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CENTRALITY OF THE CONGRUENCE KERNEL

FOR ELEMENTARY SUBGROUPS OF CHEVALLEY GROUPS

OF RANK > 1 OVER NOETHERIAN RINGS

ANDREI S. RAPINCHUK AND IGOR A. RAPINCHUK

(Communicated by Jonathan I. Hall)

Abstract. Let G be a universal Chevalley-Demazure group scheme associated
to a reduced irreducible root system of rank > 1. For a commutative ring R, we
let Γ = E(R) denote the elementary subgroup of the group of R-points G(R).
The congruence kernel C(Γ) is then defined to be the kernel of the natural

homomorphism ̂Γ → Γ, where ̂Γ is the profinite completion of Γ and Γ is the
congruence completion defined by ideals of finite index. The purpose of this
paper is to show that for an arbitrary noetherian ring R (with some minor
restrictions if G is of type Cn or G2), the congruence kernel C(Γ) is central

in ̂Γ.

1. Introduction

Let G be a universal Chevalley-Demazure group scheme associated to a reduced
irreducible root system Φ of rank > 1. Given a commutative ring R, we let G(R)
denote the group of R-points of G and let E(R) ⊂ G(R) be the corresponding
elementary subgroup. (We recall that E(R) is defined as the subgroup generated
by the images eα(R) =: Uα(R) for all α ∈ Φ, where eα : Ga → G is the canonical
1-parameter subgroup corresponding to a root α ∈ Φ; see [3] for details.) The goal
of this paper is to make a contribution to the analysis of the congruence subgroup
problem for E(R) over a general commutative noetherian ring R (with some minor
restrictions if Φ is of type Cn (n ≥ 2) or G2).

While the congruence subgroup problem for S-arithmetic groups is a well-
established subject (see [13] for a recent survey), its analysis over general rings,
at least from the point of view we adopt in this paper, has been rather limited, de-
spite a large number of results dealing with arbitrary normal subgroups of Chevalley
groups over commutative rings. For this reason, we begin with a careful description
of our set-up. Let R be a commutative ring and n ≥ 1. Then to every ideal a ⊂ R,
one associates the congruence subgroup GLn(R, a) = ker(GLn(R) → GLn(R/a)),
where the map is the one induced by the canonical homomorphism R → R/a.
Clearly, if a is of finite index (i.e. the quotient R/a is a finite ring), then GLn(R, a)
is a normal subgroup of GLn(R) of finite index. Given a subgroup Γ ⊂ GLn(R),
we set Γ(a) = Γ∩GLn(R, a). Then, by the congruence subgroup problem for Γ, we
understand the following question:
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(CSP) Does every normal subgroup Δ ⊂ Γ of finite index contain the congruence
subgroup Γ(a) for some ideal a ⊂ R of finite index?

An affirmative answer would give us information about the profinite completion

Γ̂, which is precisely what is needed for the analysis of representations of Γ, as
well as other issues (cf. [2], [9], [15]). However, even when Γ is S-arithmetic, the
answer to (CSP) is often negative. So one is instead interested in the computation
of the congruence kernel, which measures the deviation from a positive solution.
For this, just as in the arithmetic case, we introduce two topologies on Γ: the
profinite topology τΓp and the congruence topology τΓc . The fundamental system
of neighborhoods of the identity for the former consists of all normal subgroups
N ⊂ Γ of finite index, and for the latter of the congruence subgroups Γ(a), where
a runs through all ideals of R of finite index. The corresponding completions are
then given by

Γ̂ = lim
←−

Γ/N, where N � Γ and [Γ : N ] < ∞
and

Γ = lim
←−

Γ/Γ(a), where |R/a| < ∞.

As τΓp is stronger than τΓc , there exists a continuous surjective homomorphism

πΓ : Γ̂ → Γ, whose kernel is called the congruence kernel and is denoted by C(Γ).
Clearly, C(Γ) is trivial if and only if the answer to (CSP) is affirmative; in general,
its size measures the extent of deviation from the affirmative answer. Unfortunately,
as remarked above, in many situations C(Γ) is nontrivial, and the focus of this paper
is on a different property, viz. the centrality of C(Γ) (which means that C(Γ) is

contained in the center of Γ̂). We note that in some cases centrality is almost as
good as triviality (cf. [9], [15]), and in the arithmetic case it actually implies the
finiteness of C(Γ).

Returning to Chevalley groups, we observe that congruence subgroups G(R, a) ⊂
G(R) can be defined either as pullbacks of the congruence subgroups GLn(R, a)
under a faithful representation of group schemes G ↪→ GLn over Z or, intrinsically,
as the kernel of the natural homomorphism G(R) → G(R/a).

Our main result concerns the congruence kernel of the elementary group Γ =
E(R). We note that the congruence topology on Γ is induced by that on G(R), i.e.
is defined by the intersections Γ∩G(R, a), where a runs over all ideals a ⊂ R of finite
index. On the other hand, the profinite topology on Γ may a priori be different
from the topology induced by the profinite topology of G(R) (cf. the remarks at
the end of §4).

