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In memory of my grandparents

Abstract. We give a new proof of the Margulis-Platonov conjecture for the groups
SL1,D which is shorter than the previous proofs and in which the use of the classifi-
cation of finite simple groups is limited to the fact that every such group is generated
by two elements. The argument is based on further development of the methods of
[18].

1. Introduction

Let D be a finite dimensional central division algebra over a global field K, and
G = SL1,D be the simple algebraic K-group associated with the group SL(1, D)

of elements in the multiplicative group D× having reduced norm one. The goal
of this paper is to give a new proof of the Margulis-Platonov conjecture (MP) for
the group G which is considerably shorter than the existing proofs (see below) and
in which the use of the classification of finite simple groups is limited to the fact
that every such group is 2-generated. For the reader’s convenience, we recall the
statement of (MP) in the context of an arbitrary simple simply connected algebraic
K-group G : Let A be the set of all nonarchimedean valuations v of K such that G

is anisotropic over the completion Kv, and δ : G(K) → GA :=
∏

v∈A
G(Kv) be the

diagonal map. Then for any noncentral normal subgroup H of G(K) there exists
an open normal subgroup W of GA such that H = δ−1(W); in particular, if A = ∅
then G(K) does not have any proper noncentral normal subgroups. We refer to
[13], Ch. IX, and [17], Appendix A, for a discussion of (MP) and the available
results. So, our purpose is to give a new proof of the following.

Theorem 1. (Segev-Seitz [20] , [23]) The group G = SL1,D satisfies the Margulis-
Platonov conjecture (MP).
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To put our proof of this fact into perspective, we will give a brief survey of the
previous results in this direction. The first proof of the theorem was obtained by
Segev [20] and Segev and Seitz [23]. More precisely, in [16], the proof of (MP)
for SL1,D was reduced to proving that D× does not have normal subgroups N

such that D×/N is a nonabelian finite simple group (cf. Proposition 1 below). The
truth of this statement was conjectured in [16] for all finite dimensional division
algebras over arbitrary fields (Conjecture (FSQ)) and verified for algebras of degree
two and three (notice that already the case of cubic algebras required an extensive
use of the classification of finite simple groups). In his paper [20], Segev made a
major step towards proving (FSQ) for division algebras of arbitrary degree. Among
revolutionary techniques introduced and efficiently used by Segev was the notion
of the commuting graph �F of a (finite nontrivial) group F : the vertex set of �F

is F −{e}, and two (distinct) vertices are connected iff the corresponding elements
commute in F. As any graph, �F has the natural distance function and the associ-
ated notion of diameter diam �F (which is either a positive integer or ∞). Segev
[20] proved that a finite simple group F whose commuting graph either (α) has
diameter � 5, or (β) is balanced1 cannot be a quotient of the multiplicative group
D× of a finite dimensional division algebra D. Then, in [23], Segev and Seitz used
the classification and detailed description of finite simple groups to verify that for
every (known) finite simple group the commuting graph satisfies one of the condi-
tions (α) or (β) which completed the proof of Conjecture (FSQ) and gave the first
proof of the above theorem.

Subsequently, in [17], the techniques of [20] were merged with some methods
of the theory of valuations to, first, establish a congruence subgroup theorem for
subgroups of finite index in D×, and, second, to use it for eliminating some finite
nonsolvable groups as potential quotients of D×. We only mention that the con-
gruence subgroup theorem proved in [17] asserts that if D is a finite dimensional
division algebra over a finitely generated field K, then given a normal subgroup
of finite index N ⊂ D× such that diam �D×/N � 4, there exists a nontrivial
valuation ṽ of D such that N is open in D× in the topology defined by ṽ (which is
sometimes called ṽ-adic). One easily derives from this theorem that a finite simple
group F with diam �F � 4 cannot be a quotient of D× for a finite dimensional
division algebra D over any field. This result considerably reduces the amount of
computations with finite simple groups needed to prove (FSQ) as checking that
diam �F � 4 for every nonabelian finite simple group F is a much easier task than
verifying one of the conditions (α) or (β). On the other hand, the results of [17] fell
short of proving a stronger conjecture, stated in [21], that all finite quotients of D×
are in fact solvable. The reason is that there are numerous examples of minimal non-
solvable groups (MNSG) whose commuting graph has diameter three (see [22]).
However the congruence subgroup theorem as stated in [17] cannot be extended
to the “diam � 3” situation as there are examples of normal subgroups of finite
index N ⊂ D× such that diam �D×/N = 3 but N is not open in D with respect to
any single nontrivial valuation (see Example 8.4 in [17]). Thus, the techniques of

1 See [20], §4, for the precise formulation of the “balance” condition; we only mention
that it is stronger than “diam �F � 4” condition.
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[17] turned out to be insufficient to eliminate the MNSGs with commuting graph
having diameter three as potential quotients of D×.

The solvability of all finite quotients of D× was established in [18] by refining
the methods developed in [17]. Namely, it was shown that the congruence subgroup
theorem of [17] remains valid if the assumption diam �D×/N � 4 is replaced with

one technical condition which we termed “condition (3
1

2
)” as it is weaker than

“diam � 4” condition but stronger than “diam � 3” condition (see [18], §1, for
the precise formulation). On the other hand, we have been able to verify that all

the MNSGs satisfy condition (3
1

2
), so the modified congruence subgroup theorem

applies in all cases where the quotient is a MNSG. The verification of (3
1

2
) for

the MNSGs relied on the classification of finite simple groups, but the amount of
computations was significantly smaller than in [23] (30 journal pages versus 100).
Besides, the solvability of finite quotients enabled us to give another proof of (MP)
which does not use the reduction obtained in [16].

These results suggest that the amount of the theory of finite simple groups
needed to prove (MP) or similar results can be reduced via proving a congru-
ence subgroup theorem for normal subgroups of finite index in D× under weaker
assumptions (on the commuting graph of the quotient). From this perspective, the
critical threshold appears to be the case where diam �D×/N = 3. Indeed, it was
shown in [22] by a relatively short argument that for every MNSG the commuting
graph has diameter � 3, so a congruence subgroup theorem in diameter � 3 would
enable one to give a more efficient proof of the solvability of finite quotients of D×.

On the other hand, one can show by example (see §5) that no congruence subgroup
theorem can be establsihed if diam �D×/N � 2. One should keep in mind, how-
ever, that as follows from Example 8.4 in [17], the assumption diam �D×/N = 3
does not guarantee in the general case that N is open in D× with respect to the
topology defined by a single nontrivial valuation ṽ of D. Nevertheless, the sub-
group N constructed in Example 8.4 is open with respect to the topology defined
by a pair of nontrivial valuations of D. So, we inquired in [18] if the condition
diam �D×/N = 3 implies that N is open in D× in the topology defined by a finite
set T̃ of nontrivial (height one) valuations of D. In the present paper, we give the
affirmative answer to this question for a finite dimensional division algebra D over
a global field K, and then use this result to prove (MP).

