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COMPUTATION OF THE METAPLECTIC KERNEL
by GOPAL PRASAD and ANDREI S. RAPINGHUK

Dedicated to G. D. Mostow

Introduction

Let G be an absolutely simple simply connected algebraic group defined over a
global field K. Given a finite (possibly, empty) set S of places of K, we let A(S) denote
the K-algebra of S-adeles (i.e. adeles without the components corresponding to the
places in S). Our main concern in this paper is a description of topological central
extensions of the form:

1 ->I-^E^G(A(S)) ^1,

which split over the subgroup G(K), where I == R/Z is the 1-dimensional compact
torus. Study of such central extensions is required for the theory of automorphic forms
of fractional weights (the case S = 0) and for a solution of the congruence subgroup
problem, i.e. for determining the congruence kernel (for applications to the congruence
subgroup problem it is enough to consider the case where S contains V^, the set of
archimedean places ofK). Since the above extension admits a measurable cross-section,
one can show (cf. Mackey [20]) that the set of equivalence classes of such extensions is
in one-to-one correspondence with the elements of the kernel M(S, G) of the restriction
map: H2(G(A(S))) -^H^K)), where H2(G(A(S))) (resp., H^K))) is the second
cohomology group of the group G(A(S)) (resp., ofG(K)) defined in terms of measurable
(resp., abstract) cochains with values in I. As the unique nontrivial two-sheeted cover
of G(A), for G == Sp^, A = A(0), which splits over G(K), was named the metaplectic
group by Andrd Well, M(S, G) is called the metaplectic kernel. It is always finite
(Theorem 2.7) and its precise computation is the main objective of the present paper.

We shall now recall the relation between the congruence kernel and the metaplectic
kernel. Assume that S D V^. The congruence kernel G(S, G), as defined by J.-P. Serre,
is the kernel of the natural surjective homomorphism G -> G from the completion G
of G(K) with respect to the S-arithmetic topology to its completion G with respect
to the S-congruence subgroup topology (both G and G are topological groups, see § 9
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below). It is known that if C(S, G) is central in G and G(K) is perfect, then C(S, G) is
isomorphic to the dual of the metaplectic kernel M(S, G). We note that if either G/K
is isotropic and is not an outer form of type Eg of K-rank one, or it is anisotropic
but not of type Ay, Eg or ^D^, then G(K) does not contain any proper noncentral
normal subgroups, and hence it is perfect (cf. [24], Ch. 9). Also, for most of these
groups G(S, G) is known to be central (in G) provided that S,, ̂  g K^-rank G ^ 2
(cf. [28], [35], and [38]).

According to an interesting result of Deligne [9], if C(S, G) is central, then no
S-arithmetic subgroup in a covering ofll^g G(KJ, of degree larger than the order of
the absolute metaplectic kernel M(0, G), is residually finite. Thus our result about M(0, G)
implies that S-arithmetic subgroups in nonlinear semi-simple groups often fail to be
residually finite. An earlier result in this direction, proved by Raghunathan ([33]),
was used by Toledo ([47]) to construct an example of a smooth complex projective
variety whose fundamental group is not residually finite.

In the sequel we shall say that G/K is special if it is of type 2Ay and it requires a
noncommutative division algebra over a quadratic extension of K for its description.

In this paper we will prove the following.

Main Theorem. — Let G be an absolutely simple simply connected algebraic group defined
over a global field K, S a finite (possibly, empty) set of places of K., If G/K is special, assume
that Conjecture (U), stated in § 2 below, holds for any finite set V of places ofK. not contained in S
(which, in particular, is the case if either G is ^-isotropic or S contains all real places ofK.}. Then
the metaplectic kernel M(S, G) is isomorphic to a subgroup of^(K.), the dual of the group (x(K)
of roofs of unity in K. Moreover, if S contains a place VQ which is either nonarchimedean and G
is K,, -isotropic, or is real and the group G(K^) is not (topologically) simply connected, then
M(S, G) is trivial.

Using this and certain results of Deligne [10], and assuming that if G/K is special,
Conjecture (U) holds for every finite set V of places of K, we will show in § 8 that
M(0, G) is isomorphic to (I(K).

Some remarks concerning the assumptions in the theorem are in order. To establish
the theorem we need, in particular, to prove the vanishing of the following for any finite
set V of places not in S:

My(G) := Ker(W(G(V)) ->H^(G(K))),

where G(V) :== Fl^y CCKJ, and H^GfV)) is the second cohomology group of G(V)
defined in terms of measurable cochains with values in I. However, if G/K is special, we
have not been able to prove the required vanishing if V contains a real place at which
G remains outer. In this case the vanishing (of My(G)) is equivalent to the truth of
Conjecture (U), see § 5.

I{VQ is a real place and the group G(K^) is simply connected (e.g. G = Spin(/),
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f a quadratic form in n ^ 5 variables of Witt index one over Ky = R), then
M(S, G) = M(S u { ^ o h G) for ^y s? in particular, M{{vo}, G) equals M(0, G), and
so it is nontrivial. Also, using the results of [32] and of the present paper, one can show
that if G = SL.i p, and UQ is a nonarchimedean place of K such that D^ = D ®^ K^
is a division algebra, then M({ VQ }, G) need not be trivial, thus the assumption that G
is K^-isotropic cannot be omitted; see however 4.4 and 5.10.

In a fundamental work [22], Moore, making use of the description given by Robert
Steinberg of the (abstract) universal central extension of the group of rational points of
a simply connected Chevalley (i.e. split) group over an arbitrary field, found a relation
between the norm residue symbols (of local class field theory) and the topological central
extensions of SLg^), where A is a local field. Using the uniqueness of the reciprocity
law (see Appendix B), which he proved in the same paper, he was able to compute the
metaplectic kernel M(S, G) for G == SLg and also show that for any Chevalley group
the metaplectic kernel is trivial if S contains a noncomplex place and is a subgroup
of p.(K), the dual group of the group (Jt(K) of roots of unity in K, if all the places in S
are complex. Soon afterwards Matsumoto ([21]), by explicitly constructing certain
topological central extensions of G(A(S)), was able to prove that in the latter case
M(S, G) is in fact equal to p-(K) for any Chevalley group G. Deodhar ([11]) extended
the results of Steinberg and Moore for split groups to quasi-split groups and in particular
determined the metaplectic kernel for this class of groups.

For arbitrary absolutely simple simply connected K-isotropic groups, the above
theorem was proved by Prasad and Raghunathan ([29]) who used the general injectivity
results of [30] (cf. Theorem 1.2 below) to reduce the proof first to the groups of K-rank
one, and then further to the groups of the form SL^/L, L a finite separable extension
of K, for which one can use the results of [22]. The metaplectic kernel for the group
SL^ p, n ^ 2 and D a division algebra with center K, was computed independently by
Bak and Rehmann ([3]) using algebraic K-theoretic methods. Bak ([2]) has announced
its computation for the classical groups of K-rank ^ 2.

