kv-tori T (v)
of G for v ∈ V with the properties described therein. Then set

S′ =
(
P(F/K,C ) \ (P0 ∪ V )

)
∪ V K

∞ .
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Clearly, S′ is contained in S and, in particular, is disjoint from A and V . Now, let t be any
regular semi-simple element in G(K) ∩ U where U =

∏
v∈V U (v, T (v)) in the notations introduced

prior to the statement of Theorem 3.1, and let T = ZG(t)
◦ be the corresponding maximal K-torus

of G. Then by construction T is G(Kv)-conjugate to T (v) for all v ∈ V , so by Lemma 5.5 we
have KT ∩ F = F ∩ L. This means that the elements of C act trivially on KT ∩ F , and therefore
Theorem 5.3 yields the inclusion T (K)(S

′) ⊃ T (A(S′))n where n = n(d, [F :K]) is the number from
this theorem and d is the absolute rank of G. On the other hand, we obviously have the inclusion
π(S′)(Z

̂G(S′)(t)) ⊃ T (K)(S
′). This verifies the assumptions of Theorem 3.1(ii) for the congruence

sequence (C) associated with the set S′ and, therefore, enables us to conclude that C(S′) is central.
As we explained at the beginning of the proof, since there exists a nonarchimedean v ∈ S′ such that
G is Kv-isotropic, this implies that C(S′)(G) is actually trivial. Finally, since S′ ⊂ S and S \ S′

does not contain any anisotropic places for G, there exists a natural surjective homomorphism
C(S′)(G) → C(S)(G) (cf. [40, Lemma 6.2]), so C(S)(G) is also trivial. �

6. CONGRUENCE SUBGROUP PROPERTY FOR ARITHMETIC GROUPS
WITH ADELIC PROFINITE COMPLETION: PROOF OF THEOREM C

Before we embark on the proof of Theorem C (of the Introduction), we would like to point out
that for infinite arithmetic groups in positive characteristic the profinite completion is never adelic
(see Remark 6.2 below), so we limited the statement of Theorem C to the case of number fields.
The proof relies on the following properties of the group of adeles.

Lemma 6.1. Let Ω = GLn(Ẑ) =
∏

q prime GLn(Zq), and fix a prime p.
(1) There exists d ≥ 1 (depending only on n) such that for any pro-p subgroup P of Ω, one has[

P(d),P(d)
]
⊂ GLn(Zp),

where P(d) denotes the (closed) subgroup generated by the d-th powers of elements of P.
(2) If P ⊂ Ω is an analytic pro-p subgroup satisfying the following condition:

(O) for any open subgroup P ′ ⊂ P, the commutator subgroup [P ′,P ′] is also open in P,

then the kernel of the projection P →
∏

q �=pGLn(Zq) is open in P.
Proof. (1) By Jordan’s theorem (cf., for example, [13]), there exists � = �(n) such that every

finite subgroup J ⊂ GLn(F ), where F is a field of characteristic zero, contains an abelian normal
subgroup of index ≤ �. Set d = �! and observe that the exponent of any group of order ≤ � divides d.
For a prime q, we let prq : Ω → GLn(Zq) denote the corresponding projection. The first congruence
subgroup GLn(Zq, q) is a normal pro-q subgroup of GLn(Zq) of finite index. This means that for
any q �= p, the image prq(P) has trivial intersection with GLn(Zq, q) and hence is finite. Then our
choice of d forces prq(P

(d)) = prq(P)(d) to be abelian, implying that prq([P
(d),P(d)]) is trivial.

This being true for all q �= p, we conclude that [P(d),P(d)] is contained in GLn(Zp), as asserted.
(2) Let d be the integer from assertion (1). Since P is analytic, it follows from the implicit

function theorem that the map P → P, x �→ xd, is open, and therefore P(d) is an open subgroup
of P. (We note that as follows from the affirmative solution of the restricted Burnside problem
by E.I. Zel’manov [73, 74], the subgroup P(d) is open in P for any finitely generated profinite
group P and any integer d ≥ 1, so the assumption of analyticity here can be replaced by just
requiring finite generation.) Then, due to assumption (O), the commutator subgroup [P(d),P(d)]
is also open in P. On the other hand, assertion (1) states that [P(d),P(d)] is contained in the
kernel of the projection P →

∏
q �=pGLn(Zq), which therefore is open in P. �

Remark 6.2. Combining Lemma 6.1 with the results of [17] (we thank M. Ershov for this
reference), one shows that for an S-arithmetic subgroup Γ of an absolutely almost simple simply

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 292 2016



ON THE CONGRUENCE KERNEL FOR SIMPLE ALGEBRAIC GROUPS 233

connected algebraic group G over a global field K of characteristic p > 0, the profinite completion Γ̂
is not adelic provided that rkS G > 0 (i.e., Γ is infinite) and S �= V K . Indeed, pick v ∈ V K \ S
and let P = G(Ov , pv) be the congruence subgroup modulo the valuation ideal pv of the valuation
ring Ov ⊂ Kv. We will view P as a pro-p subgroup of Γ, and let P be a Sylow pro-p subgroup of
π−1(P ), so that π(P) = P . Assume that there exists an embedding Γ̂ ↪→ GLn(Ẑ). According to
Lemma 6.1, for some d ≥ 1, the subgroup P0 = [P(d),P(d)] is contained in GLn(Zp) and hence is
a p-adic analytic group. Then P0 := π(P0) is also p-adic analytic. On the other hand, it follows
from [17, Theorem 1.7] or from [56] that P0 is an open subgroup of P and therefore cannot be
analytic (see [17, Theorem 1.5] or [14, Theorem 13.23]). A contradiction.

To proceed with the proof of Theorem C, for a prime p we let V (p) denote the finite set
{v ∈ V K \ S | v(p) �= 0}, and let Π be the finite set of primes p for which V (p) ∩ A(G) �= ∅. To
prove Theorem C, it is enough to show that

V0 :=
⋃
p/∈Π

V (p)

is contained in Z := Z(C(S)(G)). Indeed, since the complement V K \ (S ∪ V0) is finite, by Theo-
rem 4.3 the congruence kernel C(S∪V0)(G) is trivial. So, the inclusion V0 ⊂ Z would enable us to
derive the centrality of C(S)(G) from Proposition 2.5.

