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NONABELIAN FREE SUBGROUPS IN HOMOMORPHIC
IMAGES OF VALUED QUATERNION DIVISION ALGEBRAS
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(Communicated by Jonathan I. Hall)

Abstract. Given a quaternion division algebra D, a noncentral element e ∈
D× is called pure if its square belongs to the center. A theorem of Rowen and
Segev (2004) asserts that for any quaternion division algebra D of positive char-
acteristic > 2 and any pure element e ∈ D× the quotient D×/X(e) of D× by
the normal subgroup X(e) generated by e, is abelian-by-nilpotent-by-abelian.
In this note we construct a quaternion division algebra D of characteristic zero

containing a pure element e ∈ D such that D×/X(e) contains a nonabelian
free group. This demonstrates that the situation in characteristic zero is very
different.

1. Introduction

Let D be a quaternion division algebra with center K. An element e ∈ D � K
is called pure if e2 ∈ K. Given an element a ∈ D � K, we denote by

X(a) and Y (a)

the normal subgroups of D× generated by 〈a〉 and SL1(K(a)) respectively, where
as usual SL1(K(a)) = K(a) ∩ SL1(D) and SL1(D) is the subgroup of elements
having reduced norm 1.

In [7] quotients of the form D×/X(e) were considered for pure elements e ∈
D×. These quotients arise in the analysis of the Whitehead group W (G, k) of an
absolutely simple simply connected algebraic k-group G of type 3,6D4 having k-
rank 1 (see Tits’s Bourbaki talk [11] for the relevant terminology). It was shown
that if D has positive characteristic > 2, then D×/X(e) is abelian-by-nilpotent-by-
abelian for any pure element e ∈ D×, which, by the explicit description of W (G, k)
given in [5], implies the solvability of W (G, k) for G as above over a field k of
characteristic > 2. Even though the solvability of W (G, k) is expected to hold in
any characteristic (see [6] for a general conjecture), the results of this note indicate
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that a more delicate analysis will be needed to prove this in characteristic zero.
More precisely, we will prove the following.

Theorem 1.1. There exists a quaternion division algebra D of characteristic zero
and pure quaternions e, f ∈ D such that the quotients D×/X(e) and D×/Y (f)
contain nonabelian free groups. (In particular these quotients are nonsolvable.)

In §3 we construct a quaternion division algebra D that supports a valuation v
such that the residue algebra D̄v is non-commutative of characteristic two over the
residue field K̄v. This algebra D has the properties asserted in Theorem 1.1 by the
following more general result.

Theorem 1.2. Let D be a quaternion division algebra of characteristic zero that
supports a valuation v for which the residue algebra D̄v is non-commutative and
has characteristic two. Then D contains pure quaternions e and f such that the
quotients D×/X(e) and D×/Y (f) have homomorphic images containing D̄×

v /K̄×
v ,

and consequently D×/X(e) and D×/Y (f) contain nonabelian free groups.

The proof of Theorem 1.2 proceeds as follows. Let D be a quaternion division
algebra as in Theorem 1.2 and let e, f ∈ D be pure quaternions such that ef =
−fe. We first observe that Y (e) commutes both with X(e) and Y (f) modulo the
congruence subgroup 1+mD,v, where mD,v is the valuation ideal. (This follows from
a stronger result that comes from [7]; see Lemma 2.1 for a short proof). We then
apply the following lemma which is an easy consequence of the Cartan-Brauer-Hua
Theorem (see, e.g., [3, Theorem 3.9.2, pg. 144]).

Lemma 1.3. Let D be a finite-dimensional division algebra with center K that
supports a valuation v so that the residue division algebra D̄v is not commutative.
Let Uv := {x ∈ D× | v(x) = 0} be the group of units and mD,v := {x ∈ D× |
v(x) > 0} be the valuation ideal. Let ∗ : D× → D×/K×(1 + mD,v) be the canonical
homomorphism. Suppose N, M are normal subgroups of D× such that [N, M ]∗ =
1∗. Then

(1) U∗
v = D̄×

v /K̄×
v , and either ((MK×) ∩ Uv)∗ = 1∗ or ((NK×) ∩ Uv)∗ = 1∗;

(2) for H ∈ {M, N} such that ((HK×) ∩ Uv)∗ = 1∗ we have

(HK×Uv)/(HK×(1 + mD,v)) ∼= D̄×
v /K̄×

v .