The computation of the metaplectic kernel for anisotropic groups in the present
paper has required some new arithmetic, geometric and group-theoretic ideas. The
main problem is that though one can still use the local results of [22], [II], [30] and [32]
to describe the topological central extensions of the S-adele group G(A(S)), it is very
difficult to determine the precise conditions under which such an extension splits over
the subgroup G(K). In [22] and [11] the local and adelic computations were preceded by
a description of the (abstract) central extensions of G(K), for K an arbitrary infinite
field, from which the required conditions followed; such a description is not available
for even a single anisotropic group. Earlier, Rapinchuk ([36]) had determined M(S, G)
modulo 2-torsion for G == SL^ p, D an arbitrary central division algebra, in case S 3 V^,
see also [27], and Klose ([15]) obtained some partial results on topological central
extensions of the adele group associated with GL^ p in case D is a quaternion division
algebra. The more precise computation of the metaplectic kernel given in this paper
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appears to be new for even the simplest anisotropic group SL^ p, where D is a quaternion
division algebra.

As an application of the fact that for any finite set V of nonarchimedean places,
My(G) vanishes, in § 9 we will present a solution of the congruence subgroup problem
in the affirmative for the groups of rational points over semi-local subrings of K. For
a finite subset V of V^, the set of nonarchimedean places of K, we let Oy denote
the subring of K of elements which are integral with respect to all places in V$
obviously, Oy is a semi-local ring (i.e. it has only finitely many maximal ideals). Assume
that G is a K-subgroup of SL^. The congruence subgroup problem for the group
G(0y) := G(K) n SL^(Oy) was considered by Sury ([44]), who solved it in the affirma-
tive for the groups of types B^, €„ and D^ using techniques involved in the proof
of the projective simplicity of the group of rational points of algebraic groups of
these types. This suggested that the congruence subgroup problem in the semi-local
case is closely related to the problem of determining the structure of normal subgroups
of the group of rational points, and in § 9 we will prove that, indeed, this is the case.
To give a precise statement, we need to recall the conjectured description of normal sub-
groups of G(K). Let

T == { v e V^ | G is K^-anisotropic }

(this notation will be used throughout the paper). The Platonov-Margulis conjecture
asserts that:

Given a noncentral normal subgroup N of G(K), there is an open normal subgroup W of
G(T) == IÎ T, G(KJ such that N == G(K) n W; in particular, ifT==9 (which is always
the case if G is not of type A}, then G(K) does not have any proper noncentral normal subgroups,
i.e. it is projectively simple.

If this conjecture holds for G(K), we say that normal subgroups of G(K) have the
standard description. This conjecture has been established for all K-isotropic G except
for certain outer forms of type Eg ofK-rank 1, and also for all K-anisotropic groups of
type other than A,, r> 1, E^ and ^D^ (cf. [24], Gh. 9).

Theorem. — Suppose K is of characteristic zero, normal subgroups of G(K) have the
standard description, and V D T. Then the congruence subgroup problem for G(0y) has an affirma-
tive solution, i.e. every noncentral normal subgroup of G(0y) ^ °̂  ^ G(0y) in the topology
induced from the group G(V).

In view of the vanishing of My(G), to prove this theorem, we need only prove
the centrality of the corresponding (c congruence kernel ". The proof given in § 9 of the
centrality uses certain techniques devised to prove the congruence subgroup property
for arithmetic groups with bounded generation conjectured by the second-named author
(cf. [25], [37] and [17]).

Finally, we summarize the contents of this paper. In § 1, we recall some known
results on topological central extensions and derive a few consequences used in the
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paper; in § 2 we analyze the contribution of the archimedean places to My(G) and
prove the finiteness of the metaplectic kernel. § 3-5 are devoted to the computation
of the metaplectic kernel for the groups of type Ay: § 3 studies groups of type A^, § 4,
arbitrary (inner) forms of type lAy and § 5, outer forms of type ^Ay. The results for
groups of type Ay are used to treat the groups of all other classical types in § 6 using
their geometric realizations. The groups of exceptional types are considered in § 7 using
information about their Galois cohomology. § 8 is devoted to the absolute metaplectic
kernel M(0, G). In § 9 we solve the congruence subgroup problem in the semi-local
case. At the end of the paper, there are two appendices. The first is devoted to cons-
truction of field extensions of K with prescribed local properties for use in the study of
groups of type Ay. The second gives a result related to the uniqueness of the reciprocity
law in global class field theory.
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1. Preliminaries
In this section we will collect together some results on topological central extensions

and draw a few consequences from them for use in this paper.
Notation. — We let k denote a nonarchimedean local (i.e. locally compact, non-

discrete) field and G an absolutely simple simply connected group defined over k. For any
^-subgroup H ofG, H(A) will denote the group of ^-rational points ofH with the natural
locally compact topology induced from that on k, and H^H^)) the second cohomology
group of H(A), with coefficients in I := R/Z, defined in terms of measurable cochains.
In the sequel we shall let y.{k) denote the group of roots of unity in k and p. (A) its dual.

We fix a maximal A-split torus S of G and for a root a of G with respect to S, we
denote by Ua the corresponding root subgroup; Ua is a unipotent subgroup defined
over k. Let G^ denote the ^-subgroup generated by U^ and U_a- Then G^ is simply
connected and A-simple (but it is not always absolutely simple).

The following theorem combines the well known local results of Moore [22],
Matsumoto [21], Deodhar [11] and an observation of Deligne (see [30: § 5]).

Theorem 1 .1 . — Let G be an absolutely simple simply connected k-group which is either
split or quasi-split over k. Then there exists a natural isomorphism H^G^)) ->p.(^).

For a^-isotropic G, Prasad and Raghunathan ([30]) have proved that H^G^)) is
isomorphic to a subgroup ofjl(^). We shall show that ifG is A-isotropic, then H^G^)) is
in fact isomorphic to p.(A) (Theorem 8.4).
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We will summarize in the following theorem an injectivity result which plays an
important role in the paper and deduce Proposition 1.3 from it. For split and quasi-split
groups the theorem follows from the results of Moore and Deodhar, and for an arbitrary
^-isotropic group it was established by Prasad and Raghunathan ([30: Theorem 9.5]).
To give a precise statement, we recall that in case the root system 0 of G with respect
to S is not reduced, then by convention, a root a is long if, and only if, it is divisible,
i.e. if a/2 is also a root. We note that if G is quasi-split over k, f> is nonreduced only if
Gfk is of type ^Ay with r even.

Theorem 1.2. — Suppose G is k-isotropic, and let a. be a long root in the root system of G

with respect to the maximal k-split torus S. Then the restriction map H^G^)) —°> H^G^))
is injective.

