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Abstract. We show that if a field K of characteristic �= 2 satisfies the following property
(*) for any two central quaternion division algebras D1 and D2 over K , the fact that D1
and D2 have the same maximal subfields implies that D1 � D2 over K , then the field of
rational functions K (x) also satisfies (*). This, in particular, provides an alternative proof for
the result of S. Garibaldi and D. Saltman that the fields of rational functions k(x1, . . . , xr ),

where k is a number field, satisfy (*). We also show that K = k(x1, . . . , xr ), where k is
either a totally complex number field with a single dyadic place (e.g. k = Q(

√−1)) or a
finite field of characteristic �= 2, satisfies the analog of (*) for all central division algebras
having exponent two in the Brauer group Br(K ).

1. Introduction

Given two (finite dimensional) central division algebras D1 and D2 over the same
field K , we say that D1 and D2 have the same maximal subfields if any maximal
subfield F of D1 admits a K -embedding F ↪→ D2, and vice versa. In [11], 5.4, a
question was raised regarding fields K having the following property:

(*) For any two central quaternion division algebras D1 and D2 over K , the fact
that D1 and D2 have the same maximal subfields implies that D1 � D2 over K .

This question was motivated by the analysis of the general problem of when
weak commensurability of Zariski-dense subgroups of absolutely almost simple
algebraic groups implies their commensurability, which in turn is related to the
well-known open question as to whether or not two isospectral Riemann surfaces
are necessarily commensurable. The fact that number fields have (*)—which fol-
lows from the Albert–Hasse–Brauer–Noether Theorem (AHBN) (cf. the proof of
Corollary 4.8) and is also a consequence of the Minkowski-Hasse Theorem on
quadratic forms—was used in [11] (cf. also [12]) to show that if one of the two
Zariski-dense subgroups in absolutely almost simple groups of type A1 is arith-
metic and the two subgroups are weakly commensurable, then they are actually

A. S. Rapinchuk: Department of Mathematics, University of Virginia, Charlottesville,
VA 22904, USA. e-mail: asr3x@virginia.edu

I. A. Rapinchuk (B): Department of Mathematics, Yale University, New Haven, CT 06502,
USA. e-mail: igor.rapinchuk@yale.edu

Mathematics Subject Classification (2000): 16K50, 20G15

DOI: 10.1007/s00229-010-0361-5



274 A. S. Rapinchuk, I. A. Rapinchuk

commensurable (in particular, the other subgroup is also arithmetic), which im-
plies that if one of the two isospectral Riemann surfaces is arithmetically defined
then the surfaces are commensurable. To extend this result to more general Zariski-
dense subgroups (first and foremost, to non-arithmetic lattices in SL2(R)) using
the techniques developed in [11], one needs to know what other fields have (*). It
was observed by Rost, Wadsworth and others that it is possible to construct “large”
(in particular, infinitely generated) fields which do not have (*) (cf. [3], Example
2.1). On the other hand, no such examples are known for finitely generated fields
(and the fields that arise in the analysis of weakly commensurable finitely generated
Zariski-dense subgroups are finitely generated), and the question as to what finitely
generated fields have (*) remains wide open. In fact, until recently no fields other
than global fields were known to have (*). In [3], Garibaldi and Saltman answered
in the affirmative one of the questions posed in earlier versions of [11] by showing
that a purely transcendental extension K = k(x1, . . . , xr ) of a number field k has
(*) (more generally, it was shown in [3] that any transparent field of characteristic
�= 2 has (*)).

The goal of this note is to present two further results on (*) and related issues.
All fields below will be of characteristic �= 2. First, we show that the property to
have (*) is stable under purely transcendental extensions, which gives an alternative
proof of the fact that K = k(x1, . . . , xr ), with k a number field, has (*).

Theorem A. Let K be a field of characteristic �= 2. If (*) holds for K then it also
holds for the field of rational functions K (x).

Second, we give examples of fields for which a property similar to (*) holds for
algebras that are more general than quaternions. We notice that given any central
division algebra D over K , the opposite algebra Dop has the same maximal sub-
fields as D (cf. Lemma 3.6 for a more general statement), so (the natural analog
of) (*) definitely fails unless D � Dop, i.e. the class [D] has exponent two in the
Brauer group Br(K ). On the other hand, there are division algebras of exponent
two that are more general than quaternion algebras, and whether or not (*) holds
for them is a meaningful question (as the following theorem demonstrates).

Theorem B. Let K = k(x1, . . . , xr ) be a purely transcendental extension of a
field k which is either a totally imaginary number field with a single dyadic place
(e.g. k = Q(

√−1)), or is a finite field of characteristic >2, and let D1 and D2
be two finite dimensional central division algebras over K such that the classes
[D1], [D2] ∈ Br(K ) have exponent two. If D1 and D2 have the same maximal
subfields then D1 � D2.

One can view Theorem B as giving some indication that an analog of (*) may
hold over some fields more general than number fields for some other absolutely
almost simple algebraic groups associated with algebras of exponent two. More
precisely, following [11], 5.4, we call two K -forms G1 and G2 of an absolutely
almost simple algebraic group G weakly K -isomorphic if they have the same iso-
morphism classes of maximal K -tori, and the question is in what situations weakly
K -isomorphic groups are necessarily K -isomorphic. Based on Theorem B, one
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can hope that the affirmative answer is possible in certain cases where G is of type
Bn,Cn and G2 (and maybe E7 and F4) - see the end of Sect. 3 for a more detailed
discussion, but none of these types has been investigated so far.

The proofs of Theorems A (Sect. 4) and B (Sect. 3), just as the argument in [3],
are based on an analysis of ramification.
Notations and conventions. All fields in this note will be of characteristic �= 2.
For a central simple algebra A over a field K , [A] will denote the corresponding

class in the Brauer group Br(K ). For a, b ∈ K ×, we let

(
a, b

K

)
denote the corre-

sponding quaternion algebra. Given a valuation v of a field K (and all valuations
in this note will be discrete), we let OK ,v, Kv and K̄ (v) denote the corresponding
valuation ring, the completion and the residue field, respectively.

2. Preliminaries

Let K be a field endowed with a discrete valuation v. For a finite dimensional
K -algebra A, we set Av = A ⊗K Kv endowed with the topology of a vector space
over Kv.We recall that an étale K -algebra is defined to be a finite direct product of
finite separable extensions of K . Then the notion for two simple algebras to have
the same maximal étale subalgebras is defined in the obvious way (clearly, algebras
with the same maximal étale subalgebras have the same dimension).

Lemma 2.1 ([3], Lemma 3.1). Let A1 and A2 be two central simple algebras over
K , and let v be a discrete valuation of K . If A1 and A2 have the same maximal
étale subalgebras then the algebras A1v and A2v also have the same maximal étale
subalgebras.

Proof. We give an argument based on a construction described in [10], proof of
Theorem 3(ii) and in [11], Lemma 3.4. Let E1 be a maximal étale subalgebra
of A1v. Let G1 = GL1,A1 be the algebraic K -group associated to A1, and let
T1 = RE1/Kv (GL1) be the maximal Kv-torus of G1 corresponding to E1. Consider
the Zariski-open subset T reg

1 ⊂ T1 of regular elements and the regular map

ϕ : G1 × T reg
1 −→ G, (g, t) 	→ gtg−1.

