PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 11, November 2006, Pages 3107–3114 S 0002-9939(06)08385-7 Article electronically published on May 11, 2006

NONABELIAN FREE SUBGROUPS IN HOMOMORPHIC IMAGES OF VALUED QUATERNION DIVISION ALGEBRAS

ANDREI S. RAPINCHUK, LOUIS ROWEN, AND YOAV SEGEV

(Communicated by Jonathan I. Hall)

ABSTRACT. Given a quaternion division algebra D, a noncentral element $e \in D^{\times}$ is called *pure* if its square belongs to the center. A theorem of Rowen and Segev (2004) asserts that for any quaternion division algebra D of positive characteristic > 2 and any pure element $e \in D^{\times}$ the quotient $D^{\times}/X(e)$ of D^{\times} by the normal subgroup X(e) generated by e, is abelian-by-nilpotent-by-abelian. In this note we construct a quaternion division algebra D of characteristic zero containing a pure element $e \in D$ such that $D^{\times}/X(e)$ contains a nonabelian free group. This demonstrates that the situation in characteristic zero is very different.

1. INTRODUCTION

Let D be a quaternion division algebra with center K. An element $e \in D \setminus K$ is called *pure* if $e^2 \in K$. Given an element $a \in D \setminus K$, we denote by

X(a) and Y(a)

the normal subgroups of D^{\times} generated by $\langle a \rangle$ and $SL_1(K(a))$ respectively, where as usual $SL_1(K(a)) = K(a) \cap SL_1(D)$ and $SL_1(D)$ is the subgroup of elements having reduced norm 1.

In [7] quotients of the form $D^{\times}/X(e)$ were considered for pure elements $e \in D^{\times}$. These quotients arise in the analysis of the Whitehead group W(G, k) of an absolutely simple simply connected algebraic k-group G of type ${}^{3,6}D_4$ having k-rank 1 (see Tits's Bourbaki talk [11] for the relevant terminology). It was shown that if D has positive characteristic > 2, then $D^{\times}/X(e)$ is abelian-by-nilpotent-by-abelian for any pure element $e \in D^{\times}$, which, by the explicit description of W(G, k) given in [5], implies the solvability of W(G, k) for G as above over a field k of characteristic > 2. Even though the solvability of W(G, k) is expected to hold in any characteristic (see [6] for a general conjecture), the results of this note indicate

©2006 American Mathematical Society

Received by the editors March 3, 2005 and, in revised form, May 14, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16K20, 16U60; Secondary 20G15, 12J20.

 $Key\ words\ and\ phrases.$ Quaternion division algebra, multiplicative group, valuation, residue algebra.

The first author was partially supported by BSF grant 2000-171, and by NSF grants DMS-0138315 and DMS-0502120.

The second author was partially supported by the Israel Science Foundation Center of Excellence.

The third author was partially supported by BSF grant 2000-171.

that a more delicate analysis will be needed to prove this in characteristic zero. More precisely, we will prove the following.

Theorem 1.1. There exists a quaternion division algebra D of characteristic zero and pure quaternions $e, f \in D$ such that the quotients $D^{\times}/X(e)$ and $D^{\times}/Y(f)$ contain nonabelian free groups. (In particular these quotients are nonsolvable.)

In §3 we construct a quaternion division algebra D that supports a valuation v such that the residue algebra \overline{D}_v is non-commutative of characteristic two over the residue field \overline{K}_v . This algebra D has the properties asserted in Theorem 1.1 by the following more general result.

Theorem 1.2. Let D be a quaternion division algebra of characteristic zero that supports a valuation v for which the residue algebra \overline{D}_v is non-commutative and has characteristic two. Then D contains pure quaternions e and f such that the quotients $D^{\times}/X(e)$ and $D^{\times}/Y(f)$ have homomorphic images containing $\overline{D}_v^{\times}/\overline{K}_v^{\times}$, and consequently $D^{\times}/X(e)$ and $D^{\times}/Y(f)$ contain nonabelian free groups.

The proof of Theorem 1.2 proceeds as follows. Let D be a quaternion division algebra as in Theorem 1.2 and let $e, f \in D$ be pure quaternions such that ef = -fe. We first observe that Y(e) commutes both with X(e) and Y(f) modulo the congruence subgroup $1+\mathfrak{m}_{D,v}$, where $\mathfrak{m}_{D,v}$ is the valuation ideal. (This follows from a stronger result that comes from [7]; see Lemma 2.1 for a short proof). We then apply the following lemma which is an easy consequence of the Cartan-Brauer-Hua Theorem (see, e.g., [3, Theorem 3.9.2, pg. 144]).