(It can be shown, for example, by a case-by-case analysis, that this theorem holds
also in case k = R.)

If a is not long, p^ is not injective in general. However, as the following proposition
shows, if G is quasi-split, but not split over k, pp is injective for every root (3.

Proposition 1.3. — Suppose G is quasi-split, but not split over k. Then the restriction map

IP(G )̂) ̂  H2(Gg(A))

is injective for every root p.

Proof. — If p is long, then the proposition follows from 1.2. So we assume that
(B is a short root. IfG is of type 2Ay, with r even, and (B is a multipliable root, then Ggp C Gp
and hence once again the proposition follows from 1.2. Therefore we may (and will)
assume further that (B is a nonmultipliable short root. Now if G is of type ^y, with r even,
then r> 2 and the subgroup H generated by the G^, for a in the subset of all non-
multipliable roots, is an absolutely simple simply connected A-subgroup of type 2Ay_^y
and moreover it is quasi-split over A. As H contains G^ for any divisible root a, in view
of 1.2, the restriction H^G^)) —H^H^)) is injective. This implies that to prove the
proposition for all groups of type 2Ay, it is enough to prove it for groups of type ^y,
with r (> 2) odd. We shall therefore assume that in case G is of type ^y, r is odd.

We fix a Borel subgroup of G defined over k and containing S. This determines
an ordering on the set 0 of roots of G with respect to S. Since N^(S) (k) acts transitively
on the set of roots of a given length, we can evidently assume that (B is a short simple
root which is connected to a long root a in the Dynkin diagram of the root system 0(S, G).
Now let H be the subgroup generated by G^ and Gp. Then if G is not a triality form,
H is an absolutely simple, simply connected group of type ^3 which is quasi-split
over k, and by 1.2, the restriction H^G^)) -^H^H^)) is injective. Thus to prove
the proposition, we can assume that either G is of type ^3 or it is a triality form. Let
K be the smallest Galois extension of k over which G splits.
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Let us first take up the case where G is of type ^3. In this case K is a quadratic
extension of k and Deodhar has proved the following equality [11: 2.32(*)j (all unex-
plained notations are from his paper):

b^s, r1) == b^t, N^)-1)-1 for all s e K", and t ek\

Now, in the case under consideration, the proposition follows immediately from the
fact that there exist some s e K* and t e A* such that the value of the (i-power norm
residue symbol {t, N^)), pi:== #^), is a generator of the group ^k) of roots of
unity in k.

Let us now assume that G is a triality form. In case it is of type ^D^ we fix a field
extension K' of k of degree 3 contained in K. If G is of type ^D^ we have the following
from [11: 2.34(*)]:

^ •y"1) == b^s, N^)-1) for all s ek^ and / e K*;

and if G is of type ^4, we have (see [11: 2.35]):

W •y"1) = b^s, N^)-1) for all s ek" and t e K'*.

Since we can find some s e k* and t e K* (resp. t e K'*) such that the value of the
(x-power norm residue symbol (s, N^)) (resp. (j, N^))) is a generator of ^(k),
the proposition follows for the triality forms. Thus we have proved the proposition in
all cases.

Commutator maps. — Our analysis of central extensions in this paper uses commu-
tator maps: Given a central extension

(1) 1 ̂ I ->E^F->1 ,

one defines the commutator map ^ : F x F ->• E as follows. For x,y e F we pick any
lifts ye7T-1^), JeTT-^), and let

cn^y) = [m

where [^,J] is the commutator y^y-1^-1. Since I is contained in the center ofE, this
commutator depends only on x , y , and not on the choice of the lifts 3?,J; thus c^ is well-
defined. Moreover, if (1) is a topological extension, then ^ is a continuous map.

Now let FI and Fg be two subgroups ofF which commute elementwise (an important
particular case is F^ == F^, a commutative subgroup of F). Then ^(F^ x Fg) C I, and
the restriction c^ of^ to F^ x F^ is bimultiplicative. So, if one of the groups F, is perfect
(if TT is continuous, it suffices to assume that the commutator subgroup is dense), then
c^ is forced to be trivial, and we conclude the following.

Lemma 1.4. — If two subgroups F^, F^ off commute elementwise, then so do their pull-
hacks Tc-^Fi), Tc-^Fg), provided that one of the groups is its own (topological} commutator.

13
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Our proof of the main theorem for the groups of type Ay will use a formula due to
Kazhdan and Patterson ([14: 0.1.5]) for the commutator of lifts of two elements lying
in a maximal torus of the group G == SL^. We shall describe this formula now. Let
/i, ..., ̂  be field extensions ofk such that [/i: k] + ... + [̂  ' - k ] == n. Using the sum of
corresponding regular representations, one embeds Cg = R^(GLi) x ... X R^(GLi)
into GL^ as a maximal ^-torus. Let G = Go n SL^ be the corresponding maximal torus
in SL,.

Proposition 1.5. — If the topological central extension

1 ->I->E^G(A) ->1

corresponds to the element ^ e p.(̂ ) (see 1 . 1 ) , then for a == (fli, ..., a,), b == {b^ ...,&,)
in C{k) and ^err-1^), T^en-^b),

[^]=x(n(^),),
»"i

where (*, *), ̂  the [L-power norm residue symbol on t^ (JL :== #(A(A).

A simple consequence of this result is the following well-known:

Lemma 1.6. — Let G = SL^ a^rf G 6^ ̂  diagonal maximal torus of G. If n^ 3, the
restriction map H^G^)) -^H^C^)) is injective.

Indeed, let x e Ke^H^G^)) -^H^G^))) and %ep.W be the associated cha-
racter (1.1). Consider the following elements ofC(^):

a == diag(a-1, a, 1, .. ., 1), b == diag(l, p, ^-\ 1, ..., 1), a, (3 ek\

The extension
1 _^ i _^ E 4. G(k) -> 1

corresponding to x splits over G(^), implying that [S', b] == 1 for any lifts yen~l(a),
T)en'1^). Then the formula in the preceding proposition yields ^((a, (3)) = 1 for any
a, (B e A*; where (*, *) is the (i-power norm residue symbol on k. Hence ^ == 1 and x
is trivial.

Notation. — In the rest of this paper we will use the following notation: K will be a fixed
global field (i.e. either a number field or the function field of a curve over a finite field),
and G an absolutely simple simply connected algebraic group defined over K. We shall
often view G as a K-subgroup ofSL^ in terms of a fixed embedding. For any commutative
ring G, G(G) will then denote the group G n SL^(C).

For a global field F, V1' will denote the set of all places of F, V^ (resp. V^) the
subset of archimedean (resp. nonarchimedean) places (V^ = 0 if char F > 0); (JI(F)
will denote the finite group of roots of unity in F and jl(F) its dual.