It is easy to check that the differential d(g,t)ϕ is surjective for any (g, t) ∈ G1×T reg
1 ,

so it follows from the Implicit Function Theorem that the map

ϕv : G1(Kv)× T reg
1 (Kv) −→ G1(Kv), (g, t) 	→ gtg−1,

is open in the topology defined by v. In particular, U1 = Imϕv is open in G1(Kv) =
A1

×
v . On the other hand, by weak approximation for K , we have that A1 is dense

in A1v. So, pick a ∈ A1 ∩ U1 and set E0
1 = K [a]. Then E0

1 is a maximal étale
subalgebra of A1 and there exists g ∈ A1

×
v such that E0

1 ⊗K Kv = gE1g−1. By
our assumption, there exists an embedding ι0 : E0

1 ↪→ A2. Then

ι = (ι0 ⊗ idKv ) ◦ Int g

is a required embedding of E1 into A2v. By symmetry, A1v and A2v have the same
maximal étale subalgebras.
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Remark 2.2. The above argument uses the property of weak approximation for G1
which may fail for some algebraic groups. Nevertheless, the following analog of
Lemma 2.1 is true in general: Let G1 and G2 be two reductive algebraic groups over
a field K , and let v be a discrete valuation of K . If G1 and G2 have the same isomor-
phism classes of maximal tori over K then they have the same isomorphism classes
of maximal tori over Kv. To prove this, one needs to invoke weak approximation
in the variety of maximal tori - cf. the proof of Theorem 1(ii) in [9].

Lemma 2.3. Let Ai = Mdi (Di ) for some di � 1 and some central division algebra
Di over K , where i = 1, 2. If A1 and A2 have the same maximal étale subalgebras
then d1 = d2, and D1 and D2 have the same maximal subfields that are separable
over K .

Proof. Let P1 be a maximal separable subfield of D1. Then L1 = P1 ⊕ · · · ⊕ P1
(d1 times) is a maximal étale subalgebra of A1. Let e1 = (1, 0, . . . , 0), . . . , ed1 =
(0, . . . , 0, 1) be the orthogonal idempotents in L1. By our assumption, L1 admits
an embedding into A2, and we identify the former with its image in the latter. Con-
sider the right D2-vector space V2 = (D2)

d2 as a left A2-module. Then the relations
e2

i = ei and ei e j = 0 for i �= j imply that the sum of the nonzero D2-subspaces
Wi = ei V2,where i = 1, . . . , d1, is direct, hence d1 � d2. By symmetry, d1 = d2,

and then D1 and D2 have the same dimension. In the above notations, it follows
that each Wi is 1-dimensional over D2 and V2 = ⊕Wi .Clearly, P1 � L1e1 embeds
in EndD2 W1 � D2, and the required fact follows. 
�
Corollary 2.4. Let A1 and A2 be two central simple algebras over K such that
dimK A1 = dimK A2 is relatively prime to char K , and let v be a discrete valua-
tion of K .Write Ai v = Mdi (Di )with di � 1 and Di a central division Kv-algebra.
If A1 and A2 have the same maximal étale subalgebras then d1 = d2 and D1 and
D2 have the same maximal subfields.

Proof. By Lemma 2.1, the Kv-algebras A1v and A2v have the same maximal étale
subalgebras. So, by Lemma 2.3, we have d1 = d2 and D1 and D2 have the same
maximal separable subfields. However, since dimK A1 = dimK A2 is prime to char
K , all maximal subfields of D1 and D2 are separable over Kv.

To formulate our next lemma, we need to introduce one condition on a field k :
(LD) Given finite separable extensions E ⊂ F of k, any central division algebra

� over E contains a maximal separable subfield P that is linearly disjoint
from F over E .

(It is worthwhile to observe that the fields of real and p-adic numbers do not have
(LD), while global fields do have it—cf. Proposition 2.7 as (trivially) do finite and
algebraically closed fields.)

Lemma 2.5. Let K be a field complete with respect to a discrete valuation v, with
residue field k = K̄(v), and let D1,D2 be two central division algebras over K.
Assume that the center Ei := Z(D̄i ) is a separable extension of k for i = 1, 2. If
D1 and D2 have the same maximal subfields then
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(i) [E1 : k] = [E2 : k];
(ii) in each of the following situations: (a) D1 and D2 are of prime degree, (b) k

satisfies (LD), we have E1 = E2.

Proof. (i): Let ṽi be the extension of v to Di . It is well-known that since Ei/k
is separable, Di is inertially split (this, for example, easily follows from the
fact that discrete valuation are defectless, see [17], Sect. 2). Then [Ei : k]
coincides with the ramification index e(ṽi |v) = [ṽi (D×

i ) : v(K×)] (cf. [15],
Chap. XII, Sect. 2, Example 3, or [17], Theorem 3.4), so it is enough to show
that e(ṽ1|v) = e(ṽ2|v). Let a ∈ D1 be such that ṽ1(a) generates the value
group ṽ1(D×

1 ), and let L be a maximal subfield of D1 containing a. Then
e(ṽ1|v) = [ṽ1(L×) : v(K×)]. On the other hand, by our assumption L can
be embedded in D2, and if we identify the former with its image in the latter,
then ṽ2|L = ṽ1|L because v has a unique extension to L as K is complete
(cf. [15], Chap. II, Sect. 2, Corollary 2). It follows that e(ṽ1|v) � e(ṽ2|v).
By symmetry, e(ṽ1|v) = e(ṽ2|v), as required.

(ii): First, suppose D1 and D2 have prime degree p. If D1 is unramified then
E1 = k, so we obtain from (i) that E2 = k, and there is nothing to prove. If
D1 is ramified then

e(ṽ1|v) = p = [E1 : k],
so it follows from the formula in [15], loc. cit., that [D̄1 : E1] divides p, and
therefore in fact D̄1 = E1. Similarly, D̄2 = E2. Pick a in the valuation ring
OD1,ṽ1 so that for its residue ā ∈ D̄1 we have D̄1 = k(ā). Then L := K(a)
is a maximal unramified subfield of D1, with residue field L̄(ṽ1) = E1. As in
the proof of (i), L embeds into D2 and ṽ1|L = ṽ2|L. So, [L̄(ṽ2) : k] = p,
hence L̄(ṽ2) = D̄2 = E2. Finally,

E1 = L̄(ṽ1) = L̄(ṽ2) = E2,

as required.
Now, assume that k possesses property (LD), and let n denote the common

degree of D1 and D2. We will prove that E2 ⊂ E1; then (i) will yield E1 = E2. Set
F = E1E2 (in a fixed algebraic closure of k). Since E1 is separable over k, by (LD),
there exists a maximal separable subfield P of D̄1 that is linearly disjoint from F
over E1.Write P = k(ā), and set L = K(a).As D1 is inertially split, we conclude,
using ([17], Theorem 3.4(iii)), that