Lemma 1.3. Let D be a finite-dimensional division algebra with center K that supports a valuation v so that the residue division algebra \overline{D}_v is not commutative. Let $\mathcal{U}_v := \{x \in D^{\times} \mid v(x) = 0\}$ be the group of units and $\mathfrak{m}_{D,v} := \{x \in D^{\times} \mid v(x) > 0\}$ be the valuation ideal. Let $*: D^{\times} \to D^{\times}/K^{\times}(1 + \mathfrak{m}_{D,v})$ be the canonical homomorphism. Suppose N, M are normal subgroups of D^{\times} such that $[N, M]^* = 1^*$. Then

(1) $\mathcal{U}_{v}^{*} = \bar{D}_{v}^{\times}/\bar{K}_{v}^{\times}$, and either $((MK^{\times}) \cap \mathcal{U}_{v})^{*} = 1^{*}$ or $((NK^{\times}) \cap \mathcal{U}_{v})^{*} = 1^{*}$; (2) for $H \in \{M, N\}$ such that $((HK^{\times}) \cap \mathcal{U}_{v})^{*} = 1^{*}$ we have

 $(HK^{\times}\mathcal{U}_v)/(HK^{\times}(1+\mathfrak{m}_{D,v})) \cong \bar{D}_v^{\times}/\bar{K}_v^{\times}.$

In §3 we extend a well-known construction of valuations on fields of rational functions (cf. [2, Section 10.1, Proposition 2]) to finite-dimensional division algebras of non-commutative rational functions. We then apply this construction to obtain the quaternion division algebra D satisfying the hypotheses of Theorem 1.2 (see Proposition 3.4 and Corollary 3.5). The center of the resulting algebra D has transcendence degree 2 over \mathbb{Q} , so in this context we would like to mention that for a finite-dimensional division algebra D over a global field, any quotient of $SL_1(D)$ by a noncentral subgroup is finite and solvable (see [6]), implying that all quotients of \mathcal{D}^{\times} by a noncentral subgroup are solvable.

In a preliminary version of this paper (see [9] for a report on this joint result) we proved a weaker version of Theorem 1.1 using ultra-products, however now we have a stronger result that does not require the use of ultra-products. Also, since our construction is *explicit* it is possible that the algebra D we construct could be used to demonstrate further properties of the Whitehead group.

2. The proof of Theorem 1.2

In this section we prove Theorem 1.2. We start with a lemma that comes from [7].

Lemma 2.1. Let D be a quaternion division algebra of characteristic $\neq 2$, let S be the (normal) subgroup of D^{\times} generated by the set $1 + 2SL_1(D)$, and let $\bullet: D^{\times} \to D^{\bullet} := D^{\times}/S$ be the canonical homomorphism. Then

(1) for any pure $e \in D$, we have $[Y(e), X(e)]^{\bullet} = 1^{\bullet}$;

(2) for any pure $e, f \in D$ such that ef = -fe, we have $[Y(e), Y(f)]^{\bullet} = 1^{\bullet}$.

Proof. First observe that

(i) $[x^{\bullet}, (x+s)^{\bullet}] = 1^{\bullet}$, for all $x \in D^{\times}$ and $s \in S$ such that $x + s \neq 0$,

because $(x+s)^{\bullet} = (s(s^{-1}x+1))^{\bullet} = (s^{-1}x+1)^{\bullet}$, and $(s^{-1}x+1)^{\bullet}$ commutes with $(s^{-1}x)^{\bullet} = x^{\bullet}$. Next, using the notation $[a,b] = a^{-1}b^{-1}ab$, $a^{b} = b^{-1}ab$,

$$[g, (1+x)^{-1}] = (1+x^g)(1+x)^{-1} \quad \forall x, g \in D^{\times} \text{ with } x \neq -1,$$

and hence

$$\begin{bmatrix} x^g, \frac{1-x}{1+x} \end{bmatrix}^{\bullet} = [x^g, 1-2(1+x)^{-1}]^{\bullet} = [x^g, (1+x^g)^{-1}(1+x^g-2[g, (1+x)^{-1}])]^{\bullet} = [x^g, x^g + (1-2[g, (1+x)^{-1}])]^{\bullet} = 1^{\bullet},$$

where the last equality follows from (i) using the fact that $1 - 2[g, (1 + x)^{-1}] \in S$. Replacing x by αe , where $\alpha \in K^{\times}$ is arbitrary and observing that any element $\neq -1$ in $\mathrm{SL}_1(K(e))$ has the form $\frac{1-\alpha e}{1+\alpha e}$ (for example, by Hilbert's Theorem 90), we get (1).