By T we shall denote the set of nonarchimedean places of K where G is anisotropic.
Following the usual practice, we shall also use T to denote a torus. We trust this will
not cause any confusion.
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For a nonarchimedean place v of K, Oy will denote the ring of integers in the
completion Ky and ?„ the maximal ideal ofo^. For a finite set S of places of K, A(S) will
denote the K-algebra of S-adeles, i.e. the restricted direct product of the Ky, v ^S;
A := A(0). IfS contains all the archimedean places, we shall denote by o(S), the ring
of elements in K which are integral at all v ^ S.

For a K-variety X, and a commutative K-algebra C, X(G) will denote the set of
C-rational points of X. If v is a place of K, then X(KJ will be assumed to carry the
natural locally compact topology induced from that on K,,. For a finite set V of places
ofK, X(V) will denote the product n^yX(KJ endowed with the product topology.

If L is a given finite extension of K, and v is a place of K, then v \ v will denote
a place v of L lying over v. If v has a unique extension to L, then the completion of L
with respect to the unique extension will be denoted by L^ in the sequel.

Given a finite-dimensional semi-simple K-algebra sd and a positive integer n,
GL^ ̂  (resp. SL^ ^) will denote the reductive (resp. semi-simple) algebraic K-group
whose group of C-rational points, for any commutative K-algebra C, is the group
GL^(e^®K G) (resp. SLJ^®^ G)). In particular, GL.i ^, to be denoted simply by GL.i
in the sequel, is the one dimensional K-split torus. If L/K is a finite (separable) extension,
then GL*i ^ = Rj^(GLi) is the K-torus associated with the multiplicative group of L;
we shall denote by Rj^(GLi) the K-anisotropic subtorus of Rj^(GLi) of codimension 1
associated with the group L^ of elements of norm 1 in the extension L/K.

For simplicity, we shall denote the i-th cohomology group of a locally compact
topological group ^, with coefficients in I = R/Z, defined in terms of measurable
cochains, by H^^). We note that Wigner ([50]) has shown that for all zero-dimensional
topological groups, the cohomology groups defined in terms of measurable cochains
coincide with the cohomology groups defined in terms of continuous cochains. We also
note that for the cohomology theory based on measurable cochains, the Ktinneth formula
is valid and the Lyndon-Hochschild-Serre spectral sequence is available. We mention
that cohomological techniques are not extensively used in this paper, and whenever
possible, we work with the central extension corresponding to a second cohomology
class rather than with the cohomology class itself.

Local sections. — We will frequently use the fact that any topological central
extension admits a continuous local section:

Lemma 1.7. — Let V be a finite set of places ofK and G(V) == 11^^ G(KJ. Given
a topological central extension

1 _^I^E-^G(V) -^1,

there exists an open neighborhood Q of the identity in G(V) and a continuous map Q: Q -> E
(a <( local section " ) such that TC o 6 == id^ and Q{xy) == Q(x) 6(j/) for any x,y eQ such that
xy eQ.
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Proof. — Let V^ (resp. Vg) be the set of all archimedean (resp. nonarchimedean)
places in V, F^ == G(V^). Then G(V) = F^ x F^, and by Lemma 1.4 the subgroups
EI == n~l(F^) and Eg = ^^(Fg) ofE commute elementwise. Since the simply connected
covering of F^ is its universal topological central extension, there exists a local section
61: tli -> EI over a suitable open neighborhood Q^ of the identity in F^. On the other
hand, there clearly exists a continuous group-theoretic section 63 : 0.^ -^ Eg over a suitable
open subgroup Qg of Fg. Then we let Q, == Q^ X tig and define a local section 6 : Q. -^ E
by the formula: Q((x^y x^)) == Q^x^) 62(^3).

A consequence of this fact that we will use most is the following: Let Q be as above,
and let © be an open neighborhood of the identity in G(V) such that ©Q C 0. I/elements
x,jy e@ commute, then so do any lifts 3?e '^~l{x)^yE '^~l{y)9

1.8. Adelic results. — We begin by observing that if a place v of K is either archi-
medean, or it is nonarchimedean and G is K^-isotropic, then the affirmative solution
of the Kneser-Tits problem over local fields ([31]) implies that G(KJ does not contain
any proper noncentral normal subgroups; in particular, H^G^J) is trivial. Hence,
for any finite set V of such places, we have by Kunneth formula

IP(G(V)) = n H^G^)).
vEV

On the other hand, the discussion in [29: 2.2-2.3] shows that for almost all nonarchime-
dean »'s, H^G^)) vanishes, and the restriction homomorphism H^G^J) -> H^G^J)
is trivial. (It is, in fact, not hard to prove using Proposition 2.5.7.1 of [16: Gh. V] that
if K is a number field, then for almost all nonarchimedean y, both H^G^J) and
H^G^J) vanish.) Collecting these facts together, one obtains the following description
ofH2(G(A(S))) (cf. [22: Theorem 12.1]): For any finite S' which contains S, and also
all the nonarchimedean places where G is anisotropic,

(2) HP(G(A(S))) = H2(G(S' - S)) x n IP(G(KJ).
v^S'

Note the following consequence: There exists a finite So containing all the archimedean
places such that for any S 3 So, the restriction map

H^(G(A(S))) -^ n IP(G(o,))
vfS

is trivial. This remark allows one to express the commutator of lifts of elements of the
adele group in terms of " local " commutators. Let

1 ^I-^E^G(A(S)) ^1

be a topological central extension. Fix a finite set S' containing S, all the archimedean
places, and also all the nonarchimedean places where G is anisotropic. For a == (^),
& = = ( ^ ) G G ( A ( S ) ) , we let a' = (^es-s. V = (Ues'-s and pick S ' e TT-^'),
^ ETT-1^'), % CTT-1^), ^ ETT-1^).
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Lemma 1.9. — For ^GTr-1^), V e TT-^ (&),

[^^[rj']. n [%,u
v^S '

and the product is convergent with respect to the family of finite subsets of the complement o/S'.

Indeed, it follows from Lemma 1.4 that the groups ^"^(S' — S)) and
7c~l(G(A(S'))) commute elementwise, and this implies that

[yj]^^',^]^"^"],

where a" = fl(fl')-1, &" == b^)-1 and ^" e Tr-1^"), ?" e Tc-1^"). Next, it follows from
the above that there exists a finite set y 3 S' such that H^Tl^y G(o^)) vanishes, the
restriction map H2(G(A(^))) -> H^n,^ G(oJ) is trivial and ^, b, e G(oJ for y ̂ .
Iffli, &i and ^2, 62 are the projections of a", b" on G(^ — S') and G(A(<^)) respec-
tively, then again

[^"^"] = KJl] [%^2]

and [2iJi]= n [%, ?J
v G y ~ s'

for any lifts 2^, ^ offl,, ^ respectively. On the other hand, by our construction, there
exists a unique continuous group-theoretic section 9:n<,^^G(oJ ->E of n over
IL^ G(oJ, and it is easy to see that the product n^^[%, ?J converges to [9(^2)3 <p(^)]-

Lifts of automorphisms. — Another tool used in the proof of the main theorem is
lifting automorphisms to the central extension under consideration. Given a topo-
logical central extension

(3) 1 -> I -> E -^ F -> 1

of a locally compact topological group F, we say that ̂  e Aut(E) is a lift of s e Aut(F)
if 7r(?(^)) = s(7i;(A;)) for any A: e E.