Main Theorem. Let G be a universal Chevalley-Demazure group scheme corre-
sponding to a reduced irreducible root system Φ of rank > 1. Furthermore, let R be
a noetherian commutative ring such that 2 ∈ R× if Φ is of type Cn (n ≥ 2) or G2,
and let Γ = E(R) be the corresponding elementary subgroup. Then the congruence
kernel C(Γ) is central.

The centrality of the congruence kernel for SLn (n ≥ 3) and Sp2n (n ≥ 2) over
rings of algebraic integers was proved by Bass, Milnor, and Serre [2]. Their result
was generalized to arbitrary Chevalley groups of rank > 1 over rings of algebraic
integers by Matsumoto [11]. The only known result for general rings is due to Kass-
abov and Nikolov [9], where centrality was established for SLn(Z[x1, . . . , xk]), with
n ≥ 3, and hence for the elementary group En(R) over any finitely generated ring
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R, using K-theoretic methods (note that SLn(R) = E(R) for R = Z[x1, . . . , xk];
see [19]). Although our proof shares some elements with the argument in [9], it is
purely group-theoretic and is inspired by the proof of centrality for SLn (n ≥ 3) over
arithmetic rings given in [14]. In addition, we do not use any results of Matsumoto
[11].

Conventions and notation. All of our rings will be assumed to be commutative
and unital. Unless explicitly stated otherwise, G will always denote a universal
Chevalley-Demazure group scheme corresponding to a reduced irreducible root sys-
tem Φ of rank > 1. Furthermore, if R is a commutative ring, then for a subgroup

Γ ⊂ G(R), we let Γ̂ and Γ denote the profinite and congruence completions of Γ,
respectively.

2. Structure of G(R)

Let I be the set of all ideals a ⊂ R of finite index, and let M ⊂ I be the subset
of maximal ideals. It is not difficult to see (cf. the proof of Proposition 2.5) that

G(R) can be identified with the closure of the image of G(R) in G(R̂), where

R̂ = lim
←−a∈I

R/a

is the profinite completion of R. Note that we do not require that R satisfy

(1)
⋂
a∈I

a = {0}.

Thus the natural maps R → R̂ and G(R) → G(R̂) need not be injective. However,
we observe that there are many rings, for example all finitely generated rings over
Z, for which (1) does hold. The proof of the Main Theorem relies on the fact that

G(R̂) has the bounded generation property with respect to the set Ŝ = {eα(t) | t ∈
R̂, α ∈ Φ} of elementaries, which we will establish at the end of this section (cf.

Corollary 2.4). We begin, however, by describing the structure of R̂ itself. For each
m ∈ M, we let

Rm = lim
←−

R/mn

denote the m-adic completion of R (cf. [1], Chapter 10).

Lemma 2.1. Let R be a noetherian ring.
(1) There exists a natural isomorphism of topological rings

R̂ =
∏

m∈M
Rm.

(2) Each Rm is a complete local ring.

Proof. (1) Since R is noetherian, for any a ∈ I and any n ≥ 2, the quotient an−1/an

is a finitely generated R/a-module, hence finite. It follows that R/an is finite for any
n ≥ 1. In particular, for any m ∈ M and n ≥ 1, there exists a natural continuous
surjective projection

ρm,n : R̂ → R/mn.

For a fixed m, the inverse limit of the ρm,n over all n ≥ 1 yields a continuous ring

homomorphism ρm : R̂ → Rm. Taking the direct product of the ρm over all m ∈ M,
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we obtain a continuous ring homomorphism

ρ : R̂ →
∏

m∈M
Rm =: R.

We claim that ρ is the required isomorphism.
Note that ideals of the form

a = m
α1
1 Rm1

× · · · ×mαn
n Rmn

×
∏

m �=mi

Rm,

where {m1, . . . ,mn} ⊂ M is a finite subset and αi ≥ 1, form a base of neighborhoods
of zero in R, with

R/a = R/mα1
1 × · · · ×R/mαn

n

(cf. [1], Proposition 10.15). Set a = m
α1
1 · · ·mαn

n . By the Chinese Remainder
Theorem,

R/a � R/mα1
1 × · · · ×R/mαn

n ,

which implies that the composite map

R̂ → R → R/a

is surjective. Since this is true for all a, we conclude that the image of ρ is dense.

On the other hand, R̂ is compact, so the image is closed, and we obtain that ρ is
in fact surjective.

To prove the injectivity of ρ, we observe that for any a ∈ I, the quotient R/a,
being a finite, hence artinian ring, is a product of the finite local ring R1, . . . , Rr

([1], Theorem 8.7). Furthermore, for each maximal ideal ni ⊂ Ri, there exists

βi ≥ 1 such that nβi

i = 0 (cf. [1], Proposition 8.4). Letting mi denote the pullback

of ni in R, we obtain that a contains b := m
β1

1 · · ·mβr
r ∈ I. It follows that any

nonzero x ∈ R̂ will have a nonzero projection to some R/b = R/mβ1

1 ×· · ·×R/mβr
r ,

and hence to some Rmi
, as required.

(2) It is well-known that Rm is both complete and local (cf. [1], Propositions 10.5
and 10.16). �
Remark (added in proof). M. Kassabov has pointed out to us that the profinite

completion R̂ of any (not necessarily noetherian) commutative ring R has a struc-
ture similar to that described in Lemma 2.1. More precisely,

R̂ =
∏

m∈M
Rm,

where
Rm = lim

←−
R/a,

with the limit taken over all a ∈ I that contain a suitable power mn of m (this
requires only minor modifications in the proof of Lemma 2.1. Ultimately, one can
see that the noetherian assumption in the Main Theorem can actually be omitted.
We thank Kassabov for this observation.