In §3 we extend a well-known construction of valuations on fields of rational
functions (cf. [2, Section 10.1, Proposition 2]) to finite-dimensional division algebras
of non-commutative rational functions. We then apply this construction to obtain
the quaternion division algebra D satisfying the hypotheses of Theorem 1.2 (see
Proposition 3.4 and Corollary 3.5). The center of the resulting algebra D has
transcendence degree 2 over Q, so in this context we would like to mention that for
a finite-dimensional division algebra D over a global field, any quotient of SL1(D)
by a noncentral subgroup is finite and solvable (see [6]), implying that all quotients
of D× by a noncentral subgroup are solvable.

In a preliminary version of this paper (see [9] for a report on this joint result)
we proved a weaker version of Theorem 1.1 using ultra-products, however now we
have a stronger result that does not require the use of ultra-products. Also, since
our construction is explicit it is possible that the algebra D we construct could be
used to demonstrate further properties of the Whitehead group.
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2. The proof of Theorem 1.2

In this section we prove Theorem 1.2. We start with a lemma that comes from
[7].

Lemma 2.1. Let D be a quaternion division algebra of characteristic �= 2, let S be
the (normal) subgroup of D× generated by the set 1 + 2SL1(D), and let • : D× →
D• := D×/S be the canonical homomorphism. Then

(1) for any pure e ∈ D, we have [Y (e), X(e)]• = 1•;
(2) for any pure e, f ∈ D such that ef = −fe, we have [Y (e), Y (f)]• = 1•.

Proof. First observe that

(i) [x•, (x + s)•] = 1•, for all x ∈ D× and s ∈ S such that x + s �= 0,

because (x + s)• = (s(s−1x + 1))• = (s−1x + 1)•, and (s−1x + 1)• commutes with
(s−1x)• = x•. Next, using the notation [a, b] = a−1b−1ab, ab = b−1ab,

[g, (1 + x)−1] = (1 + xg)(1 + x)−1 ∀x, g ∈ D× with x �= −1,

and hence[
xg,

1 − x

1 + x

]•
= [xg, 1 − 2(1 + x)−1]• = [xg, (1 + xg)−1(1 + xg − 2[g, (1 + x)−1])]•

= [xg, xg + (1 − 2[g, (1 + x)−1])]• = 1•,

where the last equality follows from (i) using the fact that 1 − 2[g, (1 + x)−1] ∈ S.
Replacing x by αe, where α ∈ K× is arbitrary and observing that any element
�= −1 in SL1(K(e)) has the form 1−αe

1+αe (for example, by Hilbert’s Theorem 90), we
get (1).

Part (2) follows from (1) because

[e, 1 + αf ] = ((1 + αf)e)−1(1 + αf) = (1 − αf)−1(1 + αf), for all α ∈ K×,

and as we mentioned above any element �= −1 of SL1(K(f)) has the form
(1 − αf)−1(1 + αf) for some α ∈ K×. Hence SL1(K(f)) ≤ X(e), and so (2)
follows from (1). �

The next lemma is a consequence of the Cartan-Brauer-Hua theorem and will
be applied in the proof of Lemma 1.3.

Lemma 2.2. Let D be a finite-dimensional division algebra with center K. Let A
and B be two normal subgroup of D× such that [A, B] ≤ K×. Then either A ⊆ K×

or B ⊆ K×.

Proof. First observe that

(ii) if [A, B] = 1, then either A ⊆ K or B ⊆ K.

To prove (ii) note that the K-subalgebra K[A] generated by A is a division subal-
gebra normalized by D×, so by the Cartan-Brauer-Hua Theorem (see [3, Theorem
3.9.2, pg. 144] for an easy proof), if A is noncentral, then K[A] = D, and since B
centralizes K[A] it follows that B is central.

Assume now that B is noncentral. Since [B, A, A] = [A, B, A] = 1, the three
subgroup lemma ([1, (8.7)]) implies that [[A, A], B] = 1. Since B is noncentral,
it follows from (ii) that [A, A] ≤ K×. But this shows that A is nilpotent. Hence
A ≤ K× since by a theorem of Scott [8], D× contains no noncentral normal solvable
subgroups. �
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Proof of Lemma 1.3. (1) Let OD,v := {x ∈ D× | v(x) ≥ 0} ∪ {0} be the valuation
ring of v. Of course the canonical homomorphism OD,v → D̄v restricted to Uv

induces a surjective group homomorphism Uv → D̄×
v , with kernel 1 + mD,v, so

Uv/(1 + mD,v) = D̄×
v and therefore U∗

v
∼= D̄×

v /K̄×
v .