The rest of the argument focuses on proving the inclusion V (p) ⊂ Z for a fixed p /∈ Π. By our
assumption there exists a continuous embedding ι : Γ̂ ↪→

∏
q GLn(Zq). Then

P := ι−1(GLn(Zp, p))

is an analytic pro-p normal subgroup of Γ̂.
Lemma 6.3. π(P) contains an open subgroup of GV (p) =

∏
v∈V (p)G(Kv).

Proof. Let Sp be a Sylow pro-p subgroup of Γ̂ (cf., for example, [59, Ch. I, § 1.5]). Then
π(Sp) is a Sylow pro-p subgroup of Γ =

∏
v/∈S G(Ov) [59, Ch. I, § 1, Proposition 4]. Since for every

v ∈ V (p), the congruence subgroup G(Ov , pv) modulo the maximal ideal pv of Ov is a normal pro-p
subgroup of G(Ov), the conjugacy theorem for Sylow pro-p subgroups of profinite groups [59, Ch. I,
§ 1, Proposition 3] implies that ∏

v∈V (p)

G(Ov , pv) ⊂ π(Sp),

and consequently ∏
v∈V (p)

[
G(Ov , pv)

(d), G(Ov , pv)
(d)

]
⊂ π

([
S(d)
p ,S(d)

p

])
(6.1)

for any d ≥ 1. We will use this for the integer d given by Lemma 6.1(1). Then ι
([
S(d)
p ,S(d)

p

])
is

contained in GLn(Zp). So, the intersection P ∩
[
S(d)
p ,S(d)

p

]
is of finite index in

[
S(d)
p ,S(d)

p

]
, and

therefore π(P) ∩ π
([
S(d)
p ,S(d)

p

])
is of finite index in π

([
S(d)
p ,S(d)

p

])
. On the other hand, as in the

proof of Lemma 6.1(1), the map G(Kv) → G(Kv), x �→ xd, is open, making G(Ov , pv)
(d) an open

subgroup of G(Kv). Furthermore, since G is an absolutely almost simple group, its Lie algebra (as
an analytic group over Qp) is semi-simple, which by way of the implicit function theorem implies
that the commutator subgroup of any open subgroup of G(Kv) is again open (cf. [56]). Combining
these two facts, we see that the left-hand side of (6.1) is open in GV (p). Then π(P) is also open,
as required. �
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Since P is an analytic pro-p group, it follows from Cartan’s theorem (cf. [8, Ch. III, § 8, n◦ 2; 14])
and the preceding lemma that U := P ∩ π−1(GV (p)) is also an analytic pro-p normal subgroup
of Γ̂ having the property that π(U ) ⊂ GV (p) is open. The latter means that for the Qp-Lie algebras
u and g of U and GV (p) respectively (as analytic pro-p groups) and for the differential of π we have

dπ(u) = g. (6.2)

The rest of the proof relies on the analysis of conjugates gU g−1 for g ∈ Ĝ. This analysis, however,
is complicated by the fact that U may not satisfy condition (O) of Lemma 6.1(2). To bypass this
difficulty, we first replace U with a smaller subgroup that satisfies this condition and retains other
significant properties of U . More precisely, let

u0 = u, ui+1 = [ui, ui] for i ≥ 0

be the derived series of u. Pick � ≥ 0 so that u�+1 = u�, set w = u�, and let W ⊂ U be a closed
subgroup with the Lie algebra w. Since by construction [w,w] = w, the subgroup W satisfies (O).
At the same time, it follows from (6.2) and our construction that dπ(w) = g, and therefore π(W)
is open in GV (p).

Lemma 6.4. For any g ∈ Ĝ, the subgroups W and gWg−1 are commensurable.
Proof. First, note that both Γ̂ and gΓ̂g−1 are open compact subgroups of Ĝ and hence are

commensurable. It follows that there exists an open subgroup W ′ ⊂ W such that W̃ := gW ′g−1 ⊂ Γ̂.
Since W, hence also W ′, satisfies condition (O), Lemma 6.1(2) tells us that after replacing W ′ with a
smaller open subgroup we may assume that ι(W̃) is contained in GLn(Zp) and even in GLn(Zp, p),
i.e. W̃ ⊂ P. At the same time, since GV (p) is normal in G, we see that π(W̃) ⊂ GV (p), and
eventually W̃ ⊂ P ∩ π−1(GV (p)) = U . The Lie algebra w̃ is isomorphic to w and hence is its
own commutator. It follows that w̃ is contained in the �th term of the derived series u� = w, and
therefore w̃ = w. But since W̃ and W are both closed subgroups of the analytic pro-p group U ,
the fact that they have the same Lie algebras means that they share an open subgroup and hence
are commensurable, and our assertion follows. �

For an arbitrary g ∈ Ĝ, the corresponding inner automorphism Int g induces a continuous group
homomorphism g−1Wg → W of analytic pro-p groups, which is then analytic. It follows from
Lemma 6.4 that both groups have the same Lie algebra w, so we obtain an action of g on the latter.
Furthermore, using the fact that for any g1, g2 ∈ Ĝ, all four subgroups W, g−1

1 Wg1, g−1
2 Wg2, and

(g1g2)
−1W(g1g2) are pairwise commensurable, it is easy to see that in fact we obtain a continuous

representation ρ : Ĝ → GL(w).
Lemma 6.5. For C = C(S)(G), the image ρ(C) is finite.
Proof. Since C is compact, the image ρ(C) is a compact subgroup of GL(w) = GLm(Qp)

where m = dimQp w. Since GLm(Qp) is a p-adic analytic group, we conclude that ρ(C) is finitely
generated (cf. [14]). Now, applying Proposition 2.9 to F = C/(C ∩ Ker ρ), we see that ρ(C) is
finite. �

Let C0 := C ∩Ker ρ be an open normal subgroup of C normalized by Ĝ. Then the conjugation
action of C0 on W induces the trivial action on the Lie algebra w. This means that we can replace W
with an open subgroup to ensure that C0 centralizes W (we note that after this replacement, the
image W := π(W) will still be open in GV (p)).

Lemma 6.6. There exists g ∈ GV (p) such that W and gWg−1 generate GV (p).
Proof. It is enough to show that given v ∈ V (P ) and an open subgroup W of G(Kv), there

exists g ∈ G(Kv) such that
G(Kv) = 〈W, gWg−1〉. (6.3)
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Note that G(Kv) has only finitely many open compact subgroups W1, . . . ,Wr that contain W
(cf. [31, Proposition 3.16]). Pick a regular semi-simple element t ∈ W . It is well-known that the
conjugacy class of t in G(Kv) is closed and noncompact. So, one can find g ∈ G(Kv) such that

gtg−1 /∈
r⋃

i=1

Wi.