Part (2) follows from (1) because

$$[e, 1 + \alpha f] = ((1 + \alpha f)^e)^{-1}(1 + \alpha f) = (1 - \alpha f)^{-1}(1 + \alpha f), \text{ for all } \alpha \in K^{\times},$$

and as we mentioned above any element $\neq -1$ of $\mathrm{SL}_1(K(f))$ has the form $(1 - \alpha f)^{-1}(1 + \alpha f)$ for some $\alpha \in K^{\times}$. Hence $\mathrm{SL}_1(K(f)) \leq X(e)$, and so (2) follows from (1).

The next lemma is a consequence of the Cartan-Brauer-Hua theorem and will be applied in the proof of Lemma 1.3.

Lemma 2.2. Let D be a finite-dimensional division algebra with center K. Let A and B be two normal subgroup of D^{\times} such that $[A, B] \leq K^{\times}$. Then either $A \subseteq K^{\times}$ or $B \subseteq K^{\times}$.

Proof. First observe that

(ii) if
$$[A, B] = 1$$
, then either $A \subseteq K$ or $B \subseteq K$.

To prove (ii) note that the K-subalgebra K[A] generated by A is a division subalgebra normalized by D^{\times} , so by the Cartan-Brauer-Hua Theorem (see [3, Theorem 3.9.2, pg. 144] for an easy proof), if A is noncentral, then K[A] = D, and since B centralizes K[A] it follows that B is central.

Assume now that B is noncentral. Since [B, A, A] = [A, B, A] = 1, the three subgroup lemma ([1, (8.7)]) implies that [[A, A], B] = 1. Since B is noncentral, it follows from (ii) that $[A, A] \leq K^{\times}$. But this shows that A is nilpotent. Hence $A \leq K^{\times}$ since by a theorem of Scott [8], D^{\times} contains no noncentral normal solvable subgroups.

Proof of Lemma 1.3. (1) Let $\mathcal{O}_{D,v} := \{x \in D^{\times} \mid v(x) \geq 0\} \cup \{0\}$ be the valuation ring of v. Of course the canonical homomorphism $\mathcal{O}_{D,v} \to \bar{D}_v$ restricted to \mathcal{U}_v induces a surjective group homomorphism $\mathcal{U}_v \to \bar{D}_v^{\times}$, with kernel $1 + \mathfrak{m}_{D,v}$, so $\mathcal{U}_v/(1 + \mathfrak{m}_{D,v}) = \bar{D}_v^{\times}$ and therefore $\mathcal{U}_v^* \cong \bar{D}_v^{\times}/\bar{K}_v^{\times}$.

Set $A := (MK^{\times}) \cap \mathcal{U}_v$ and $B := (NK^{\times}) \cap \mathcal{U}_v$. Let $: \mathcal{U}_v \to \mathcal{U}_v/(1 + \mathfrak{m}_{D,v}) = \bar{D}_v^{\times}$ be the canonical homomorphism. Then $[\bar{A}, \bar{B}] \leq \bar{K}_v$. Since \bar{D}_v is not commutative Lemma 2.2 implies that either $\bar{A} \leq \bar{K}_v$ or $\bar{B} \leq \bar{K}_v$, that is, either $A^* = 1^*$ or $B^* = 1^*$.