Set A := (MK×)∩Uv and B := (NK×)∩Uv. Let¯ : Uv → Uv/(1 + mD,v) = D̄×
v

be the canonical homomorphism. Then [Ā, B̄] ≤ K̄v. Since D̄v is not commutative
Lemma 2.2 implies that either Ā ≤ K̄v or B̄ ≤ K̄v, that is, either A∗ = 1∗ or
B∗ = 1∗.

(2) Suppose A∗ = 1∗, that is, (MK×) ∩ Uv ≤ K×(1 + mD,v). Then

(MK×Uv)/(MK×(1 + mD,v)) ∼= Uv/Uv ∩ (MK×(1 + mD,v))
∼= Uv/(Uv ∩ MK×)(1 + mD,v) = U∗

v .

�
We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let D be as in Theorem 1.2, and adopt the notation of
Lemma 1.3 and its proof. Let e, f ∈ D be pure elements such that ef = −fe. We
claim that

(iii) [Y (e), X(e)]∗ = 1∗ = [Y (e), Y (f)]∗.

Recall that since D is a quaternion division algebra, SL1(D) = [D×, D×]. Further-
more, for any valuation v of a finite-dimensional division algebra, the value group
Γv is commutative. Thus SL1(D) = [D×, D×] ≤ Uv, since Uv is the kernel of the
valuation v : D× → Γv. Also the fact that the characteristic of D̄v is two implies
that 2 ∈ mD,v, so 2SL1(D) ⊆ 2Uv ⊆ mD,v and therefore

S := 〈1 + 2SL1(D)〉 ≤ 1 + mD,v.

Now (iii) follows from Lemma 2.1.
Let b, c ∈ Uv such that [b̄, c̄] is a noncentral element in D̄v (b̄, c̄ exist since D̄v is

not commutative and hence not solvable; see, e.g., [8]). Let a = [b, c] (= b−1c−1bc)
and let e ∈ K(a) be a pure element. By the choice of a we have a∗ �= 1∗ and
a ∈ SL1(K(e)) ≤ Uv. Thus (Y (e) ∩ Uv)∗ �= 1∗. Now (iii) together with Lemma 1.3
imply that ((X(e)K×)∩Uv)∗ = 1∗ = ((Y (f)K×)∩Uv)∗. Now let H ∈ {X(e), Y (f)}.
Then, by Lemma 1.3(2),

(HK×Uv)/(HK×(1 + mD,v)) ∼= D̄×
v /K̄×

v ,

so D×/HK×(1 + mD,v)) contains a subgroup isomorphic to D̄×
v /K̄×

v . This com-
pletes the first part of Theorem 1.2.

For the second part note first that since D̄×
v is non-commutative, it contains

nonabelian free groups (see, e.g., [4, Theorem 2.1]); of course, the proof of this
fact uses the celebrated Tits’ alternative [10]. It follows that D̄×

v /K̄×
v contain a

nonabelian free group. Hence D×/X(e) and D×/Y (f) have homomorphic images
containing nonabelian free groups. But then D×/X(e) and D×/Y (e) also contain
nonabelian free groups because if we pick one preimage for each free generator of a
free subgroup in a homomorphic image, the resulting elements will generate a free
subgroup. �
Remarks 2.3. Note that the proof of Theorem 1.2 actually shows that if D is a
quaternion division algebra that supports a valuation v such that the residue algebra
D̄v is non-commutative of characteristic two, and if e, f ∈ D are pure elements such
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that ef = −fe, then one of D×/Y (e) or D×/Y (f) contains a nonabelian free group
(and in fact one of these groups has a homomorphic image that contains a subgroup
isomorphic to D̄×

v /K̄×
v ).

This should be compared with the fact that for any quaternion division algebra D
and any pure element e ∈ D, the quotient of D× by the normal subgroup generated
by K(e)× is an elementary abelian 2-group (i.e. all nonidentity elements have order
2). This last fact is rather easy to prove; cf. [7].