Then this g is as required. Indeed, in this case the right-hand side of (6.3) is an open noncompact
subgroup and therefore, by a theorem due to Tits (see [34]), contains G(Kv)

+, the subgroup gen-
erated by the Kv-points of the Kv-defined parabolics of G. But since G is simply connected and
v /∈ A(G), we have G(Kv)

+ = G(Kv) (see the discussion at the beginning of Section 7), and (6.3)
follows. �

Now, let g ∈ G(Kv) be as in Lemma 6.6, pick a lift ĝ ∈ π−1(g), and set C1 = C0 ∩ ĝC0ĝ
−1.

Clearly, C1 is an open normal subgroup of C that is centralized by W and ĝW ĝ−1. So, if we let
G = π−1(GV (p)) and Z = ZG(C1), then it follows from our construction that π(Z) = GV (p). Let Z1

denote the kernel of the natural action of Z on the finite group C/C1. Since GV (p) does not have
proper normal subgroups of finite index, we will still have π(Z1) = GV (p). Then as in Lemma 2.6,
for any c ∈ C, the map x �→ [c, x] defines a continuous group homomorphism χc : Z1 → C1, and we
can consider

χ : Z1 → C :=
∏
c∈C

Xc, where Xc = C1 for all c ∈ C,

given by χ(x) = (χc(x)). It follows from Lemma 2.3 that for H := Kerχ, we have π(H) = GV (p).
At the same time, by our construction, H ⊂ Z

̂G(C), which implies that V (p) ⊂ Z, as required. This
completes the proof of Theorem C.

7. GENERATORS FOR THE CONGRUENCE KERNEL: PROOF OF THEOREM D

In this section we will assume that charK = 0, and let G be an absolutely almost simple simply
connected K-isotropic algebraic group. If a subset S ⊂ V K containing V K

∞ is such that rkS G ≥ 2,
then according to the results of Raghunathan [40, 41] that prove Serre’s conjecture for isotropic
groups, the congruence kernel C(S)(G) is central and hence is isomorphic to the metaplectic kernel
M(S,G), which in all cases is a finite cyclic group (often trivial). In the remaining case where
rkS G = 1 (and therefore necessarily rkK G = 1 and |S| = 1; hence K is either Q or an imaginary
quadratic field), according to Serre’s conjecture C(S)(G) is expected to be infinite. This has been
established in a number of cases, although we do not yet have a general result. The goal of this
section is to provide several convenient systems of generators (or rather almost generators) for
C(S)(G) as a normal subgroup of Ĝ(S) and eventually reduce one of them to a single element,
proving thereby Theorem D (we recall that according to Proposition 2.9, if C(S)(G) is infinite, it
cannot be finitely generated as a group). So, henceforth we will assume that rkK G = 1.

First, we fix some notations that will be kept throughout this section. Let T be a maximal
K-split torus of G (so, dimT = 1) and M = ZG(T ). The root system Φ = Φ(G,T ) is either
{±α} or {±α,±2α}. For β ∈ Φ, we let Uβ denote the corresponding unipotent K-subgroup of G
(cf. [5, 21.9; 6, § 5; 60, Sect. 15.4]); recall that U±2α ⊂ U±α if 2α ∈ Φ; if 2α /∈ Φ, then U±2α

will denote the trivial subgroup of Uα. The subgroups P±α = M · U±α (semi-direct product) are
opposite minimal parabolic K-subgroups with the unipotent radicals Uα and U−α, respectively, and
the common Levi subgroup M = Pα ∩ P−α. Following Tits [64], for a field extension F/K we let
G(F )+ denote the subgroup of G(F ) generated by the F -rational points of the unipotent radicals
of parabolic F -subgroups (since charK = 0, it is simply the subgroup generated by all unipotent
elements of G(F )). It is known [7, 6.2(v)] that G(F )+ is generated by Uα(F ) and U−α(F ). On the
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other hand, from the affirmative solution of the Kneser–Tits problem over local (see [29; 35; 31,
§ 7.2]) and global (see [15]) fields, one knows that G(K)+ = G(K) and G(Kv)

+ = G(Kv) for any
v ∈ V K . Thus, Uα(K) and U−α(K) generate G(K), and Uα(Kv) and U−α(Kv) generate G(Kv) for
any v.

We will now produce the first generating system for C = C(S)(G) as a normal subgroup of Ĝ(S)

by generalizing the construction used in Examples 4.6 and 4.7. Since charK = 0, the topologies
τa and τc of G(K) induce the same topology on U±α(K) (cf. [43, Proposition 2.1]). It follows that
π(S) induces isomorphisms

̂U±α(K) → U±α(K) = U±α(A(S)),

and we let σ±α : U±α(K) → ̂U±α(K) denote the inverse isomorphisms. Consider the set

X =
⋃

X(v1, v2), with X(v1, v2) :=
[
σα(Uα(Kv1)), σ−α(U−α(Kv2))

]
,

where the union is taken over all v1, v2 ∈ V K \ S, v1 �= v2, and [A,B] denotes the set of all
commutators [a, b] with a ∈ A and b ∈ B. The fact that the groups G(Kv1) and G(Kv2) for such
v1 and v2 commute elementwise inside G(S) = G(A(S)) immediately implies that X(v1, v2) ⊂ C;
hence X ⊂ C. Now, let D be the closed normal subgroup of Ĝ(S) generated by X and consider
the corresponding extension (F) of Section 2. For v ∈ V K \ S, we let Hv denote the image in
H = Ĝ(S)/D of the subgroup Gv ⊂ Ĝ(S) generated by σα(Uα(Kv)) and σ−α(U−α(Kv)). As we
mentioned above, G(Kv) = 〈Uα(Kv), U−α(Kv)〉, which implies that θ(Hv) = G(Kv). Furthermore,
by our construction the subgroups Hv1 and Hv2 commute elementwise in H. Finally, the closed
subgroup of Ĝ(S) generated by the Gv ’s for v ∈ V K \ S contains Ûα(K) and ̂U−α(K); hence G(K) =
〈Uα(K), U−α(K)〉, so it coincides with Ĝ(S). Now, applying Proposition 4.5 to the partition of
V K \ S into singletons and the subgroups Hv constructed above, we conclude that (F) is a central
extension. Thus, F = C/D is a quotient of the metaplectic kernel M(S,G); hence it is a finite
cyclic group of order dividing the order |μK | of the group μK of roots of unity in K (cf. [36]).

