NONABELIAN FREE SUBGROUPS IN HOMOMORPHIC IMAGES OF VALUED QUATERNION DIVISION ALGEBRAS

ANDREI S. RAPINCHUK, LOUIS ROWEN, AND YOAV SEGEV

(Communicated by Jonathan I. Hall)

Abstract

Given a quaternion division algebra D, a noncentral element $e \in$ D^{\times}is called pure if its square belongs to the center. A theorem of Rowen and Segev (2004) asserts that for any quaternion division algebra D of positive characteristic >2 and any pure element $e \in D^{\times}$the quotient $D^{\times} / X(e)$ of D^{\times}by the normal subgroup $X(e)$ generated by e, is abelian-by-nilpotent-by-abelian. In this note we construct a quaternion division algebra D of characteristic zero containing a pure element $e \in D$ such that $D^{\times} / X(e)$ contains a nonabelian free group. This demonstrates that the situation in characteristic zero is very different.

1. Introduction

Let D be a quaternion division algebra with center K. An element $e \in D \backslash K$ is called pure if $e^{2} \in K$. Given an element $a \in D \backslash K$, we denote by

$$
X(a) \text { and } Y(a)
$$

the normal subgroups of D^{\times}generated by $\langle a\rangle$ and $S L_{1}(K(a))$ respectively, where as usual $S L_{1}(K(a))=K(a) \cap S L_{1}(D)$ and $S L_{1}(D)$ is the subgroup of elements having reduced norm 1 .

In [7] quotients of the form $D^{\times} / X(e)$ were considered for pure elements $e \in$ D^{\times}. These quotients arise in the analysis of the Whitehead group $W(G, k)$ of an absolutely simple simply connected algebraic k-group G of type ${ }^{3,6} D_{4}$ having k rank 1 (see Tits's Bourbaki talk [11] for the relevant terminology). It was shown that if D has positive characteristic >2, then $D^{\times} / X(e)$ is abelian-by-nilpotent-byabelian for any pure element $e \in D^{\times}$, which, by the explicit description of $W(G, k)$ given in [5], implies the solvability of $W(G, k)$ for G as above over a field k of characteristic >2. Even though the solvability of $W(G, k)$ is expected to hold in any characteristic (see [6] for a general conjecture), the results of this note indicate

[^0]that a more delicate analysis will be needed to prove this in characteristic zero. More precisely, we will prove the following.

Theorem 1.1. There exists a quaternion division algebra D of characteristic zero and pure quaternions $e, f \in D$ such that the quotients $D^{\times} / X(e)$ and $D^{\times} / Y(f)$ contain nonabelian free groups. (In particular these quotients are nonsolvable.)

In $₫ 33$ we construct a quaternion division algebra D that supports a valuation v such that the residue algebra \bar{D}_{v} is non-commutative of characteristic two over the residue field \bar{K}_{v}. This algebra D has the properties asserted in Theorem 1.1 by the following more general result.

Theorem 1.2. Let D be a quaternion division algebra of characteristic zero that supports a valuation v for which the residue algebra \bar{D}_{v} is non-commutative and has characteristic two. Then D contains pure quaternions e and f such that the quotients $D^{\times} / X(e)$ and $D^{\times} / Y(f)$ have homomorphic images containing $\bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}$, and consequently $D^{\times} / X(e)$ and $D^{\times} / Y(f)$ contain nonabelian free groups.

The proof of Theorem 1.2 proceeds as follows. Let D be a quaternion division algebra as in Theorem 1.2 and let $e, f \in D$ be pure quaternions such that $e f=$ $-f e$. We first observe that $Y(e)$ commutes both with $X(e)$ and $Y(f)$ modulo the congruence subgroup $1+\mathfrak{m}_{D, v}$, where $\mathfrak{m}_{D, v}$ is the valuation ideal. (This follows from a stronger result that comes from [7]; see Lemma 2.1 for a short proof). We then apply the following lemma which is an easy consequence of the Cartan-Brauer-Hua Theorem (see, e.g., [3, Theorem 3.9.2, pg. 144]).

