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1. Introduction

Let K be a global field. Given a finite extension L/K , we let J K and J L denote the groups of
ideles of K and L respectively, and let NL/K : J L → J K denote the natural extension of the norm map
associated with L/K (cf. [2, pp. 73–75]). Then the extension L/K is said to satisfy the Hasse norm
principle if

K × ∩ NL/K ( J L) = NL/K
(
L×)

.

The classical result of Hasse states that this is always the case if L/K is a cyclic Galois extension.
For general extensions (even Galois extensions), the Hasse principle does not necessarily hold, and its
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investigation has received a lot of attention. The obstruction to the Hasse principle is given by the
quotient

X(L/K ) = K × ∩ NL/K ( J L)

NL/K (L×)

which is a finite group called the Tate–Shafarevich group of the extension L/K . (We note that it
coincides with the Tate–Shafarevich group of the corresponding norm torus R(1)

L/K (GL1), cf. [18, Sec-
tion 11].)

In [2, p. 198], Tate gave the following cohomological computation of X(L/K ) for a Galois ex-
tension L/K : Let G = Gal(L/K ), and for a valuation v of K , let G v be the decomposition group of (a fixed
extension of) v. Then X(L/K ) is the dual of (hence is isomorphic to) the kernel of the map H3(G,Z) →∏

v H3(G v ,Z) induced by restriction. Various aspects of the Hasse principle were investigated in [7,
12,13], and a computation of X(L/K ) for an arbitrary finite extension L/K in terms of so-called
representation groups of the relevant Galois groups was given by Drakokhrust [5].

In [9], Hürlimann considered the tori of norm type associated with a pair of finite extensions L1, L2
of a global field K . The triviality of the Tate–Shafarevich group for this torus is equivalent to the fact
that

K × ∩ NL1/K ( J L1)NL2/K ( J L2) = NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
. (M)

Following [14], we say that the pair L1, L2 satisfies the multinorm principle if (M) holds. It was shown
in [9] that this is indeed the case if L1 is a cyclic Galois extension of K and L2 is an arbitrary Galois
extension (a similar result was independently obtained by Colliot-Thélène and Sansuc [4]). A more
general sufficient condition for the multinorm principle was given in [14, Proposition 6.11]. This result
was used to give a simplified proof of the Hasse principle for Galois cohomology of simply connected
outer forms of type An over number fields (cf. [14, Chapter VI]) and in the analysis of the Margulis–
Platonov conjecture for anisotropic inner forms of type An [14, Section 9.2]; it was also employed
in [16] in the computation of the metaplectic kernel. More recently, another sufficient condition for
the multinorm principle was given in [17] (cf. Proposition 4.2) in order to study the local–global
principle for embedding fields with an involutive automorphism into simple algebras with involution;
some further applications of this result can be found in [6].

It should be emphasized that in all of these results it was assumed that one of the extensions
satisfies the Hasse principle. In this light, the main result of this note looks quite surprising: we show
that no assumption of this nature is actually needed.

Theorem. Let L1 and L2 be two finite separable extensions of a global field K , and let Ei be the Galois closure of
Li over K for i = 1,2. If E1 ∩ E2 = K (i.e., E1 and E2 are linearly disjoint over K ) then the pair L1, L2 satisfies
the multinorm principle.

We notice that the conclusion of the theorem can be false for non-linearly disjoint extensions. For
example, if L1 = L2 =: L, then the multinorm principle is equivalent to the norm principle for L/K ,
hence may fail. See Section 4 for more sophisticated examples and a discussion of a more general
conjecture.

The proof of the theorem is based on the following sufficient condition for the multinorm principle.

Proposition 1. Let L1 and L2 be two finite separable extensions of K such that their Galois closures E1 and E2
satisfy E1 ∩ E2 = K . Set L = L1L2. If the map

φ : X(L/K ) → X(L1/K ) × X(L2/K )

induced by the diagonal embedding K × ↪→ K × × K × is surjective, then the pair L1, L2 satisfies the multinorm
principle.
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In Section 2, we prove the proposition and also reduce the proof of the theorem to the case where
both L1 and L2 are Galois extensions of K . Then, to complete the proof of the theorem, we verify
that the map φ is in fact surjective for any two linearly disjoint Galois extensions – cf. Proposition 3
in Section 3. In Section 4 we give some additional results and examples related to the multinorm
principle. Finally, Section 5 which describes connections with the theory of algebraic tori was writ-
ten following the advice of J.-L. Colliot-Thélène while making revisions in the original manuscript
(arXiv:1203.1458).

2. Proof of Proposition 1

The following statement will enable us to prove Proposition 1, but is also of independent interest.

Proposition 2. Let L1 and L2 be finite extensions of K such that their Galois closures E1 and E2 satisfy E1 ∩
E2 = K . Let L = L1L2 , and let

S = K × ∩ NL/K ( J L) and T = NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
.

Then the following conditions are equivalent:

(1) The pair L1, L2 satisfies the multinorm principle;
(2) K × ∩ NLi/K ( J Li ) ⊂ T for i = 1 and 2;
(3) K × ∩ NLi/K ( J Li ) ⊂ T for at least one index i ∈ {1,2};
(4) S ⊂ T .

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious, while the nontrivial implication (4) ⇒ (1)

is a consequence of the following statement which is extracted from the proof of Proposition 6.11
in [14].

Lemma 3. Let L1 and L2 be as in Proposition 2. Then in the above notations we have

K × ∩ NL1/K ( J L1)NL2/K ( J L2) = ST .

Proof. For completeness, we (succinctly) reproduce the argument given in [14]. Let Mi be the maxi-
mal abelian extension of K contained in Li for i = 1,2, and let M be the maximal abelian extension
of K contained in L. Then by Galois theory the fact that E1 ∩ E2 = K implies that

• M = M1M2 and Gal(M/K ) is naturally isomorphic to Gal(M/M1) × Gal(M/M2);
• the maximal abelian extension of Li contained in L is Li M3−i for i = 1,2.