Proposition 1.10. — (i) If FC F is an abstract subgroup and 9,: F -> E (? = 1, 2)
fl̂  two group-theoretic sections of (3) over F (z.<?. TT o 9, = idp), then their restrictions to [F, F]
^ma'̂ k.

(ii) Suppose seAut(F) admits a lift ?eAut(E). If F C F is an ^-stable subgroup
and 9 : r -> E zj a group-theoretic section of\3) over F, then 9(s(j/)) = ̂ {^(y))for ally e [F, F].

(iii) 7/'s, ̂  are as in (ii), and A C F ̂  a closed Q-stable subgroup such that H'(A) vanishes
for i = 1,2, then there exists a unique continuous section 9 : A -> E of (3) owr A, and for this
section we have 9(e(jQ) ==^(9(j0)/oy ^J/ e A.

(iv) 5'̂ oj<? F == FI x Fg <W H^F,) vanishes for at least one i, and let c eAut(F)
be of the form s == (si, e^) w^^ ^ eAut(F,). ^^w^ that each s, (z = 1, 2) ̂  be lifted
to an automorphism ?, of E, = TT^F,) acting trivially on I. Ftoi e arfw^ a ̂  ? e Aut(E)
wA^A fl̂  trivially on I.
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Proof. — In the set-up of (i), the map ̂ ) == ^{x) ̂ (x)-1 is easily seen to be a
homomorphism of F to I (since (3) is a central extension), and the required fact
follows. To prove (ii), we apply (i) to the sections <p and ^, ^(x) ^-^(e^))). The
assertion (iii) immediately follows from (i) and (ii). Finally, according to Lemma 1.4,
the assumptions in (iv) imply that Ei and E^ commute elementwise. An arbitrary element
e eE can be written in the form e = e^e^ e, e E,, and we set ^(e) ̂ i^i)^)- It
is easily verified that ? is a well-defined automorphism of E.

1.11. We will need the existence of a lift in the following special case. Let
G == SL.i p, H = GLi p, where D is a quaternion central simple algebra over K. As
observed in [30: 5.2], for a nonarchimedean v ^T, the natural action of H(KJ on
H2(G(KJ) is trivial (this is not true for the abstract cohomology, nor for the measurable
cohomology if v is real). Using this observation, we prove the following:

Proposition 1.12. — (i) Let V be a finite set of places of K. Then there is an open sub-
group W of H(V) such that given a topological central extension

1 ->l -^E-^G(V) ~>1,

°f G(V), for any a e W, the automorphism ^ = Int a lifts to an automorphism ^ of E acting
trivially on I.

(ii) Given a finite set So of places ofK containing T u V^ and a topological central extension

1 _^i^E^G(A(So)) ^1,

( 1 ) the automorphism ^ = Into, a eH(A(So)), admits a unique lift ̂  to E;
( 2 ) for a == (aj eH(A(So)), b == (6J eG(A(So)) and ^be^-^b), we have

W ^(b)(br1- n^)(^)-1,
v^so

where b^ ep"1^) and ^ is the lift of the inner automorphism corresponding to the element
(1, .... l,a^ 1, . . .).

(Note that the product above which is infinite, is understood in the sense of natural
convergence, see the proof below.)

Proof. — (i) I fKis of characteristic zero, for W we take 11̂  y K;.G(V) which is
an open subgroup of H(V). Any element a e W can be written in the form a == x.b,
where x e II,, g ̂  K^, b e G(V), and then the inner automorphism Int ?, for any H e TT" ̂ 6)
is a lift of £„.

In case K is of positive characteristic we need to argue differently. First of all,
since by Kiinneth formula, H2(G(V - T)) = II^-T H^K,)) (cf. 1.8), we conclude
from the observation in [30: 5.2] that H(V — T) acts trivially on H^G^ — T)), and
this implies that for any x e H(V — T), ^ admits a unique lift to an automorphism of



COMPUTATION OF THE METAPLECTIC KERNEL 103

^ :=^ ^""^(V — T)). Indeed, since the cohomology class in H^GfV — T)) corres-
ponding to n | g is fixed under s^, there exists an endomorphism ^: S -> § such that
the following diagram is commutative:

1 —> I —> ff ^> G(V-T) —> 1ii i'- i-
1 —> I —> S ^-> G(V - T) —> 1.

Since G(V - T) = [G(V - T), G(V - T)], the lift ^ is unique. This implies, in
particular, that ^-i == (?J~1, and hence, ^ is an automorphism of S.

Now, in view of Proposition 1.10 (iv), it suffices to show that e^, for any x in
Wo = n^^^(l + ^pj, where ^ is the valuation ideal in the division algebra
D^ = D ®K ̂  and T' == T n V, can be lifted to the induced extension

1 -> I -> Tr-^GCr)) -> G(T) -^ 1.

(Then W = Wo X 11,,̂ ^ H(KJ will do.) According to [32: Theorem 7.1], for
every v eT, ^^^(K,,)) vanishes, so there exists a continuous group-theoretic section
9. •• G(KJ -> 7^-1(G(T/)). Then 9 == n^^ 9,: G(T') -> TT-^G^')) is a continuous (but
not necessarily a group-theoretic) section. Any element g ofTr-^G^)) can be uniquely
written as g == i .<p(A), i el, be G(T), and we define ?„ by setting ^{g) = z. 9(^(6)).
Using the fact that Wo acts trivially on G^^G^'), G(T')] (indeed, it follows from
Riehm [39: § 5] that [G(T'), G(T')] == G(T') n Wo), one readily verifies that ^ thus
defined is a (continuous) group automorphism.

(ii) Since H2(G(A(So))) has a canonical identification with n^H^G^))
(1.8), we conclude that the natural action ofH(A(So)) on H2(G(A(So))) is trivial. Then
an argument similar to the one used above for the extension § of G(V — T) shows
that for any a e H(A(So)), the automorphism e^ = Int a has a unique lift ^ to an auto-
morphism of E. The uniqueness of the lift also implies that a i-̂  is a homomorphism
of H(A(So)) into Aut(E).

To prove the remaining assertion of the proposition, we fix a finite subset
y == { z/i, .. ., Vy}C V^ — So, and introduce the corresponding " truncated " adeles

a, == (^, ..., a^ 1, ...), b, == (^, ..., b^ 1, ...).