Theorem 1. Let D be a finite dimensional central division algebra over a global
field K. Suppose N ⊂ D× is a normal subgroup of finite index such that the
commuting graph of D×/N has diameter � 3. Then there exists a finite set T̃ of
valuations of D such that N is open in D× in the T̃ -adic topology.

The format of the paper is as follows. In §2 we show that Theorem 1 implies
(MP). In §§3-4 we prove Theorem 1. The considerations in §3, which are valid
over any field, reduce the proof of Theorem 1 to establishing certain properties for
a specific subring of K (we notice that this part basically boils down to extending
some results in §§2-3 of [18] to the case of several valuations). In §4, we prove
some results about subrings of a global field (see Proposition 4), and derive with



298 A. S. Rapinchuk

their help the required properties of the subring of K constructed in §3. We notice
that both parts of the proof of Theorem 1 rely in an essential way on the results
from [18] establishing the existence of so-called strongly leveled maps and their
properties. Finally, in §5, we construct an example where diam �D×/N = 2 but N

is not open in D× with respect to any finite set of valuations of D.

The author would like to thank Gopal Prasad and Yoav Segev for their sug-
gestions that helped to improve the exposition. Thanks are also due to the referee
who read the manuscript very carefully and pointed out a large number of small
errors. Finally, partial support from NSF grant DMS-0138315 and BSF grant No.
2000-171 is gratefully acknowledged.

2. Theorem 1 implies (MP)

First, we need to recall the notions involved in the statement of Theorem 1 as these
will be extensively used throughout the paper (for all unexplained notations we
refer the reader to [18]). Let D be a finite dimensional central division algebra over
a field K, and T̃ = {ṽ1, . . . , ṽr} be a finite set of valuations of D. For each ṽ ∈ T̃ ,

we let �̃ṽ (resp., OD,ṽ) denote its value group (resp., the valuation ring). Given
αi ∈ (�̃ṽi

)�0 for i = 1, . . . , r, we let

m(α1, . . . , αr) = {x ∈ D× | ṽi (x) > αi for all i = 1, . . . , r } ∪ {0};
clearly, m(α1, . . . , αr) is a 2-sided ideal of O

D,T̃
:= ∩

ṽ∈T̃
OD,ṽ. The ideals

m(α1, . . . , αr) form a fundamental system of neighborhoods of zero for a topology
on D compatible with the ring structure; this topology will be called T̃ -adic. Thus,
a subgroup N ⊂ D× is T̃ -adically open iff it contains the congruence subgroup
1 + m(α1, . . . , αr) for some αi ∈ (�̃ṽi

)�0.

Next, we need to elaborate on the reduction, given in Theorem 2.1 of [16],
of (MP) to proving that D× cannot have a nonabelian finite simple group as a quo-
tient. The argument therein made use of the fact, resulting from the classification,
that any central (i.e. preserving all conjugacy classes) automorphism of a finite sim-
ple group is inner. For our purposes, we need to observe that the following weaker
version of Theorem 2.1 can be established without this fact. The proof almost ver-
batim repeats the argument given in [16] and is reproduced here only for the sake
of completeness.

Proposition 1. Let D be a finite dimensional central division algebra over a global
field K, and G = SL1,D. If (MP) fails for G(K) then there exists a normal sub-
group N ⊂ D× such that the quotient F := D×/N can be embedded into the
tower Inn S ⊆ F ⊆ Aut S where S is a nonabelian finite simple group.

Proof. We first recall that the set A of nonarchimedean anisotropic valuations for
G coincides with the set T0 of all nonarchimedean valuations v of K such that
Dv := D ⊗K Kv is a division algebra. Furthermore, a nonarchimedean valuation
v of K belongs to T0 iff it can be (uniquely) extended to a valuation ṽ of D, in
which case the topology on D induced by the embedding D ↪→ Dv coincides with
the topology defined by ṽ. We need to note the following easy consequence of the
analysis of the multiplicative structure of local division algebras given in [19].
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Lemma 1. Let D be a finite dimensional division algebra over a global field K,

and T̃ be a finite set of valuations of D. Then for any T̃ -adically open subgroup
N ⊂ D×, the quotient D×/N is solvable. Consequently, if δ : G(K) → GA is
the diagonal map as in the statement of (MP) then for any noncentral open normal
subgroup W ⊂ GA, the quotient G(K)/δ−1(W) is solvable.

Proof. For the first assertion, it is enough to show that if T̃ = {ṽ1, . . . , ṽr} then the
quotient H = D×/(1 + m(α1, . . . , αr)) is solvable for any αi ∈ (�̃ṽi

)�0. Clearly,
there is an embedding (in fact, an isomorphism)

H ↪→
r∏

i=1

D×
ṽi

/(1 + Pṽi
(αi)),

where Dṽi
is the completion of D with respect to ṽi (which can be identified with

D ⊗K Kvi
, vi being the restriction of ṽi to K), and Pṽi

(αi) = {x ∈ D×
ṽi

| ṽi (x) >

αi}∪{0}. In addition, let Pṽi
:= Pṽi

(0) be the valuation ideal in Dṽi
, and Uṽi

be the
group of units. Then it follows from the computations in [19] that: (1) D×

ṽi
/Uṽi


 Z

(2) Uṽi
/(1 + Pṽi

) is a finite cyclic group, and (3) (1 + Pṽi
)/(1 + Pṽi

(αi)) is a
finite pi-group where pi is the characteristic of the residue algebra for ṽi (we notice
that although [19] deals with algebras over local fields of characteristic zero, these
results remain valid in any characteristic, without any change in the proofs). The
facts (1)-(3) imply that D×

ṽi
/(1 + Pṽi

(αi)) is solvable for all i, and the solvability
of H follows. For the second assertion, we notice that according to the remarks
preceeding the lemma, the pullback of the A-adic topology via δ : G(K) → GA
coincides with the topology on G(K) = SL(1, D) induced by the T̃0-adic topology
on D, where T̃0 consists of the extensions of valuations in T0 to D. In other words,
if T̃0 = {ṽ1, . . . , ṽr} then for any open normal subgroup W ⊂ GA, there exist
αi ∈ (�̃ṽi

)�0 such that δ−1(W) ⊃ G(K) ∩ 1 + m(α1, . . . , αr), so the second
assertion of the lemma follows from the first.