The crucial observation is that the map

ϕ : J L1/L×
1 NL/L1( J L) × J L2/L×

2 NL/L2( J L) → J K /K ×NL/K ( J L),

induced by the product of the norm maps NL1/K and NL2/K , is an isomorphism, which is proved by
showing that ϕ is surjective and that its domain and target have the same order. To this end, we
consider the following commutative diagram

J M1/M×
1 NM/M1( J M) × J M2/M×

2 NM/M2( J M)
ψ

θ1×θ2

J K /K ×NM/K ( J M)

θ

Gal(M/M1) × Gal(M/M2)
ι

Gal(M/K ),

(1)
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where ψ is constructed analogously to ϕ,

θi : J Mi /M×
i NM/Mi ( J M) → Gal(M/Mi) and θ : J K /K ×NM/K ( J M) → Gal(M/K )

are the isomorphisms given by the corresponding Artin maps (cf. [2, Chapter VII]), and ι is induced
by the canonical embeddings Gal(M/Mi) → Gal(M/K ); the commutativity of (1) follows from Propo-
sition 4.3 in [2]. In our situation, ι is an isomorphism, so ψ is also an isomorphism, implying that

J K = K ×NM1/K ( J M1)NM2/K ( J M2). (2)

We now recall the fact that for any finite separable extension P/F of global fields we have

F ×N P/F ( J P ) = F ×NR/F ( J R),

where R is the maximal abelian extension of F contained in P (cf. [2, Exercise 8]). Thus,

K ×NLi/K ( J Li ) = K ×NMi/K ( J Mi ) for i = 1,2

which in conjunction with (2) yields that

J K = K ×NL1/K ( J L1)NL2/K ( J L2),

proving that ϕ is surjective. On the other hand, since L1M2 is the maximal abelian extension of L1
contained in L, using the fundamental isomorphism of global class field theory we obtain

∣∣ J L1/L×
1 NL/L1( J L)

∣∣ = ∣∣ J L1/L×
1 NL1 M2/L1( J L1 M2)

∣∣ = [L1M2 : L1]
= [M2 : K ] = [M : M1] = ∣∣ J M1/M×

1 NM/M1( J M)
∣∣,

and similarly

∣∣ J L2/L×
2 NL/L2( J L)

∣∣ = ∣∣ J M2/M×
2 NM/M2( J M)

∣∣ and
∣∣ J K /K ×NL/K ( J L)

∣∣ = ∣∣ J K /K ×NM/K ( J M)
∣∣.

Since ψ is an isomorphism, these equations imply that the domain and the target of ϕ have the same
order, proving that ϕ is in fact an isomorphism.

Now, take any a ∈ K × ∩ NL1/K ( J L1 )NL2/K ( J L2 ), and write it in the form

a = NL1/K (x1)NL2/K (x2) with xi ∈ J Li .

Then (x1L×
1 NL/L1( J L), x2L×

2 NL/L2( J L)) ∈ Kerϕ. Using the injectivity of ϕ established above, we see
that we can write

xi = yi NL/Li (zi) with yi ∈ L×
i , zi ∈ J L for i = 1,2.

Then

a = (
NL1/K (y1)NL2/K (y2)

)
NL/K (z1z2) ∈ T S.

This proves the inclusion
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K × ∩ NL1/K ( J L1)NL2/K ( J L2) ⊂ ST ,

while the reverse inclusion is obvious. �
Remark. If one of the Li ’s satisfies the usual Hasse norm principle then condition (3) of Proposition 2
obviously holds for this i. This yields the multinorm principle in this situation, which is precisely the
assertion of Proposition 6.11 in [14]. Thus, the latter is a particular case of our Proposition 2.

Before proceeding with the proof of Proposition 1, we will now use Lemma 3 to give

Reduction of the theorem to the Galois case. Let L1, L2 be as in the theorem, and let us assume that
we already know that their Galois closures E1, E2 satisfy the multinorm principle. We will now show
that the pair L1, L2 satisfies the multinorm principle as well. Generalizing the notions introduced in
the proof of Proposition 2, for a pair of finite extensions P1 and P2 of K , we set

S P1,P2 = K × ∩ N P1 P2/K ( J P1 P2) and T P1,P2 = N P1/K
(

P×
1

)
N P2/K

(
P×

2

)
.

We also set

R P1,P2 = K × ∩ N P1/K ( J P1)N P2/K ( J P2).

We note that for any other finite extensions P ′
1 and P ′

2 of K we have the inclusions

S P1,P2 ⊂ R P ′
1,P2

and S P1,P2 ⊂ R P1,P ′
2
. (3)

Now, applying Lemma 3 twice in conjunction with (3), we obtain

RL1,L2 = T L1,L2 SL1,L2 ⊂ T L1,L2 R E1,L2 = T L1,L2 T E1,L2 S E1,L2 ⊂ T L1,L2 T E1,L2 R E1,E2 . (4)

Since by our assumption the multinorm principle holds for the pair E1, E2, we have R E1,E2 = T E1,E2 ,
so (4) becomes

RL1,L2 ⊂ T L1,L2 T E1,L2 T E1,E2 = T L1,L2 ,

which means that the multinorm principle holds for the pair L1, L2. �
To complete the proof of Proposition 1, we need the following elementary group-theoretic lemma.

Lemma 4. Let A be an abelian group with subgroups B and C. Then the sequence

A f−→ A
B × A

C
g−→ A
BC → 1,

where f and g are defined by

f (x) = (xB, xC) and g(xB, yC) = xy−1BC,

is exact.
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Proof of Proposition 1. Applying Lemma 4 to the group A= K × ∩ NL/K ( J L) and its subgroups

B = NL1/K
(
L×

1

) ∩ NL/K ( J L) and C = NL2/K
(
L×

2

) ∩ NL/K ( J L),

we obtain the following exact sequence

K × ∩ NL/K ( J L)
f−→ K × ∩ NL/K ( J L)

NL1/K (L×
1 ) ∩ NL/K ( J L)

× K × ∩ NL/K ( J L)

NL2/K (L×
2 ) ∩ NL/K ( J L)

g−→ K × ∩ NL/K ( J L)

(NL1/K (L×
1 ) ∩ NL/K ( J L))(NL2/K (L×

2 ) ∩ NL/K ( J L))
→ 1. (5)

By our assumption, the composite homomorphism

X(L/K ) = K × ∩ NL/K ( J L)

NL/K (L×)

f̄−→ K × ∩ NL/K ( J L)

NL1/K (L×
1 ) ∩ NL/K ( J L)

× K × ∩ NL/K ( J L)

NL2/K (L×
2 ) ∩ NL/K ( J L)

h−→ K × ∩ NL1/K ( J L1)

NL1/K (L×
1 )

× K × ∩ NL2/K ( J L2)

NL2/K (L×
2 )

= X(L1/K ) × X(L2/K ),

where f̄ is induced by f and h by the inclusions K × ∩ NL/K ( J L) ⊂ K × ∩ NLi/K ( J Li ) for i = 1,2, is
surjective. Since h is obviously injective, we conclude that f̄ , hence f , is surjective. So, the exact
sequence (5) yields that its third term is trivial, i.e.