[P : k]2 = [P : E1]2[E1 : k]2 = [D̄1 : k][E1 : k] = [D1 : K],
i.e. [P : k] = n. It follows that L is a maximal subfield of D1 with residue field
L̄(ṽ1) = P.As above, L embeds into D2, and therefore P = L̄(ṽ1) = L̄(ṽ2) embeds
into D̄2. It follows that P ⊃ E2. (Indeed, otherwise E2P would be a separable
extension of k contained in D̄2 and having degree > n. Writing E2P = k(b̄) for
some b ∈ OD2,ṽ2 , we would find that K(b) would be an extension of K contained
in D2 and of degree > n, which is impossible.) Since P was chosen to be linearly
disjoint from F = E1E2 over E1, we conclude that F = E1, i.e. E2 ⊂ E1. 
�
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Remark 2.6. We would like to point out that the assertion of Lemma 2.5 (ii) that
E1 = E2 also holds if D1 and D2 are of degree 4 and k is of characteristic �= 2 such

that the quaternion algebra

(−1,−1

k

)
is not a division algebra (in particular, if

√−1 ∈ k). Indeed, the argument in the cases where [E1 : k] = [E2 : k] equals 1
or 4 is identical to the one given in Case (a) of Lemma 2.5 (ii), so we only need to
consider the situation where [E1 : k] = [E2 : k] = 2, hence D̄i is a central quater-
nion division algebra over Ei for i = 1, 2. To mimic the argument used in Case (b),
we need to show that D̄1 contains a maximal subfield P which is linearly disjoint
from E1E2 over E1, and vice versa. Since [E1E2 : E1] � 2, this will obviously hold
automatically if not all maximal subfields of D̄1 are E1-isomorphic. Now, according
to ([7], Example 4 in Sect. 13.6), if all maximal subfields of a quaternion division
algebra D over a field F of characteristic �= 2 are isomorphic then F is formally

real, pythagorean and D �
(−1,−1

F

)
. However, our assumption implies that(−1,−1

E1

)
is not a division algebra, and the required fact follows.

We will now describe a class of fields having property (LD).

Proposition 2.7. Let k be finitely generated over its prime subfield. Then k has
property (LD).

Proof. We will assume (as we may) that k is infinite. Let E ⊂ F be finite separable
extensions of k, and let � be a central division algebra over E . Enlarging F, we
can assume that �⊗E F � Mn(F). It is enough to construct a discrete valuation
w of E so that the completion Ew is locally compact and coincides with Fw̃ for
some extension w̃|w. Indeed, we can then pick a separable extension P of Ew of
degree n and embed it into �w = � ⊗E Ew � Mn(Ew). The argument given in
the proof of Lemma 2.1 (or the standard Krasner’s Lemma, cf. [6], Lemma 8.1.6)
enables us to construct a maximal subfield P ⊂ � such that P ⊗E Ew � P. Then

[P F : F] � [P Fw̃ : Fw̃] = [P : Ew] = n.

So, [P F : F] = n, and therefore P and F are linearly disjoint over E .
In characteristic zero, according to Proposition 1 in [10], for infinitely many

primes p there exists an embedding F ↪→ Qp, and then the valuations w and
w̃ of E and F respectively, obtained as pull-backs of the p-adic valuation, are as
required. If char k = p > 0 then we need to use a suitable modification of the
proof of Proposition 1 in [10]. Let Fp be the field with p elements. There exist
algebraically independent t1, . . . , tr ∈ E with r > 0 such that E is a finite separa-
ble extension of � := Fp(t1, . . . , tr ), and then F is also a finite separable extension
of �. Furthermore, we can pick a primitive element a ∈ F over � having minimal
polynomial f of the form

f (s, t1, . . . , tr ) = sd + cd−1(t1, . . . , tr )s
d−1 + · · · + c0(t1, . . . , tr )
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where ci (t1, . . . , tr ) ∈ Fp[t1, . . . , tr ]. Since f is prime to its derivative fs, there
exist polynomials g(s, t1, . . . , tr ), h(s, t1, . . . , tr ) and m(t1, . . . , tr ) with coeffi-
cients in Fp such that

g f + h fs = m �= 0. (1)

One can find polynomials α1(t), . . . , αr (t) ∈ Fp[t] such that α1(t) = t and
m(α1(t), . . . , αr (t)) �= 0. Set ϕ(s) = f (s, α1(t), . . . , αr (t)). Let β be a root of
ϕ(s) (in a fixed algebraic closure of Fp(t)), and let R = Fp(t)(β). By Tchebota-
rev’s Density Theorem (cf. [1], Chap. VII, 2.4), one can find a valuation v of Fp(t)
associated to some irreducible polynomial in Fp[t] such that

v(m(α1(t), . . . , αr (t))) = 0, (2)

and Rṽ = Fp(t)v for some extension ṽ|v. Let Fq = OR,ṽ/Pṽ = OFp(t),v/pv be
the residue field, and let β0, α0

1, . . . , α
0
r be the images of β, α1(t), . . . , αr (t) in Fq .

Since α1(t) = t, we see that Fq = Fp(α
0
1). It follows from (1) and (2) that

f (β0, α0
1, . . . , α

0
r ) = 0, but fs(β

0, α0
1, . . . , α

0
r ) �= 0. (3)

Let F = Fq((T )). Pick r elements t̃1, . . . , t̃r ∈ Fq [[T ]] that are algebraically
independent over Fq and satisfy

t̃1 = α0
1 + T, t̃i = α0

i (mod T ) for i > 1, (4)

and then consider the embedding � ↪→ F sending ti to t̃i for all i = 1, . . . , r. We
claim that

ι(�) = F , (5)

where here, and in the rest of the proof of the proposition, the bar denotes the closure
in the T -adic topology and not the residue field like elsewhere in the paper. Indeed,
it follows from (4) that the image of ι(t1) in Fq [[T ]]/T Fq [[T ]] = Fq generates
Fq , which implies (e.g. by Hensel’s Lemma) that Fq ⊂ ι(�). We then see from
(4) that T ∈ ι(�), and (5) follows. To complete the argument, we will now show
that ι can be extended to an embedding ι̃ : F ↪→ F as then the pullbacks of the
natural valuation on F will give us the required valuations w and w̃ on E and F
respectively. Using Hensel’s Lemma, one obtains from (3) and (4) that F contains
a root to f (s, t̃1, . . . t̃r ) = 0, and the existence of ι̃ follows. 
�
Remark 2.8. The following was communicated to us by Skip Garibaldi. One can
consider the following property of a field E:
(+) For every finite Galois extension F/E there exists a discrete valuation on E

that splits completely in F.

The proof of Proposition 2.7 is actually the combination of two statements: (i) If
every finite separable extension E/k has (+) then k has (LD), and (ii) Infinite fields
that are finitely generated over the prime field have (+). Regarding (ii), one can
prove the following: Let K be an arbitrary field, and let E/K be a separable finitely
generated extension of transcendence degree � 1. Then E has property (+). This
statement, which is contained in [8] in a different language, gives Proposition 2.7
because global fields have (+) by Tchebotarev’s Density Theorem.
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3. Proof of Theorem B

First, we will single out some conditions on the field K that imply the assertion of
Theorem B (see Theorem 3.2). We will then verify these conditions for the fields
considered in Theorem B (see Proposition 3.4).

For a field K complete with respect to a discrete valuation v, we let Br0(K),
or Br0

v(K), denote the subgroup of Br(K) consisting of elements that split over
an unramified extension of K (in other words, Br0(K) = Br(Knr/K) where Knr
is the maximal unramified extension of K)1. We recall that for a central division
algebra D over K, we have [D] ∈ Br0(K) if and only if the center Z(D̄(v)) of the
residue algebra is a separable extension of K̄(v) ([17], Theorem 3.4); the elements
of Br0(K) are called “inertially split” (cf. [14], [17]). It follows that if n is relatively
prime to char K̄(v) then the n-torsion subgroup Br(K)n is contained in Br0(K).