In the sequel, we will refer to the pullback of the A-adic topology via δ :
G(K) → GA as the A-adic topology on G(K), and the bar will be used to denote
the closure with respect to this topology. Thus, (MP) states that every noncentral
normal subgroup H ⊂ G(K) is A-adically open. We will be using the fact, due to
Margulis [12] and Prasad [14], that any noncentral normal subgroup H ⊂ G(K)

has finite index; in particular, such H is A-adically open iff it is A-adically closed.
Now, if (MP) fails, there exists a noncentral normal subgroup H ⊂ G(K) such
that H̄ �= H. Since the congruence subgroups with respect to T̃0 are normal in
D×, there exists an A-adically open subgroup W ⊂ H̄ normalized by D×. Then
W = W ∩ H and H̄ = HW so that W/(W ∩ H) 
 H̄ /H is nontrivial. Thus,
replacing H with W ∩ H, we may assume that H̄ � D×. Pick a subgroup B ⊂ H̄

containing H such that B � H̄ and S := H̄ /B is a (finite) simple group �= {1}.Then
B̄ = H̄ . It is known (cf. [15], and also [13], Theorem 9.3, for characteristic zero)
that [H̄ , H̄ ] is A-adically open, so the inclusion [H̄ , H̄ ] ⊂ B is impossible, and
therefore S is nonabelian. We claim that B � D×. Indeed, let m = [G(K) : H ],
and let M be the subgroup generated by xm for all x ∈ G(K). Then M is an
infinite normal subgroup of D× contained in H ; in particular, [G(K) : M] < ∞.
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Now, let R = ∩g∈D×g−1Bg. Clearly, R � D× and H̄ ⊃ R ⊃ M, implying that
[G(K) : R] < ∞. The quotient H̄ /R, being a product of copies of S, is a perfect
group. On the other hand, according to Lemma 1, the quotient H̄ /R̄ must be solv-
able. Thus, R̄ = H̄ . It follows from [15], Proposition 3 (cf. also [13], Proposition
9.3) that for any x ∈ R̄/R one has D×/R = (R̄/R)C(x) where C(x) is the central-
izer of x in D×/R. In particular, any normal subgroup of R̄/R is normal in D×/R,

implying that B � D×. The action of D× on S = H̄ /B by conjugation induces a
homomorphism α : D× → Aut S; notice that Im α ⊃ Inn S. Set N = Ker α. Then
by construction F := D×/N satisfies Inn S ⊆ F ⊆ Aut S, as required. The proof
of the proposition is complete.

We will need one corollary of Proposition 1, the proof of which uses the well-
known consequences of the classification of finite simple groups that every such
group is 2-generated. In fact, it is the only place in the paper where the classi-
fication is used, so the rest of the paper (including the proof of Theorem 1) is
classification-independent.

Corollary 1. Notations as in Proposition 1, if (MP) fails for G(K) then D× has a
nonsolvable quotient F = D×/N such that the commuting graph �F has diameter
� 3.

Indeed, it is enough to show that for any group F satisfying InnS ⊆ F ⊆ AutS,

where S is a nonabelian finite simple group, one has diam �F � 3. It follows from
the classification of finite simple groups that S is always generated by two elements
(the book [10] cites the paper [2] as the primary source for this result; we notice
that in [9], Proposition 2.2, a much stronger statement was derived from [11], viz.
that every finite simple group can be generated by two elements one of which is an
involution). So, suppose S = 〈a, b〉, and let ia and ib be the corresponding inner
automorphisms. We claim that the distance between ia and ib in �F is � 3. Indeed,
otherwise there would be a nontrivial automorphism σ ∈ F ⊂ AutS that commutes
with both ia and ib. Then σ(a) = a and σ(b) = b, implying that σ = idS as a and
b generate S, a contradiction.

We remark that all we need from the classification is that every nonabelian finite
simple group S contains two elements a, b satisfying the following property:

if σ ∈ Aut S is such that σ(a) = a and σ(b) = b then σ = idS

In many situations, such elements are much easier to construct than two generat-
ing elements. For example, in the groups of Lie type over sufficiently large fields,
properly chosen regular elements in two opposite maximal unipotent subgroups
will work. We will not, however, elaborate on this.

Now, to derive (MP) from Theorem 1, let us assume that (MP) fails. Then by
the above corollary there exists a finite nonsolvable quotient F = D×/N such that
the commuting graph �F has diameter � 3. On the other hand, by Theorem 1, N

is T̃ -adically open for some finite T̃ , and then by Lemma 1 the quotient D×/N is
solvable. A contradiction.
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3. Proof of Theorem 1: results over general fields

In this section, D denotes a finite dimensional division algebra over an arbitrary
field K. Our goal is to extend some results proven in [17] and [18] for a single
valuation to the case of several valuations. Thus, the main result (see Theorem 2
below) describes some conditions under which a normal subgroup of finite index
N ⊂ D× is T̃ -adically open with respect to a finite set T̃ of valuations of D.

We begin by recalling (cf. [18], Propositions 5.2 and 5.3) that since the diam-
eter of the commuting graph of D×/N is � 3, there exists a (surjective) strongly
leveled map ϕ : N → � to a partially ordered group � having an s-level α ∈ ��0,

i.e.

1 ± N>α ⊆ N�0,

and in addition N�0 �⊂ K (where N>α = {x ∈ N |ϕ(x) > α} etc). As in [18], we
let R denote the subring of D generated by N�0. An important property of R is
that R ∩ N ⊂ N�−β for some β ∈ ��0 (Theorem 5.8(3) in [18]).

Theorem 2. Let N ⊂ D× be a normal subgroup of finite index such that
diam �D×/N � 3, ϕ : N → � be the s-leveled map constructed in [18], and
R be the subring of D generated by N�0. Assume that there exists a finite set T of
height one valuations of K such that R ∩ K ⊂ OK,v for all v ∈ T and that R ∩ K

is open in K in the T -adic topology. Then

(1) each v ∈ T uniquely extends to a valuation ṽ of D such that R ⊂ OD,ṽ;
(2) N is open in D× with respect to the T̃ -adic topology where T̃ = {ṽ| v ∈ T }.

The proof of Theorem 2 is organized as follows. First, we extend the T -adic
topology on K to a topology on D and prove that R is open in D with respect to this
topology. The latter fact is crucial for proving part (1) of Theorem 2 (cf. Proposition
2). We then use the above-mentioned result from [18] that R∩N ⊂ N−β for some
β ∈ ��0 to prove part (2) of Theorem 2 (cf. Proposition 3).

Beginning to implement this program, we fix a basis ω1, . . . ωn2 of D over K.