S = K × ∩ NL/K ( J L) = (
NL1/K

(
L×

1

) ∩ NL/K ( J L)
)(

NL2/K
(
L×

2

) ∩ NL/K ( J L)
)

⊂ NL1/K
(
L×

1

)
NL2/K

(
L×

2

) = T .

This verifies condition (4) of Proposition 2, thereby yielding the validity of the multinorm principle
for the pair L1, L2. �
3. Proof of the Main Theorem

As we have seen in Section 2, it is enough to prove the Main Theorem assuming that both L1 and
L2 are Galois extensions of K . In this case, the claim is a consequence of Proposition 1 combined with
the following statement.

Proposition 5. Let L1 and L2 be Galois extensions of K with L1 ∩ L2 = K , and let L = L1L2 . Then the map

φ :X(L/K ) → X(L1/K ) × X(L2/K )

induced by the diagonal embedding K × ↪→ K × × K × is surjective.

Our proof relies on properties of the deflation and residuation maps for the Tate cohomology
groups, introduced in [20] and [8], and their interaction with the fundamental isomorphisms of class
field theory. Since these maps are rarely used, we briefly recall in Appendix A their construction,
which is needed to prove the key Lemma 8.

Given a finite group G and a G-module A, we let Ĥ i(G, A) denote the ith Tate cohomology group
(cf., for example, [2, Chapter IV, Section 6]). For a normal subgroup H of G and any i � 0, one can
define the deflation map
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DefG
G/H : Ĥ−i(G, A) → Ĥ−i(G/H, AH)

.

The deflation map is natural; in particular, it has the following properties.

Lemma 6. For any G-module homomorphism f : A → B and any i � 0, the diagram

Ĥ−i(G, A)

DefG
G/H

Ĥ−i(G, B)

DefG
G/H

Ĥ−i(G/H, AH ) Ĥ−i(G/H, B H )

in which the horizontal maps are induced by f , is commutative.

Proof. This is Proposition 8 in [20]. �
Lemma 7. Let

0 → A → B → C → 0 (6)

be an exact sequence of G-modules, and assume that the induced sequence of G/H-modules

0 → AH → B H → C H → 0 (7)

is also exact. Then for any i � 1 the diagram

Ĥ−i(G, C)

DefG
G/H

Ĥ−i+1(G, A)

DefG
G/H

Ĥ−i(G/H, C H ) Ĥ−i+1(G/H, AH )

in which the horizontal maps are the coboundary maps arising from the exact sequences (6) and (7), is com-
mutative.

Proof. This is Proposition 4 in [20]. �
Our proof also makes use of the residuation map RsdG

G/H – see Appendix A. The key property that
we need is that in the case of interest to us, the residuation map is the dual of the usual inflation
map. More precisely, we have the following.

Lemma 8. Let G = H × K and identify G/K with H. Then for i � 2 the residuation and inflation maps in the
following diagram

Ĥ−i(G,Z) ×
RsdG

H

Ĥ i(G,Z)
∪

Ĥ0(G,Z)

Ĥ−i(H,Z) × Ĥ i(H,Z)
∪

InfG
H

Ĥ0(H,Z)

CorG
H
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are adjoint with respect to the pairings given by the ∪-products. That is,

f ∪ InfG
H (ψ) = CorG

H

(
RsdG

H ( f ) ∪ ψ
)

for every f ∈ Ĥ−i(G,Z) and ψ ∈ Ĥ i(H,Z).

Proof. This uses an explicit construction of the residuation map and will be given in Appendix A. �
Another critical ingredient of the proof of Proposition 5 is the following result of K. Horie and

M. Horie [8] that shows how the deflation and residuation maps interact with the isomorphisms
from class field theory. For a global field K , we let C K = J K /K × denote the idele class group.
Furthermore, given a Galois extension F/K of global fields, for any Gal(F/K )-module A we write
Ĥ i(F/K , A) instead of Ĥ i(Gal(F/K ), A), and then for any i ∈ Z there is a canonical isomorphism
ΦF : Ĥ i−2(F/K ,Z) → Ĥ i(F/K , C F ) called the Tate isomorphism (cf. [2, Chapter VII]).

Lemma 9. (See [8, Theorem 1].) Let E ⊂ F be Galois extensions of a global field K . Then for any i � 0, the
following diagram

Ĥ−i−2(F/K ,Z)
ΦF

RsdGal(F/K )

Gal(E/K )

Ĥ−i(F/K , C F )

DefGal(F/K )

Gal(E/K )

Ĥ−i−2(E/K ,Z)
ΦE

Ĥ−i(E/K , C E )

(8)

commutes.

(We will only use this lemma for i = 1.)

Proof of Proposition 5. For a finite Galois extension F/K , we let

κF : Ĥ0(F/K , F ×) → Ĥ0(F/K , J F )

denote the map induced by the inclusion F × → J F . Then clearly X(F/K ) = KerκF . Now, let G j =
Gal(L j/K ) for j = 1,2. Since L1 and L2 are assumed to be linearly disjoint, for L = L1L2 and G =
Gal(L/K ) there is a natural isomorphism

G = G1 × G2,

which in particular allows us to identify G/G3− j with G j for j = 1,2. Considering the inclusion
L× → J L as part of the exact sequence of G-modules 1 → L× → J L → CL → 1 and applying Lem-
mas 6 and 7 to H = G3− j with i = 1 we obtain (observing that the corresponding sequence (7) is
1 → L×

j → J L j → CL j → 1, cf. [2, Chapter VII, Proposition 8.1]) the following commutative diagram
with exact rows:

Ĥ−1(G, CL)

DefG
G j

Ĥ0(G, L×)
κL

DefG
G j

Ĥ0(G, J L)

DefG
G j

Ĥ−1(G j, CL j ) Ĥ0(G j, L×
j )

κL j
Ĥ0(G j, J L j )