Next, we will use a result of Raghunathan [41] to substantially reduce the above system of
generators.

Proposition 7.1. Fix v0 ∈ V K \ S, and set

Y (v0) =
⋃

v∈V K\(S∪{v0})
X(v0, v).

Then Y (v0) ⊂ C, and if D is the closed normal subgroup of Ĝ(S) generated by Y (v0), then C/D
is a quotient of M(S,G); hence it is a finite cyclic group of order dividing |μK |.

Proof. The discussion above yields the inclusion Y (v0) ⊂ C and also shows that it is enough
to prove that the corresponding sequence (F) is a central extension. Since there exists ω ∈ G(K)
such that ωU±αω

−1 = U∓α (cf. [5, 21.2; 6, 5.3]), the group D contains [σ−α(U(Kv0)), σα(U(Kv))]
for any v ∈ V K \ (S ∪ {v0}). We will now use Proposition 2.8 to establish the centrality. Write
V K \ S = V1 ∪ V2 where V1 = {v0} and V2 = V K \ (S ∪ {v0}) (obviously, A = ∅ in our situation);
then V ′

i = V3−i. The congruence kernel C(S∪V ′
1)(G) = C(V K\{v0})(G) is trivial by Theorem 4.3,

and the congruence kernel C(S∪V ′
2)(G) = C(S∪{v0})(G) is central by [41] and hence is isomorphic to

M(S ∪ {v0}, G), but the latter is trivial [36], so C(S∪{v0})(G) is trivial as well. Let H1 be the closed
subgroup of H generated by the images of σα(Uα(Kv0)) and σ−α(U−α(Kv0)), and let H2 be the closed
subgroup generated by the images of σα(Uα(Kv)) and σ−α(U−α(Kv)) for v ∈ V K \ (S ∪ {v0}) (or,
equivalently, by the images of σα(Uα(A(S ∪ {v0}))) and σ−α(U−α(A(S ∪ {v0})))). Then θ(Hi) =
G(A(S ∪ V ′

i )) for i = 1, 2, and moreover, H1 and H2 commute elementwise and together generate a
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dense subgroup of H. In other words, H1 and H2 satisfy the assumptions of Proposition 2.8, and
then the required centrality of (F) immediately follows from this proposition. �

We will first establish Theorem D for G = SL2, where the (almost) generating element c can be
written down explicitly. The argument here is inspired by the proof of Proposition 7.1, but relies
only on the result of Example 4.7 (which is originally due to Serre [58]) rather than on the more
general result of Raghunathan [41]. We will keep the notations introduced in Example 4.7. Fix
v0 ∈ V K \ S, write A(S) = Kv0 × A(S ∪ {v0}), and consider the elements

1v0 ∈ Kv0 and 1′v0 = (1, . . . , 1, . . .) ∈ A(S ∪ {v0}).

Proposition 7.2. Set c(v0) = [û+(1v0), û
−(1′v0)] ∈ C, and let D be the closed normal subgroup

of Ĝ generated by c(v0). Then the quotient C/D is central in Ĝ/D; hence it is a finite cyclic group
of order dividing |μK |.

Proof. First, we observe that the set

Δ =
{
(t−1, t) ∈ Kv0 × A(S ∪ {v0})

∣∣ t ∈ K×}
is dense in A(S). Indeed, any open set in A(S) contains an open set of the form U−1

v0 × U ′
v0 for

some open sets Uv0 ⊂ K×
v0 and U ′

v0 ⊂ A(S ∪ {v0}), and then our claim immediately follows from
the density of K in A(S) (strong approximation with respect to S). Since

h(t)−1c(v0)h(t) = [û+(t−2), û−(t2)],

we find that D contains the set{
[û+(a), û−(b)]

∣∣ a ∈ K2
v0 , b ∈ A(S ∪ {v0})2

}
.

In particular, for any v ∈ V K \ (S ∪ {v0}), all commutators

[û+(a), û−(b)] with a ∈ K2
v0 , b ∈ K2

v

lie in D. Since for any w ∈ V K
f , every element of Kw can be written as a sum of (at most four)

squares, the identities

[xy, z] = (x[y, z]x−1)[x, z] and [x, yz] = [x, y](y[x, z]y−1)

imply that D in fact contains the set X(v0, v). Then D contains Y (v0), and our claim follows from
Proposition 7.1. �

Remark 7.3. As we already observed, if the group G is K-isotropic then rkS G = 1 is possible
only if K = Q or K = Q(

√
−d), d square-free > 0, with S consisting of the unique archimedean

place in both cases. If K = Q then M(S,G) for any G is of order ≤ 2, and in fact M(S,G) is trivial
for G = SL2. The latter means that the congruence kernel for SL2(Z) is generated as a normal
subgroup of Ĝ by the element c(p) constructed above for any prime p. On the other hand, for
K = Q(

√
−d), the order of M(S,G), hence also that of C/D, divides 2 (respectively, 4 and 6) if

d �= 1, 3 (respectively, d = 1 and d = 3).
It is worth mentioning that the construction of generators described in Proposition 7.2 has some

other applications. Let G0 = SL2 over Q, and let S0 = V Q
∞ so that Γ0 = G(OQ(S0)) is SL2(Z).

Furthermore, fix a square-free integer d > 0, and let Gd = SL2 over Kd := Q(
√
−d) and Sd = V Kd∞

so that Γd = G(OKd
(Sd)) is the Bianchi group SL2(Od) where Od is the ring of integers in Kd. Let

C0 = C(S0)(G0) and Cd = C(Sd)(Gd) be the corresponding congruence kernels. Then the natural
embedding Γ0 → Γd induces a continuous homomorphism ιd : C0 → Cd. It follows from the results
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of [1] that ιd is injective for all d. (Indeed, by [1, Theorem 8.1], the homomorphism of the profinite
completions ̂PSL2(Z) → ̂PSL2(Od) is injective, which implies that the homomorphism Γ̂0 → Γ̂d is
injective, and the injectivity of ιd follows.) On the other hand, the results of Serre [58] imply that
for d �= 1, 3, the homomorphism ιd is not surjective. Moreover, we have the following.

Lemma 7.4. Let Ed be the closed normal subgroup of Γ̂d generated by ιd(C0). Then for
d �= 1, 3, the quotient Cd/Ed is infinite.