Given a height one valuation v of K, we let | |v denote the corresponding absolute
value. Then

||a1ω1 + · · · + an2ωn2 ||v = max
i=1,n2

|ai |v (1)

defines a norm of D which makes it into a normed vector space over (K, | |v). One
easily verifies that the topology τv and the notion of boundedness on D associated
with || ||v do not depend on the choice of a basis (the topology τv sometimes will
be refered to as the v-adic topology). Let δ : D → ∏

v∈T (D, τv) be the diagonal
embedding. The pullback of the direct product topology will be called the T -adic
topology (on D) and denoted τT . Clearly, the presentation D = Kω1 +· · ·+Kωn2

sets up a homeomorphism between (D, τT ) and the direct product of n2 copies of
K endowed with the T -adic topology.

Assertion (1) of Theorem 2 is established in the following.
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Proposition 2. Let T = {v1, . . . , vr} be a finite set of height one valuations of K

satisfying the following two conditions

(i) R ∩ K ⊂ ∩v∈T OK,v;
(ii) R ∩ K is open in K with respect to the T -adic topology.

Then each valuation v ∈ T uniquely extends to a valuation ṽ of D such that
R ⊂ OD,ṽ, and R is open in D with respect to the T̃ -adic topology where T̃ =
{ṽ | v ∈ T }.
Proof. Since R �⊂ K, one can pick a basis ω1 = 1, ω2, . . . , ωn2 of D over K

which is contained in R (cf. Proposition 2.5.2 in [18]). Then

(R ∩ K)ω1 + · · · + (R ∩ K)ωn2 ⊂ R,

so it follows from (ii) and the remarks preceding the statement of the proposition
that R is open with respect to the T -adic topology τT on D.

The norm (1) obviously extends to Dv = D ⊗K Kv. At the same time, Dv has a
different norm. Namely, we have Dv = Mnv(Dv) for some central division algebra
Dv over Kv and some integer nv � 1. Then the valuation v extends to a valuation
v̌ of Dv, and

||(aij )||v̌ = max
i,j=1,nv

|aij |v̌ , (2)

where | |v̌ is the absolute value associated with v̌, defines a norm on Dv as a vector
space over Kv. Since dimKv Dv < ∞, the norms || ||v and || ||v̌ are equivalent,
and therefore give rise to the same topology and the same notion of boundedness.
Let DT = ∏

v∈T Dv be endowed with the topology of direct product, and for a
subset S ⊂ T , let prS : DT → DS be the corresponding projection. We need the
following generalization of Lemma 5.3 in [17].

Lemma 2. Let B ⊂ DT be an open subring. If v0 ∈ T is such that pr{v0}(B) is
unbounded then B = prT −{v0}(B) ⊕ Mnv0

(Dv0).

Proof. The fact that B is open means that

B ⊃
∏

v∈T

Mnv (av̌(δv̌)) (3)

for some nonnegative δv̌ in the value group of v̌, where

av̌(δv̌) = {x ∈ D×
v | v̌(x) > δv̌} ∪ {0}.

As pr{v0}(B) ⊂ Mnv0
(Dv0) is open and unbounded, by Lemma 5.3 in [17],

pr{v0}(B) = Mnv0
(Dv0). It follows from (3) that B contains an element a = (av)

such that av = 0 for all v �= v0, and av0 is invertible in Mnv0
(Dv0). Then

aB ⊂ {0} ⊕ · · · ⊕ Mnv0
(Dv0) ⊕ · · · ⊕ {0}

and pr{v0}(aB) = av0Mnv0
(Dv0) = Mnv0

(Dv0). This implies that

B ⊃ aB = {0} ⊕ · · · ⊕ Mnv0
(Dv0) ⊕ · · · ⊕ {0},

immediately yielding the lemma.
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Continuing the proof of Proposition 2, we consider the embedding D → DT ,

and will use the bar to denote the closure in DT . Since R is T -adically open in D,

we have

R ∩ D = R. (4)

We claim that pr{v}(R) is bounded for all v ∈ T . Indeed, suppose prvi0
(R) is

unbounded. Then by Lemma 2,

R = prT −{vi0 }(R) ⊕ Mnvi0
(Dvi0

). (5)

The fact that the subring R ∩ K is open in K means that it contains a subset of the
form

a(δ1, . . . , δr ) = {x ∈ K× | vi(x) > δi for all i = 1, . . . , r } ∪ {0}
for some positive δi in the value group of vi . By the theorem on weak approximation
(cf., for example, [1], Ch. II, Lemma 6.1), there exists a ∈ K× such that

vi(a) > δi for all i �= i0 and vi0(a) < 0.

Again, it follows from the theorem on weak approximation that

(a, . . . , a, 0) ∈ a(δ1, . . . , δr ),

implying that (a, . . . , a) ∈ prT −{vi0 }(R). So, we conclude from (5) that

(a, . . . , a) ∈ R. In conjunction with (4), this gives a ∈ R ∩ K. However, since
a /∈ Ovi0

, this contradicts condition (i). This shows that for any v ∈ T , the subring

R(v) := prv(R) ∩ D is open in D with respect to the topology τv and is bounded
with respect to the norm || ||v. Furthermore, being generated by N�0, the subring
R is invariant under conjugation by any element of N, so the same is true for R,

and therefore also for R(v). It follows that R(v) satisfies both requirements of
Theorem 2.4 in [18], and by that theorem, v uniquely extends to a valuation ṽ of D

such that R ⊂ OD,ṽ. Finally, we observe that the completion of D with respect to
ṽ can be identified with Dv. Since dimKv Dv < ∞, the topologies on Dv defined
by || ||v and by (the absolute value associated with) ṽ coincide. It follows that the
T -adic and T̃ -adic topologies on D coincide, and therefore R is T̃ -adically open.

We will derive assertion (2) of Theorem 2 from Proposition 3 below which we
will formulate in a slightly more general setting. Let N ⊂ D× be a subgroup of
finite index, and ϕ : N → � be a leveled map to a partially ordered group �, i.e.
there exists α ∈ ��0 such that

N<−α + 1 ⊂ N<−α (6)

Let T̃ = {ṽ1, . . . , ṽr} be a finite set of valuations of D, ṽi : D× → �̃ṽi
, such

that each vi is associated with ϕ. This means that there exists a homomorphism
θi : � → �̃ṽi

of ordered groups such that the diagram

N
ϕ→ �

ι ↓ ↓ θi

D× ṽi→ �̃ṽi
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in which ι is the natural embedding, commutes. The following statement generalizes
Proposition 3.2 in [18] to the case of several valuations.

Proposition 3. Let T̃ = {ṽ1, . . . , ṽr} be a finite set of valuations of D such that
each ṽi is associated with the given leveled map ϕ : N → �. Suppose there exist a
T̃ -adically open subring M ⊂ D and an element β ∈ ��0 such that

M ∩ N ⊂ N>−β. (7)

Then N is T̃ -adically open in D×.