Also, let ^ = a^1 a (so that a == a, ̂ ), and pick the lifts ^ in such a way that ^ h-> ?1
Then

(5) ?„(?;) ̂ (b).
On the other hand,

W^a,{W)=W
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since ̂ (b,) == ?, (indeed, the map G(<S^) -> I, g ^^{g) g~\ being a homomorphism,
is forced to be trivial). By a similar argument, we see that

s^-1^^^^^^

which together with (5) yields the required fact. Proposition 1.12 is proved.

1.13. A reduction. — As observed in [29: 3.5], given G and a (finite) S, to prove
that M(S, G) is isomorphic to a subgroup of jl(K), it suffices to prove that for almost
all v, M(S u { y } , G ) is trivial. For the sake of completeness, we will briefly recall
this argument.

For any two finite sets S^ C 82 of places of K, we have a factorization

G(A(Si)) = G(A(S2» x G(S2 - Si)

which allows us to define a homomorphism

^pH2(G(A(S2)))^H2(G(A(Si)))

with the following properties:

(1) ^ is injective and its cokernel is H^G^ - S^)) x H^G^ - S^), H1(G(A(S2))));
(2) ^(M(S2,G))CM(Si,G).

Let S^ = S, 82 = S u { y } , where v is such that M(S u{y} , G) is trivial and
G is K^-isotropic (this is the case for almost all v). Then M(S, G) is isomorphic to a
subgroup ofH^G^J), which in turn is isomorphic to a subgroup ofp.(KJ. It follows
from Ghebotarev's density theorem that the g.c.d. of the numbers ^ = ff[ji(KJ, taken
over any set containing all but finitely many nonarchimedean places, equals (JL = #(Ji(K).
Thus, the image of the embedding M(S, G) ̂  p.(KJ is contained in p.(K), the latter
being embedded in p.(KJ in terms of the homomorphism dual to the following surjecdon:
pt(KJ-^(K), ^^^; ^=p^.

In the sequel, we will assume that S contains a place VQ which is either nonarchimedean and
G is K^-isotropic, or it is real and the group G(K^) is not (topologically) simply connected, and
prove that M(S, G) is trivial. In view of the reduction described above, this will prove the main
theorem.

2. The archimedean places and My(G)

Let V be a finite set of places of K. Let

My(G) == Ker^GCV)) -^H^GCK))).

Theorem 3 4 of [29] implies that if G is K-isotropic, then My(G) is trivial. The goal
of this section is to prove, for an arbitrary absolutely simple simply connected G, that
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My(G) = MyjG), where Vo is the set of nonarchimedean places in V. We shall also
prove the finiteness of the metaplectic kernel M(S, G).

If v is an archimedean place of K, then the group G(KJ is connected, and its
simply connected covering is at the same time its universal topological central extension;
therefore, H^G^J) = Hom(TCi(G(K,)), I), where 7Ti(G(K,)) is the (topological) fun-
damental group of G(KJ. It follows that H^G^J) is trivial either if v is complex,
or if it is real and the group G(KJ is simply connected, in particular, if it is compact
(i.e. G is K^-anisotropic). Since, by the Kiinneth formula,

(1) H^(G(V)) = H2(G(K,)) x IP(G(V - { . })),

for any finite set V of places ofK and any archimedean v e V, the computation of My(G)
is reduced to the case where V does not contain any archimedean places v such that
the fundamental group 7Ci(G(KJ) is trivial, in particular, any complex or real aniso-
tropic places. On the other hand, if 7Ti(G(K,,)) is nontrivial, then it is either Zg, the
cyclic group of order 2, or Z. The first case occurs when a maximal compact subgroup %7

ofG(KJ is a semi-simple Lie group, while the second one corresponds to the case where
^ is a semi-direct product of a one-dimensional compact torus ^ and a semi-simple
simply connected compact Lie group ^" (observe that S° is not necessarily central),
and then the embedding ^" <-^ ̂  induces an isomorphism of fundamental groups (recall
that any two maximal compact subgroups of G(KJ are conjugate and the natural
map of fundamental groups TC^) ->7Ti(G(KJ) is an isomorphism, cf. [13]). Further-
more, as the following theorem shows, the computation of My(G) can be reduced to
the case where V does not contain real places of the first kind.

Theorem 2.1. — Let i^ be a subset ofV consisting of real places v such that the maximal
compact subgroups o/G(KJ are semi-simple. Then My(G) = My(G), where V = V — ̂ .

Proof. — It is clearly enough to prove the theorem in the case where i^ consists
of a single place y. In view of (1), it suffices to show that for any element x e My(G),
the image 9^), under the restriction y : H^G^)) -^H^G^J), is trivial. Fix an x
in My(G), and let

1 -> I -> E ̂  G(V) -> 1

be the corresponding topological central extension. Then 9 (x) corresponds to the extension

(2) 1 -1 - Eo = Tr-^KJ) ̂  G(KJ -> 1,

where TCQ == TT | Eg, and we need to show that the extension (2) is trivial. Assume, if
possible, that y{x) is nontrivial. We claim that then there exists a maximal K-torus B
of G such that ^^(KJ) is noncommutative. Indeed, if

1 -> r -> F -^ G(KJ -> 1
14
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is the simply connected covering of the connected Lie group G(KJ, then there exists
a commutative diagram

1 _^ l —^ Eo -=°> G(KJ -^ 1

1 —> F —> F -^ G(KJ —> 1.

Since (p(A:) is assumed to be nontrivial, 6, and so also S, is injective (recall that F == Z^).
To prove the claim, it suffices to show that there exists a maximal K-torus B of G such
that p'^B^J) is noncommutative.

Let V be a maximal compact subgroup of G(KJ and € be a maximal torus of %7.
As we mentioned above, the map TC^) -> 7Ti(G(K^)) is an isomorphism, while the map
Tri(^) ->• 7ri(^) is known to be surjective (this is a consequence of the fact that %7^ is
simply connected). It follows that there can be no continuous section of p over ^. Now,
since ^ is assumed to be semi-simple, the normalizer N^(^) contains an element w such
that the automorphism of the character group X(^) == Hom^(^, I) induced by Int w
has no nontrivial fixed points (the Goxeter element in the Weyl group Ny(^)/^ has
this property). Then any element of ^ is a commutator of the form \t, w] = twt~1 w~1,
for some t e ̂ . So, if for any t^ ^ e r satisfying