Proof. Since the image of Ed in Cd := Cd/(Cd ∩ ̂[Γd,Γd]) is the same as that of C0, it is
enough to show that the image of C0 in Cd is a subgroup of infinite index. It is well-known that
the abelianization Γab

0 = Γ0/[Γ0,Γ0] is finite (of order 12), so C0 ∩ ̂[Γ0,Γ0] has finite index in C0,
making the image of C0 in Cd finite. On the other hand, according to the results in [58, n◦ 3.6], for
d �= 1, 3, the abelianization Γab

d is infinite.3 Then from the exact sequence

Cd → Γ̂d/ ̂[Γd,Γd] → Γd/[Γd,Γd]

and the finiteness of the last term in it (see [40]), we conclude that Cd is infinite, and our assertion
follows. �

Nevertheless, we have the following in all cases.
Proposition 7.5. Let Ld be the closed normal subgroup of Ĝd generated by ιd(C0). Then

Cd/Ld is a finite cyclic group of order dividing |μKd
| (so, its order is ≤ 2 if d �= 1, 3, divides 4 if

d = 1, and divides 6 if d = 3).
Proof. Pick a prime p0 that does not split in Kd, and let v0 be the unique valuation of Kd

extending the p0-adic valuation of Q. Consider the elements from Proposition 7.2 written for these
valuations:

c(p0) = [û+(1p0), û
−(1′p0)] ∈ C0 and c(v0) = [û+(1v0), û

−(1′v0)] ∈ Cd.

It is easy to see that these elements are related by ιd(c(p0)) = c(v0). So, Ld contains the sub-
group D from the statement of Proposition 7.2, and our claim follows from that proposition (cf.
also Remark 7.3). �

The proof of Theorem D in the general case will be reduced to the SL2-case by constructing
a suitable K-homomorphism SL2 → G with the help of the Jacobson–Morozov lemma and then
applying Proposition 7.2 in conjunction with the following statement.

Proposition 7.6. Let G be an absolutely simple simply connected algebraic K-group of
K-rank 1, let ϕ : H → G be a K-homomorphism of an absolutely simple simply connected
K-group H to G, and let ϕ̂ : Ĥ(S) → Ĝ(S) be the corresponding continuous homomorphism of
S-arithmetic completions. Assume that ϕ(H) ∩ (Uβ \ U2β) �= ∅ for β = α and −α. Let C0 be a
subgroup of C(S)(H) normalized by Ĥ(S) such that Ĥ(S) acts trivially on C(S)(G)/C0. Then for the
closed normal subgroup D of Ĝ(S) generated by ϕ̂(C0), the group Ĝ(S) acts trivially on C(S)(G)/D.
Consequently, C(S)(G)/D is a quotient of the metaplectic kernel M(S,G); hence it is a finite cyclic
group of order dividing |μK |.

The proof requires one technical fact (Proposition 7.7 below) which we will prove in the Ap-
pendix. To state it, we observe that the centralizer M = ZG(Ts) of a maximal K-split torus Ts of G
acts on each root subgroup Uβ for β ∈ Φ(G,Ts) via the conjugation action, and consequently acts
on the quotient W±α := U±α/U±2α. Furthermore, it is known that W±α is a vector group over K,
and the above action gives rise to a K-linear representation ρ±α : M → GL(W±α) (cf. [5, § 21]).

3We note that for d = 1, 3, the abelianization Γab
d is finite, as one can see from the explicit presentations found

in [11, 63].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 292 2016



ON THE CONGRUENCE KERNEL FOR SIMPLE ALGEBRAIC GROUPS 239

We also recall that since G has K-rank 1, its Tits index can have only one or two circled vertices
(cf. [65]).

Proposition 7.7. Let (W,ρ) denote either (Wα, ρα) or (W−α, ρ−α), and assume charK �= 2.
Then ρ is K-irreducible. More precisely, one of the following two possibilities holds :

(i) if the Tits index of G has only one circled vertex, then ρ is absolutely irreducible;
(ii) if the Tits index of G has two circled vertices, then W = W1 ⊕W2 where W1 and W2 are

absolutely irreducible M -invariant subspaces defined over a quadratic extension L/K and
W2 = W σ

1 for the nontrivial automorphism σ of L/K.

Proof of Proposition 7.6. We only need to prove that the extension

1 → F := C(S)(G)/D → qG := Ĝ(S)/D
θ−→ G(S) → 1 (7.1)

is central, for which we will use our standard strategy. More precisely, we let qUα and qU−α denote
the closures in qG of Uα(K) and U−α(K), respectively. Since the S-arithmetic and S-congruence
topologies on U±α(K) coincide, θ induces isomorphisms

qUα → Uα(K) � Uα(A(S)) and qU−α → U−α(K) � U−α(A(S)),

and we let σ±α : U±α(A(S)) → qU±α denote the inverse (continuous) isomorphisms. For v ∈ V K \ S,
we let Gv denote the subgroup of qG generated by σα(Uα(Kv)) and σ−α(U−α(Kv)). Repeating almost
verbatim the argument used at the beginning of this section, we see that the subgroups Gv satisfy
all the assumptions of Theorem A, which then yields the centrality of (7.1) provided we show that
σα(Uα(Kv1)) and σ−α(U−α(Kv2)) commute elementwise for any v1, v2 ∈ V K \ S, v1 �= v2. So, the
central part of the present argument is concerned with proving this fact. We will establish it in the
following equivalent form. Define

cv1,v2 : Uα(Kv1)× U−α(Kv2) → F, (u1, u2) �→ [σα(u1), σ−α(u2)].

Clearly, cv1,v2 is continuous, and what we need to prove is
(�) cv1,v2 ≡ 1.

By our assumption, the extension

1 → F0 := C(S)(H)/C0 → qH := Ĥ(S)/C0
θ0−→ H(S) → 1

is central. Since H is clearly K-isotropic, the congruence completion H(S) can, as usual, be iden-
tified with H(A(S)). Then for any v1, v2 ∈ V K \ S, v1 �= v2, by Corollary 2.7, we can define a
bimultiplicative pairing

c0v1,v2 : H(Kv1)×H(Kv2) → F0, (x1, x2) �→ [x̃1, x̃2] for x̃i ∈ θ−1
0 (xi).