Furthermore, we let ρ or ρv denote the reduction map Br0
v(K) → Hom(G(v),

Q/Z) where G(v) is the absolute Galois group of the residue field K̄(v) (see, for
example, [15], Chap. XII, Sect. 3, or [17], (3.9)). Then Br′v(K) := Ker ρv is known
to consist precisely of the classes of all unramified (or “inertial”) division algebras
(equivalently, those division algebras that arise from the Azumaya algebras over the
valuation ring OK,v, cf. [17], Theorem 3.2). We recall that Br′v(K) can be naturally
identified with the Brauer group of the residue field of K. More generally, given
a discrete valuation v of a field K , we let Br′v(K ) denote the subgroup of classes
[A] ∈ Br(K ) for which [A ⊗K Kv] ∈ Br′v(Kv).
Definition 3.1. Let K be an infinite field of characteristic �= 2. We say that K is
2-balanced if there exists a set V of discrete valuations of K such that

(a) for each v ∈ V, the residue field K̄ (v) satisfies (LD) and is of characteristic
�= 2;

(b)
⋂
v∈V

Br′v(K )2 = {e} (in other words, the 2-component of the unramified Brauer

group of K with respect to V is trivial).

Theorem 3.2. Let K be a 2-balanced field, and let D1, D2 be two central division
algebras over K such that [D1], [D2] ∈ Br(K )2. If D1 and D2 have the same
maximal subfields then D1 � D2.

Proof. For v ∈ V, we let ρv denote the reduction map Br0(Kv) → Hom(G(v),
Q/Z). The assumption that char K̄ (v) �= 2 implies that [D1 ⊗K Kv], [D2 ⊗K Kv] ∈
Br0(Kv), and then due to condition (b) in the above definition, it is enough to show
that

ρv([D1 ⊗K Kv]) = ρv([D2 ⊗K Kv]), (6)

for all v ∈ V . Fix v ∈ V, and set K = Kv. According to Lemma 2.1, the alge-
bras D1 ⊗K K and D2 ⊗K K have the same maximal étale subalgebras. Using
Corollary 2.4, we see that

Di ⊗K K = Mdi (Di ), i = 1, 2,

1 As usual, the definition of an unramified extension L/K includes the requirement that
the corresponding extension of the residue fields L̄(v)/K̄(v) be separable.
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where d1 = d2 and the division algebrasD1 andD2 have the same maximal subfields.
To prove (6), it suffices to show that

ρv([D1]) = ρv([D2]). (7)

Let χi = ρv([Di ]) ∈ Hom(G(v),Q/Z). Since D1 and D2 have the same maximal
subfields and K̄ (v) = K̄(v) satisfies (LD), we conclude from Lemma 2.5 (ii), case
(b), that Z(D̄1) = Z(D̄2). It is known, however, that the extension Z(D̄i )/K̄ cor-
responds to Ker χi (cf. [17], Theorem 3.5). So, we obtain that Ker χ1 = Ker χ2,

and since χ1 and χ2 both have order two, we conclude that χ1 = χ2, yielding (7).

Remark 3.3. Using Remark 2.6 in place of Lemma 2.5 (ii), we obtain that if a field

K with the property that the quaternion algebra

(−1,−1

K

)
is not a division alge-

bra, has a set V of discrete valuations such that char K̄ (v) �= 2 for each v ∈ V and⋂
v∈V Br′v(K ) = {e} then for any central division algebras D1 and D2 of degree

four over K such that [D1], [D2] ∈ Br(K )2, the fact that D1 and D2 have the same

maximal subfields implies that D1 � D2 (we only need to observe that

(−1,−1

K̄ (v)

)

is not a division algebra for all v ∈ V ).

The following proposition establishes that the fields in the statement of Theo-
rem B are 2-balanced, completing thereby the proof of the latter.

Proposition 3.4. Let K = k(x1, . . . , xr ) be a purely transcendental extension of a
field k which is either a totally imaginary number field with a single dyadic place
(e.g. k = Q(

√−1)) or a finite field of characteristic > 2. Then K is 2-balanced.

Proof. Let Ki = k(x1, . . . , xi−1, xi+1, . . . xr ), and let Vi be the set of all valua-
tions of K = Ki (xi ) that are trivial on Ki . Then for v ∈ Vi the residue field K̄ (v)

is a finite extension of Ki , hence a finitely generated field of characteristic �= 2.
Invoking Proposition 2.7, we see that K̄ (v) satisfies (LD), and therefore

V0 :=
r⋃

i=1

Vi

satisfies condition (a) of Definition 3.1. Henceforth, we will identify Br(k) with a
subgroup of Br(K ) using the natural embedding. We claim that⋂

v∈V0

Br′v(K )2 = Br(k)2. (8)

This is proved by induction on r using the following consequence of Faddeev’s
exact sequence (cf. [4], Corollary 6.4.6, or [7], Sect. 19.5; for the case of a nonper-
fect field of constants, see [2], Example 9.21 on p. 26, and [13]): Let F be a field
of characteristic �= 2, and let V F be the set of valuations of the field of rational
functions F(x) that are trivial on F; then⋂

v∈V F

Br′v(F(x))2 = Br(F)2. (9)
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For r = 1, (8) is identical to (9), and there is nothing to prove. For r > 1, set
k′ = k(xr ) and V ′

0 = ⋃r−1
i=1 Vi . By induction hypothesis,

⋂
v∈V ′

0

Br′v(K )2 = Br(k′)2. (10)

On the other hand, there is a natural bijection between V k′
and Vr , and for a given

v ∈ V k′
we let v̂ denote the corresponding valuation in Vr . Clearly, if a central divi-

sion algebra� over k′ (of exponent two) is ramified at v ∈ V k′
, i.e. [�] /∈ Br′v(k′)2,

then �̂ = �⊗k′ K is ramified at v̂, i.e. [�̂] /∈ Br′
v̂
(K ). Thus, if a central division

algebra D over K represents an element from the left-hand side of (8), then by (10)
we can write D = �⊗k′ K for some central division algebra� over k′. Furthemore,
it follows from our previous remark that [�] ∈ ⋂

v∈V k′ Br′v(k′). So, using (9) for
F = k, we see that [�] ∈ Br(k), proving (8). It immediately follows that V = V0
is as required if k is finite.

Let now k be a totally imaginary number field with a single dyadic place. It
follows from the Albert-Hasse-Brauer-Noether Theorem (cf. [7], Sect. 18.4) that
for the set W of all non-dyadic nonarchimedean places of k the natural map

Br(k) −→
⊕
w∈W

Br(kw)

is injective. Since Br′w(kw) = {e}, this can be restated as

⋂
w∈W

Br′w(k) = {e}. (11)

For w ∈ W, we let w̃ denote its natural extension to K given by

w̃

⎛
⎝ ∑

i1,...,ir

ai1...ir x i1
1 · · · xir

r

⎞
⎠ = inf w(ai1...ir ).