(2) Suppose
$$A^* = 1^*$$
, that is, $(MK^{\times}) \cap \mathcal{U}_v \leq K^{\times}(1 + \mathfrak{m}_{D,v})$. Then
 $(MK^{\times}\mathcal{U}_v)/(MK^{\times}(1 + \mathfrak{m}_{D,v})) \cong \mathcal{U}_v/\mathcal{U}_v \cap (MK^{\times}(1 + \mathfrak{m}_{D,v}))$
 $\cong \mathcal{U}_v/(\mathcal{U}_v \cap MK^{\times})(1 + \mathfrak{m}_{D,v}) = \mathcal{U}_v^*.$

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let D be as in Theorem 1.2, and adopt the notation of Lemma 1.3 and its proof. Let $e, f \in D$ be pure elements such that ef = -fe. We claim that

(iii)
$$[Y(e), X(e)]^* = 1^* = [Y(e), Y(f)]^*$$

Recall that since D is a quaternion division algebra, $\operatorname{SL}_1(D) = [D^{\times}, D^{\times}]$. Furthermore, for any valuation v of a finite-dimensional division algebra, the value group Γ_v is commutative. Thus $\operatorname{SL}_1(D) = [D^{\times}, D^{\times}] \leq \mathcal{U}_v$, since \mathcal{U}_v is the kernel of the valuation $v: D^{\times} \to \Gamma_v$. Also the fact that the characteristic of \overline{D}_v is two implies that $2 \in \mathfrak{m}_{D,v}$, so $2\operatorname{SL}_1(D) \subseteq 2\mathcal{U}_v \subseteq \mathfrak{m}_{D,v}$ and therefore

$$S := \langle 1 + 2\mathrm{SL}_1(D) \rangle \le 1 + \mathfrak{m}_{D,v}.$$

Now (iii) follows from Lemma 2.1.

Let $b, c \in \mathcal{U}_v$ such that $[\bar{b}, \bar{c}]$ is a noncentral element in \bar{D}_v $(\bar{b}, \bar{c}$ exist since \bar{D}_v is not commutative and hence not solvable; see, e.g., [8]). Let $a = [b, c] (= b^{-1}c^{-1}bc)$ and let $e \in K(a)$ be a pure element. By the choice of a we have $a^* \neq 1^*$ and $a \in \mathrm{SL}_1(K(e)) \leq \mathcal{U}_v$. Thus $(Y(e) \cap \mathcal{U}_v)^* \neq 1^*$. Now (iii) together with Lemma 1.3 imply that $((X(e)K^{\times})\cap\mathcal{U}_v)^* = 1^* = ((Y(f)K^{\times})\cap\mathcal{U}_v)^*$. Now let $H \in \{X(e), Y(f)\}$. Then, by Lemma 1.3(2),

$$(HK^{\times}\mathcal{U}_v)/(HK^{\times}(1+\mathfrak{m}_{D,v})) \cong \bar{D}_v^{\times}/\bar{K}_v^{\times},$$

so $D^{\times}/HK^{\times}(1+\mathfrak{m}_{D,v}))$ contains a subgroup isomorphic to $\bar{D}_v^{\times}/\bar{K}_v^{\times}$. This completes the first part of Theorem 1.2.

For the second part note first that since \bar{D}_v^{\times} is non-commutative, it contains nonabelian free groups (see, e.g., [4, Theorem 2.1]); of course, the proof of this fact uses the celebrated Tits' alternative [10]. It follows that $\bar{D}_v^{\times}/\bar{K}_v^{\times}$ contain a nonabelian free group. Hence $D^{\times}/X(e)$ and $D^{\times}/Y(f)$ have homomorphic images containing nonabelian free groups. But then $D^{\times}/X(e)$ and $D^{\times}/Y(e)$ also contain nonabelian free groups because if we pick one preimage for each free generator of a free subgroup in a homomorphic image, the resulting elements will generate a free subgroup.

Remarks 2.3. Note that the proof of Theorem 1.2 actually shows that if D is a quaternion division algebra that supports a valuation v such that the residue algebra \overline{D}_v is non-commutative of characteristic two, and if $e, f \in D$ are pure elements such

that ef = -fe, then one of $D^{\times}/Y(e)$ or $D^{\times}/Y(f)$ contains a nonabelian free group (and in fact one of these groups has a homomorphic image that contains a subgroup isomorphic to $\bar{D}_v^{\times}/\bar{K}_v^{\times}$).

This should be compared with the fact that for any quaternion division algebra Dand any pure element $e \in D$, the quotient of D^{\times} by the normal subgroup generated by $K(e)^{\times}$ is an elementary abelian 2-group (i.e. all nonidentity elements have order 2). This last fact is rather easy to prove; cf. [7].