Proof. We need to show that there exist δi ∈ (�̃ṽi
)�0 such that

1 + m(δ1, . . . , δr ) ⊂ N, (8)

where m(δ1, . . . , δr ) = {x ∈ D×|ṽi (x) > δi for all i = 1, . . . , r} ∪ {0}. To
this end, we will show that for each coset Na of N in D×, there exists 0 � γi

= γi(Na) ∈ �̃ṽi
for each i = 1, . . . , r such that

1 + (Na ∩ m(γ1, . . . , γr )) ⊂ N. (9)

Then, since N has finite index in D× and �̃ṽi
is totally ordered, the maximum

δi := max γi(Na), taken over all cosets of N in D×, exists for each i = 1, . . . , r,

and the elements δ1, . . . δr obviously satisfy (8).

Since M is open in O
D,T̃

= ∩
ṽ∈T̃

OD,ṽ, there exist λi ∈ (�̃ṽi
)�0 for

i = 1, . . . , r such that m(λ1, . . . , λr ) ⊂ M, and then it follows from (7) that

m(λ1, . . . , λr ) ∩ N ⊂ N>−β. (10)

Lemma 3. (1) For m, n ∈ N such that ṽi (m) < ṽi(n) − θi(α + β) − λi for all
i = 1, . . . , r, the element c = m + n belongs to N.

(2) For any d ∈ D×, there exist βi(d) ∈ �̃ṽi
, i = 1, . . . , r, such that

d + {n ∈ N | ṽi (n) < βi(d) for all i = 1, . . . , r } ⊂ N.

Proof. (1) Picka, b ∈ N so thatϕ(a) = α andϕ(b) = β.We have ṽi (m
−1na−1b−1)

> λi for all i = 1, . . . , r (recall that the �̃ṽi
’s are commutative), i.e.m−1na−1b−1 ∈

m(λ1, . . . , λr ). It follows from (10) that ϕ(m−1na−1b−1) > −β, and therefore
ϕ(m−1na−1) > 0. Thus, ϕ(n−1m) < −α, i.e. n−1m ∈ N<−α. Now,

n−1m + 1 ∈ N<−α + 1 ⊂ N<−α ⊂ N,

yielding c = n(n−1m + 1) ∈ N.

(2) Since D is infinite, D = N − N (cf. [3] , [24]), so there exists s ∈ N such
that d + s ∈ N. Set

βi(d) = min(ṽi(s), ṽi(d + s)) − θi(α + β) − λi.

Suppose now that t ∈ N satisfies ṽi (t) < βi(d) for all i = 1, . . . , r. Then, in
particular, ṽi (t) < ṽi(s) − θi(α + β) − λi for all i = 1, . . . , r, so it follows from
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(1) that t − s ∈ N (observe that ṽi (−s) = ṽi (s)). Moreover, since α, β ∈ ��0 and
λi ∈ (�̃ṽi

)�0, we have ṽi (t) < ṽi(s), and therefore ṽi (t − s) = ṽi (t) as ṽi is a
valuation. Thus, ṽi (t − s) < ṽi(d + s) − θi(α + β) − λi for all i = 1, . . . , r, and
therefore

d + t = (d + s) + (t − s) ∈ N

according to (1). The proof of the lemma is complete.

Now, fix a representative a of a given coset Na and let

γi = γi(Na) := |ṽi (a)| + |βi(a)|,
where βi(a) is as in Lemma 3(2) (here, as usual, for γ ∈ �̃ṽi

, we let |γ | =
max{γ, −γ }), for i = 1, . . . , r. Suppose na ∈ Na ∩ m(γ1, . . . , γr ). Then for any
i = 1, . . . , r one has

ṽi (n) = ṽi (na) − ṽi (a) > (|ṽi (a)| + |βi(a)|) − ṽi (a) � |βi(a)|,
implying that

1 + na = n(n−1 + a) ∈ N

as ṽi (n) < −|βi(a)| � βi(a) for all i = 1, . . . , r, and therefore by Lemma 3(2),
n−1 + a ∈ N. It follows that 1 + na ∈ N, proving (9) and completing the proof of
Proposition 3.

Now, to prove assertion (2) of Theorem 2, we observe that: (A) since ϕ con-
structed in [18] is s-leveled, it is also leveled, i.e. (6) holds (cf. [18], §4); (B) if T̃ is
as in Theorem 2, then each ṽ ∈ T̃ is associated with ϕ because N�0 ⊂ R ⊂ OD,ṽ.

Since R is T̃ -adically open in D (cf. Proposition 2) and satisfies (7) by Theorem
5.8(3) in [18], Proposition 3 yields assertion (2) of Theorem 2.

4. Proof of Theorem 1: specialization to the case of a global field

For a global field P, we let V P denote the set of all (nonarchimedean) valuations
of P. In view of Theorem 2, to complete the proof of Theorem 1, it remains to
establish the following.

Theorem 3. Suppose K is a global field. Then in the above notations there exists
a finite subset T ⊂ V K such that R ∩ K is contained in the valuation ring OK,v

for all v ∈ T and is open in K in the T -adic topology.

A first important step in the proof is the following (probably, known) statement.

Proposition 4. Let L be a global field, R ⊂ L be a subring containing the identity

and such that L = R

[
1

t

]
for some nonzero t ∈ R. Set

T = { v ∈ V L | R ⊂ OL,v }.
Then T is finite and R is T -adically open in L.



306 A. S. Rapinchuk

Proof. Clearly, if R ⊂ OL,v and v(t) = 0, then L = R[t−1] ⊂ OL,v, which is
impossible. This shows that T is contained in V (t) := {v ∈ V L | v(t) �= 0}. How-
ever, it is well-known that V (t) is finite ([1], Ch. II, Thm. 12.1), and the finiteness
of T follows. The openness of R with respect to the T -adic topology requires a bit
more work.

First, we observe that it is enough to show that R is open in L with respect to
the T ′-adic topology for some finite subset T ′ ⊂ V L containing T . Indeed, given
this, we have

R = R ∩ L, (1)

where R is the closure of R in LT ′ =
∏

v∈T ′
Lv. Consider now an arbitrary v ∈ T ′−T .

As R �⊂ OL,v, R is unbounded with respect to v. Applying Lemma 2 repeatedly to
D = L, we conclude that

R = prT (R) ⊕ LT ′−T .

Comparing with (1), we obtain that R = prT (R) ∩ L, and since prT (R) is open in
LT , the openness of R in L with respect to the T -adic topology follows.