Then the residue field K̄ (w̃) = k̄(w)(x1, . . . , xr ) is a finitely generated field of
characteristic �= 2, hence satisfies (LD) (see Proposition 2.7). It follows that V :=
V0 ∪ W̃ , where W̃ = {w̃ |w ∈ W }, satisfies condition (a) of Definition 3.1. At the
same time, using (8) and (11) and arguing as above, we see that

⋂
v∈V

Br′v(K )2 = {e},

which is condition (b) of Definition 3.1. Thus, V is as required. 
�
Remark 3.5. (Continuation of Remark 2.8 by Skip Garibaldi) Using the statement
from Remark 2.8, one can prove the following: If F is 2-balanced and has (LD)
then F(t) is also 2-balanced and has (LD). This provides another perspective on
the proof of Proposition 3.4.
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As we already mentioned in the introduction, for any central division K -alge-
bra D, the opposite algebra Dop has the same maximal subfields, but D �� Dop

unless [D] ∈ Br(K )2. It should be noted, however, that the associated norm one
groups SL1,D and SL1,Dop are always K -isomorphic. So, we would like to point
out the following general construction of division algebras D1 and D2 that have
the same maximal subfields, but for which SL1,D1 �� SL1,D2 . Let �1 and �2 be
two central division algebras over K of relatively prime degrees n1, n2 > 2. Then
D1 = �1 ⊗K �2 and D2 = �1 ⊗K �

op
2 are division algebras of degree n = n1n2,

which are neither isomorphic nor anti-isomorphic, so the corresponding norm one
groups are not K -isomorphic. At the same time, if P is a maximal subfield of D1
then it splits�1 and�2, hence also�op

2 . It follows that P splits D2, and therefore is
isomorphic to its maximal subfield. A more general perspective on this construction
can be derived from the following (known) statement (to see the connection, one
observes that for the algebras D1 and D2 as above, the classes [D1], [D2] ∈ Br(K )
generate the same subgroup, which coincides with the subgroup generated by [�1]
and [�2], hence [D2] = m[D1] for some m relatively prime to n).

Lemma 3.6. Let D be a central division algebra of degree n over a field K . Then
for any m � 1 which is relatively prime to n, the class m[D] ∈ Br(K ) is repre-
sented by a central division algebra Dm of the same degree n and having the same
maximal subfields as D.

Proof. First, we observe that if A1 and A2 are two central simple algebras over K of
the same degree d containing a field extension P/K of degree d then A := A1⊗K A2
is isomorphic to Md(A′) where A′ is a central simple algebra of degree d that also
contains P. Indeed, we have A1 ⊗K P � Md(P) so A contains B := Md(K ).
Using the Double Centralizer Theorem, we conclude that A � B ⊗K CA(B), i.e.
A � Md(A′) where A′ = CA(B) is a central simple algebra of degree d. Since

A ⊗K P � (A1 ⊗K P)⊗P (A2 ⊗K P) � Md2(P),

we see that P splits A′ and therefore is isomorphic to a maximal subfield of the
latter (see [7], Sect. 13.3). This remark combined with simple induction shows that
for any m � 1 we have

D⊗m � Mnm−1(Dm) (12)

where Dm is a central simple algebra of degree n such that every maximal subfield
of D embeds in Dm . Let now m be relatively prime to n, and pick � � 1 so that
�m ≡ 1(mod n), hence �[Dm] = [D]. If Dm = Ms(�) where � is a division
algebra of degree t, st = n, then �[Dm] = �[�]. Applying (12) to � and � in
place of D and m, we see that �[�] is represented by a central simple algebra ��
of degree t. Then [��] = [D] is possible only if Dm is isomorphic to �, hence
a division algebra, and �� � D. Furthermore, as we have seen, every maximal
subfield of D embeds in Dm, and every maximal subfield of Dm � � embeds in
�� � D, i.e. D and Dm have the same maximal subfields.
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Lemma 3.6 seems to suggest that as a potential generalization of (*) to arbi-
trary division algebras one should consider the question of whether for two central
division algebras D1 and D2 over a field K , the classes [D1] and [D2] generate
the same subgroup of Br(K ).Unfortunately, the answer to this question is negative
already over number fields for algebras of any degree (exponent) n > 2. To see this,
one can pick four nonarchimedean places v1, . . . , v4 of a given number field K ,
and then consider, for any n > 2, the division algebras D1 and D2 over K having
local invariants 1/n, 1/n,−1/n,−1/n and 1/n,−1/n, 1/n,−1/n respectively at
v1, . . . , v4, and 0 everywhere else (cf. [11], Example 6.5). It follows from ([7], Cor-
ollary b in Sect. 18.4) that D1 and D2 have the same maximal subfields; at the same
time, [D1] and [D2] generate different subgroups of Br(K ). Thus, there appears
to be no sensible analog of Theorem B for algebras of exponent > 2. On the other
hand, in addition to generalizing Theorem B to other fields, one may consider simi-
lar questions for algebras with involution. More precisely, let (A1, τ1) and (A2, τ2)

be two central simple algebras over K with involutions of the first kind (i.e., acting
trivially on K ) and of the same type (symplectic or orthogonal) - then of course
[A1], [A2] ∈ Br(K )2. Assume that A1 and A2 have the same isomorphism classes
of maximal étale subalgebras invariant under the involutions2. In what situations
can one guarantee that A1 � A2 as K -algebras? (A1, τ1) � (A2, τ2) as K-algebras
with involutions? (Affirmative) results in this direction may lead to some progress
on the problem, mentioned in the introduction, of when two weakly isomorphic
forms of an absolutely almost simple algebraic group are necessarily isomorphic,
particularly for types Bn and Cn .

4. Proof of Theorem A

For a quaternion algebra D =
(

a, b

K

)
corresponding to a, b ∈ K × we let qD

denote the quadratic form

qD(s, t, u) = as2 + bt2 − abu2.

Then D is a division algebra if and only if qD does not represent nonzero squares,
in which case the maximal subfields of D are isomorphic to the quadratic exten-
sions of the form K (

√
d) where d ∈ K × is represented by qD. Furthermore, it

is known ([7], Sect. 1.7) that two central quaternion algebras D1 and D2 over K
are isomorphic if and only if the corresponding quadratic forms qD1 and qD2 are
equivalent. Thus, (*) reduces to the statement that the quadratic forms qD1 and qD2

associated to two quaternion division algebras D1 and D2 are equivalent given that
they represent the same elements of K .