3. Constructing valuations on division algebras of non-commutative rational functions

In this section we construct a quaternion division algebra whose center is an extension of \mathbb{Q} of transcendence degree 2 that supports a valuation v such that the residue algebra \bar{D}_v is non-commutative of characteristic two. In view of Theorem 1.2, this will complete the proof of Theorem 1.1. More generally, we give an explicit construction of valuations on finite-dimensional division algebras of non-commutative rational functions which enables us to control the structure of the residue algebra.

Let F be a field and let $v: F^{\times} \to \Gamma$ be a non-archimedean valuation on F. Thus $v: F^{\times} \to \Gamma$ is a nontrivial homomorphism from F^{\times} to a totally ordered commutative group Γ (written additively) satisfying $v(a + b) \ge \min\{v(a), v(b)\}$, for all $a, b \in F^{\times}$, with $a + b \ne 0$. Recall that if v(a) < v(b), then it follows that v(a + b) = v(a).

In this section we first generalize the well-known construction of a valuation on the field of rational function F(x), extending v (cf. [2, Section 10.1, Proposition 2]), to a construction of a valuation on the division algebra of fractions $F(x, \sigma)$, where $\sigma \in \operatorname{Aut}(F)$ is an automorphism of finite order satisfying $v(\sigma(a)) = v(a)$, for all $a \in F^{\times}$. This construction has probably been well known to experts for some time; see for example [3].

Thus let $\sigma \in \operatorname{Aut}(F)$ and let $R = F[x, \sigma]$ be the associated ring of skew polynomials in x. We recall that $F[x, \sigma]$ consists of formal expressions $a_0 + a_1x + \cdots + a_mx^m$ with $a_i \in F$ which are added in the obvious way and are multiplied according to the rule: if

$$a(x) = a_0 + a_1 x + \dots + a_m x^m$$
 and $b(x) = b_0 + b_1 x + \dots + b_n x^n$,

then

$$a(x)b(x) = c_0 + c_1x + \dots + c_{m+n}x^{m+n}$$
, where $c_k = \sum_{i+j=k} a_i b_j^{\sigma^i}$

Now suppose that $v(\sigma(a)) = v(a)$ for all $a \in F$. Define a function $w \colon R \setminus \{0\} \to \Gamma$ as follows: given a nonzero $a(x) = a_0 + a_1x + \cdots + a_mx^m$, we let

$$w(a(x)) = \min_{a_i \neq 0} v(a_i).$$

Lemma 3.1. w is a valuation of R. In other words, for nonzero $a(x), b(x) \in R$ we have

- (1) w(a(x)b(x)) = w(a(x)) + w(b(x)), and
- (2) $w(a(x) + b(x)) \ge \min\{w(a(x)), w(b(x))\}$ if $b(x) \ne -a(x)$.

Proof. The proof of (1) is identical to the usual proof of Gauss' Lemma. Namely, suppose $w(a(x)) = \alpha$, $w(b(x)) = \beta$, and set

$$i_0 = \min\{i \mid a_i \neq 0, \ v(a_i) = \alpha\} \text{ and } j_0 = \min\{j \mid b_j \neq 0, \ v(b_j) = \beta\}.$$

Then the coefficient $c_{i_0+j_0}$ of $x^{i_0+j_0}$ in c(x) = a(x)b(x) is

$$c_{i_0+j_0} = \sum_{i+j=i_0+j_0} a_i b_j^{\sigma^i}$$

If $i + j = i_0 + j_0$, $(i, j) \neq (i_0, j_0)$ and $a_i, b_j \neq 0$, we have either $i < i_0$ or $j < j_0$ and then respectively either $v(a_i) > \alpha$ (and $v(b_j) \ge \beta$) or $v(b_j) > \beta$ (and $v(a_i) \ge \alpha$). In all cases,

$$v(a_i b_j^{\sigma^i}) = v(a_i) + v(b_j) > \alpha + \beta$$

It follows that

$$v(c_{i_0+j_0}) = v(a_{i_0}b_{j_0}^{\sigma^{i_0}}) = \alpha + \beta.$$

On the other hand, for any k we have

$$v(c_k) = v\left(\sum_{i+j=k} a_i b_j^{\sigma^i}\right) \ge \min_{a_i \neq 0 \neq b_j} v(a_i b_j^{\sigma^i}) \ge \alpha + \beta,$$

and (1) follows. Property (2) is obvious.