As a first step towards establishing bounded generation of G(R̂) with respect to
the set of elementaries, we prove

Proposition 2.2. There exists an integer N = N(Φ), depending only on the root
system Φ, such that for any commutative local ring R, any element of G(R) is a
product of the ≤ N elements of S = {eα(r) | r ∈ R, α ∈ Φ}.
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Proof. Fix a system of simple roots Π ⊂ Φ, and let Φ+ and Φ− be the corresponding
sets of positive and negative roots. Let T ⊂ G be the canonical maximal torus,
and let U+ and U− be the canonical unipotent Z-subschemes corresponding to Φ+

and Φ−. It is well-known (see, for example, [3], Lemma 4.5) that the product map
μ : U− × T × U+ → G is an isomorphism onto a principal open subscheme Ω ⊂ G
defined by some d ∈ Z[G]. We have decompositions

U± =
∏

α∈Φ±

Uα and T =
∏
α∈Π

Tα,

where Tα is the maximal diagonal torus in Gα = 〈Uα, U−α〉 = SL2. So, the identity(
a 0
0 a−1

)
=

(
1 −1
0 1

) (
1 0

1− a 1

) (
1 a−1

0 1

) (
1 0

a(a− 1) 1

)
shows that there exists N1 = N1(Φ) such that any element of Ω(R) is a product of
≤ N1 elementaries for any ring R.

On the other hand, it follows from the existence of the Bruhat decomposition in
Chevalley groups over fields that there exists N2 = N2(Φ) such that any element
of G(k) is a product of ≤ N2 elementaries, for any field k. We will now show that
N := N1+N2 has the required property for any local ring R. Indeed, let m ⊂ R be
the maximal ideal, and let k = R/m be the residue field. As G(k) is generated by
elementaries, the canonical homomorphism ω : G(R) → G(k) is surjective. Given
g ∈ G(R), there exists h ∈ G(R) that is a product of ≤ N2 elementaries and for
which we have ω(g) = ω(h). Then, for t = gh−1, we have ω(t) = 1 (in particular,
ω(t) ∈ Ω(k)), and therefore d(t) �≡ 0(mod m). Since R is local, this means that
d(t) ∈ R×, and therefore t ∈ Ω(R). Thus, t is a product of ≤ N1 elementaries, and
the required fact follows. �

Next, we have the following lemma.

Lemma 2.3. Let Ri (i ∈ I) be a family of commutative rings such that there exists
an integer N with the property that for any i ∈ I, any xi ∈ G(Ri) is a product of
≤ N elementaries. Set R =

∏
i∈I Ri. Then any x ∈ G(R) is a product of ≤ N · |Φ|

elementaries.

Proof. It is enough to observe that any element of the form

(eαi
(ri)) ∈ G(R) =

∏
i∈I

G(Ri),

with αi ∈ Φ, ri ∈ Ri, can be written as∏
α∈Φ

eα(tα)

for some tα ∈ R. �
Using this result, together with Lemma 2.1 and Proposition 2.2, we obtain

Corollary 2.4. Let R be a noetherian ring. Then there exists an integer M > 0

such that any element of G(R̂) is a product of ≤ M elementaries from the set

Ŝ = {eα(t) | t ∈ R̂, α ∈ Φ}.

As we noted earlier, one can identify the congruence completion G(R) with the

closure of the image of G(R) in G(R̂). The following proposition gives more precise
information.
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Proposition 2.5. Let R be a noetherian ring. Then E(R) = G(R) can be nat-

urally identified with G(R̂). Furthermore, there exists an integer M > 0 such

that any element of E(R) = G(R) is a product of ≤ M elements of the set

S := {eα(r) | α ∈ Φ, r ∈ R} (closure in the congruence topology).

Proof. For any a ∈ I, there exists a natural injective homomorphism

ωa : G(R)/G(R, a) → G(R/a),

where as before, G(R, a) is the principal congruence subgroup of level a. Taking the
inverse limit over all a ∈ I, we obtain a continuous injective homomorphism

ω : G(R) → G(R̂).

Clearly, the image of ω coincides with the closure of the image of the natural

homomorphism G(R) → G(R̂). From the definitions, one easily sees that if eα(r)

is the image of eα(r) (α ∈ Φ, r ∈ R) in G(R), then

ω(eα(r)) = eα(r̂),

where r̂ is the image of r in R̂. It follows that ω maps S onto Ŝ = {eα(t) | α ∈ Φ, t ∈
R̂}. Since by Corollary 2.4, Ŝ generates G(R̂), we obtain that ω(E(R)) = G(R̂),

and consequently ω identifies E(R) = G(R) with G(R̂). Furthermore, if M is the

same integer as in Corollary 2.4, then since every element of G(R̂) is a product of

≤ M elements of Ŝ, our second claim follows. �
Remark. Recall that a group G is said to have bounded generation with respect to
a generating set X ⊂ G if there exists an integer N > 0 such that every g ∈ G can
be written as g = xε1

1 · · ·xεd
d with xi ∈ X, d ≤ N , and εi = ±1. It follows from the

Baire category theorem (cf. [12], Theorem 48.2) that if a compact topological group
G is (algebraically) generated by a compact subsetX, then in fact G is automatically
boundedly generated by X. Indeed, replacing X by X ∪X−1∪{1}, we may assume
that X = X−1 and 1 ∈ X. Set X(n) = X · · ·X (an n-fold product). Then the fact
that G = 〈X〉 means that

G =
⋃
n≥1

X(n).