(9)
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for each j = 1,2. Since the deflation map in dimension 0 is induced by the identity map (cf. Ap-
pendix A), we see that the map φ in Proposition 5 is the map Ker(κL) → Ker(κL1 ) × Ker(κL2 ) induced
by DefG

G1
× DefG

G2
. So, it follows from (9) that φ is surjective if

DefG
G1

× DefG
G2

: Ĥ−1(G, CL) → Ĥ−1(G1, CL1) × Ĥ−1(G2, CL2) (10)

is such. Now, using Lemma 9 with i = 1, we obtain the following commutative diagram

Ĥ−3(G,Z)
ΦL

RsdG
G j

Ĥ−1(G, CL)

DefG
G j

Ĥ−3(G j,Z)
ΦL j

Ĥ−1(G j, CL j )

for each j = 1,2. So, the surjectivity of (10) is equivalent to that of

RsdG
G1

×RsdG
G2

: Ĥ−3(G,Z) → Ĥ−3(G1,Z) × Ĥ−3(G2,Z). (11)

For this, we will use the duality between the residuation and inflation maps provided by Lemma 8.
More precisely, it is well-known (cf., for example, [1, Theorem 6.6, p. 250]) that for any finite group
H and any i ∈ Z, the ∪-product defines a perfect pairing

αH : Ĥ−i(H,Z) × Ĥ i(H,Z) → Ĥ0(H,Z) = Z/|H|Z.

On the other hand, in our situation, CorG
G j

identifies Ĥ0(G j,Z) = Z/|G j |Z with

|G3− j|Z/|G|Z ⊂ Z/|G|Z = Ĥ0(G,Z).

It follows that α = CorG
G1

◦ αG1 + CorG
G2

◦ αG2 defines a perfect pairing

(
Ĥ−i(G1,Z) × Ĥ−i(G2,Z)

) × (
Ĥ i(G1,Z) × Ĥ i(G2,Z)

) → Ĥ0(G,Z).

Furthermore, by Lemma 8, we have the following commutative diagram

Ĥ−3(G,Z) ×

RsdG
G1

×RsdG
G2

Ĥ3(G,Z)
∪

Ĥ0(G,Z).

(Ĥ−3(G1,Z) × Ĥ−3(G2,Z)) × (Ĥ3(G1,Z) × Ĥ3(G2,Z))

InfG
G1

+InfG
G2

α

Thus, the surjectivity of (17) is equivalent to the injectivity of InfG
G1

+ InfG
G2

, and the proof of the
proposition is completed by the following statement.
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Lemma 10. For any finite group G of the form G = G1 × G2 and any i � 1, the map

InfG
G1

+ InfG
G2

: Ĥ i(G1,Z) × Ĥ i(G2,Z) → Ĥ i(G,Z)

is injective.

Proof. For a subgroup H ⊂ G , we let ResG
H : Ĥ i(G,Z) → Ĥ i(H,Z) denote the corresponding restriction

map. Identifying G/G3− j with G j as above, it is easy to see that the composition

ResG
G j

◦ InfG
G j

: Ĥ i(G j,Z) → Ĥ i(G j,Z)

is the identity map, while the composition ResG
G3− j

◦ InfG
G j

is zero, and our assertion follows. �
Remark. We note that the deflation map in the context of Tate–Shafarevich groups and its connection
with the inflation map was used in [11, p. 97] for a different purpose.

4. Examples and extensions

In this section we give examples where the multinorm principle fails and prove some results that
compliment and extend the Main Theorem.

Example 1. For non-Galois extensions, the condition L1 ∩ L2 = K may not imply the multinorm principle for
the pair L1, L2 . Indeed, let F/K be a Galois extension with Galois group G = Gal(F/K ) isomorphic to
A6 as in Lemma 2 of [12], and let H be a subgroup of G of index 10 (see [12] or [14, p. 311]). Since
A6 is simple, we can choose σ ∈ G such that σ Hσ−1 �= H . Set

L1 = F H and L2 = F σ Hσ−1 = σ(L1).

Clearly, A6 does not have any subgroups of index 2 or 5, so 〈H, σ Hσ−1〉 = G and therefore

L1 ∩ L2 = K . (12)

On the other hand, since L1 and L2 are Galois-conjugate over K , we have

NL1/K
(
L×

1

) = NL2/K
(
L×

2

)
and NL1/K ( J L1) = NL2/K ( J L2).

This means that the multinorm principle for the pair L1, L2 is equivalent to the Hasse norm principle
for L1/K . However, according to Theorem 1 of [12], the latter actually fails for L1/K . Thus, the pair
L1, L2 does not satisfy the Hasse norm principle despite (12). �

We note that the extensions L1 and L2 in Example 1 are not linearly disjoint. However, even for
linearly disjoint extensions L1, L2 their Galois closures E1 and E2 need not satisfy E1 ∩ E2 = K (e.g.
for the linearly disjoint extensions L1 = Q(

3
√

5) and L2 = Q(
3
√

7) of Q, we have E1 ∩ E2 = Q(ζ3) where
ζ3 is a primitive 3rd root of unity), which is required to apply our Main Theorem. So, the question of
whether any pair L1, L2 of linearly disjoint extensions of K satisfies the multinorm principle remains
open.

On the other hand, it would be interesting to analyze the multinorm principle for at least pairs
of Galois extensions L1, L2 such that L1 ∩ L2 �= K . This case is not well-understood as of now, but
the following proposition clarifies the nature of additional conditions one needs to impose to avoid
obvious counter-examples.
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Proposition 11. Let L1 and L2 be finite Galois extensions of K satisfying L1 ∩ L2 = K , and let L3 be any finite
extension of L1 . If L1/K fails to satisfy the norm principle, then the pair L1L2, L3 fails to satisfy the multinorm
principle.

Proof. It follows from Proposition 5 that the natural homomorphism

X(L1L2/K ) → X(L1/K )

is surjective. Since X(L1/K ) is nontrivial, this means that there exists x ∈ K × ∩ NL1 L2/K ( J L1 L2 )

that is not in NL1/K (L×
1 ). Then x lies in K × ∩ NL1 L2/K ( J L1 L2 )NL3/K ( J L3 ), but cannot be contained in

NL1 L2/K ((L1L2)
×)NL3/K (L×

3 ) ⊆ NL1/K (L×
1 ). �

Based on the (negative) result of the proposition, we would like to propose the following.