(3) [A, w] == fa, ^],

we had

(4) [^,2i]=[^^]

for some (equivalently, for arbitrary) lifts

^ep-1^) ( z = l , 2 ) , %ep-1^),

we could construct a map

r^F, ^=[^,^]h-. [?:%], Tep-1^,

which would be a well-defined continuous section of p over ^°. Since, as observed above,
such a section cannot exist, we conclude that there are elements t^t^E^T satisfying (3),
but not (4). Let h == ^F1-^ ^=== ^ - l•^• Obviously, 7i e p"^), wh == Aw but wh+ Tiw.
Now since G is a simply connected group and h and w are two commuting semi-simple
elements of G(K^), there exists a maximal K^-torus B' of G such that both h and w lie
in B'(K J. As ̂  and S do not commute, p'^B^KJ) is noncommutative. Then p'^B^))
is noncommutative for any torus B which is conjugate to B' by an element of G(K,,).
Among these conjugates there exists a torus B defined over K (cf. [24], § 7.1). This
proves our claim.
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It follows, for example, from the proof of Proposition 7.8 of [24], that the closure
of B(K) in B(V) is of the form B(KJ x ^, for some open subgroup 0. of B(V'),
v' == v — { » }• According to 1.7, there exists an open neighborhood 0 of the identity
in G(V') such that for any commuting elements x,y e ©, any lifts 3T e TC""1^), J e TT"^^)
commute. By our construction, there are c, d e B(KJ such that the lifts ^GTr-1^),
d GTT"^^) do not commute, and then one can find open neighborhoods W^ and W^,
respectively, of c and d in B(K,) such that ^T) + Ha for any lifts 2; T of elements a e W,,
b e W<p In view of the density of B(K) in B(KJ x Q, one can find elements

s e B(K) n (W, x (Q n ©)), t e B(K) n (W, x (H n ©)).

To calculate the commutator [7, 7] of the lifts ?'e7r~1^), 7 en-^t), write s, t in the
form s ==s^s^ t==t^f^, where ^i e W,, ^ e vV^ and ^, ̂  e ̂  n ©, and pick any lifts
^ e71:~l(•^ ^ STT"1^), ? == 1, 2. Since the subgroups ^(G^,)) and TT-^G^')) of E
commute elementwise (1.4), we have:

[yj]==[^^][72j2]=[^]^^
On the other hand, since s, t commute in G(K) and TC splits over G(K), we should have
[^ t] == 1. A contradiction, which proves the theorem.

Thus, the computation of My(G) is reduced to the case where every archimedean
place u in V is real and the maximal compact subgroups of G(KJ are not semi-simple.
Unfortunately, since we have not been able to give a uniform proof of the fact that
My(G) = My^(G), we need to treat different cl sses of groups separately. First we con-
sider the groups of type A^.

Proposition 2.2. — Let G be an absolutely simple simply connected K-group of type A^.
Then/or any finite subsets V^C V^, VgC V^, and any open subgroup U of G^), the res-
triction map H^G î)) -> H^G^) n U) is infective. Consequently, for any finite set V of
places ofK, My(G) = My^(G), where VQ consists of all the nonarchimedean places in V.

Proof, — We begin with some elementary remarks concerning the simply connected
covering p : ̂  -> ̂  of the group ^ = SL^R). The maximal compact subgroup SOg
of ^ consists of:

( cos t sin t\
8(^)= . , ^ e R .

— sin t cos t/

Obviously, there exists an embedding ?:R -> ^ such that 8{t) == po^) , and then
Ker p === 8(2^Z). So, the element a == 8(71:) belongs to the fibre p"^-— 1) and its square
a2 == 8(2Tc) generates Ker p.

Now let A+ (resp. A_) be the open set of all semi-simple elements of ^ with real
and positive (resp. negative) eigenvalues. Using the logarithm and exponential maps it
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is easily seen that both A_^. and A_ are contractible. Hence, every connected component
ofp'^A^.) (resp. ofp'^A.)) is mapped under p homeomorphically onto A^. (resp. A_);
let A^. (resp. A_) be the connected component passing through ^ the identity element
of ^ (resp. through '8^)).

Let T be a nontrivial R-split torus of SL^ and h eJ^ := GL^R) be an element
with positive determinant such that

hth~1 = r1 for any t e T.

As det h > 0, h = gs, where g e ^S and s is a scalar matrix. Then if^ep"1^), 3^ := Int^
is a lift of the inner automorphism a^ == Int h and acts trivially on Ker p ^ 7Ti(^). We
claim that
^ for any x e T .̂ := p^T^R)) n A^_, S^A?) x == <?,
&; for any A: e T_ := p-l(T(R)) n A_, ^(x) x ==?(27r).

Indeed, both T_(_ and T_ are connected; on the other hand, the element ^{x) x for any
;v e p'^T^R)) belongs to Ker p, which is discrete. Hence, 3^ (x) x is constant along
each of T^_ and T_. Since e eT^, we immediately obtain a). To prove b), it suffices
to show that for a ==^(TC) eT_, S^(a) a = 8(27r). The latter is equivalent to the fact
that 3^(fl) == a. Since — 1 lies in the center of ,̂ and ^ is connected, the fibre ^~l(— 1),
being discrete, is entirely contained in the center of ^. Since 3^ == Int g ' in the above
notation, the required fact follows.

Now we are in a position to prove our proposition. We have: G == SL^ p, D a
quaternion central algebra over K. Let H = GL^ p. For any nonarchimedean y, there
exists an open subset Q^C G(KJ, Q,, n { d h 1 } == 0, with the following properties:

(i) Q,y intersects every open subgroup of G(K^);
(ii) G(KJ admits a fundamental system { U,,} of neighborhoods of the identity

consisting of compact open subgroups normalized by some (fixed) open subgroup N,,
of H(KJ so that for any t eQ^, there exists an A e N,, such that hth~1 == t~1.

If D^ := D ®K K!? ls a division algebra, take G(KJ — { ± 1 } to be Q^ and for
{ U,,} take the system of congruence subgroups G(K,,) n (1 + ^%), / ^ 1, where ^ is
the valuation ideal in Dy. Then each of the U,,'s is a normal subgroup of D^, so that
one can take N,, == D^. If D,, is not a division algebra, it is isomorphic to M^KJ and
G(KJ ^ SL^KJ. In this case take N,, to be GLg(o^ and take ̂  to be U^^ ^M^ ^~\
where My is the set of diagonal matrices in SL^oJ different from ± 1, and for { U,,}
take the family of congruence subgroups

{geSL^)\g= Imodp^}, l^ 1.

Obviously, for any t eQ^, there exists an element h with the required property in the
/ 0 1\

N,,-conjugacy class of the matrix | ). Now, we may assume that the subgroup U
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in the statement of the proposition is of the form U =H^y U^ where for every v
the corresponding local factor belongs to the family { V y } specified in (ii).