Lemma 1.3. Let D be a finite-dimensional division algebra with center K that supports a valuation v so that the residue division algebra \bar{D}_{v} is not commutative. Let $\mathcal{U}_{v}:=\left\{x \in D^{\times} \mid v(x)=0\right\}$ be the group of units and $\mathfrak{m}_{D, v}:=\left\{x \in D^{\times} \mid\right.$ $v(x)>0\}$ be the valuation ideal. Let $*: D^{\times} \rightarrow D^{\times} / K^{\times}\left(1+\mathfrak{m}_{D, v}\right)$ be the canonical homomorphism. Suppose N, M are normal subgroups of D^{\times}such that $[N, M]^{*}=$ 1*. Then
(1) $\mathcal{U}_{v}^{*}=\bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}$, and either $\left(\left(M K^{\times}\right) \cap \mathcal{U}_{v}\right)^{*}=1^{*}$ or $\left(\left(N K^{\times}\right) \cap \mathcal{U}_{v}\right)^{*}=1^{*}$;
(2) for $H \in\{M, N\}$ such that $\left(\left(H K^{\times}\right) \cap \mathcal{U}_{v}\right)^{*}=1^{*}$ we have

$$
\left(H K^{\times} \mathcal{U}_{v}\right) /\left(H K^{\times}\left(1+\mathfrak{m}_{D, v}\right)\right) \cong \bar{D}_{v}^{\times} / \bar{K}_{v}^{\times} .
$$

In $\oint 3$ we extend a well-known construction of valuations on fields of rational functions (cf. [2, Section 10.1, Proposition 2]) to finite-dimensional division algebras of non-commutative rational functions. We then apply this construction to obtain the quaternion division algebra D satisfying the hypotheses of Theorem 1.2 (see Proposition 3.4 and Corollary (3.5). The center of the resulting algebra D has transcendence degree 2 over \mathbb{Q}, so in this context we would like to mention that for a finite-dimensional division algebra \mathcal{D} over a global field, any quotient of $S L_{1}(\mathcal{D})$ by a noncentral subgroup is finite and solvable (see [6]), implying that all quotients of \mathcal{D}^{\times}by a noncentral subgroup are solvable.

In a preliminary version of this paper (see [9] for a report on this joint result) we proved a weaker version of Theorem 1.1 using ultra-products, however now we have a stronger result that does not require the use of ultra-products. Also, since our construction is explicit it is possible that the algebra D we construct could be used to demonstrate further properties of the Whitehead group.

2. The proof of Theorem 1.2

In this section we prove Theorem 1.2 We start with a lemma that comes from [7.
Lemma 2.1. Let D be a quaternion division algebra of characteristic $\neq 2$, let S be the (normal) subgroup of D^{\times}generated by the set $1+2 S L_{1}(D)$, and let $\bullet: D^{\times} \rightarrow$ $D^{\bullet}:=D^{\times} / S$ be the canonical homomorphism. Then
(1) for any pure $e \in D$, we have $[Y(e), X(e)]^{\bullet}=1^{\bullet}$;
(2) for any pure $e, f \in D$ such that ef $=-f e$, we have $[Y(e), Y(f)]^{\bullet}=1^{\bullet}$.

Proof. First observe that
(i) $\quad\left[x^{\bullet},(x+s)^{\bullet}\right]=1^{\bullet}, \quad$ for all $x \in D^{\times}$and $s \in S$ such that $x+s \neq 0$,
because $(x+s)^{\bullet}=\left(s\left(s^{-1} x+1\right)\right)^{\bullet}=\left(s^{-1} x+1\right)^{\bullet}$, and $\left(s^{-1} x+1\right)^{\bullet}$ commutes with $\left(s^{-1} x\right)^{\bullet}=x^{\bullet}$. Next, using the notation $[a, b]=a^{-1} b^{-1} a b, a^{b}=b^{-1} a b$,

$$
\left[g,(1+x)^{-1}\right]=\left(1+x^{g}\right)(1+x)^{-1} \quad \forall x, g \in D^{\times} \text {with } x \neq-1,
$$