The proof of Theorem A is based on Faddeev’s exact sequence (see [4], Cor-
ollary 6.4.6, [7], Sect. 19.5, [2], Example 9.21 on p. 26, or [13]). Let K sep be a

2 This assumption has two possible interpretations: for any τ1-invariant maximal étale
subalgebra E1 ⊂ A1 there exist a τ2-invariant maximal étale subalgebra E2 ⊂ A2 such
that E1 � E2 as K -algebras, or such that (E1, τ1|E1) � (E2, τ2|E2) as K -algebras with
involutions (and vice versa).
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separable closure of K , and G = Gal(K sep/K ) be its absolute Galois group. Fur-
thermore, let V be the set of valuations of K (x) corresponding to all irreducible
polynomials p(x) ∈ K [x]. For each v ∈ V, we fix its extension ṽ to K sep(x),
and let G(v) = G(ṽ|v) be the corresponding decomposition group; we observe
that G(v) is naturally identified with the absolute Galois group of the residue field

K (x)
(v)
. Then we have the following exact sequence:

0 → Br(K )
ι−→ Br(K sep(x)/K (x))

φ−→
⊕
v∈V

Hom(G(v),Q/Z). (13)

in which ι is the natural embedding [A] 	→ [A ⊗K K (x)], and φ = (φv), where
the local components φv are related to the reduction maps ρv : Br0

v(K (x)v) →
Hom(G(v),Q/Z)byφv = ρv◦λv withλv : Br(K (x)) → Br(K (x)v)being the nat-
ural map (notice that λv(Br(K sep(x)/K (x))) ⊂ Br0

v(K (x)v)). Since char K �= 2,
we have the inclusion Br(K (x))2 ⊂ Br(K sep(x)/K (x)), so (13) gives rise to the
following exact sequence

0 → Br(K )2
ι−→ Br(K (x))2

φ−→
⊕
v∈V

Hom(G(v),Z/2). (14)

Lemma 4.1 (Cf. [3], Proposition 3.5). Let D1 and D2 be two central quaternion
division algebras over K (x) having the same maximal subfields. Then φ([D1]) =
φ([D2]).
Proof. (Cf. the proof of Theorem 3.2) Fix v ∈ V . By Corollary 2.4, we have

Di ⊗K (x) K (x)v = Mdi (Di ), i = 1, 2,

where d1 = d2 and the division algebras D1 and D2 have the same maximal sub-
fields. Using Lemma 2.5 (ii), case (a), we see that Z(D̄1) = Z(D̄2). Since the

extension Z(Di )/K (x)
(v)

corresponds to the subgroup Ker χi ⊂ G(v), where
χi = ρv([Di ]), we conclude that Ker χi = Ker χ2, and eventually χ1 = χ2,

implying that φv([D1]) = φv([D2]). 
�
Corollary 4.2. Let D1 and D2 be as in Lemma 4.1. Then there exists a central
quaternion algebra D over K such that D1 ⊗K (x) D2 � M2(D ⊗K K (x)).

Proof. It follows from Lemma 4.1 that there exists a division algebra D over K
such that

[D1 ⊗K (x) D2] = [D ⊗K K (x)].
Notice that D ⊗K K (x) is also a division algebra. On the other hand, since D1 and
D2 possess a common subfield, we have D1 ⊗K (x) D2 � M2(�) for some central
quaternion algebra � over K (x) (see [4], Lemma 1.5.2). From the uniqueness in
Wedderburn’s Theorem we conclude that either D = K or D is a quaternion alge-
bra over K . Set D = M2(K ) in the former case, and D = D in the latter. Then our
construction implies that D is as required. 
�



286 A. S. Rapinchuk, I. A. Rapinchuk

Now, to complete the proof of Theorem A, it remains to show that in the nota-
tions of Corollary 4.2, the class [D] in Br(K ) is trivial. For this, we need to make
a couple of preliminary observations.

Lemma 4.3. Let K be a field with a discrete valuation v such that char K̄(v) �= 2.
For i = 1, 2, let ai , bi ∈ K× be such that v(ai ) = v(bi ) = 0, and set

Di =
(

ai , bi

K
)
, Ďi =

(
āi , b̄i

K̄(v)

)
,

where āi , b̄i are the images of ai , bi in K̄(v). Assume that D1 and D2 are division
algebras having the same maximal subfields. Then if one of the Ďi ’s is a division
algebra then both of them are, in which case they have the same maximal subfields.

Proof. Let qDi and qĎi
be the corresponding quadratic forms. First, we will show

that if a nonzero d̄ ∈ K̄(v) is represented by qĎ1
then it is also represented by qĎ2

.

Indeed, let s̄1, t̄1, ū1 ∈ K̄(v) be such that

qĎ1
(s̄1, t̄1, ū1) = d̄.

Pick arbitrary lifts s1, t1, u1 ∈ OK,v and set d = qD1(s1, t1, u1). Since D1 and D2
have the same maximal subfields, there exist s2, t2, u2 ∈ K such that qD2(s2, t2,
u2) = d. If

α := min{v(s2), v(t2), v(u2)} � 0

then taking reductions we obtain

qĎ2
(s̄2, t̄2, ū2) = d̄,

as required. On the other hand, if α < 0 then for

s′
2 = π−αs2, t ′2 = π−αt2 and u′

2 = π−αu2,

where π ∈ K× is a uniformizer, we will have (s̄′
2, t̄ ′2, ū′

2) �= (0̄, 0̄, 0̄) and

qĎ2
(s̄′

2, t̄ ′2, ū′
2) = 0̄,

i.e. qĎ2
represents zero. But then, being nondegenerate, it represents all elements

of K̄(v).

Now, if Ď1 is not a division algebra, then qĎ1
represents a nonzero square in

D̄(v).By the above remark, the same is true for qĎ2
, hence Ď2 is not a division alge-

bra, proving our first assertion. On the other hand, if both Ď1 and Ď2 are division
algebras then by symmetry the above remark implies that qĎ1

and qĎ2
represent

the same elements, and therefore Ď1 and Ď2 have the same maximal subfields. 
�
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Another ingredient we need is a consequence of the existence of the special-
ization map in Milnor’s K -theory. For a field F, we let K2(F) denote its second
Milnor K -group, and for a, b ∈ F× let {a, b} ∈ K2(F) denote the corresponding
symbol. According to the Merkurjev-Suslin Theorem ([4], Chap. 8), for any field
of characteristic �= 2 there is an isomorphism K2(F)/2K2(F) � Br(F)2 sending

{a, b} to the class of the quaternion algebra

(
a, b

F

)
. Let now K be a field com-

plete with respect to a discrete valuation v. Then there exists a homomorphism
sv : K2(K) → K2(K̄(v)) such that for any a, b ∈ K× with v(a) = v(b) = 0 we
have

sv({a, b}) = {ā, b̄}
where ā, b̄ are the images of a, b in K̄(v) (see [4], Proposition 7.1.4); notice
that sv depends on the choice of a uniformizer in K. Combining sv with the
Merkurjev-Suslin isomorphism, we obtain the following.

Lemma 4.4. Let K be a field complete with respect to a discrete valuation v.Assume
that char K̄(v) �= 2. Then there exists a homomorphism, called the specialization
homomorphism, σv : Br(K)2 → Br(K̄(v))2 such that for any a, b ∈ K× with
v(a) = v(b) = 0 we have

σv

([(
a, b

K
)])

=
[(

ā, b̄

K̄(v)

)]
.

We can extend the notion of the specialization homomorphism σv to any
field F with a discrete valuation v such that char F̄ (v) �= 2 by defining it to be
the composition

Br(F)2 −→ Br(Fv)2 −→ Br(F̄ (v))2

of the extension of scalars with the specialization homomorphism described in
Lemma 4.4. We then have

Corollary 4.5. Let D be a quaternion algebra over K . Then for any valuation v of

K (x) we have σv ([D ⊗K K (x)]) = [D ⊗K K (x)
(v)].

The conclusion of the proof of Theorem A. It follows from (AHBN) that (*) holds
for global fields (cf. the proof of Corollary 4.8), so we may assume that K is infinite.
Write the given central quaternion division algebras Di over K (x) in the form

Di =
(

ai (x), bi (x)

K (x)

)
where ai (x), bi (x) ∈ K [x] for i = 1, 2.