To continue the argument, we need two lemmas.

Lemma 4. (well-known) Let k be either the field of rational numbers Q or the field
of rational functions Fq(t) in one variable over the field Fq with q elements, and
A ⊂ k be a subring containing respectively Z or Fq [t]. Set

S = { v ∈ V k | A ⊂ Ok,v }.
Then A coincides with Ok(S) = ⋂

v∈S Ok,v. In addition if there exists a ∈ A such

that k = A

[
1

a

]
then S is finite.

Proof. First, we recall that if E is a PID with the field of fractions E then any sub-
ring A ⊂ E containing E coincides with the localization EU with respect to some
multiplicative subset U ⊂ E. Indeed, set U = {u ∈ E|u−1 ∈ A}; then EU ⊂ A.

On the other hand, suppose α ∈ A and α = a

b
where a, b ∈ E are relatively prime.

There exist x, y ∈ E such that xa + yb = 1, and then
1

b
= xα + y ∈ A. So,

b ∈ U and α ∈ EU. Applying this fact in our situation, we obtain that S consists
of valuations corresponding to those prime elements of E = Z or Fq [t] that do
not occur in the elements of U. Clearly, the ring Ok(S) coincides with the locali-

zation EU = A, as claimed. The finiteness of S, if k = A

[
1

a

]
, has already been

established in the beginning of the proof of Proposition 4.

Notation. For a field extension �/k and a set of valuations S of k we will write
S̃|S to indicate that S̃ consists of all extensions of valuations in S to �.
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Lemma 5. Let �/k be a finite field extension, S be a finite set of height one valua-
tions of k, and S̃|S. Set

Ok(S) =
⋂

v∈S

Ok,v and O�(S̃) =
⋂

w∈S̃

O�,w,

and suppose that O�(S̃) is finitely generated as Ok(S)-module. Let R ⊂ � be a

subring such that � = R

[
1

t

]
for some nonzero t ∈ R. It R ∩ k is S-adically open

in k then R is S̃-adically open in �.

Proof. Suppose S = {v1, . . . , vl}, S̃ = {w1, . . . , wm}, and a1, . . . , ar generate

O�(S̃) as Ok(S)-module. Since � = R

[
1

t

]
, for each j = 1, . . . , r there exists

ij � 0 such that t ij aj ∈ R. Then for i := maxj=1,... ,r ij one has t iaj ∈ R for all
j = 1, . . . , r. Furthermore, being S-adically open, the ring R ∩ k contains

mk,S(α1, . . . , αl) = {x ∈ k× | vi(x) > αi for all i = 1, . . . , l} ∪ {0}
for some αi ∈ (�vi

)�0. By the weak approximation theorem, mk,S(α1, . . . , αl)

contains a nonzero element, say u. Then

utiO�(S̃) = uti(Ok(S)a1 + · · · + Ok(S)ar) (2)

= (uOk(S))(t ia1) + · · · + (uOk(S))(t iar ) ⊂ R.

Set βj = max(0, wj (uti)) for j = 1, . . . , m. Then, using (2), we obtain that

m
�,S̃

(β1, . . . , βm) = {x ∈ � | wj(x) > βj for all j = 1, . . . , m }

is contained in utiO�(S̃) ⊂ R, proving the openness of R in the S̃-adic topology.

Remark. In most cases, the assumptions of Lemma 5 can be verified using the
following well-known fact: If �/k is a finite separable extension and Ok(S) is
noetherian then O�(S̃) is a finitely generated Ok(S)-module. For the sake of com-
pleteness, we briefly indicate the proof. It follows from ([4], ch. VI, §7, n◦ 1, cor.
3) that if v is a valuation of k such that Ok(S) ⊂ Ok,v then v ∈ S. So, we conclude,
using ([4], ch. VI, §1, n◦ 3, thm. 3), that O�(S̃) is the integral closure of Ok(S) in
�. Since Ok(S) is integrally closed, our claim follows from ([4], ch. V, §1, n◦ 7,
prop. 18).

To complete the proof of Proposition 4, we now consider the cases of charac-
teristic zero and positive characteristic separately.

Case 1. char L = 0. We have L = R

[
1

t

]
, where t ∈ R, and R ⊃ Z. First,

without loss of generality we may assume that t ∈ Z. Indeed, replacing t with ct,

where c ∈ Z, we reduce to the case where t is an algebraic integer, so we have an
equation

tn + an−1t
n−1 + · · · + a0 = 0
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with ai ∈ Z, a0 �= 0. Then

1

t
= − 1

a0

(
tn−1 + an−1t

n−2 + · · · + a1

)
∈ R

[
1

a0

]
,

and therefore R

[
1

a0

]
= L. So, assume from now on that t ∈ Z. Then

Q = (R ∩ Q)

[
1

t

]
. Set

S = {v ∈ V Q | R ∩ Q ⊂ OQ,v},
and let S̃|S be the corresponding set of valuations of L. Obviously, S̃ ⊃ T as
R ⊂ OL,v implies R ∩ Q ⊂ OQ,v|Q, and therefore v|Q ∈ S. By Lemma 4, S is
finite and R∩Q = OQ(S), in particular, R∩Q is S-adically open. According to the
above remark, OL(S̃) is a finitely generated OQ(S)-module, so by Lemma 5, R is
S̃-adically open in L. Then the openness of R with respect to the T -adic topology
follows from the argument given in the beginning of the proof of Proposition 4.

Case 2. char L = p > 0. We have Fp[t] ⊂ R, and we may assume that t is
transcendental over Fp. Consider k = Fp(t), noticing that L/k is a finite extension,
although not necessarily separable. Let

S = { v ∈ V k | R ∩ k ⊂ Ok,v }.

As in Case 1, S is finite (since k = (R ∩ k)

[
1

t

]
) and the set S̃ of valuations of L

such that S̃|S satisfies S̃ ⊃ T , so it is enough to prove that R is S̃-adically open. But
this again follows from Lemmas 4 and 5 exactly as in Case 1 if one can prove that
OL(S̃) is a finitely generated Ok(S)-module. If L/k is separable, this immediately
follows from the remark made after Lemma 5, but in the general case one more
step is needed. Let n be the largest integer for which t1/pn ∈ L; then L is separable
over F := Fp(t1/pn

) (cf., for example, [8], Thm. 5.1.2). Let S1 be the set of places
of F such that S1|S. Then S̃|S1 and OL(S̃) is a finitely generated OF (S1)-module,
so it is enough to establish that OF (S1) is a finitely generated Ok(S)-module. We
claim that

OF (S1) = Ok(S)
[
t1/pn

]
, (3)

and the required fact will follow. Given α ∈ OF (S1), we have αpn ∈ Ok(S),

and therefore αpn = f (t)

g(t)
where f (t), g(t) ∈ Fp[t] and

1

g(t)
∈ Ok(S). Then

αpn = h(t)

g(t)p
n , where h(t) = f (t)g(t)p

n−1 and

α = h(t1/pn
)

g(t)
,

yielding (3).
The proof of Proposition 4 is now complete.
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Remarks. 1. It is known that for any extension of global fields L/k and any
set S of nonarchimedean valuations of k, the ring OL(S̃) is a finitely generated
Ok(S)-module; in other words, Ok(S) is “un anneau japonais” in the terminology
of [6]-[7] (this follows, for example, from Corollary 7.6.6 in [7], but one can give
a more straightforward argument). This fact enables one to prove Proposition 4
without singling out Cases 1 and 2, however we chose to give a self-contained
elementary argument.