and hence

$$
\begin{gathered}
{\left[x^{g}, \frac{1-x}{1+x}\right]^{\bullet}=\left[x^{g}, 1-2(1+x)^{-1}\right]^{\bullet}=\left[x^{g},\left(1+x^{g}\right)^{-1}\left(1+x^{g}-2\left[g,(1+x)^{-1}\right]\right)\right]^{\bullet}} \\
=\left[x^{g}, x^{g}+\left(1-2\left[g,(1+x)^{-1}\right]\right)\right]^{\bullet}=1^{\bullet}
\end{gathered}
$$

where the last equality follows from (ii) using the fact that $1-2\left[g,(1+x)^{-1}\right] \in S$. Replacing x by αe, where $\alpha \in K^{\times}$is arbitrary and observing that any element $\neq-1$ in $\mathrm{SL}_{1}(K(e))$ has the form $\frac{1-\alpha e}{1+\alpha e}$ (for example, by Hilbert's Theorem 90), we get (1).

Part (2) follows from (1) because

$$
[e, 1+\alpha f]=\left((1+\alpha f)^{e}\right)^{-1}(1+\alpha f)=(1-\alpha f)^{-1}(1+\alpha f), \text { for all } \alpha \in K^{\times},
$$

and as we mentioned above any element $\neq-1$ of $\mathrm{SL}_{1}(K(f))$ has the form $(1-\alpha f)^{-1}(1+\alpha f)$ for some $\alpha \in K^{\times}$. Hence $\mathrm{SL}_{1}(K(f)) \leq X(e)$, and so (2) follows from (1).

The next lemma is a consequence of the Cartan-Brauer-Hua theorem and will be applied in the proof of Lemma 1.3
Lemma 2.2. Let D be a finite-dimensional division algebra with center K. Let A and B be two normal subgroup of D^{\times}such that $[A, B] \leq K^{\times}$. Then either $A \subseteq K^{\times}$ or $B \subseteq K^{\times}$.

Proof. First observe that

$$
\begin{equation*}
\text { if }[A, B]=1 \text {, then either } A \subseteq K \text { or } B \subseteq K \text {. } \tag{ii}
\end{equation*}
$$

To prove (iii) note that the K-subalgebra $K[A]$ generated by A is a division subalgebra normalized by D^{\times}, so by the Cartan-Brauer-Hua Theorem (see 3, Theorem 3.9 .2 , pg. 144] for an easy proof), if A is noncentral, then $K[A]=D$, and since B centralizes $K[A]$ it follows that B is central.

Assume now that B is noncentral. Since $[B, A, A]=[A, B, A]=1$, the three subgroup lemma ((1, (8.7)]) implies that $[[A, A], B]=1$. Since B is noncentral, it follows from (iii) that $[A, A] \leq K^{\times}$. But this shows that A is nilpotent. Hence $A \leq K^{\times}$since by a theorem of Scott $[8], D^{\times}$contains no noncentral normal solvable subgroups.

Proof of Lemma 1.3. (1) Let $\mathcal{O}_{D, v}:=\left\{x \in D^{\times} \mid v(x) \geq 0\right\} \cup\{0\}$ be the valuation ring of v. Of course the canonical homomorphism $\mathcal{O}_{D, v} \rightarrow \bar{D}_{v}$ restricted to \mathcal{U}_{v} induces a surjective group homomorphism $\mathcal{U}_{v} \rightarrow \bar{D}_{v}^{\times}$, with kernel $1+\mathfrak{m}_{D, v}$, so $\mathcal{U}_{v} /\left(1+\mathfrak{m}_{D, v}\right)=\bar{D}_{v}^{\times}$and therefore $\mathcal{U}_{v}^{*} \cong \bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}$.