Conjecture. Let L1 and L2 be finite Galois extensions of K . If every extension P of K contained in L1 ∩ L2
satisfies the norm principle then the pair L1, L2 satisfies the multinorm principle. (It may be enough to require
that only the intersection L1 ∩ L2 satisfies the norm principle.)

We note that, if proved, this conjecture would imply that a pair L1, L2 of finite Galois extensions
of K satisfies the multinorm whenever the intersection L1 ∩ L2 is a cyclic extension of K .

Next, we would like to point out that in some simple cases the Main Theorem can be proved
without any use of group cohomology. The first such instance is when both extensions are biquadratic.

Proposition 12. Let L1 and L2 be biquadratic extensions of K satisfying L1 ∩ L2 = K . Then the pair L1, L2
satisfies the multinorm principle.

Proof. Write L1 = K (
√

a,
√

b) and L2 = K (
√

c,
√

d). If at least one of the extensions satisfies the norm
principle then the result follows from Proposition 2 (see the remark after the proposition). So, we
only need to consider the case were both extensions fail to satisfy the norm principle. Using Tate’s
computation of the Tate–Shafarevich group for a Galois extension mentioned in the introduction, one
readily sees that all local degrees of Li over K are either 1 or 2, and then X(Li/K ) is of order 2
for both i = 1,2. We let S and T denote the sets of places of K that split in K (

√
a) and K (

√
c)

respectively. Following [2, Exercise 5], consider the following homomorphisms of K × to {±1}:

ϕ1(x) =
∏
v∈S

(x,b)v and ϕ2(x) =
∏
v∈T

(x,d)v ,

where (x, y)v denotes the Hilbert symbol at v . Clearly kerϕi is an index two subgroup in K × that
according to [2] admits the following description

kerϕi = {
x ∈ K × ∣∣ x2 ∈ NLi/K

(
L×

i

)}
(13)

for i = 1,2. Since b and d define different cosets modulo K ×2, it follows from properties of
the Hilbert symbol (cf. [2, Exercise 2.6]) that the homomorphisms ϕ1 and ϕ2 are distinct, hence
(kerϕ1)(kerϕ2) = K × . Using (13), we obtain the inclusion

K ×2 ⊂ NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
. (14)

Now, let xi ∈ K × be such that ϕi(xi) = −1. Then x2
i /∈ NLi/K (L×

i ). On the other hand, since all the local
degrees of Li over K are either 1 or 2, we see that x2

i ∈ K × ∩ NLi/K ( J Li ). This means that the coset
x2

i NLi/K (L×
i ) is a generator of X(Li/K ) � Z/2Z, hence
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K × ∩ NLi/K ( J Li ) = {
1, x2

i

}
NLi/K

(
L×

i

)
.

Now, taking into account (14), we see that

K × ∩ NLi/K
(
L×

i

) ⊂ NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
,

verifying thereby condition (2) of Proposition 2 and completing the proof of the multinorm principle
for the pair L1, L2. �

Another instance is when both extensions are of a prime degree p. We recall that any extension
L/K of degree p satisfies the norm principle (cf. [14, Proposition 6.10]). The following proposition
provides an analog of this fact for the multinorm principle.

Proposition 13. Let L1 and L2 be two separable extensions of K of a prime degree p. Then the pair L1, L2
satisfies the multinorm principle.

(Note that in this proposition we don’t need to assume that our extensions or their Galois closures
are linearly disjoint.)

Lemma 14. Let L1 and L2 be finite extensions of K . For any finite extension P of K of degree relatively prime
to both [L1 : K ] and [L2 : K ], the validity of the multinorm principle for the pair L1 P , L2 P of extensions of P
implies its validity for the pair L1, L2 .

Proof. For i = 1,2, since [Li : K ] is coprime to [P : K ], the extensions Li and P are linearly disjoint
over K , which implies that the norm map NLi/K coincides (on J Li and L×

i ) with the restriction of the
norm map NLi P/P . Now, suppose that the multinorm principle holds for the pair L1 P , L2 P over P ,
and let

x ∈ K × ∩ NL1/K ( J L1)NL2/K ( J L2).

Then it follows from the above remark that x ∈ P× ∩ NL1 P/P ( J L1 P )NL2 P/P ( J L2 P ), and hence

x = NL1 P/P (y1)NL2 P/P (y2) for some yi ∈ (Li P )×, i = 1,2.

Applying N P/K , we obtain

x[P :K ] = NL1/K
(
NL1 P/L1(y1)

)
NL2/K

(
NL2 P/L2(y2)

) ∈ NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
.

Since x[L1:K ] ∈ NL1/K (L×
1 ) and the degrees [L1 : K ] and [P : K ] are relatively prime, we conclude that

x ∈ NL1/K
(
L×

1

)
NL2/K

(
L×

2

)
,

proving the multinorm principle for L1, L2. �
Proof of Proposition 13. We first reduce the proof to the case where both L1 and L2 are Galois
extensions of K . Let E1 be the Galois closure of L1 and let G = Gal(E1/K ). Then G is isomorphic to
a subgroup of the symmetric group S p , so its Sylow p-subgroup G p is a cyclic group of order p. Set

P = E
G p

1 ; then E1 = L1 P . Since the degree [P : K ] is coprime to p, according to Lemma 14, it suffices
to prove the multinorm principle for the pair L1 P , L2 P of extensions of P . This enables us to assume
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without any loss of generality that one of the extensions is Galois. Repeating the argument for the
other extension, we can assume that both extensions are Galois.

Now, let us consider the case where L1 and L2 are cyclic Galois extensions of K of degree p.
By the Hasse theorem, Li/K satisfies the norm principle for i = 1,2. So, if L1 ∩ L2 = K then the
multinorm principle for L1, L2 follows from Proposition 2 as condition (2) therein obviously holds.
In the remaining case L1 = L2, the multinorm principle reduces to the norm principle for Li , and
therefore holds as well. �
Remark. If L1 and L2 are two separable extensions of K of a prime degree p, and E1 and E2 are
their Galois closures, then one of the following occurs: either the degree of E := E1 ∩ E2 is prime
to p, or E1 = E2. To see this, one first proves the following elementary lemma from group theory:
Let G be a transitive subgroup of S p . If N �= {1} is a normal subgroup of G then the order |N| is divisible by p.
Then, if E1 �= E2, for at least one i ∈ {1,2}, the group Gal(Ei/E) is a nontrivial normal subgroup of
Gal(Ei/K ) ⊂ S p , hence has order divisible by p. Since the order of S p is not divisible by p2, we obtain
that [E : K ] is prime to p, as claimed.