3. Constructing valuations on division algebras

of non-commutative rational functions

In this section we construct a quaternion division algebra whose center is an
extension of Q of transcendence degree 2 that supports a valuation v such that
the residue algebra D̄v is non-commutative of characteristic two. In view of The-
orem 1.2, this will complete the proof of Theorem 1.1. More generally, we give an
explicit construction of valuations on finite-dimensional division algebras of non-
commutative rational functions which enables us to control the structure of the
residue algebra.

Let F be a field and let v : F× → Γ be a non-archimedean valuation on F .
Thus v : F× → Γ is a nontrivial homomorphism from F× to a totally ordered
commutative group Γ (written additively) satisfying v(a + b) ≥ min{v(a), v(b)},
for all a, b ∈ F×, with a + b �= 0. Recall that if v(a) < v(b), then it follows that
v(a + b) = v(a).

In this section we first generalize the well-known construction of a valuation on
the field of rational function F (x), extending v (cf. [2, Section 10.1, Proposition 2]),
to a construction of a valuation on the division algebra of fractions F (x, σ), where
σ ∈ Aut(F ) is an automorphism of finite order satisfying v(σ(a)) = v(a), for all
a ∈ F×. This construction has probably been well known to experts for some time;
see for example [3].

Thus let σ ∈ Aut(F ) and let R = F [x, σ] be the associated ring of skew polyno-
mials in x. We recall that F [x, σ] consists of formal expressions a0+a1x+· · ·+amxm

with ai ∈ F which are added in the obvious way and are multiplied according to
the rule: if

a(x) = a0 + a1x + · · · + amxm and b(x) = b0 + b1x + · · · + bnxn,

then

a(x)b(x) = c0 + c1x + · · · + cm+nxm+n, where ck =
∑

i+j=k

aib
σi

j .

Now suppose that v(σ(a)) = v(a) for all a ∈ F . Define a function w : R � {0} → Γ
as follows: given a nonzero a(x) = a0 + a1x + · · · + amxm, we let

w(a(x)) = min
ai �=0

v(ai).

Lemma 3.1. w is a valuation of R. In other words, for nonzero a(x), b(x) ∈ R we
have

(1) w(a(x)b(x)) = w(a(x)) + w(b(x)), and
(2) w(a(x) + b(x)) � min{w(a(x)), w(b(x))} if b(x) �= −a(x).
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Proof. The proof of (1) is identical to the usual proof of Gauss’ Lemma. Namely,
suppose w(a(x)) = α, w(b(x)) = β, and set

i0 = min{i | ai �= 0, v(ai) = α} and j0 = min{j | bj �= 0, v(bj) = β}.
Then the coefficient ci0+j0 of xi0+j0 in c(x) = a(x)b(x) is

ci0+j0 =
∑

i+j=i0+j0

aib
σi

j .

If i + j = i0 + j0, (i, j) �= (i0, j0) and ai, bj �= 0, we have either i < i0 or j < j0 and
then respectively either v(ai) > α (and v(bj) � β) or v(bj) > β (and v(ai) � α).
In all cases,

v(aib
σi

j ) = v(ai) + v(bj) > α + β.

It follows that
v(ci0+j0) = v(ai0b

σi0

j0 ) = α + β.

On the other hand, for any k we have

v(ck) = v

⎛
⎝ ∑

i+j=k

aib
σi

j

⎞
⎠ � min

ai �=0�=bj

v(aib
σi

j ) � α + β,

and (1) follows. Property (2) is obvious. �

From now on, we will assume that σ has finite order d. Then the center of R
is R0 = F σ[xd], where F σ is the fixed subfield. Let S = R0 � {0}. Then S is a
central multiplicative subset of R, so the localization D := RS exists, and every
element of D has a presentation of the form as−1, where a ∈ R and s ∈ S. Note
that the localization K := (R0)S is simply the field of fractions of R0, and D is a
finite-dimensional algebra over K without zero divisors, hence a division algebra.
In fact, dimK D = d2, as the elements aix

j , i, j = 1, . . . , d, where a1, . . . , ad is a
basis of F over F σ, form a basis of D over K. We will denote D by F (x, σ). If
as−1 = bt−1, then at = bs, and using Lemma 3.1(1) we immediately obtain that

w(a) − w(s) = w(b) − w(t),

so the equation
w̃(as−1) = w(a) − w(s)

yields a well-defined function on D×.