Set $A:=\left(M K^{\times}\right) \cap \mathcal{U}_{v}$ and $B:=\left(N K^{\times}\right) \cap \mathcal{U}_{v}$. Let $^{-}: \mathcal{U}_{v} \rightarrow \mathcal{U}_{v} /\left(1+\mathfrak{m}_{D, v}\right)=\bar{D}_{v}^{\times}$ be the canonical homomorphism. Then $[\bar{A}, \bar{B}] \leq \bar{K}_{v}$. Since \bar{D}_{v} is not commutative Lemma 2.2 implies that either $\bar{A} \leq \bar{K}_{v}$ or $\bar{B} \leq \bar{K}_{v}$, that is, either $A^{*}=1^{*}$ or $B^{*}=1^{*}$ 。
(2) Suppose $A^{*}=1^{*}$, that is, $\left(M K^{\times}\right) \cap \mathcal{U}_{v} \leq K^{\times}\left(1+\mathfrak{m}_{D, v}\right)$. Then

$$
\begin{gathered}
\left(M K^{\times} \mathcal{U}_{v}\right) /\left(M K^{\times}\left(1+\mathfrak{m}_{D, v}\right)\right) \cong \mathcal{U}_{v} / \mathcal{U}_{v} \cap\left(M K^{\times}\left(1+\mathfrak{m}_{D, v}\right)\right) \\
\cong \mathcal{U}_{v} /\left(\mathcal{U}_{v} \cap M K^{\times}\right)\left(1+\mathfrak{m}_{D, v}\right)=\mathcal{U}_{v}^{*} .
\end{gathered}
$$

We can now complete the proof of Theorem 1.2 .
Proof of Theorem 1.2. Let D be as in Theorem 1.2, and adopt the notation of Lemma 1.3 and its proof. Let $e, f \in D$ be pure elements such that $e f=-f e$. We claim that

$$
\begin{equation*}
[Y(e), X(e)]^{*}=1^{*}=[Y(e), Y(f)]^{*} \tag{iii}
\end{equation*}
$$

Recall that since D is a quaternion division algebra, $\mathrm{SL}_{1}(D)=\left[D^{\times}, D^{\times}\right]$. Furthermore, for any valuation v of a finite-dimensional division algebra, the value group Γ_{v} is commutative. Thus $\mathrm{SL}_{1}(D)=\left[D^{\times}, D^{\times}\right] \leq \mathcal{U}_{v}$, since \mathcal{U}_{v} is the kernel of the valuation $v: D^{\times} \rightarrow \Gamma_{v}$. Also the fact that the characteristic of \bar{D}_{v} is two implies that $2 \in \mathfrak{m}_{D, v}$, so $2 \mathrm{SL}_{1}(D) \subseteq 2 \mathcal{U}_{v} \subseteq \mathfrak{m}_{D, v}$ and therefore

$$
S:=\left\langle 1+2 \mathrm{SL}_{1}(D)\right\rangle \leq 1+\mathfrak{m}_{D, v}
$$

Now (iii) follows from Lemma 2.1 .
Let $b, c \in \mathcal{U}_{v}$ such that $[\bar{b}, \bar{c}]$ is a noncentral element in $\bar{D}_{v}\left(\bar{b}, \bar{c}\right.$ exist since \bar{D}_{v} is not commutative and hence not solvable; see, e.g., [8]). Let $a=[b, c]\left(=b^{-1} c^{-1} b c\right)$ and let $e \in K(a)$ be a pure element. By the choice of a we have $a^{*} \neq 1^{*}$ and $a \in \mathrm{SL}_{1}(K(e)) \leq \mathcal{U}_{v}$. Thus $\left(Y(e) \cap \mathcal{U}_{v}\right)^{*} \neq 1^{*}$. Now (iii) together with Lemma 1.3 imply that $\left(\left(X(e) K^{\times}\right) \cap \mathcal{U}_{v}\right)^{*}=1^{*}=\left(\left(Y(f) K^{\times}\right) \cap \mathcal{U}_{v}\right)^{*}$. Now let $H \in\{X(e), Y(f)\}$. Then, by Lemma 1.3 (2),

$$
\left(H K^{\times} \mathcal{U}_{v}\right) /\left(H K^{\times}\left(1+\mathfrak{m}_{D, v}\right)\right) \cong \bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}
$$

so $\left.D^{\times} / H K^{\times}\left(1+\mathfrak{m}_{D, v}\right)\right)$ contains a subgroup isomorphic to $\bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}$. This completes the first part of Theorem 1.2.