As we already mentioned, the group H(Kvi) does not contain any proper noncentral normal sub-
groups; hence H(Kvi) = [H(Kvi),H(Kvi)]. Since F0 is commutative, it follows that the pairing
c0v1,v2 is trivial, and therefore the preimages θ−1

0 (H(Kv1)) and θ−1
0 (H(Kv2)) commute elementwise.

There exist unipotent K-subgroups U+ and U− of H such that ϕ(U±) is contained in U±α but
not in U±2α. Then for any u1 ∈ U+(Kv1) and u2 ∈ U−(Kv2) we have

cv1,v2(ϕ(u1), ϕ(u2)) = qϕ(c0v1,v2(u1, u2)) = 1,

where qϕ : qH → qG is induced by ϕ̂. Furthermore, the group M(K) acts naturally on F by conjuga-
tion, and for any m ∈ M(K) and any u1, u2 as above we have

cv1,v2
(
mϕ(u1)m

−1,mϕ(u2)m
−1

)
= mcv1,v2(ϕ(u1), ϕ(u2))m

−1 = 1. (7.2)

We now note the following.
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Lemma 7.8 (weak approximation for M). For any finite subset V of V K , the diagonal em-
bedding M(K) ↪→ MV :=

∏
v∈V M(Kv) has dense image.

Proof. By the Bruhat decomposition, the product map μ : U−α × M × Uα → G yields a
K-isomorphism onto a Zariski-open set Ω ⊂ G. Being simply connected, G has weak approximation
with respect to any finite set of places; i.e., the diagonal embedding G(K) ↪→ GV is dense (cf. [31,
Theorem 7.8]). Since Ω is K-open, the diagonal embedding Ω(K) ↪→ ΩV is also dense, and our
assertion follows. �

Using this in conjunction with (7.2) and the continuity of cv1,v2 , we obtain

cv1,v2(X1(u1),X2(u2)) = {1} where Xi(ui) =
{
miϕ(ui)m

−1
i

∣∣ mi ∈ M(Kvi)
}
.

Then also
cv1,v2(〈X1(u1)〉, 〈X2(u2)〉) = {1}, (7.3)

where 〈Xi(ui)〉 is the subgroup generated by Xi(ui). Now, it follows from our assumptions and
the Zariski-density of U±(K) in U± that one can pick u1 ∈ U+(K) and u2 ∈ U−(K) so that
ϕ(u1) /∈ U2α(K) and ϕ(u2) /∈ U−2α(K). So, if we let ν±α : U±α → U±α/U±2α = W±α denote
the quotient map, then w1 = να(ϕ(u1)) and w2 = ν−α(ϕ(u2)) are nontrivial elements in Wα(K)
and W−α(K). Taking into account the Zariski-density of M(K) in M (cf. [5, 18.3]) and applying
Proposition 7.7, we see that for any field extension P/K, the P -vector space Wα(P ) (respectively,
W−α(P )) is spanned by ρα(M(P )) · w1 (respectively, ρ−α(M(P )) · w2). On the other hand, since
α(Ts(P )) contains P×d for some d ≥ 1 and P is generated by P×d as an additive group, the
additive subgroup of Wα(P ) (respectively, W−α(P )) generated by ρα(M(P )) · w1 (respectively,
ρ−α(M(P )) · w2) is automatically a P -vector subspace. Altogether, this means that

να(〈X1(u1)〉) = Wα(Kv1) and ν−α(〈X2(u2)〉) = W−α(Kv2). (7.4)

Clearly, U±2α is contained in the center of U±α, and since U±2α(P ) coincides with the commutator
subgroup of U±α(P ) for any field extension P/K (cf. [9, 5.3]; note that this fact is true over any
infinite field of characteristic �=2), we conclude from (7.4) by passing to commutator subgroups that
〈X1(u1)〉 (respectively, 〈X2(u2)〉) contains U2α(Kv1) (respectively, U−2α(Kv2)). Then (7.4) yields

〈X1(u1)〉 = Uα(Kv1) and 〈X2(u2)〉 = U−α(Kv2).

Combining this with (7.3), we obtain (�), as required. �
Remark 7.9. 1. Proposition 7.6 for C = C0 is essentially due to Rajan and Venkatara-

mana [45] and in fact goes back to Raghunathan’s argument in [41, § 3]. We note, however, that
the discussion of the irreducibility of the action of M on W±α (which is our Proposition 7.7) is
limited in [45] to the groups SO(n, 1) and SU(n, 1), which are the main focus of that paper (see the
penultimate paragraph in [45, p. 548]). It should also be pointed out that the assertion in the proof
of [45, Theorem 7] that part (ii) of that theorem is a restatement of [41, Proposition 2.14] is not
totally accurate as Proposition 2.14 of [41] involves one extra condition (see (iii) in its statement).
Nevertheless, according to our Theorem A, the result described in [45, Theorem 7(ii)] is indeed
valid, and not only for isotropic groups. In view of these technicalities, we chose—for the reader’s
convenience—to give a complete proof of Proposition 7.6.

2. It was pointed out in [44, 45] that the assertion of Proposition 7.6 has the following implica-
tion:

Given a congruence subgroup Γ of G(O(S)) and a nontrivial group homomorphism φ : Γ → Z,
there exists a congruence subgroup Δ of H(O(S)) and an element g ∈ G(K) such that Δ′ = gΔg−1

is contained in Γ and the restriction φ|Δ′ is nontrivial.
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This is subsumed, however, in the “sandwich lemma” of Lubotzky [23, Lemma 2.4], which states
that the above result is valid without any assumptions on the congruence kernels if H(O(S))
satisfies the so-called Selberg property. We refer to [23] for precise definitions, and only mention
that the Selberg property is in fact property (τ) for congruence subgroups. More importantly, the
Selberg property is now known to hold in all situations (see [10], which concluded the efforts by
various people), making the result of Lubotzky unconditional.

At the same time, proving Selberg’s property even for SL2 requires the heavy machinery of the
theory of automorphic forms, so the approach developed in [44, 45] provides an algebraic alternative
in some cases. (From this perspective, our Proposition 7.5 yields an algebraic proof of the following
fact: Given a congruence subgroup Γ of the Bianchi group SL2(Od), where Od is the ring of integers
in Kd = Q(

√
−d) with d a square-free integer > 0, and a nontrivial homomorphism φ : Γ → Z, there

exists a congruence subgroup Δ of SL2(Z) and g ∈ SL2(Kd) such that Δ′ = gΔg−1 is contained
in Γ and the restriction φ|Δ′ is nontrivial (this should be compared to the results in [58, n◦ 3.6]).)