Since each X(n) is compact, hence closed, we conclude from Baire’s theorem that
for some n ≥ 1, X(n) contains an open set. Then G can be covered by finitely
many translates of X(n), and therefore there exists M > 0 such that X(M) = G, as
required. This remark shows, in particular, that (algebraic) generation of G(R) by

S, or that of G(R̂) by Ŝ, automatically yields bounded generation.

We would like to point out that the fact that G(R) = E(R) is not used in the

proof of the Main Theorem; all we need is that E(R) is boundedly generated by S.
So, we will indicate another way to prove this, based on some ideas of Tavgen (cf.
[20], Lemma 1), which also gives an explicit bound on the constantM in Proposition

2.5. First we observe that it is enough to establish the bounded generation of E(R̂)

by Ŝ = {eα(t) | α ∈ Φ, t ∈ R̂} (indeed, this will show that E(R̂) is a continuous

image of R̂N for some N > 0, hence compact, implying that the map ω from the

proof of Proposition 2.5 identifies E(R) with E(R̂), and also S with Ŝ). In turn, by

the same argument as above, we see that to prove bounded generation of E(R̂), it
suffices to show that there exists an integer N > 0 depending only on Φ such that
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for any local ring R, any element of E(R) is a product of ≤ N elementaries. We
will show that in fact

(2) E(R) = (U+(R)U−(R))4,

so one can take N = 4 · |Φ|. Let us now prove (2) by induction on the rank 
 of Φ.
If 
 = 1, then G = SL2, and one easily checks that

G(R) = E(R) = (U+(R)U−(R))4.

Now, we assume that (2) is valid for every reduced irreducible root system of
rank ≤ 
 − 1, with 
 ≥ 2, and prove it for a root system Φ of rank 
. Set X =
(U+(R)U−(R))4, and let Δ ⊂ Φ be a system of simple roots. Since the group E(R)
is generated by e±β(t) for β ∈ Δ and t ∈ R (cf. the proof of (10) in §4), to prove
(2) it suffices to show that

e±β(t)X ⊂ X.

Pick α ∈ Δ, α �= β, that corresponds to an extremal node in the Dynkin diagram of
Φ. Let Φ0 (resp., Φ1) be the set of roots in Φ that do not contain (resp., contain) α,
and let Φ±

i = Φi ∩Φ±. Then Φ0 is an irreducible root system having Δ0 = Δ \ {α}
as a system of simple roots; in particular, Φ0 has rank 
−1. If we let G0 denote the
corresponding universal Chevalley-Demazure group scheme, then by the induction
hypothesis

E0(R) = (U+
0 (R)U−

0 (R))4,

with the obvious notation. Let U±
1 (R) be the subgroup generated by eα(r) for

α ∈ Φ+
1 (resp., α ∈ Φ−

1 ) and r ∈ R. Then U±(R) = U±
0 (R)U±

1 (R), and according
to [18], Lemma 17,

U±
0 (R)U∓

1 (R) = U∓
1 (R)U±

0 (R).

Therefore,

X = (U+
0 (R)U+

1 (R)U−
0 (R)U−

1 (R))4 = (U+
0 (R)U−

0 (R))4(U+
1 (R)U−

1 (R))4

= E0(R)(U+
1 (R)U−

1 (R))4.

Since e±β(t) ∈ E0(R), we obtain that

e±β(t)X = e±β(t)E0(R)(U+
1 (R)U−

1 (R))4 = X,

as required.

3. Profinite and congruence topologies coincide

on 1-parameter root subgroups

Proposition 3.1. Let Φ be a reduced irreducible root system of rank ≥ 2, G be
the corresponding universal Chevalley-Demazure group scheme, and E(R) be the
elementary subgroup of the group G(R) over a commutative ring R. Furthermore,
suppose N ⊂ E(R) is a normal subgroup of finite index. If Φ is not of type Cn

(n ≥ 2) or G2, then there exists an ideal a ⊂ R of finite index such that

(3) eα(a) ⊂ N ∩ Uα(R)

for all α ∈ Φ, where eα(a) = {eα(t) | t ∈ a}. The same conclusion holds for Φ of
type Cn (n ≥ 2) and G2 if 2 ∈ R×. Thus, in these cases, the profinite and the
congruence topologies of E(R) induce the same topology on Uα(R), for all α ∈ Φ.
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Proof. We begin with two preliminary remarks. First, for any root α ∈ Φ,

a(α) := {t ∈ R | eα(t) ∈ N}

is obviously a finite index subgroup of the additive group of R. What one needs
to show is that either a(α) itself is an ideal of R or that it at least contains an
ideal of finite index. Second, if α1, α2 ∈ Φ are roots of the same length, then by
[7, 10.4, Lemma C] there exists an element w̃ of the Weyl group W (Φ) such that
α2 = w̃ · α1. Consequently, it follows from [16, 3.8, relation (R4)], that we can find
w ∈ E(R) such that

weα1
(t)w−1 = eα2

(ε(w)t)

for all t ∈ R, where ε(w) ∈ {±1} is independent of t. Since N is a normal subgroup
of E(R), we conclude that

(4) a(α1) = a(α2).