Now, if [E : K ] is prime to p then by Lemma 14 it is enough to prove the multinorm principle
for the pair of extensions L′

1 := L1 E, L′
2 := L2 E of E . But the Galois closures of L′

1 and L′
2 coincide

with E1 and E2 respectively, hence are linearly disjoint over E . So, the multinorm principle for L′
1, L′

2
immediately follows from Proposition 2 as L′

1/E and L′
2/E satisfy the norm principle.

An obvious way to construct distinct degree p > 2 extensions L1 and L2 of K such that E1 = E2
is to pick an arbitrary non-Galois degree p extension L1 and take for L2 its suitable Galois conjugate.
We note, however, that the group-theoretic constructions in [10] allow one to produce non-conjugate
extensions with this property. In any case, letting P denote the fixed field of a Sylow p-subgroup of
Gal(E/K ), we will have L1 P = L2 P = E . Then arguing as in Lemma 14 one shows that

NL1/K
(
L×

1

) = NL2/K
(
L×

2

)
and NL1/K ( J L1) = NL2/K ( J L2)

(even when L1 and L2 are not Galois conjugate!). Thus, in this case the multinorm principle for L1, L2
reduces to the norm principle for Li/K . This provides a somewhat more detailed perspective on the
result of Proposition 13.

Finally, we observe that the multinorm can be considered not only for pairs but for any finite
families of finite extensions of K . More precisely, we say that a family L1, . . . , Lm (m � 2) satisfies the
multinorm principle if

K × ∩ NL1/K ( J L1) · · · NLm/K ( J Lm ) = NL1/K
(
L×

1

) · · · NLm/K
(
L×

m

)
.

Example 2. The multinorm principle may fail for a triple L1, L2, L3 of finite Galois extensions of K even when
the fields Li and L j are pairwise linearly disjoint over K . Indeed, set K = Q and

L1 = Q(
√

13), L2 = Q(
√

17), and L3 = Q(
√

13 · 17).

Then

K × ∩ NL1/K ( J L1)NL2/K ( J L2)NL3/K ( J L3) = K ×,

but NL1/K (L×
1 )NL2/K (L×

2 )NL3/K (L×
3 ) is a subgroup of K × of index 2 (cf. [2, Exercise 5] and [17, Lem-

ma 4.8]), hence the multinorm principle fails (see also [9, Section 2]). �
Generalizing the Main Theorem of this note, one can show that if L1, . . . , Lm are finite Galois

extensions of K such that
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Gal(L1 · · · Lm/K ) � Gal(L1/K ) × · · · × Gal(Lm/K )

(in other words, the whole family L1, . . . , Lm is linearly disjoint over K ) then the multinorm principle
still holds for L1, . . . , Lm . This, however, requires some new considerations which will be described
in [15].

5. Post factum

Let L1 and L2 be finite separable extensions of a field K , and let T be the corresponding multinorm
torus (cf. [9]), i.e. the kernel of the map

RL1/K (GL1) × RL2/K (GL1) → GL1

given by the product of the norm maps for our extensions. Our Main Theorem on the multinorm
principle is equivalent to the statement that if K is a global field and the normal closures E1 and E2
of L1, L2 are linearly disjoint over K , then the Tate–Shafarevich group X(T ) is trivial. J.-L. Colliot-
Thélène pointed out to us that it is natural to consider the question about the Hasse principle in
conjunction with the question about the weak approximation for the corresponding torus. Indeed,
according to Voskresenskiı̆ [18, Section 11.6], for a K -torus T there is an exact sequence

0 → A(T ) → H1(K ,Pic(X)
)∨ → X(T ) → 0,

where A(T ) is the defect of weak approximation, X is a smooth projective model of T over K and X =
X ⊗K K (with K being a separable closure of K ), and M∨ = Hom(M,Q/Z) is the Pontrjagin dual of a
finite abelian group M . Furthermore, it was shown by Colliot-Thélène and Sansuc [3, Proposition 9.5]
that the group H1(K ,Pic(X)) is isomorphic to

X2
ω(T̂ ) = Ker

(
H2(G, T̂ ) →

∏
g∈G

H2(〈g〉, T̂
))

where T̂ is the group of characters of T considered as a module over the Galois group G = Gal(L/K )

of a finite Galois extension L/K that splits T . So, it is natural to try to prove the Hasse principle
and the weak approximation for a given class of tori T by proving that X2

ω(T̂ ) vanishes. In fact,
a couple of weeks before we posted the original version of this note (arXiv:1203.1458), Dasheng Wei
had posted his paper [19] in which the vanishing of X2

ω(T̂ ) for a multinorm torus T was derived
from his computation of the Brauer–Manin obstruction whenever E1 and E2 are linearly disjoint in
our notations (and even is a sightly more general situation). So, J.-L. Colliot-Thélène asked us if one
can show the vanishing of X2

ω(T̂ ) by a direct computation – this would clarify our result as well as
Wei’s. The goal of this section is to provide this computation.

Proposition 15. Let T be a multinorm torus associated with a pair L1, L2 of finite separable extensions of a
field K . If their normal closures E1 and E2 are linearly disjoint over K , then X2

ω(T̂ ) = {0}.

Proof. Let Gi = Gal(Ei/K ) and Hi = Gal(Ei/Li). The torus T splits over E := E1 E2, and the fact that
E1 and E2 are linearly disjoint implies that G = Gal(E/K ) can be canonically identified with G1 × G2.
Then the character module T̂ is obtained from the following exact sequence of G-modules

0 → Z → Z[G1/H1] ⊕ Z[G2/H2] → T̂ → 0, (15)

where the first nontrivial map is given by
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1 �→ (ε1, ε2),

where εi = ∑
gi Hi∈Gi/Hi

gi Hi . For i = 1,2, pick a Z-submodule Mi ⊂ Z[Gi/Hi] complementing 〈εi〉,
and consider it as a Z[G3−i]-module with trivial G3−i -action. Then we have the following decompo-
sition of Z[G3−i]-modules:

Z[G1/H1] ⊕ Z[G2/H2] = Mi ⊕ 〈
(ε1, ε2)

〉 ⊕ Z[G3−i/H3−i]. (16)

It follows that (15) splits as a sequence of Z[Gi]-modules for both i = 1,2.