3. One can ask whether it is possible to strengthen Proposition 7.6 and prove that for an
absolutely almost simple simply connected K-group G and a proper K-subgroup H, the map of the
congruence kernels ι

(S)
G,H : C(S)(H) → C(S)(G) is actually surjective. This property can be helpful

for proving the centrality of C(S)(G) in view of the following simple observation (cf. [39, Sect. 5.2,
Proposition 2]): Assume that G(K) does not contain any proper noncentral normal subgroups. If
there exists a K-subgroup H of G which is fixed elementwise by a nontrivial K-automorphism σ

of G such that ι
(S)
G,H is surjective, then C(S)(G) is central and hence finite. This observation (which

can be traced back to [3]; see [39, Sect. 5.3] on how it can be used to establish the centrality
of the congruence kernel for SLn, n ≥ 3) was employed by Kneser [20] to prove that if G =
Spinn(q) is the spinor group of a nondegenerate quadratic form q over K in n ≥ 5 variables and
rkS G ≥ 2, then C(S)(G) is central. To this end, he proved that for any anisotropic x ∈ Kn with
the stabilizer G(x) satisfying rkS G(x) ≥ 1, the map C(S)(G(x)) → C(S)(G) is surjective (see [39,
Sect. 5.2, Proposition 3] for an indication of the idea). Subsequently, analogs of these statements
were established for groups of the classical types and type G2 in [46, 47, 49, 67, 68]. To give an
example where ι

(S)
G,H is not surjective, we consider an imaginary quadratic extension L/Q and let

h be the corresponding 2-dimensional hyperbolic hermitian form. Set f = h ⊥ g, where g is a
1-dimensional hermitian form, and consider the natural embedding of (absolutely almost simple
simply connected) Q-groups

H := SU(h) → SU(f) =: G.

We claim that for S = {∞}, the map ι
(S)
G,H is not surjective. Indeed, it follows from the results

of Kazhdan [18] and Wallach [70] that there exists a congruence subgroup Γ of G(Z) with infinite
abelianization Γab, which immediately implies that the congruence kernel C(S)(G) is infinite (cf. [58,
§ 3]). Since H is fixed by the nontrivial automorphism σ = Intx of G, where x = diag(1, 1,−1) ∈
U3(f), this fact together with the above observation prevents ι

(S)
G,H from being surjective.

While ι
(S)
G,H may or may not be surjective, the available results (including those obtained in [44]

for the embeddings SO(2m − 1, 1) → SU(2m − 1, 1) and SO(2m − 1, 1) → SO(2m + 1, 1) in the
anisotropic case and for C = C0) suggest that the assertion of Proposition 7.6 should always be
true whenever G and H are absolutely almost simple simply connected K-groups and rkS H > 0.
If proven, this would simplify the verification of centrality in a number of cases.

Proof of Theorem D. Recall that here charK = 0. Propositions 7.2 and 7.6 imply that it is
enough to construct a K-homomorphism ϕ : H = SL2 → G such that ϕ(H) ∩ (Uβ \ U2β) �= ∅ for
β = α and −α. For this we consider the Lie algebra g = L(G) of G and pick a nonzero eigenvector
X ∈ g(K) for the adjoint action of the maximal K-split torus Ts with character α. Applying the
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Jacobson–Morozov lemma (cf. [16, Ch. III, Theorem 17]), we can find a K-subalgebra r ⊂ g that
contains X and is isomorphic to sl2. There exists an algebraic K-subgroup R of G with the Lie
algebra r (cf. [5, Corollary 7.9]), which is K-isogenous to SL2. Let U be a 1-dimensional unipotent
K-subgroup of R whose Lie algebra L(U ) is spanned by X, and let T ⊂ R be a 1-dimensional
K-split torus that normalizes U . Then T and Ts are conjugate by an element of NG(U )◦(K)
(cf. [6]), and after performing this conjugation we can assume that T = Ts. Since r also contains an
eigenvector for AdT with character −α, we obtain R ∩ (Uβ \ U2β) �= ∅ for β = ±α, so a K-isogeny
ϕ : H = SL2 → R is a required homomorphism. �

To conclude, we will briefly indicate how Theorem D can be partially extended to positive
characteristic p > 2. The main distinction is that if p > 0 and rkS G = 1, then the arithmetic and
congruence topologies of G may not coincide on U±α(K). So, to use our approach we need to pass
to the reduced congruence kernel C(S)(G) = C(S)(G)/N where N is the closed normal subgroup
of Ĝ(S) generated by the kernels of the restrictions π(S)| ̂U±α(K). Then Propositions 7.2 and 7.6
remain valid if one replaces the full congruence kernel with the reduced one in their statements.
Furthermore, by going through the list of absolutely almost simple groups defined over a global
field K of characteristic p > 2 and having K-rank 1, one verifies that there is a K-homomorphism
ϕ : H = SL2 → G such that ϕ(H) ∩ (Uβ \ U2β) �= ∅ for β = ±α (this assertion is false in
characteristic 2). This puts all the ingredients of the proof of Theorem D in place, and taking
into account the triviality of M(S,G) in positive characteristic (cf. [36]), we arrive at the following
conclusion: C(S)(G) is generated as a closed normal subgroup of Ĝ(S)/N by a single element.

Appendix. PROOF OF PROPOSITION 7.7

We will give the argument for (Wα, ρα). Let T be a maximal K-torus of G containing Ts, and
let Φ = Φ(G,T ) be the corresponding (absolute) root system. We fix compatible orderings on
X(T ) ⊗Z R and X(Ts) ⊗Z R so that α is positive. Let Φ+ (respectively, Δ) be the corresponding
system of positive (respectively, simple) roots in Φ. Furthermore, we let Δ0 denote the subset of Δ
consisting of roots with trivial restriction to Ts (and then Δ \Δ0 is the set of distinguished roots).
Since rkK G = 1, it follows from the tables in [65] that |Δ \Δ0| ≤ 2; note that any δ ∈ Δ \Δ0 is
taken to α by the restriction map X(T ) → X(Ts).

For β ∈ Φ, we let Uβ (respectively, gβ) denote the 1-dimensional connected unipotent subgroup
of G (respectively, the 1-dimensional root subspace of the Lie algebra g = L(G)) corresponding
to β (thus, gβ = L(Uβ)). Furthermore, we let nδ(β) (δ ∈ Δ) denote the integers that arise in the
decomposition β =

∑
δ∈Δ nδ(β)δ. Let

Θ =

{
β ∈ Φ+

∣∣∣∣ ∑
δ∈Δ−Δ0

nδ(β) = 1

}
.