Since K is infinite, we can replace x by x − α to ensure that ai (0), bi (0) �= 0 for
i = 1, 2. We then set

Ďi =
(

ai (0), bi (0)

K

)
.
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By Corollary 4.2, we have

[D1][D2] = [D ⊗K K (x)] (15)

for some central quaternion algebra D over K , and all we need to show is that
the class [D] ∈ Br(K ) is trivial. Let v be the valuation of K (x) associated with

x; then K (x)
(v) = K . It follows from Lemma 4.4 and Corollary 4.5 that for the

corresponding specialization homomorphism σv : Br(K (x))2 → Br(K )2 we have

σv([Di ]) = [Ďi ] for i = 1, 2, and σv([D ⊗K K (x)]) = [D].
Thus, it follows from (15) that

[D] = [Ď1][Ď2]. (16)

However,

[Ď1] = [Ď2]. (17)

Indeed, if one of the classes [Ďi ] is trivial then, by Lemma 4.3, so is the other, and
(17) is obvious. On the other hand, if both classes [Ď1] and [Ď2] are nontrivial, then
by Lemma 4.3 the division algebras Ď1 and Ď2 have the same maximal subfields,
and (17) follows from our assumption that (*) holds for K . Now, (16) and (17)
imply that [D] is trivial, as required. 
�

The specialization technique based on Lemmas 4.3 and 4.4 can be used to
analyze (*) for fields of rational functions on other curves, which will be done
elsewhere. In fact, it can also be used to obtain some finiteness results pertaining
to (*). More precisely, let us consider the following property of a field K:
(�) There exists n = n(K ) such that for any central quaternion division algebra D

over K , the set of isomorphism classes of central quaternion division algebras
over K having the same maximal subfields as D contains � n elements.

Theorem 4.6. Let X be an absolutely irreducible smooth projective curve over a
field K of characteristic �= 2.Assume that the quotient Brur (K)2/ι(Br(K )2),where
Brur (K) is the unramified Brauer group of K = K (X) (over K ) and ι : Br(K ) →
Br(K) is the natural map, is finite of order m, and there exists a family L = {L}
of odd degree extensions L/K such that

(α) if L ∈ L and K ⊂ P ⊂ L then P ∈ L ;
(β)

⋃
L∈L

X (L) is infinite;

(γ ) each L ∈ L has property (�) and sup
L∈L

n(L) =: n0 < ∞ where n(L) is the

number from the definition of (�).

Then K has property (�) with n(K) = m · n0. In particular, if m < ∞, K has
property (�) and X has infinitely many K -rational points then K has property (�)
with n(K) = m · n(K ).
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Proof. Let V K be the set of discrete valuations of K trivial on K , and for v ∈ V K let
φv : Br(K)2 → Hom(G(v),Z/2), where G(v) is the absolute Galois group of the
residue field K̄(v), denote the composition ρv ◦λv of the natural map λv : Br(K) →
Br(Kv) with the reduction map ρv : Br(Kv)2 → Hom(G(v),Z/2). Then by defi-
nition Brur (K) = ⋂

v∈V K Ker φv.
Now, fix a central quaternion division algebra D over K, and let I(D) denote

the collection of classes [D′] ∈ Br(K) for D′ a central quaternion division algebra
over K having the same maximal subfields as D. It follows from Lemmas 2.1 and
2.5 that given [D′] ∈ I(D), for any v ∈ V K we have

ρv([D′ ⊗K Kv]) = ρv([D ⊗K Kv]), (18)

i.e.φv([D′])= φv([D]) (cf. the proof of Lemma 4.1). Thus,I(D) ⊂ [D]·Brur (K)2.
By our assumption, Brur (K)2 is the union of m cosets C1, . . . , Cm modulo
ι(Br(K )2). So, to prove that n(K) = m · n0 satisfies the definition of property
(�), it is enough to show that

|I(D) ∩ Ci | � n0 for all i = 1, . . . ,m. (19)

If I(D) ∩ Ci = ∅ then there is nothing to prove; otherwise, all central quaternion
algebras D′ with [D′] ∈ I(D) ∩ Ci have the same maximal subfields as D. So, it
is enough to show that for any central quaternion division algebra D over K, the
number of classes [D′], where D′ is a central quaternion division algebra having
the same maximal subfields as D and such that [D′] ∈ [D] · ι(Br(K )2), is � n0.

Lemma 4.7. For a central division algebra� over K of degree � = 2d , the algebra
� ⊗K K is also a division algebra. Consequently, (1) if for such � the algebra
�⊗K K is Brauer-equivalent to a quaternion algebra then� is itself a quaternion
algebra, and (2) the natural map Br(K )2 → Br(K)2 is injective.

Proof. By (β), there is an odd degree extension L/K and a rational point p0 ∈
X (L).Let v0 ∈ V K be the valuation of K obtained as the restriction of the valuation
of L(X) associated with p0. Then the residue field P = K̄(v0) is an odd degree
extension of K . Let f (x1, . . . , x�2) be the homogeneous polynomial of degree �
representing the reduced norm Nrd�/K . If �⊗K K is not a division algebra then
f represents zero over K. Then f also represents zero over P, i.e. �⊗K P is not
a division algebra. This, however, cannot happen as � = 2d and [P : K ] is odd
(see [7], Sect. 13.4, part (vi) of the proposition). A contradiction, proving our first
claim. The remaining assertions easily follow. 
�

For central quaternion division algebras D and D′ over K having the same max-
imal subfields, we have D ⊗ D′ � M2(D′′) for some central quaternion algebra
D′′ ([4], Lemma 1.5.2). If in addition [D′] = [D][�⊗K K] for a central division
algebra � over K with [�] ∈ Br(K )2 then it follows from the lemma that either
� = K or � is a quaternion division algebra. So, if we let J (D) denote the set
of classes [A] ∈ Br(K )2 where A is a central quaternion algebra over K such that
the class [D][� ⊗K K] ∈ Br(K) is represented by a central quaternion division
algebra D′ over K having the same maximal subfields as D, then to prove (19) it
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is enough to show that |J (D)| � n0 for any D. Finally, since for an odd degree
extension P/K the natural map λP : Br(K )2 → Br(P)2 is injective, it is enough
to find, for a fixed D, such an extension for which |λP (J (D))| � n0, and this is
what we are going to do now.

Fix a central quaternion division algebra D =
(

a, b

K
)

over K. It follows from

assumption (β) in the statement of the theorem that there exists L ∈ L and a point
p0 ∈ X (L) which is neither a zero nor a pole of a or b. As in the proof of Lemma
4.7, we let v0 be the restriction to K of the valuation of L(X) associated with p0.

Then

v0(a) = v0(b) = 0, (20)

and the residue field P = K̄(v0) ⊂ L belongs to L (by (α)); in particular [P : K ]
is odd. Any other central quaternion division algebra D′ over K having the same

maximal subfields as D can be written in the form D′ =
(

a, b′

K
)

for some b′ ∈ K×.
Furthermore, it follows from (20) that D is unramified at v0, and then due to (18),
D′ is also unramified at v0. Then we can choose b′ so that v0(b′) = 0 (see [3], 3.4).