Lemma 16. The product

ρ : H2(G, T̂ ) → H2(G1, T̂ ) × H2(G2, T̂ )

of the restriction maps ResG
G j

for j = 1,2 is injective.

Proof. First, we claim that H1(G1, T̂ ) = 0. Using Shapiro’s lemma and the fact that Z[G2/H2] �
Z[G2:H2] as G1-modules, we obtain

H1(G1,Z[G1/H1] ⊕ Z[G2/H2]
) � H1(H1,Z) ⊕ H1(G1,Z)[G2:H2] = 0.

Since (15) splits as a sequence of Z[G1]-modules, it follows that H1(G1, T̂ ) = 0. This fact enables us
to write the following inflation–restriction sequence (where G/G1 is identified with G2):

0 → H2(G2, T̂ G1
) ι−→ H2(G, T̂ ) → H2(G1, T̂ ).

To prove the assertion of the lemma, it is now enough to show that ι(H2(G2, T̂ G1 )) intersects the
kernel of ResG

G2
trivially. But the composite map ResG

G2
◦ ι coincides with the natural map

ν : H2(G2, T̂ G1
) → H2(G2, T̂ ),

so it remains to show that it is injective. Note that if z = (z1, z2) and g1 ∈ G1 are such that
g1z − z = n(ε1, ε2) with n ∈ Z, then n = 0. This means that T̂ G1 coincides with the image in T̂ of
〈ε1〉⊕Z[G2/H2] = 〈(ε1, ε2)〉⊕Z[G2/H2]. So, it follows from (16) that T̂ = M1 ⊕ T̂ G1 , where M1 is the
(isomorphic) image of M1 in T̂ , as Z[G2]-modules, hence the injectivity of ν . �

By Lemma 16, it is enough to prove that for i = 1,2, the map

H2(Gi, T̂ ) →
∏
g∈Gi

H2(〈g〉, T̂
)

is injective. We give the argument for i = 1. Since (15) splits as a sequence of Z[G1]-modules, it
suffices to prove that

β : H2(G1,Z[G1/H1] ⊕ Z[G2/H2]
) →

∏
g∈G1

H2(〈g〉,Z[G1/H1] ⊕ Z[G2/H2]
)

is injective. We have β = β1 ⊕ β2 where
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βi : H2(G1,Z[Gi/Hi]
) →

∏
g∈G1

H2(〈g〉,Z[Gi/Hi]
)
,

and we need to prove that each βi is injective. To prove this for i = 2, we observe that Z[G2/H2] �
Z[G2:H2] as G1-modules, and therefore β2 is the sum of [G2 : H2] copies of

γ : H2(G1,Z) →
∏

g∈G1

H2(〈g〉,Z
)
.

Via dimension shifting, γ can be identified with the map

Hom(G1,Q/Z) = H1(G1,Q/Z) →
∏

g∈G1

H1(〈g〉,Q/Z
) =

∏
g∈G1

Hom
(〈g〉,Q/Z

)
,

which is clearly injective, and the injectivity of β2 follows.
To establish the injectivity of β1, we will actually prove a stronger statement that the map

δ : H2(G1,Z[G1/H1]
) →

∏
h∈H1

H2(〈h〉,Z[G1/H1]
)

is injective. For this we will need an explicit description of the isomorphism provided by Shapiro’s
lemma. As in [21, p. 130], we let Z∗ denote the co-induced module MG1

H1
(Z), i.e.

Z∗ = {
f : G1 → Z

∣∣ f (ht) = f (t) for all t ∈ G1, h ∈ H1
}

with the G1-action given by

(g f )(t) = f (tg).

As discussed in [21, p. 131], Shapiro’s lemma yields an isomorphism

sh : H2(G1,Z∗) → H2(H1,Z)

which explicitly can be described as restriction to H1 followed by the map induced by evaluation
at 1. On the other hand, the map φ : Z[G1/H1] → Z∗ defined by

φ(Σ)(t) := the coefficient of t−1 H1 in Σ

is an isomorphism of G1-modules, so the map

ϕ : H2(G1,Z[G1/H1]
) → H2(H1,Z)

obtained by composing the isomorphism sh with the map induced by φ is an isomorphism as well.
Explicitly, ϕ can be described as restriction to H1 followed by the map induced by the H1-module
homomorphism Z[G1/H1] → Z that records the coefficient of the trivial coset 1 · H1. From this de-
scription, we obtain the following commutative diagram
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H2(G1,Z[G1/H1])
ϕ

δ

H2(H1,Z)

λ

∏
h∈H1

H2(〈h〉,Z[G1/H1])
ψ ∏

h∈H1
H2(〈h〉,Z)

where λ is given by restriction maps, and ψ is induced by the above map Z[G1/H1] → Z. Using
dimension shifting as in the proof of the injectivity of γ , we conclude that λ is injective. This implies
that δ, hence also β1, is injective, completing the proof of the injectivity of β . �

Even though Proposition 15, combined with the results of Voskresenskiı̆ and Colliot-Thélène and
Sansuc, gives an alternative proof of our Main Theorem as well as of weak approximation for the
corresponding multinorm torus, we decided to keep Sections 1–4 intact. The reason is that our explicit
arithmetic argument shows how things work and relies only on standard facts from class field theory.
At the same time, it turns out to be applicable in other situations, e.g. it enables one to compute
the obstruction to the multinorm principle when L1 and L2 are abelian but not necessarily disjoint
extensions, to prove a version of the multinorm principle for more than two extensions, etc. (see [15]).
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Appendix A. Deflation and residuation maps and their properties

In this appendix, we briefly sketch the construction of the deflation and residuation maps and
prove Lemma 8 (note that our account, unlike that in [20] and [8], is based on homogeneous
cochains).

Given a finite group G , we let X = {Xi}i∈Z denote the standard complex used to define the Tate
cohomology groups (cf. [2, Chapter IV, Section 6]). More precisely, for i � 0, Xi = Z[Gi+1] with the
G-action s(g0, . . . , gi) = (sg0, . . . , sgi), and the differential d : Xi+1 → Xi given by

d(g0, . . . , gi+1) =
i+1∑
j=0

(−1) j(g0, . . . , g j−1, g j+1, . . . , gi+1).