2. Brian Conrad indicated to us that subrings R ⊂ K such that K = R

[
1

t

]
for

some nonzero t ∈ R were analyzed in [6], cor. 16.3.3 (“Artin-Tate Lemma”) from
a different perspective, and we thank him for this information.

The rest of the proof of Theorem 3 can be divided into two parts: we first reduce
our task to proving the existence of a subfield P ⊂ D with a certain special property
(see Proposition 5), and then construct such a subfield P by considering the cases
of characteristic zero and positive characteristic separately.

Proposition 5. Suppose there exists an infinite subfield P ⊂ D such that for some

nonzero t ∈ R ∩ P one has P = (R ∩ P)

[
1

t

]
. Then there exists a finite subset

T ⊂ V K such that R ∩ K is contained in OK,v for all v ∈ T and is open in K in
the T -adic topology.

Proof. Without loss of generality, we may assume that t ∈ N (otherwise, one can
replace t with t [D×:N ]). Then t normalizes R, and therefore the subring C ⊂ D

generated by R and t−1 has the following property

for any x ∈ C there exists d > 0 such that tdx ∈ R (4)

It follows from our assumptions that C ⊃ P, so one can consider C as a right
vector space over P. We claim that dimP C < ∞. For this, it suffices to show that
dimP D < ∞. Set L = KP. As P is infinite, the extension L/P is finite. On
the other hand, since D is finite dimensional over K, is is also finite dimensional
over L, and the fact that dimP D < ∞ follows. Then a standard argument shows
that C is a division ring, so it can alternatively be described as the division subring
of D generated by R. It follows that C is normalized by N. Since R �⊂ K and
[D× : N ] < ∞, by [5] we obtain that C = D.

Now, it follows from (4) that L = (R ∩ L)

[
1

t

]
, so by Proposition 4 there

exists a finite subset T̃ ⊂ V L such that R ∩ L is contained in OL,w for all w ∈ T̃

and is open in L in the T̃ -adic topology. Then the set T ⊂ V K consisting of the
restrictions of places in T̃ to K is as required.

Conclusion of the proof of Theorem 3. Now, it remains to constructed a subfield
P ⊂ D with the properties described in Proposition 5. This is done using the
following.
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Lemma 6. Let P be a global field, S be a subset of V P , nonempty if char P > 0,

and OP (S) be the ring of S-integers in P, i.e.

OP (S) = {x ∈ P × | v(x) � 0 ∀v ∈ V P − S} ∪ {0}
Given any nonzero element a ∈ OP (S) of infinite order, P is generated over OP (S)

by a−1 and the elements (ai − 1)−1 for i = 1, 2, . . . .

Proof. A given x ∈ P × can be written as x = α

β
for some nonzero α, β ∈ OP (S).

Since the quotient OP (S)/βOP (S) is finite, there exist integers i > j > 0 such
that ai ≡ aj (mod βOP (S)), i.e. ai − aj = βγ with γ ∈ OP (S). Then

x = αγ

aj (ai−j − 1)
,

and our claim follows.

The crucial fact for the rest of the argument is that

1 ± N>α ⊂ R× (5)

(cf. [18], Proposition 4.2(1)). Pick a ∈ N>α, and let P = F(a), where F is the
prime subfield (i.e. F = Q in characteristic zero and F = Fp in characteristic
p > 0). We claim that P satisfies the requirements of Proposition 5. The proof
relies on the fact that according to (5),

ai − 1 ∈ R× for all i = 1, 2, . . . (6)

Now, we consider the cases of characteristic zero and positive characteristic sepa-
rately.

Case 1. char K = 0. Let A = Z[a] ⊂ R. It is enough to find a nonzero c ∈ Z

such that

A

[
1

c

]
= OP (S) (7)

for some S ⊂ V P . Indeed, then a ∈ OP (S) and (R∩P)

[
1

c

]
contains OP (S) and

the elements (ai − 1)−1 for all i = 1, 2, . . . . Then by Lemma 6, (R ∩ P)

[
1

ac

]

= (R∩P)

[
1

a
,

1

c

]
coincides with P, so t = ac is a required element. To find c ∈ Z

satisfying (7), we first find a nonzero c1 ∈ Z such that the element c1a is integral
over Z. Then the ring Z[c1a] has rank [P : Q] as Z-module, and therefore the index
[OP : Z[c1a]], where OP is the ring of algebraic integers in P, is finite; we denote
it by c2. We claim that c = c1c2 satisfies (7) for S = {v ∈ V P | v(c) �= 0}. Indeed,
a = c−1

1 (c1a) ∈ OP (S), yielding the inclusion ⊂ . Conversely, we have

OP ⊂ 1

c2
Z[c1a] ⊂ A

[
1

c

]
,



The Margulis-Platonov conjecture 311

so OP

[
1

c

]
⊂ A

[
1

c

]
. On the other hand, OP

[
1

c

]
coincides with the integral

closure of Z

[
1

c

]
, which is nothing but OP (S) for the set S specified above.

Case 2. char K = p > 0. Clearly, a is transcendental over F = Fp, so
Fp[a] is a polynomial ring and P = Fp(a) is a field of rational functions. We
notice that Fp[a] coincides with OP (S) where S = {v∞} and v∞ is defined by

v∞
(

f

g

)
= deg g − deg f. Then R ∩ P contains OP (S) and also, according to

(6), the elements (ai − 1)−1 for all i = 1, 2, . . . . So, it follows from Lemma 6 that

(R ∩ P)

[
1

a

]
= P, hence t = a is a required element.

5. Examples

We will now construct an example showing that no congruence subgroup theo-
rem can be established for finite index normal subgroups N ⊂ D× such that
diam �D×/N = 2. So, Theorem 1 is the best possible result that can be obtained
along these lines. The example below is an elaboration on the example given in
[17], §4.