Clearly, Θ is precisely the set of roots β ∈ Φ that restrict to α. It follows that u =
∑

β∈Θ gβ is
the root space for Ts for the root α and hence is invariant under AdM , where M = ZG(Ts). It
is well-known that the vector spaces Wα = Uα/U2α and u are isomorphic as M -modules. We also
recall that for β, γ ∈ Φ, we have

(Ad g)(gβ) ⊂
∑
n≥1

gβ+nγ for any g ∈ Uγ , (A.1)

where as usual we set gδ = 0 if δ ∈ X(T ) is not a root. Furthermore, since we exclude characteristic 2
and also type G2 (which does not have K-forms with K-rank 1), we have

[gβ1 , gβ2 ] = gβ1+β2 for any β1, β2 ∈ Φ. (A.2)
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Lemma A.1. Fix δ0 ∈ Δ \Δ0 and set Θ(δ0) = {β ∈ Θ | nδ0(β) = 1}. Then

u(δ0) :=
∑

β∈Θ(δ0)

gβ

is an irreducible M -module.

Proof. The group M is generated by T and Uγ for those γ ∈ Φ that restrict trivially to Ts.
Since any such γ is a linear combination of elements of Δ0, the inclusion (A.1) shows that u(δ0)
is AdM -invariant. Let v ⊂ u(δ0) be a nonzero M -invariant subspace. As M contains T , we
have v =

⊕
β∈Θ′ gβ for some nonempty subset Θ′ ⊂ Θ(δ0) and [m, v] ⊂ v, where m = L(M). For

β1, β2 ∈ Φ, we will write β1 � β2 if β1 − β2 is a sum of positive roots. We claim that if β1, β2 ∈ Θ(δ0)
and β1 � β2, then

gβ1 ⊂ v ⇔ gβ2 ⊂ v. (A.3)

Indeed, there exists a sequence of positive roots γ1, . . . , γr ∈ Φ+ such that β1 = β2 + γ1 + . . . + γr
and β2 + γ1 + . . .+ γi is a root for i = 1, . . . , r (see the proof of [8, Ch. VI, § 1, n◦ 6, Proposition 19]).
Since nδ(β1) = nδ(β2) for any δ ∈ Δ \Δ0, we have nδ(γi) = 0 and hence g±γi ⊂ m for all i. So, if
gβ1 ⊂ v, then using repeatedly [m, v] ⊂ v together with (A.2), we obtain

gβ2 = [g−γ1 , [g−γ2 , [. . . [g−γr , gβ1 ] . . .]]] ⊂ v,

and vice versa, proving (A.3). Note that for any β ∈ Θ(δ0) we have β � δ0, so using (A.3), we see
that if gβ0 ⊂ v for some β0 ∈ Θ(δ0), then gδ0 ⊂ v, and consequently gβ ⊂ v for every β ∈ Θ(δ0).
Thus, v = u, as claimed. �

If Δ \Δ0 = {δ0} then the above lemma, together with the remarks made prior to its statement,
immediately yields the irreducibility of Wα. Now, suppose that Δ \Δ0 = {δ1, δ2}. For i = 1, 2, set

ui =
∑

β∈Θ(δi)

gβ,

where Θ(δi) is the subset of Θ defined in Lemma A.1 for δ0 = δi, and let Wi be the subspace
of W corresponding to ui. Then clearly W = W1 ⊕ W2, and according to Lemma A.1, each Wi

is an (absolutely) irreducible M -module. Let T0 = Z(M)◦ be the central torus of the (reductive)
group M . Then the restrictions γi = δi|T0 for i = 1, 2 form a basis of X(T0) ⊗Z Q, and Wi is
the eigenspace of T0 with the character γi. It follows that the M -submodule of W containing
w = (w1, w2) with wi ∈ Wi contains w1 and w2 and hence coincides with W if both w1 and w2 are
nonzero.

Since T0 is 2-dimensional and contains the 1-dimensional (maximal) split torus Ts, it splits over
a quadratic extension L/K, and then both subspaces W1 and W2 are defined over L. The nontrivial
σ ∈ Gal(L/K) can either switch the weights γ1 and γ2 of T0 or keep each of them fixed. However,
in the second option T0 would be K-split, which is not the case. Thus, σ(γ1) = γ2, and therefore
σ(W1) = W2. It follows that if a nonzero w ∈ W (K) is written in the form w = (w1, w2) as above,
then both w1 and w2 are automatically nonzero, so w generates W as M -module, implying that W
is K-irreducible.
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Séminaire Bourbaki 1976/1977 (Springer, Berlin, 1978), Exp. 505, Lect. Notes Math. 677, pp. 218–236.

67. G. Tomanov, “On the congruence-subgroup problem for some anisotropic algebraic groups over number fields,”
J. Reine Angew. Math. 402, 138–152 (1989).

68. G. M. Tomanov, “Congruence subgroup problem for groups of type G2,” C. R. Acad. Bulg. Sci. 42 (6), 9–11
(1989).

69. G. Turnwald, “Multiplicative subgroups of finite index in a division ring,” Proc. Am. Math. Soc. 120, 377–381
(1994).

70. N. R. Wallach, “Square integrable automorphic forms and cohomology of arithmetic quotients of SU(p, q),”
Math. Ann. 266, 261–278 (1984).

71. P. A. Zalesskii, “Normal subgroups of free constructions of profinite groups and the congruence kernel in the
case of positive characteristic,” Izv. Ross. Akad. Nauk, Ser. Mat. 59 (3), 59–76 (1995) [Izv. Math. 59, 499–516
(1995)].

72. P. A. Zalesskii, “Profinite surface groups and the congruence kernel of arithmetic lattices in SL2(R),” Isr. J.
Math. 146, 111–123 (2005).

73. E. I. Zel’manov, “Solution of the restricted Burnside problem for groups of odd exponent,” Izv. Akad. Nauk
SSSR, Ser. Mat. 54 (1), 42–59 (1990) [Math. USSR, Izv. 36 (1), 41–60 (1991)].

74. E. I. Zel’manov, “A solution of the restricted Burnside problem for 2-groups,” Mat. Sb. 182 (4), 568–592 (1991)
[Math. USSR, Sb. 72 (2), 543–565 (1992)].

This article was submitted by the authors in English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 292 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