For the second part note first that since \bar{D}_{v}^{\times}is non-commutative, it contains nonabelian free groups (see, e.g., [4, Theorem 2.1]); of course, the proof of this fact uses the celebrated Tits' alternative [10]. It follows that $\bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}$contain a nonabelian free group. Hence $D^{\times} / X(e)$ and $D^{\times} / Y(f)$ have homomorphic images containing nonabelian free groups. But then $D^{\times} / X(e)$ and $D^{\times} / Y(e)$ also contain nonabelian free groups because if we pick one preimage for each free generator of a free subgroup in a homomorphic image, the resulting elements will generate a free subgroup.

Remarks 2.3. Note that the proof of Theorem 1.2 actually shows that if D is a quaternion division algebra that supports a valuation v such that the residue algebra \bar{D}_{v} is non-commutative of characteristic two, and if $e, f \in D$ are pure elements such
that $e f=-f e$, then one of $D^{\times} / Y(e)$ or $D^{\times} / Y(f)$ contains a nonabelian free group (and in fact one of these groups has a homomorphic image that contains a subgroup isomorphic to $\left.\bar{D}_{v}^{\times} / \bar{K}_{v}^{\times}\right)$.

This should be compared with the fact that for any quaternion division algebra D and any pure element $e \in D$, the quotient of D^{\times}by the normal subgroup generated by $K(e)^{\times}$is an elementary abelian 2 -group (i.e. all nonidentity elements have order $2)$. This last fact is rather easy to prove; cf. 7].

3. Constructing valuations on division algebras of non-Commutative rational functions

In this section we construct a quaternion division algebra whose center is an extension of \mathbb{Q} of transcendence degree 2 that supports a valuation v such that the residue algebra \bar{D}_{v} is non-commutative of characteristic two. In view of Theorem 1.2, this will complete the proof of Theorem 1.1. More generally, we give an explicit construction of valuations on finite-dimensional division algebras of noncommutative rational functions which enables us to control the structure of the residue algebra.

Let F be a field and let $v: F^{\times} \rightarrow \Gamma$ be a non-archimedean valuation on F. Thus $v: F^{\times} \rightarrow \Gamma$ is a nontrivial homomorphism from F^{\times}to a totally ordered commutative group Γ (written additively) satisfying $v(a+b) \geq \min \{v(a), v(b)\}$, for all $a, b \in F^{\times}$, with $a+b \neq 0$. Recall that if $v(a)<v(b)$, then it follows that $v(a+b)=v(a)$.

In this section we first generalize the well-known construction of a valuation on the field of rational function $F(x)$, extending v (cf. [2, Section 10.1, Proposition 2]), to a construction of a valuation on the division algebra of fractions $F(x, \sigma)$, where $\sigma \in \operatorname{Aut}(F)$ is an automorphism of finite order satisfying $v(\sigma(a))=v(a)$, for all $a \in F^{\times}$. This construction has probably been well known to experts for some time; see for example [3].

Thus let $\sigma \in \operatorname{Aut}(F)$ and let $R=F[x, \sigma]$ be the associated ring of skew polynomials in x. We recall that $F[x, \sigma]$ consists of formal expressions $a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ with $a_{i} \in F$ which are added in the obvious way and are multiplied according to the rule: if

$$
a(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \text { and } b(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
$$

then

$$
a(x) b(x)=c_{0}+c_{1} x+\cdots+c_{m+n} x^{m+n}, \quad \text { where } c_{k}=\sum_{i+j=k} a_{i} b_{j}^{\sigma^{i}}
$$

Now suppose that $v(\sigma(a))=v(a)$ for all $a \in F$. Define a function $w: R \backslash\{0\} \rightarrow \Gamma$ as follows: given a nonzero $a(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$, we let

$$
w(a(x))=\min _{a_{i} \neq 0} v\left(a_{i}\right)
$$

Lemma 3.1. w is a valuation of R. In other words, for nonzero $a(x), b(x) \in R$ we have
(1) $w(a(x) b(x))=w(a(x))+w(b(x))$, and
(2) $w(a(x)+b(x)) \geqslant \min \{w(a(x)), w(b(x))\}$ if $b(x) \neq-a(x)$.