Thus, it is enough to find a finite index ideal a ⊂ R such that (3) holds for a single
root of each length.

Let us now prove our claim for Φ of type A2 using explicit computations with
commutator relations. We will use the standard realization of Φ, described in [5],
where the roots are of the form εi − εj , with i, j ∈ {1, 2, 3}, i �= j. To simplify
notation, we will write eij(t) to denote eα(t) for α = εi − εj . Set α1 = ε1 − ε2. We
will now show that a(α1) is an ideal of R, and then it will follow from our previous
remarks that a := a(α1) is as required. Let r ∈ a(α1) and s ∈ R. Since N � E(R),
the (well-known) relation

[e12(r), e23(s)] = e13(rs),

where [g, h] = ghg−1h−1, shows that rs ∈ a(α2) for α2 = ε1 − ε2. But then (4)
yields rs ∈ a(α1), completing the argument.

Now let Φ be any root system of rank ≥ 2 in which all roots have the same length.
Then clearly Φ contains a subsystem Φ0 of type A2, so our previous considerations
show that there exists a finite index ideal a ⊂ R with the property that a ⊂ a(α)
for all α ∈ Φ0. But then, by (4), the same inclusion holds for all α ∈ Φ.

Next, we consider the case of Φ of type Bn with n ≥ 3. Note that since the system
of type F4 contains a subsystem of type B3, this will automatically take care of the
case when Φ is of type F4 as well. We will use the standard realization of Φ of type
Bn, where the roots are of the form ±εi, ±εi ± εj with i, j ∈ {1, . . . , n}, i �= j. The
system Φ contains a subsystem Φ0 of type An−1, all of whose roots are long roots
in Φ. Arguing as above, we see that there exists an ideal a ⊂ R of finite index such
that (3) holds for all α ∈ Φ0, and hence for all long roots α ∈ Φ. To show that the
same ideal also works for short roots, we will use the following relation, which is
verified by direct computation:

(5) [eε1+ε2(r), e−ε2(s)] = eε1(rs)eε1−ε2(−rs2)

for any r, s ∈ R. Now, if r ∈ a, then eε1+ε2(r), eε1−ε2(−r) ∈ N. So, setting s = 1 in
(5) and noting that [eε1+ε2(r), e−ε2(1)] ∈ N asN�E(R), we obtain that eε1(r) ∈ N.
Thus, (3) holds for α = ε1, and therefore for all short roots.

Next, we proceed to the case of Φ of type B2 = C2, where we assume that
2 ∈ R×. We will use the same realization of Φ as in the previous paragraph (for
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n = 2). Set a = a(ε1). Then for r ∈ a, s ∈ R, one can check by direct computation
that

(6) [eε1(r), eε2(s/4)] = eε1+ε2(rs/2) ∈ N.

Next, using (5), in conjunction with the fact that eε1(u) and eε1−ε2(v) commute
for all u, v ∈ R, we obtain

[eε1+ε2(rs/2), e−ε2(1)][eε1+ε2(rs/2), e−ε2(−1)]−1 = eε1(rs) ∈ N,

i.e. rs ∈ a, which shows that a is an ideal. Furthermore, from (6), we see that for
any r ∈ a, we have

[eε1(r), eε2(1/2)] = eε1+ε2(r) ∈ N.

Thus, eε1+ε2(a) ⊂ N, and therefore (3) holds for all α ∈ Φ. As above, the truth of
our claim for Φ of type C2 implies its truth for Φ of type Cn for any n ≥ 2.

Finally, suppose that Φ is of type G2 and assume again that 2 ∈ R×. We will
use the realization of Φ described in [4]: one picks a system of simple roots {k, c}
in Φ, where k is long and c is short, and then the long roots of Φ are

±k,±(3c+ k),±(3c+ 2k)

and the short roots are

±c,±(c+ k),±(2c+ k).

Set a = a(k). Since the long roots of Φ form a subsystem of type A2, it follows
from the above analysis that a is a finite index ideal in R and that (3) holds for
all long roots. To show that (3) is true for the short roots as well, we need to
recall the following explicit forms of the Steinberg commutator relations that were
established in [4, Theorem 1.1]:

[ek(s), ec(t)] = ec+k(ε1st)e2c+k(ε2st
2)e3c+k(ε3st

3)e3c+2k(ε4s
2t3),(7)

[ec+k(s), e2c+k(t)] = e3c+2k(3ε5st),(8)

where εi = ±1. Using (7), we obtain

[ek(s), ec(1)][ek(s), ec(−1)] = ec+k(ε1s)e2c+k(ε2s)e3c+k(ε3s)e3c+2k(ε4s
2)

× ec+k(−ε1s)e2c+k(ε2s)e3c+k(−ε3s)e3c+2k(−ε4s
2).