Consider the quaternion algebras Ď =
(

ā, b̄

P

)
and Ď′ =

(
ā, b̄′

P

)
where ā, b̄

and b̄′ are the images in P = K̄(v0) of a, b and b′, respectively. Set Ǐ(Ď) = {e}
if Ď � M2(P), and let Ǐ(Ď) denote the set of classes [A] ∈ Br(P) where A is
a central quaternion division algebra over P having the same maximal subfields
as Ď if the latter is a division algebra. Since P ∈ L , it follows from (γ ) that
|Ǐ(Ď)| � n0. On the other hand, according to Lemma 4.3 we have [Ď′] ∈ Ǐ(Ď).
Now, if [D′] = [D][�⊗K K] where [�] ∈ J (D) then it follows from Lemma 4.4
that

[Ď′] = [Ď][�⊗K P] in Br(P).

This shows that λP (J (D)) ⊂ [Ď]−1Ǐ(Ď), and consequently,

|λP (J (D))| � |Ǐ(Ď)| � n0,

as required. 
�
Corollary 4.8. Let H be a finitely generated subgroup of the absolute Galois group

Gal(Q/Q), and let K = Q
H

be the corresponding fixed field. Furthermore, let
F(x, y) be an absolutely irreducible polynomial over K such that at least one of the
numbers deg F, degx F or degy F is odd. Then the field K = K (X0) of K-rational
functions on the affine curve X0 given by F(x, y) = 0 has property (�).

Proof. We first note the following elementary statement.

Lemma 4.9. Let F(x, y) be an absolutely irreducible polynomial over an arbitrary
field K such that one of the numbers deg F, degx F or degy F is odd. Let X be a
smooth projective K -defined model for the affine curve X0 given by F(x, y) = 0.
Then

⋃
L∈L

X (L), where L is the family of all finite extensions L/K of odd degree,

is infinite.
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Proof. It is enough to show that XL = ⋃
L∈L X0(L) is infinite. Assume the con-

trary, i.e. XL = {(x1, y1), . . . , (xr , yr )}. We will first consider the case where
d := degx F is odd. We have F(x, y) = fd(y)xd + fd−1(y)xd−1 + · · · with
fd �≡ 0, so one can find an odd degree extension K ′/K containing an element
y0 /∈ {y1, . . . , yr } such that fd(y0) �= 0 (if K is infinite then such an element y0
can already be found in K ′ = K ). Then the degree of ϕ(x) = F(x, y0) ∈ K ′[x] is
d, hence odd, and therefore ϕ(x) has an irreducible factor ψ(x) of odd degree. Let
x0 be a root ofψ(x) (in a fixed algebraic closure of K ), and set L = K ′(x0).Then L
is of odd degree over K ′, hence over K , i.e. L ∈ L . So, (x0, y0) ∈ X0(L) ⊂ XL ,

contradicting our construction. The case where degy F is odd is reduced to the case
just considered by switching x and y. Finally, if deg F is odd then one can find
an odd degree extension K ′′/K and a ∈ K ′′ so that for �(x, y) = F(x, y + ax)
we have degx � = deg F, hence odd (again, if K is infinite one can find such an
a already in K ′′ = K ). Then our claim holds for the K ′′-defined curve given by
�(x, y) = 0, which implies its truth for X0 as any odd degree extension L/K ′′ is
of odd degree over K .

Next, we recall that as follows from (AHBN) ([7], Sect. 18.5) any algebraic
extension L/Q satisfies (*), i.e. it satisfies (�) with n(L) = 1. Indeed, let D1
and D2 be central quaternion division algebras over L having the same maximal
subfields. Assume that D1 �� D2; then D := D1 ⊗L D2 represents a nontrivial
class in Br(L).We can find a finite extension L0/Q contained in L and central qua-
ternion division algebras D0

i over L0 such that Di = D0
i ⊗ L0 L for i = 1, 2. Set

D0 = D0
1 ⊗L0 D0

2 . Then for any finite extension P/L0, contained in L , the algebra
D0

P = D0 ⊗L0 P represents a nontrivial class in Br(P), and therefore by (AHBN)
there exists a valuation w of P (which can be archimedean) such that the class
[D0

P ⊗P Pw] ∈ Br(Pw) is nontrivial. The standard argument using the nonemp-
tiness of the inverse limit of an inverse system of nonempty finite sets shows that
there exists a valuation ṽ of L such that for any finite subextension L0 ⊂ P ⊂ L
and vP := ṽ|P, the class [D0

P ⊗P PvP ] ∈ Br(PvP ) is nontrivial. Let v0 = ṽ|L0.

Since Br(L0
v0
)2 is of order � 2 and the class [D0 ⊗L0 L0

v0
] is notrivial, one of the

classes [D0
i ⊗L0 L0

v0
],where i = 1, 2, is trivial and the other is nontrivial. Suppose

that [D0
1 ⊗L0 L0

v0
] is trivial. Then for any finite subextension L0 ⊂ P ⊂ L , the

class [D0
2 ⊗L0 PvP ] ∈ Br(PvP ) is nontrivial. Let V be the (finite) set of ramification

places of D0
1 . Then v0 /∈ V, so by the weak approximation theorem there exists

t ∈ (L0)× such that t /∈ (L0
v)

×2
for all v ∈ V and t ∈ (L0

v0
)×2

. It follows from
(AHBN) that L0(

√
t) is isomorphic to a maximal subfield of D0

1 ([7], Corollary
b in Sect. 18.4), hence L(

√
t) is isomorphic to a maximal subfield of D1. Since

D1 and D2 have the same maximal subfields, there exists a finite subextension
L0 ⊂ P ⊂ L such that P(

√
t) is isomorphic to a maximal subfield of D0

2 ⊗L0 P.

However by our construction t ∈ P×
vP

2
, so the latter is impossible as D0

2 ⊗L0 PvP

is a division algebra.
Finally, since Gal(K/K ) = H is finitely generated, the field K is of type (F)

as defined by Serre ([16], Chap. III, Sect. 4.2), and therefore H1(K ,C) is finite
for any finite Gal(K/K )-module C (loc. cit., Theorem 4). Then it follows from
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exact sequence (9.25) in [2], p. 27, that for K = K (X0) = K (X), where X is the
K -defined smooth projective model for X0, the quotient Brur (K)2/ι(Br(K )2) is
finite. Thus, our claim follows from Theorem 4.6 applied to the family L = {L}
of all odd degree extensions L/K .

Remarks 4.10. 1. Lemma 4.9 (and hence Corollary 4.8) applies to any elliptic curve
as well as to any hyperelliptic curve given by y2 = f (x)where f is a polynomial
of odd degree without multiple roots.

2. We observe that (*) for a field K is equivalent to (�) with n(K ) = 1. For X =
P1

K , Faddeev’s exact sequence yields m = 1, so we obtain from Theorem 4.6
(assuming, as we may, K to be infinite) that n(K ) = 1 implies n(K (x)) = 1,
which is precisely Theorem A. Thus, Theorem 4.6 contains Theorem A as a
particular case. For clarity of exposition, however, we decided to give first a
streamlined proof of Theorem A which is not loaded with extra technical details.

In the recent preprint [5], some finiteness results in the spirit of property (�)
were obtained for division algebras of any prime degree over a field of rational
functions.
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