Proof. The proof of (1) is identical to the usual proof of Gauss' Lemma. Namely, suppose $w(a(x))=\alpha, w(b(x))=\beta$, and set

$$
i_{0}=\min \left\{i \mid a_{i} \neq 0, v\left(a_{i}\right)=\alpha\right\} \text { and } j_{0}=\min \left\{j \mid b_{j} \neq 0, v\left(b_{j}\right)=\beta\right\}
$$

Then the coefficient $c_{i_{0}+j_{0}}$ of $x^{i_{0}+j_{0}}$ in $c(x)=a(x) b(x)$ is

$$
c_{i_{0}+j_{0}}=\sum_{i+j=i_{0}+j_{0}} a_{i} b_{j}^{\sigma^{i}}
$$

If $i+j=i_{0}+j_{0},(i, j) \neq\left(i_{0}, j_{0}\right)$ and $a_{i}, b_{j} \neq 0$, we have either $i<i_{0}$ or $j<j_{0}$ and then respectively either $v\left(a_{i}\right)>\alpha\left(\right.$ and $\left.v\left(b_{j}\right) \geqslant \beta\right)$ or $v\left(b_{j}\right)>\beta$ (and $\left.v\left(a_{i}\right) \geqslant \alpha\right)$. In all cases,

$$
v\left(a_{i} b_{j}^{\sigma^{i}}\right)=v\left(a_{i}\right)+v\left(b_{j}\right)>\alpha+\beta
$$

It follows that

$$
v\left(c_{i_{0}+j_{0}}\right)=v\left(a_{i_{0}} b_{j_{0}}^{\sigma_{0}}\right)=\alpha+\beta
$$

On the other hand, for any k we have

$$
v\left(c_{k}\right)=v\left(\sum_{i+j=k} a_{i} b_{j}^{\sigma^{i}}\right) \geqslant \min _{a_{i} \neq 0 \neq b_{j}} v\left(a_{i} b_{j}^{\sigma^{i}}\right) \geqslant \alpha+\beta
$$

and (1) follows. Property (2) is obvious.
From now on, we will assume that σ has finite order d. Then the center of R is $R_{0}=F^{\sigma}\left[x^{d}\right]$, where F^{σ} is the fixed subfield. Let $S=R_{0} \backslash\{0\}$. Then S is a central multiplicative subset of R, so the localization $D:=R_{S}$ exists, and every element of D has a presentation of the form $a s^{-1}$, where $a \in R$ and $s \in S$. Note that the localization $K:=\left(R_{0}\right)_{S}$ is simply the field of fractions of R_{0}, and D is a finite-dimensional algebra over K without zero divisors, hence a division algebra. In fact, $\operatorname{dim}_{K} D=d^{2}$, as the elements $a_{i} x^{j}, i, j=1, \ldots, d$, where a_{1}, \ldots, a_{d} is a basis of F over F^{σ}, form a basis of D over K. We will denote D by $F(x, \sigma)$. If $a s^{-1}=b t^{-1}$, then $a t=b s$, and using Lemma 3.1(1) we immediately obtain that

$$
w(a)-w(s)=w(b)-w(t)
$$

so the equation

$$
\tilde{w}\left(a s^{-1}\right)=w(a)-w(s)
$$

yields a well-defined function on D^{\times}.
Lemma 3.2. \tilde{w} is a valuation on D.
Proof. The property that $\tilde{w}(\tilde{a} \tilde{b})=\tilde{w}(\tilde{a})+\tilde{w}(\tilde{b})$ for all nonzero $\tilde{a}, \tilde{b} \in D$ immediately follows from the definition. Now, suppose we have $\tilde{a}=a s^{-1}, \tilde{b}=b t^{-1} \in D^{\times}$such that $\tilde{b} \neq-\tilde{a}$ (i.e. $b s \neq-a t$). By taking a common denominator we may assume that $t=s$. Suppose in addition that $\tilde{w}(\tilde{a}) \leqslant \tilde{w}(\tilde{b})$. Then