For simplicity, we will use the algebra D =
(−1, −1

Q

)
of ordinary (“Hamil-

tonian”) quaternions over Q, however a similar construction can be implemented
for algebras of any index. We have NrdD/Q(D×) = Q+, the group of positive
rationals. It is well-known that D ⊗Q Qp is a division algebra only for p = 2
implying that D has only one (nonarchimedean) valuation ṽ, which is obtained by
extending the 2-adic valuation of Q. Let

H = {pα1
1 · · · pαr

r | α1 + · · · + αr ≡ 0(mod 2)}.

Clearly, H is a subgroup of index 2 in Q+, so M := Nrd−1
D/Q

(H), where NrdD/Q

is the reduced norm, is a subgroup of index two in D×. We claim that for any
subgroup W ⊂ D× open with respect to the ṽ-adic topology, one has

D× = WM (1)

Let D = D ⊗Q Q2. Since W is ṽ-adically open in D×, there exists an open sub-
group W ⊂ D× such that W ∩ D× = W. Then I := NrdD/Q2(W) is an open
subgroup of Q

×
2 as it contains (W ∩ Q

×
2 )2, which is open in Q

×
2 . Next, we claim

that

NrdD/Q(W) = Q+ ∩ I. (2)

The inclusion ⊂ here is obvious, while the opposite inclusion is derived from
the weak approximation property for the algebraic group SL1,D associated with
SL(1, D), i.e. from the fact that SL(1, D) is dense in SL(1, D) (we refer to [13],
§7.3, regarding weak approximation in algebraic groups; we indicate only that
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weak approximation in SL1,D follows from the fact that being defined by a single
quadratic equation, this group is a rational variety (cf. [13], prop. 7.3), or from the
general result ([13], prop. 7.9) about weak approximation in simply connected alge-
braic groups over number fields). Indeed, suppose s ∈ Q+ ∩I, i.e. s = NrdD/Q(x)

= NrdD/Q2(y) for some x ∈ D, y ∈ W. Then x−1y ∈ U := SL(1, D)∩ (x−1W),

so U is a nonempty open subset of SL(1, D). Invoking weak approximation for
SL1,D, we conclude that there exists z ∈ SL(1, D)∩U . Then xz ∈ W ∩D× = W,

so s = NrdD/Q(xz) ∈ NrdD/Q(W), proving (2).
Combined with the openness of I, (2) implies that for a given W there exists

d = d(W) such that the arithmetic progression {1 + 2dn | n = 1, 2, . . . } is con-
tained in NrdD/Q(W). However, by the Prime Number Theorem, this progression
contains a prime, which, of course, does not belong to H. Thus, W �⊂ M, so (1)
follows as M has index two. We notice that (1) implies, in particular, that M is not
open in the ṽ-adic topology.

Now, let W ⊂ D× be an open normal subgroup of finite index such that the
quotient D×/W is nonabelian (explicit example: as we observed in [17], 8.4, for
W = Q

×
2 (1 + P), where P is the valuation ideal in D, the quotient D×/W

is the symmetric group on three letters). Set W = D× ∩ W and observe that
D×/W 
 D×/W as D× is dense in D×. Let N = M ∩ W. Then it follows from
(1) that

D×/N 
 D×/M × D×/W,

implying that D×/N is a nonabelian group with nontrivial center, hence its com-
muting graph has diameter two. On the other hand, as we observed above, M is
not ṽ-adically open in D×, so N cannot be open either. Since D does not have any
valuations other than ṽ, this means in effect that N is not open in D with respect
to any set of valuations.

In connection with the above example, we would like to point out that there
are numerous finite groups with trivial center and the commuting graph having
diameter two. The simplest example is as follows. Let H = (Z/2Z)3 and con-
sider the group ring Fp[H ], where p is a prime > 2. Let ε : Fp[H ] → Fp denote
the augmentation homomorphism, and V = Ker ε. Then V H = {0}, implying
that the center of G := H � V is trivial. On the other hand, let g1, g2 ∈ G,

where gi = (hi, vi). Let D ⊂ H be the subgroup generated by h1 and h2. Then
dim Fp[H ]D = [H : D] � 2, and therefore dim V D � 1. Pick v ∈ V D − {0};
then the element (0, v) is a nonidentity element that commutes with both g1 and
g2, proving that diam �G = 2 as G is noncommutative.

We do not know, however, if the group G constructed above can be realized as a
quotient of the multiplicative group of some finite dimensional division algebra. So,
it might still be true that if G = D×/N and diam �G = 2 then Z(G) is nontrivial.
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et des morphismes de schémas. I. Publ. math. IHES 20, 259 (1964)
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[11] Malle, G., Saxl, J., Weigel, T.: Generation of classical groups. Geom. Dedicata 49,

85–116 (1994)
[12] Margulis, G.A.: Finiteness of quotients of discrete subgroups. Funct. Anal. Appl. 13,

178–187 (1979)
[13] Platonov, V.P., Rapinchuk, A.S.: Algebraic Groups and Number Theory. Academic

Press, 1993
[14] Prasad, G.: Strong approximation for semi-simple groups over function fields. Ann.

Math. 105, 553–572 (1977)
[15] Raghunathan, M.S.: On the group of norm 1 elements in a division algebra. Math.

Ann. 279, 457–484 (1988)
[16] Rapinchuk, A., Potapchik, A.: Normal subgroups of SL1,D and the classification of

finite simple groups. Proc. Indian Acad. Sci. (Math. Sci.) 106, 329–368 (1996)
[17] Rapinchuk, A.S., Segev, Y.: Valuation-like maps and the congruence subgroup prop-

erty. Invent. Math. 144, 571–607 (2001)
[18] Rapinchuk, A.S., Segev, Y., Seitz, G.M.: Finite quotients of the multiplicative group

of a finite dimensional division algebra are solvable. J. AMS 15, 929–978 (2002)
[19] Riehm, C.: The norm 1 group of a p-adic division algebra. Am. J. Math. 92, 499–523

(1970)
[20] Segev, Y.: On finite homomorphic images of the multiplicative group of a division

algebra. Ann. Math. 149, 219–251 (1999)
[21] Segev, Y.: Some applications of Wedderburn’s factorization theorem. Bull. Austral.

Math. Soc. 59, 105–110 (1999)
[22] Segev, Y.: The commuting graph of minimal nonsolvable groups. Geom. Ded. 88,

55–66 (2001)
[23] Segev, Y., Seitz, G.M.: Anisotropic groups of type An and the commuting graph of

finite simple groups. Pacific J. Math. 202, 125–226 (2002)
[24] Turnwald, G.: Multiplicative subgroups of finite index in rings. Proc. AMS 120,

377–381 (1994)