From now on, we will assume that σ has finite order d. Then the center of R is $R_0 = F^{\sigma}[x^d]$, where F^{σ} is the fixed subfield. Let $S = R_0 \setminus \{0\}$. Then S is a central multiplicative subset of R, so the localization $D := R_S$ exists, and every element of D has a presentation of the form as^{-1} , where $a \in R$ and $s \in S$. Note that the localization $K := (R_0)_S$ is simply the field of fractions of R_0 , and D is a finite-dimensional algebra over K without zero divisors, hence a division algebra. In fact, $\dim_K D = d^2$, as the elements $a_i x^j$, $i, j = 1, \ldots, d$, where a_1, \ldots, a_d is a basis of F over F^{σ} , form a basis of D over K. We will denote D by $F(x, \sigma)$. If $as^{-1} = bt^{-1}$, then at = bs, and using Lemma 3.1(1) we immediately obtain that

$$w(a) - w(s) = w(b) - w(t),$$

so the equation

$$\tilde{w}(as^{-1}) = w(a) - w(s)$$

yields a well-defined function on D^{\times} .

Lemma 3.2. \tilde{w} is a valuation on D.

Proof. The property that $\tilde{w}(\tilde{a}\tilde{b}) = \tilde{w}(\tilde{a}) + \tilde{w}(\tilde{b})$ for all nonzero $\tilde{a}, \tilde{b} \in D$ immediately follows from the definition. Now, suppose we have $\tilde{a} = as^{-1}, \tilde{b} = bt^{-1} \in D^{\times}$ such that $\tilde{b} \neq -\tilde{a}$ (i.e. $bs \neq -at$). By taking a common denominator we may assume that t = s. Suppose in addition that $\tilde{w}(\tilde{a}) \leq \tilde{w}(\tilde{b})$. Then

$$\tilde{w}(\tilde{a}+b) = w(a+b) - w(s) \ge w(a) - w(s) = \tilde{w}(\tilde{a}),$$

and the property $\tilde{w}(\tilde{a} + \tilde{b}) \ge \min\{\tilde{w}(\tilde{a}), \tilde{w}(\tilde{b})\}$ follows.

Let $\mathcal{O}_{F,v} = \{a \in F^{\times} \mid v(a) \ge 0\} \cup \{0\}$ and $\mathfrak{m}_{F,v} = \{a \in F^{\times} \mid v(a) > 0\} \cup \{0\}$ be the valuation ring and the valuation ideal of v. Note that

 σ induces an automorphism $\bar{\sigma}$ on F_v ,

because σ preserves v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Lemma 3.3. Let $S_0 = \{s \in S \mid w(s) = 0\}$. Then the valuation ring and the valuation ideal of \tilde{w} are as follows:

(iv)
$$\mathcal{O}_{D,\tilde{w}} = \mathcal{O}_{F,v}[x,\sigma]S_0^{-1}$$
 and $\mathfrak{m}_{D,\tilde{w}} = \mathfrak{m}_{F,v}[x,\sigma]S_0^{-1}$.

Furthermore, the residue algebra $\bar{D}_{\tilde{w}} = \mathcal{O}_{D,\tilde{w}}/\mathfrak{m}_{D,\tilde{w}}$ is isomorphic to $\bar{F}_v(x,\bar{\sigma})$.

Proof. Clearly, $S = (F^{\sigma})^{\times} S_0$, from which it follows that any element in $\tilde{a} \in D^{\times}$ has a presentation of the form $\tilde{a} = as^{-1}$ with $s \in S_0$. Then $\tilde{w}(\tilde{a}) = w(a)$, and the descriptions in (iv) easily follow. Reducing the coefficients of polynomials in $\mathcal{O}_{F,v}[x]$ modulo $\mathfrak{m}_{F,v}$ defines a surjective ring homomorphism $\varphi \colon \mathcal{O}_{F,v}[x,\sigma] \to \overline{F}_v[x,\overline{\sigma}]$ with ker $\varphi = \mathfrak{m}_{F,v}[x,\sigma]$. Then φ uniquely extends to a homomorphism of localizations

$$\tilde{\varphi} \colon \mathcal{O}_{F,v}[x,\sigma]S_0^{-1} \to \bar{F}_v[x,\bar{\sigma}](\varphi(S_0))^{-1}$$

with ker $\tilde{\varphi} = \mathfrak{m}_{F,v}[x,\sigma]S_0^{-1}$. It follows that $\bar{D}_{\tilde{w}} \simeq \bar{F}_v[x,\bar{\sigma}](\varphi(S_0))^{-1}$. As the lefthand side is a division ring, so is the right-hand side, from which it follows that it in fact coincides with $\bar{F}_v(x,\bar{\sigma})$ (although in general $\varphi(S_0)$ may be smaller than the set of nonzero elements of the center of $\bar{F}_v[x,\bar{\sigma}]$).