$$
\tilde{w}(\tilde{a}+\tilde{b})=w(a+b)-w(s) \geq w(a)-w(s)=\tilde{w}(\tilde{a})
$$

and the property $\tilde{w}(\tilde{a}+\tilde{b}) \geqslant \min \{\tilde{w}(\tilde{a}), \tilde{w}(\tilde{b})\}$ follows.
Let $\mathcal{O}_{F, v}=\left\{a \in F^{\times} \mid v(a) \geq 0\right\} \cup\{0\}$ and $\mathfrak{m}_{F, v}=\left\{a \in F^{\times} \mid v(a)>0\right\} \cup\{0\}$ be the valuation ring and the valuation ideal of v. Note that

$$
\sigma \text { induces an automorphism } \bar{\sigma} \text { on } \bar{F}_{v},
$$

because σ preserves v.

Lemma 3.3. Let $S_{0}=\{s \in S \mid w(s)=0\}$. Then the valuation ring and the valuation ideal of \tilde{w} are as follows:

$$
\begin{equation*}
\mathcal{O}_{D, \tilde{w}}=\mathcal{O}_{F, v}[x, \sigma] S_{0}^{-1} \quad \text { and } \mathfrak{m}_{D, \tilde{w}}=\mathfrak{m}_{F, v}[x, \sigma] S_{0}^{-1} . \tag{iv}
\end{equation*}
$$

Furthermore, the residue algebra $\bar{D}_{\tilde{w}}=\mathcal{O}_{D, \tilde{w}} / \mathfrak{m}_{D, \tilde{w}}$ is isomorphic to $\bar{F}_{v}(x, \bar{\sigma})$.
Proof. Clearly, $S=\left(F^{\sigma}\right)^{\times} S_{0}$, from which it follows that any element in $\tilde{a} \in D^{\times}$ has a presentation of the form $\tilde{a}=a s^{-1}$ with $s \in S_{0}$. Then $\tilde{w}(\tilde{a})=w(a)$, and the descriptions in (iv) easily follow. Reducing the coefficients of polynomials in $\mathcal{O}_{F, v}[x]$ modulo $\mathfrak{m}_{F, v}$ defines a surjective ring homomorphism $\varphi: \mathcal{O}_{F, v}[x, \sigma] \rightarrow \bar{F}_{v}[x, \bar{\sigma}]$ with $\operatorname{ker} \varphi=\mathfrak{m}_{F, v}[x, \sigma]$. Then φ uniquely extends to a homomorphism of localizations

$$
\tilde{\varphi}: \mathcal{O}_{F, v}[x, \sigma] S_{0}^{-1} \rightarrow \bar{F}_{v}[x, \bar{\sigma}]\left(\varphi\left(S_{0}\right)\right)^{-1}
$$

with ker $\tilde{\varphi}=\mathfrak{m}_{F, v}[x, \sigma] S_{0}^{-1}$. It follows that $\bar{D}_{\tilde{w}} \simeq \bar{F}_{v}[x, \bar{\sigma}]\left(\varphi\left(S_{0}\right)\right)^{-1}$. As the lefthand side is a division ring, so is the right-hand side, from which it follows that it in fact coincides with $\bar{F}_{v}(x, \bar{\sigma})$ (although in general $\varphi\left(S_{0}\right)$ may be smaller than the set of nonzero elements of the center of $\left.\bar{F}_{v}[x, \bar{\sigma}]\right)$.

Now let k be a field and let u be a non-archimedean valuation on k. We use the above construction to construct a quaternion division algebra D equipped with a valuation \tilde{w} extending u such that $\bar{D}_{\tilde{w}}$ is not commutative and has characteristic 2 .