Lemma 3.2. w̃ is a valuation on D.

Proof. The property that w̃(ãb̃) = w̃(ã)+ w̃(b̃) for all nonzero ã, b̃ ∈ D immediately
follows from the definition. Now, suppose we have ã = as−1, b̃ = bt−1 ∈ D× such
that b̃ �= −ã (i.e. bs �= −at). By taking a common denominator we may assume
that t = s. Suppose in addition that w̃(ã) � w̃(b̃). Then

w̃(ã + b̃) = w(a + b) − w(s) ≥ w(a) − w(s) = w̃(ã),

and the property w̃(ã + b̃) � min{w̃(ã), w̃(b̃)} follows. �

Let OF,v = {a ∈ F× | v(a) ≥ 0} ∪ {0} and mF,v = {a ∈ F× | v(a) > 0} ∪ {0} be
the valuation ring and the valuation ideal of v. Note that

σ induces an automorphism σ̄ on F̄v,

because σ preserves v.
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Lemma 3.3. Let S0 = {s ∈ S | w(s) = 0}. Then the valuation ring and the
valuation ideal of w̃ are as follows:

(iv) OD,w̃ = OF,v[x, σ]S−1
0 and mD,w̃ = mF,v[x, σ]S−1

0 .

Furthermore, the residue algebra D̄w̃ = OD,w̃/mD,w̃ is isomorphic to F̄v(x, σ̄).

Proof. Clearly, S = (F σ)×S0, from which it follows that any element in ã ∈ D×

has a presentation of the form ã = as−1 with s ∈ S0. Then w̃(ã) = w(a), and the
descriptions in (iv) easily follow. Reducing the coefficients of polynomials in OF,v[x]
modulo mF,v defines a surjective ring homomorphism ϕ : OF,v[x, σ] → F̄v[x, σ̄] with
ker ϕ = mF,v[x, σ]. Then ϕ uniquely extends to a homomorphism of localizations

ϕ̃ : OF,v[x, σ]S−1
0 → F̄v[x, σ̄](ϕ(S0))−1

with ker ϕ̃ = mF,v[x, σ]S−1
0 . It follows that D̄w̃ � F̄v[x, σ̄](ϕ(S0))−1. As the left-

hand side is a division ring, so is the right-hand side, from which it follows that it
in fact coincides with F̄v(x, σ̄) (although in general ϕ(S0) may be smaller than the
set of nonzero elements of the center of F̄v[x, σ̄]). �

Now let k be a field and let u be a non-archimedean valuation on k. We use the
above construction to construct a quaternion division algebra D equipped with a
valuation w̃ extending u such that D̄w̃ is not commutative and has characteristic 2.

Consider the field of rational functions F := k(y) in the variable y. Extend u to
a valuation of F as above, by taking in the construction above k in place of F , u
in place of v, and the identity map of k in place of σ. We thus obtain a valuation
v on F extending u, and

F̄v = k̄u(y).
Now let σ ∈ Aut(F ) be the unique automorphism (of order 2) taking y → 1

y and
fixing k pointwise. Using the definition of v one easily checks that v(σ(r(y))) =
v(r(y)), for any rational function r(y) ∈ k(y). Let D = F (x, σ) be as above. Since
the order of σ is 2, D is a quaternion division algebra. Also, σ̄ is the unique
map on F̄v fixing k̄u pointwise and taking y to 1

y . Thus σ̄ is nontrivial, and since
D̄w̃

∼= F̄v(x, σ̄), it follows that D̄w̃ is not commutative. Thus, we have shown

Proposition 3.4. Let k be a field that supports a non-archimedean valuation u.
Then there exists a quaternion division algebra D whose center has transcendence
degree 2 over k, and a valuation v on D extending u, such that the residue division
algebra D̄v is not commutative (and has characteristic equal to that of the residue
field k̄u).

Taking in Proposition 3.4 k = Q and u the 2-adic valuation, we get the following
corollary which in conjunction with Theorem 1.2 completes the proof of Theorem
1.1.

Corollary 3.5. There exists a quaternion division algebra D of characteristic zero
and a valuation v on D such that the residue division algebra D̄v is not commutative
and has characteristic two.
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