Since the terms e3c+k(−ε3s) and e3c+2k(−ε4s
2) commute with all other terms, the

last expression reduces to

ec+k(ε1s)e2c+k(ε2s)ec+k(−ε1s)e2c+k(ε2s),

which, using (8), can be written in the form

e3c+2k(3ε5ε1ε2s
2)e2c+k(2ε2s).

Hence if s ∈ a, we obtain that

[ek(s/2), ec(1)][ek(s/2), ec(−1)] = e3c+2k(3ε5ε1ε2s
2/4)e2c+k(ε2s) ∈ N.

But e3c+2k(3ε5ε1ε2s
2/4) ∈ N, from which it follows that e2c+k(a) ⊂ N. This com-

pletes the proof. �
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Remark. If R is the ring of algebraic S-integers, then any subgroup of finite index
of the additive group of R contains an ideal of finite index, so the conclusion of
Proposition 3.1 holds for root systems of rank> 1 of all types without any additional
restrictions on R. On the other hand, if R is the ring of S-integers in a global field
of positive characteristic > 2, then 2 ∈ R×, and Proposition 3.1 again applies to all
root systems without any additional assumptions.

4. Proof of the Main Theorem

We return to the notation introduced in §1. In particular, we set Γ = E(R),
where R is a commutative noetherian ring such that 2 ∈ R× if our root system Φ

is of type Cn (n ≥ 2) or G2, and let Γ̂ and Γ denote the profinite and congruence

completions of Γ, respectively. Furthermore, we let π : Γ̂ → Γ denote the canonical
continuous homomorphism, so that C(Γ) := kerπ is the congruence kernel. For

each root α ∈ Φ, we let Ûα and Uα denote the closures of the images of the natural

homomorphisms Uα(R) → Γ̂ and Uα(R) → Γ. By Proposition 3.1, the profinite and
congruence topologies of Γ induce the same topology on each Uα(R), which implies

that π|
̂Uα

: Ûα → Uα is a group isomorphism. From the definitions, it is clear

that Uα coincides with eα(R̂), where eα : R̂ → G(R̂) = G(R) is the 1-parameter

subgroup associated with α over the ring R̂. Set

êα = (π|
̂Uα
)−1 ◦ eα.

Then êα : R̂ → Ûα is an isomorphism of topological groups, and in particular, we
have

êα(r + s) = êα(r)êα(s)

for all r, s ∈ R̂ and any α ∈ Φ.
Before establishing some further properties of the êα, let us recall that for any

commutative ring S and any α, β ∈ Φ, β �= −α, there is a relation in G(S) of the
form

(9) [eα(s), eβ(t)] =
∏

eiα+jβ(N
i,j
α,βs

itj)

for all s, t ∈ S, where the product is taken over all roots of the form iα + jβ
with i, j ∈ Z+, listed in an arbitrary (but fixed) order, and the N i,j

α,β are integers

depending only on α, β ∈ Φ and the order of the factors in (9), but not on s, t ∈ S.

Furthermore, recall that the abstract group G̃(S) with generators x̃α(s) for all s ∈ S
and α ∈ Φ subject to the relations

(R1) x̃α(s)x̃α(t) = x̃α(s+ t);

(R2) [x̃α(s), x̃β(t)] =
∏

x̃iα+jβ(N
i,j
α,βs

itj), where N i,j
α,β are the same integers, and

the roots are listed in the same order, as in (9),

is called the Steinberg group. It follows from (9) that there exists a canonical

homomorphism G̃(S) → G(S), defined by x̃α(s) �→ eα(s), whose kernel is denoted
by K2(Φ, S).

Lemma 4.1. (1) For any α, β ∈ Φ, β �= −α, and s, t ∈ R̂, we have [êα(s), êβ(t)] =∏
êiα+jβ(N

i,j
α,βs

itj). Let R̂ =
∏

m∈M Rm be the decomposition from Lemma 2.1,

and for m ∈ M, let Γ̂m (resp., Γ̂′
m) be the subgroup of Γ̂ (algebraically) generated

by êα(r) for all r ∈ Rm (resp., r ∈ R′
m :=

∏
n�=m

Rn) and all α ∈ Φ. Then
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(2) There exists a surjective group homomorphism θm : G̃(Rm) → Γ̂m such that
x̃α(r) �→ êα(r) for all r ∈ Rm and α ∈ Φ.

(3) Γ̂m and Γ̂′
m commute elementwise inside Γ̂.

Proof. (1) Define two continuous maps

ϕ : R̂× R̂ → Γ̂, (s, t) �→ [êα(s), êβ(t)]

and

ψ : R̂ × R̂ → Γ̂, (s, t) �→
∏

êiα+jβ(N
i,j
α,βs

itj).

It follows from (9) that these maps coincide on R × R. Since R × R is dense in

R̂× R̂, we have ϕ ≡ ψ, yielding our claim.
(2) Since we have shown that the êα(r), r ∈ Rm, α ∈ Φ, satisfy the relations

(R1) and (R2), the existence of the homomorphism θm follows.
(3) It suffices to show that for any α, β ∈ Φ and any r ∈ Rm, s ∈ R′

m, the

elements êα(r), êβ(s) ∈ Γ̂ commute. Since rs = 0 in R̂, this fact immediately
follows from (1) if β �= −α. To handle the remaining case β = −α, we observe that

for any ring S and the corresponding Steinberg group G̃(S), we have

(10) G̃(S) = 〈x̃γ(s) | γ ∈ Φ \ {α}, s ∈ S〉.