Furthermore, for i � 1, we set X−i = HomZ(Xi−1,Z), which is a free Z-module with a basis
(s∗

1, . . . , s∗
i ), where all s j ∈ G , defined by

(
s∗

1, . . . , s∗
i

)
(g0, . . . , gi−1) =

{
1 if s j = g j−1 for all j,

0 otherwise,

and the G-action g(s∗
1, . . . , s∗

i ) = ((gs1)
∗, . . . , (gsi)

∗). The differential d : X−i → X−i−1 is given by

d
(
s∗

1, . . . , s∗
i

) =
i+1∑
j=1

∑
g∈G

(−1) j(s∗
1, . . . , s∗

j−1, g∗, s∗
j , . . . , s∗

i

)
.
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Finally, the “special” differential d : X0 → X−1 is defined by

d(g0) =
∑
s∈G

s∗.

Then for any G-module A and all i ∈ Z we have

Ĥ i(G, A) = Hi(HomG(X, A)
)
.

Deflation map. Given any normal subgroup H of G , we let Y denote the standard complex for G/H .
Then for any G-module A and each i � 1 there is a map δ−i : HomG(X−i, A) → HomG(Y−i, A) given
by

(δ−i f )
(
α∗

1, . . . ,α∗
i

) =
∑

gi H=αi

f
(

g∗
1, . . . , g∗

i

)

for f ∈ HomG(X−i, A) and α1, . . . ,αi ∈ G/H . One can check that the image of δ−i lies in
HomG/H (Y−i, AH ), hence δ−i induces a map

DefG
G/H : Ĥ−i(G, A) → Ĥ−i(G/H, AH)

called the deflation map. For i = 0 one gives an ad hoc definition of the deflation map. Namely, for
any group G and any G-module A we have Ĥ0(G, A) � AG/NG(A), where NG is the norm map,
NG(a) = ∑

g∈G ga. Then

DefG
G/H : Ĥ0(G, A) → Ĥ0(G/H, AH)

is induced by the identification AG → (AH )G/H and the inclusion NG(A) ↪→ NG/H (AH ). (In terms of
homogeneous cochains, every element of Ĥ0(G, A) is represented by a function f ∈ HomG(Z[G], A)

with values in AG . Then DefG
G/H is induced by the map δ : HomG(Z[G], AG) → HomG/H (Z[G/H], AH )

given by δ( f )(g0 H) = f (g0).)

Residuation map. Let G , H , X , Y , and A be as above. We let I H denote the augmentation ideal of
Z[H], and set AH = A/I H A. For each i � 1 there is a map δ′

−i : HomG(X−i, A) → HomG/H (Y−i, AH )

given by

(
δ′

i f
)(

α∗,α∗
2, . . . ,α∗

i

) =
∑

gi H=αi

f
(

g∗, g∗
2, . . . , g∗

i

) + I H ,

where g is an arbitrary (single) element such that g H = α; since f is a G-map, this definition does
not depend on the choice of g . Then for i � 2, δ′

−i induces a map on cohomology

RsdG
G/H : Ĥ−i(G, A) → Ĥ−i(G/H, AH ),

called the residuation map. We note that in the special case where A is a trivial G-module, we have
A = AH = AH , and

|H| · RsdG
G/H = DefG

G/H . (17)

We will make use of this fact below for A = Z.
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Proof of Lemma 8. Fix i � 2, and to simplify notation we will write Inf, Def, . . . instead of InfG
H ,

DefG
H , etc. Let f̄ ∈ Ĥ−i(G,Z) and ψ̄ ∈ Ĥ i(H,Z) be represented by the homogeneous cocycles f ∈

HomG(Z[(G∗)i],Z), where (G∗)i = {(s∗
1, . . . , s∗

i ) | s j ∈ G}, and ψ ∈ HomH (Z[Hi+1],Z). Furthermore,

Def( f̄ ) and Rsd( f̄ ) are represented respectively by f̃1 and f̃2 ∈ HomH (Z[(H∗)i],Z) defined by

f̃1
(
h∗

1, . . . ,h∗
i

) =
∑

k j∈K

f
(
(h1k1)

∗, . . . , (hiki)
∗) and

f̃2
(
h∗

1,h∗
2, . . . ,h∗

i

) =
∑

k j∈K

f
(
h∗

1, (h2k2)
∗, . . . , (hiki)

∗),

and Inf(ψ̄) is represented by ψ̃ ∈ HomG(Z[Gi+1],Z) given by

ψ̃(h0k0, . . . ,hiki) = ψ(h0, . . . ,hi).

Next, as shown in [2, pp. 105–108], the cup-product ā ∪ b̄ of classes ā ∈ Ĥ−i(G,Z) and b̄ ∈ Ĥ i(G,Z)

that are represented by the cocycles a and b, is represented by the function

g0 �→
∑

s1,...,si∈G

a
(
s∗

1, . . . , s∗
i

)
b(si, . . . , s1, g0),

and the cup-product of classes in Ĥ−i(H,Z) and Ĥ i(H,Z) is described similarly. Finally, the corestric-
tion map from Ĥ0(H,Z) = Z/|H|Z to Ĥ0(G,Z) = Z/|G|Z is given by multiplication by [G : H] = |K |.

Putting this information together, we obtain that Cor(Rsd( f̄ ) ∪ ψ̄) is represented by the function

h0k0 �→ |K |
∑

h1,...,hi∈H

f̃2
(
h∗

1, . . . ,h∗
i

)
ψ(hi, . . . ,h1,h0),

and therefore in view of (17) by the function

h0k0 �→
∑

h1,...,hi∈H

f̃1
(
h∗

1, . . . ,h∗
i

)
ψ(hi, . . . ,h1,h0)

=
∑

h j∈H

∑
k j∈K

f
(
(h1k1)

∗, . . . , (hiki)
∗)ψ(hi, . . . ,h1,h0)

=
∑

h j∈H,k j∈K

f
(
(h1k1)

∗, . . . , (hiki)
∗)ψ̃(h1k1, . . . ,hiki,h0k0)

=
∑
s j∈G

f
(
s∗

1, . . . , s∗
i

)
ψ̃(si, . . . , s1,h0k0).

But the function

h0k0 �→
∑
s j∈G

f
(
s∗

1, . . . , s∗
i

)
ψ̃(si, . . . , s1,h0k0)

also represents f̄ ∪ Inf(ψ̄), yielding our claim. �
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