Consider the field of rational functions $F:=k(y)$ in the variable y. Extend u to a valuation of F as above, by taking in the construction above k in place of F, u in place of v, and the identity map of k in place of σ. We thus obtain a valuation v on F extending u, and

$$
\bar{F}_{v}=\bar{k}_{u}(y)
$$

Now let $\sigma \in \operatorname{Aut}(F)$ be the unique automorphism (of order 2) taking $y \rightarrow \frac{1}{y}$ and fixing k pointwise. Using the definition of v one easily checks that $v(\sigma(r(y)))=$ $v(r(y))$, for any rational function $r(y) \in k(y)$. Let $D=F(x, \sigma)$ be as above. Since the order of σ is $2, D$ is a quaternion division algebra. Also, $\bar{\sigma}$ is the unique map on \bar{F}_{v} fixing \bar{k}_{u} pointwise and taking y to $\frac{1}{y}$. Thus $\bar{\sigma}$ is nontrivial, and since $\bar{D}_{\tilde{w}} \cong \bar{F}_{v}(x, \bar{\sigma})$, it follows that $\bar{D}_{\tilde{w}}$ is not commutative. Thus, we have shown

Proposition 3.4. Let k be a field that supports a non-archimedean valuation u. Then there exists a quaternion division algebra D whose center has transcendence degree 2 over k, and a valuation v on D extending u, such that the residue division algebra \bar{D}_{v} is not commutative (and has characteristic equal to that of the residue field \bar{k}_{u}).

Taking in Proposition $3.4 k=\mathbb{Q}$ and u the 2-adic valuation, we get the following corollary which in conjunction with Theorem 1.2 completes the proof of Theorem 1.1 .

Corollary 3.5. There exists a quaternion division algebra D of characteristic zero and a valuation v on D such that the residue division algebra \bar{D}_{v} is not commutative and has characteristic two.

References

[1] M. Aschbacher, Finite group theory, Cambridge University Press, 1986. MR 0895134 (89b:20001)
[2] N. Bourbaki, Commutative algebra, chapters 1-7, translated from French. Herman, Paris; Addison-Wesley Publishing Co., 1972. MR0360549 (50:12997)
[3] P. M. Cohn, Skew fields. Theory of general division rings, Encyclopedia of Mathematics and its Applications, 57, Cambridge University Press, Cambridge, 1995. MR1349108(97d:12003)
[4] J. Z. Goncalves, Free groups in subnormal subgroups and residual nilpotence of the group of units of group rings, Canad. Math. Bull. 27(1984), no. 3, 365-370. MR0749646 (85k:20022)
[5] G. Prasad, The Kneser-Tits problem for triality forms, preprint, 2006.
[6] A. S. Rapinchuk, Y. Segev, and G. Seitz, Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable, J. Amer. Math. Soc. 15(2002), no. 4, 929-978. MR1915823 (2003k:16031)
[7] L. Rowen and Y. Segev, Normal subgroups generated by a single pure element in quaternion algebras, to appear in J. Algebra.
[8] W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8(1957), 303-305. MR0083984 (18:788g)
[9] Y. Segev, Pure quaternions, ultraproducts and valuations, Oberwolfach report 12/2005, 9029-9031.
[10] J. Tits, Free subgroups in linear groups, J. Algebra 20(1972), 250-270. MR0286898 (44:4105)
[11] J. Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d'aprés V. P. Platonov at al.), Séminaire Bourbaki, 29e année (1976/7), Exp. No. 505, pp. 218236. MR0521771 (80d:12008)

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
E-mail address: asr3x@unix.mail.virginia.edu
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
E-mail address: rowen@macs.biu.ac.il
Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel
E-mail address: yoavs@math.bgu.ac.il

[^0]: Received by the editors March 3, 2005 and, in revised form, May 14, 2005.
 2000 Mathematics Subject Classification. Primary 16K20, 16U60; Secondary 20G15, 12J20.
 Key words and phrases. Quaternion division algebra, multiplicative group, valuation, residue algebra.

 The first author was partially supported by BSF grant 2000-171, and by NSF grants DMS0138315 and DMS-0502120.

 The second author was partially supported by the Israel Science Foundation Center of Excellence.

 The third author was partially supported by BSF grant 2000-171.