Indeed, it is well-known that G̃(S) is generated by the elements x̃γ(s) for all s ∈ S
and all γ ∈ Π∪(−Π) for an arbitrary system Π ⊂ Φ of simple roots (this follows, for
example, from the fact that the Weyl group W of Φ is generated by the reflections
corresponding to simple roots and, moreover, every root lies in the orbit of a simple
root under the action of the Weyl group). So, to prove (10), it is enough to show that
for any α ∈ Φ, one can find a system of simple roots Π ⊂ Φ such that α /∈ Π∪(−Π).
For this, fix a system of simple roots Π0 ⊂ Φ, and let γ ∈ Π0 be a root having
the same length as α. Since Φ is irreducible of rank ≥ 2, we can pick δ ∈ Π0 \ {γ}
which is not orthogonal to γ. Then α0 := wδ(γ), where wδ is the reflection with
respect to δ, is a positive nonsimple root with respect to the ordering defined by
Π0, having the same length as α. There exists w ∈ W such that α = w(α0), and
then the system Π = w(Π0) is as required.

Using the homomorphism θm constructed in part (2), we conclude from (10)

that Γ̂m = θm(G̃(Rm)) is generated by êγ(r) for r ∈ Rm, γ ∈ Φ \ {α}. So, since we
already know that ê−α(s), with s ∈ R′

m, commutes with all of these elements, it
also commutes with êα(r), yielding our claim. �

The following lemma, which uses results of Stein [17] on the computation of K2

over semi-local rings, is a key ingredient in the proof of the Main Theorem.

Lemma 4.2. The kernel ker(π|
̂Γm

) of the restriction π|
̂Γm

lies in the center of Γ̂m,
for any m ∈ M.

Proof. Stein has shown that if Φ has rank ≥ 2 and S is a semi-local ring which
is generated by its units, then K2(Φ, S) lies in the center of G̃(S) (cf. [17], Theo-
rem 2.13). Since S = Rm is local, it is automatically generated by its units, hence

K2(Φ, Rm) = ker(G̃(Rm)
μ−→ E(Rm)) is central. On the other hand, μ admits the

following factorization:

G̃(Rm)
θm−→ Γ̂m

π|
̂Γm−→ E(Rm).
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Since θm is surjective, we conclude that

ker(π|
̂Γm

) = θm(K2(Φ, Rm))

is central in Γ̂m. �

Now fix m ∈ M and let Δm = Γ̂mΓ̂
′
m be the subgroup of Γ̂ (algebraically)

generated by Γ̂m and Γ̂′
m. Let c ∈ C(Γ) ∩ Δm, and write c = c1c2, with c1 ∈

Γ̂m, c2 ∈ Γ̂′
m. We have Γ = Γm × Γ

′
m, where Γm = E(Rm) and Γ

′
m = E(R′

m). Since

π(c1) ∈ Γm, π(c2) ∈ Γ
′
m, we conclude from

π(c) = e = π(c1)π(c2)

that π(c1) = e, i.e. c1 ∈ ker(π|
̂Γm

). Then by Lemma 4.2, Γ̂m centralizes c1. On

the other hand, Γ̂m centralizes c2 ∈ Γ̂′
m by Lemma 4.1(3). So, Γ̂m centralizes c.

Thus, we have shown that C ∩Δm is centralized by Γ̂m. To prove that Γ̂m actually
centralizes all of C, we need the following.

Lemma 4.3. Let ϕ : G1 → G2 be a continuous homomorphism of topological groups,
and let F = kerϕ. Suppose Θ ⊂ G1 is a dense subgroup such that there exists a
compact set Ω ⊂ Θ whose image ϕ(Ω) is a neighborhood of the identity in G2. Then
F ∩Θ is dense in F .

Proof. Since ϕ(Ω) is a neighborhood of the identity in G2, we can find an open set
U ⊂ G1 such that

F ⊂ U ⊂ ϕ−1(ϕ(Ω)) = ΩF .

Now since Θ is dense in G1, we have U ⊂ Θ ∩ U, where the bar denotes the closure
in G1. Thus,

F ⊂ Θ ∩ U ⊂ Θ ∩ ΩF .

But Θ∩ΩF = Ω(Θ∩F), and since Ω is compact, the product Ω(Θ ∩ F) is closed.
So

F ⊂ Θ ∩ ΩF ⊂ Ω(Θ ∩ F).

Since F is closed, we have Θ ∩ F ⊂ F , so

F = (Ω ∩ F)(Θ ∩ F) ⊂ (Θ ∩ F)(Θ ∩ F) = Θ ∩ F ,

as required. �

In order to apply Lemma 4.3 in our situation, we note the following simple fact.

Lemma 4.4. The subgroup Δ ⊂ Γ̂ (algebraically) generated by the Γ̂m for all

m ∈ M is dense. Consequently, for any m ∈ M, the subgroup Δm = Γ̂mΓ̂
′
m ⊂ Γ̂ is

dense.

Proof. Let

R0 :=
∑
m∈M

Rm ⊂ R̂ =
∏

m∈M
Rm.