Now let k be a field and let u be a non-archimedean valuation on k. We use the above construction to construct a quaternion division algebra D equipped with a valuation \tilde{w} extending u such that $\bar{D}_{\tilde{w}}$ is not commutative and has characteristic 2.

Consider the field of rational functions F := k(y) in the variable y. Extend u to a valuation of F as above, by taking in the construction above k in place of F, uin place of v, and the identity map of k in place of σ . We thus obtain a valuation v on F extending u, and

$$\bar{F}_v = \bar{k}_u(y).$$

Now let $\sigma \in \operatorname{Aut}(F)$ be the unique automorphism (of order 2) taking $y \to \frac{1}{y}$ and fixing k pointwise. Using the definition of v one easily checks that $v(\sigma(r(y))) = v(r(y))$, for any rational function $r(y) \in k(y)$. Let $D = F(x, \sigma)$ be as above. Since the order of σ is 2, D is a quaternion division algebra. Also, $\bar{\sigma}$ is the unique map on \bar{F}_v fixing \bar{k}_u pointwise and taking y to $\frac{1}{y}$. Thus $\bar{\sigma}$ is nontrivial, and since $\bar{D}_{\tilde{w}} \cong \bar{F}_v(x, \bar{\sigma})$, it follows that $\bar{D}_{\tilde{w}}$ is not commutative. Thus, we have shown

Proposition 3.4. Let k be a field that supports a non-archimedean valuation u. Then there exists a quaternion division algebra D whose center has transcendence degree 2 over k, and a valuation v on D extending u, such that the residue division algebra \overline{D}_v is not commutative (and has characteristic equal to that of the residue field \overline{k}_u).

Taking in Proposition 3.4 $k = \mathbb{Q}$ and u the 2-adic valuation, we get the following corollary which in conjunction with Theorem 1.2 completes the proof of Theorem 1.1.

Corollary 3.5. There exists a quaternion division algebra D of characteristic zero and a valuation v on D such that the residue division algebra \overline{D}_v is not commutative and has characteristic two.

References

- M. Aschbacher, *Finite group theory*, Cambridge University Press, 1986. MR0895134 (89b:20001)
- N. Bourbaki, Commutative algebra, chapters 1-7, translated from French. Herman, Paris; Addison-Wesley Publishing Co., 1972. MR0360549 (50:12997)

- [3] P. M. Cohn, Skew fields. Theory of general division rings, Encyclopedia of Mathematics and its Applications, 57, Cambridge University Press, Cambridge, 1995. MR1349108 (97d:12003)
- [4] J. Z. Goncalves, Free groups in subnormal subgroups and residual nilpotence of the group of units of group rings, Canad. Math. Bull. 27(1984), no. 3, 365–370. MR0749646 (85k:20022)
- [5] G. Prasad, The Kneser-Tits problem for triality forms, preprint, 2006.
- [6] A. S. Rapinchuk, Y. Segev, and G. Seitz, Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable, J. Amer. Math. Soc. 15(2002), no. 4, 929–978. MR1915823 (2003k:16031)
- [7] L. Rowen and Y. Segev, Normal subgroups generated by a single pure element in quaternion algebras, to appear in J. Algebra.
- W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8(1957), 303–305. MR0083984 (18:788g)
- Y. Segev, Pure quaternions, ultraproducts and valuations, Oberwolfach report 12/2005, 9029–9031.
- [10] J. Tits, Free subgroups in linear groups, J. Algebra 20(1972), 250–270. MR0286898 (44:4105)
- [11] J. Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d'aprés V. P. Platonov at al.), Séminaire Bourbaki, 29e année (1976/7), Exp. No. 505, pp. 218-236. MR0521771 (80d:12008)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22904 *E-mail address*: asr3x@unix.mail.virginia.edu

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT GAN, ISRAEL *E-mail address*: rowen@macs.biu.ac.il

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY, BEER-SHEVA 84105, ISRAEL *E-mail address*: yoavs@math.bgu.ac.il