Clearly R0 is a dense subring of R̂. On the other hand, Δ obviously contains êα(R0)
for any α ∈ Φ. So, the closure Δ contains êα(R) for all α ∈ Φ, and therefore coincides

with Γ̂, yielding our first assertion. Furthermore, for any m ∈ M, the subgroup Δm

contains Γn for all n ∈ M, so our second assertion follows. �
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Conclusion of the proof of the Main Theorem. Fix m ∈ M. We have already

seen that Γ̂m centralizes C ∩Δm. We claim that C ∩Δm is dense in C, and hence

Γ̂m centralizes C. Indeed, by Lemma 4.4, Δm is dense in Γ̂. On the other hand, it
follows from Corollary 2.4 that there exists a string of roots (α1, . . . , αL) such that
the map

R̂L → Γ, (r1, . . . , rL) �→
L∏

i=1

eαi
(ri)

is surjective. Then

Ω := êα1
(R̂) · · · êαL

(R̂) = (êα1
(Rm) · · · êαL

(Rm)) (êα1
(R′

m) · · · êαL
(R′

m))

is a compact subset of Γ̂ that is contained in Δm and has the property that π(Ω) = Γ.
Invoking Lemma 4.3, we obtain that C ∩Δm is dense in C, as required.

We now see that Γ̂m centralizes C for all m ∈ M. Since the subgroup Δ ⊂ Γ̂

generated by the Γ̂m is dense in Γ̂ by Lemma 4.4, we obtain that Γ̂ centralizes C,
completing the proof. �

To put our proof of the Main Theorem into perspective, we recall the following
criterion for the centrality of the congruence kernel in the context of the congruence
subgroup problem for algebraic groups over global fields (see [13], Theorem 4).
Let G be an absolutely almost simple simply connected algebraic group over a
global field K, and let S be a set of places of K, which we assume to contain all
archimedean places if K is a number field, such that the corresponding S-arithmetic
group G(OS) is infinite (where OS is the ring of S-integers in K). Then by the

Strong Approximation Theorem, the S-congruence completion G(K) of the group
G(K) of K-rational points can be identified with the group of S-adeles G(AS), and

in particular the group G(Kv), for v /∈ S, can be viewed as a subgroup of G(K).
Assume furthermore that S contains no nonarchimedean anisotropic places for G
and that G/K satisfies the Margulis-Platonov conjecture. If for each v ∈ S there

exists a subgroup Hv of the S-arithmetic completion Ĝ(K) such that

(1) π(Hv) = G(Kv) for all v /∈ S, where π : Ĝ(K) → G(K) is the canonical
projection;

(2) Hv1 and Hv2 commute elementwise for v1 �= v2;

(3) the Hv, for v /∈ S, (algebraically) generate a dense subgroup of Ĝ(K),

then the congruence kernel CS(G) := kerπ is central. So, this criterion basically
states that in the arithmetic situation, the mere existence of elementwise com-
muting lifts of “local groups” implies the centrality of the congruence kernel. In

our situation, the existence of elementwise commuting lifts (which we denoted Γ̂m

above) also plays a part in the proof of centrality (cf. Lemma 4.2(3)), but some
additional considerations (such as the result of Stein and the bounded generation

property for E(R̂) = G(R̂)) are needed; the facilitating factor in the arithmetic
situation is the action of the group G(K) on the congruence kernel, which is not
available over more general rings.

Finally, we will relate our result on the centrality of the congruence kernel C(Γ)
for Γ = E(R) to the congruence subgroup problem for G(R). We have the following
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commutative diagram induced by the natural embedding Γ ↪→ G(R):

1 �� C(Γ) ��

α

��

Γ̂

β
��

πΓ
�� Γ

γ

��

�� 1

1 �� C(G(R)) �� Ĝ(R)
πG(R)

�� G(R) �� 1

We note that by Proposition 2.5, γ is an isomorphism. So, α(C(Γ)) = C(G(R)) ∩
β(Γ̂), and β(Γ̂) coincides with the closure Γ̌ of Γ in Ĝ(R). Thus, our Main Theorem
yields the following.

Corollary 4.5. C(G(R)) ∩ Γ̌ is centralized by Γ̌.

The exact relationship between C(G(R)) and C(G(R)) ∩ Γ̌ (or C(Γ)) remains
unclear except in a few cases. Matsumoto [11] showed that G(R) = E(R) for any
ring R of algebraic S-integers, which, combined with our Main Theorem and the
remark at the end of §3, yields the centrality of C(E(R)) = C(G(R)), established
by Matsumoto himself. Furthermore, for G = SLn (n ≥ 3) and R = Z[x1, . . . , xk],
by a result of Suslin [19], we again have G(R) = E(R), so C(G(R)) = C(E(R)) is

central in Ê(R) = Ĝ(R), which was established in [9]. On the other hand, there
exist principal ideal domains R for which SLn(R) �= E(R) (cf. [6], [8]), and then
the analysis of C(G(R)) requires more effort. We only note that if Γ = E(R) has
finite index in G(R), then the profinite topology on Γ is induced by the profinite
topology of G(R), which implies that β is injective, and therefore C(Γ) is identified
with a finite index subgroup of C(G(R)).
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