As explained above, it suffices to consider the case where V\ contains neither a
complex place nor any real place at which G is anisotropic, i.e. we may assume that
for v e V\, K^ = R and G is K^-isomorphic to SLg. Let

(5) 1 -^I-^E-^G(Vi) ->1

be a topological central extension which splits over the group G(K) n U. For each
v eVi, let

p,:^)->G(K,)

be the simply connected cover of G(KJ. Then

p :§TO== n ^)->G(V,)
v e Vi

is the universal topological central extension of G(Vi), and by the universal property
there exists a commutative diagram

1 —> I ———> E —-"-̂  G(Vi) —> 1
^ ^ I I4 4 II

i -^ r -^ iro -̂ > G(v^) -̂  i,

where F == Ker py^. To prove that (5) is a trivial extension, we need to show that
a(F) = { 1 }. Assume the contrary. Then there exists a proper subgroup F' of F of finite
index containing Ker a. Take the quotient of py by F':

(6) i ^A = r/r -> F = ^(Vi)/r -^ G(Vi) -> i.
If 9 : G(K) n U -> E is a group-theoretic section of (5), and

S == [G(K) n U, G(K) n U],

9(2) is contained in Im (B, hence there exists a group-theoretic section ^f: S -> F of the
extension (6). We claim that ^([2, S]) is dense in F. Indeed, by the weak approximation
property for G, G(K) n U is dense in G(Vi) which, as G(Vi) == [G(Vi), G(Vi)], implies
the density of S and [2, 2]. Since X is a closed map, M = ^([2, S]) maps onto G(Vi).
Thus, F = A.M, i.e. M is a closed subgroup ofF of finite index, hence F = M since F is
connected. For our argument we will need a slightly stronger fact: i f Q = I I ^ v Q ^ , then
^([S, S] n £1) is also dense in F. Indeed, it follows again from the weak approximation
property that the closure of [S, 2] in G(V2) is open, so by property (i) of the ii/s, the
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intersection [S, S] n Q is nonempty; let g be an element of this set. Obviously, Q contains
a set of the form gV for some open subgroup U' C U. Then

<K[S, SJ n Q) 3 ̂ ) .^([S, S] n U').

On the other hand, [S, S] n U' is a subgroup of [2, S] of finite index, so the density
of ^([S, SJ) implies that of ^([S, S] n U'), since F is connected.

Being a proper subgroup of F, F' cannot contain Ker p,, for all v e V^; fix a w e V^
such that Ker py, 4= F'. For y eVi, let A_^{y) and A_(^) be the open subsets of ^(v)
obtained by applying the construction described at the beginning of the proof to the
covering p,,. Let

W = = A _ ( ^ ) x II A^),
v £ V^ , v + w

and let W denote the image of W in F. In view of the density of ^(P? ^] n ^)? there
exists t e [S, S] n Q such that ^) e W. Let L == K(^); it is a maximal commutative
semi-simple subalgebra ofD. Let To == R^(GL.i) and T = Rj^(GLi) be the maximal
K-tori defined by L in H and G respectively. According to the theorem of Skolem-
Noether there exists an h e D* such that Int h \ L is the nontrivial automorphism of L/K,
and then the set of elements of H with this property is precisely the coset /?To. It follows
from our construction that

h{ n TO(KJ) n n P, + 0,
v e Vi u Va v e Vi u Vg

where P^ = N,, for v eV^, and P,, is the subgroup of H(KJ ^ Gii^Ky) of matrices
whose determinant is positive in K^ == R, for v e V\. Using weak approximation in To,
we can assume h chosen so that it lies in P^ for every u e V\ U V^. Then, in particular,
h normalizes U, and consequently, S. Now, if 3^ denotes the lift of a^ == Int A to E as
well as F, it follows from 1.10 (ii) that

+(^W) == ^(^W) for any x e [S, S].

Thus,

(7) e^^hth-^^^WWW.

However, our previous computation shows that the element S/,(^) x, for any x e W,
is a generator of Ker p^,, which, by our construction, is not contained in F'; i.e. it has
a nontrivial image in A. This implies that since ^{t) e W, S^(^(^)) ^{t) 4= e. A contra-
diction, which proves the first assertion of the proposition. To prove the second assertion,
it remains to observe that as any element of H^G^g)) restricts trivially to a suitable
open subgroup U ofG^g), the projection of an arbitrary x e My ^y (G") to ^(^(^i))
lies in Ke^H^Vi)) -> H^GQKL) n U)) for some U.

Our next result follows immediately from Proposition 2.2.
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Proposition 2.3. — Let G == SU(A), z£^r<? A is a nondegenerate hermitian form in
n ^ 2 variables over a quadratic extension L/K. 77^ /or ̂  ̂ ^ j^ V of places of K,
My(G) = My^(G), r̂<? Vo consists of all the nonarchimedean places in V.

Proof. — We may (and will) assume (cf. Theorem 2.1) that i f y e V i s archimedean,
it is real, [L^ : KJ == 2 for y [ v, and the space L^ is not (positive or negative) definite
with respect to h. A simple approximation argument shows then that one can pick two
orthogonal vectors ̂  ^2 in L'1 such that h{e^ > 0 and A(^) < 0 in K^ = R, for every
v eV := V — Vo. Let H = SU(^') where A' is the restriction of h to the subspace
generated by ^ and e^. Then H is a simple simply connected K-group of type A^, and
therefore My(H) = My^(H) by the previous proposition. On the other hand, a simple
topological argument shows that for every v e V the map 7Ti(H(KJ) -^ 7T;i(G(KJ) of fun-
damental groups is surjective (in fact, an isomorphism), implying that the restriction map
H2(G(V')) -^H^HCV')) is injective, and since H^GfV)) = H^GfV')) x H^G^o)),
our assertion follows.

Using the same idea as in the proof of the last proposition, i.e. embedding into
the group G under consideration a smaller group H which " captures 5? the fundamental
group of G at real places, and for which the equality My(H) = My (H) has already
been proved (in most cases one can take for H a group of type Ai), we will prove that
My(G) = My^(G), and eventually that My(G) is trivial, for most of the groups. The
only groups for which this argument does not work, and for which the triviality of My(G)
has not been fully established, are certain groups of type ^Ay. We formulate the expected
result for these groups in the form of the following conjecture. To be able to present
the main results of this paper in a uniform way, we will assume this conjecture. We
will point out which of our results for groups of type ^y depend on the validity of this
conjecture and which do not.

Conjecture (U). — Let G/K be special i.e. it is the special unitary group of a nondegenerate
hermitian form h over a noncommutative division algebra D with involution T of the second kind
(i.e. the center L ofD is a quadratic extension ofK = U). Then for any finite set V of places
ofK, My(G) = My^(G), where Vo consists of all the nonarchimedean places in V.

The results of this section will be used in the following sections to establish the
triviality of My(G) for any absolutely simple simply connected K-group G and an
arbitrary finite set V of places of K (of course, for the c< exceptional59 special unitary
groups this will depend on the truth of Conjecture (U)). It should be noted, however,
that the proof of this fact for the groups of type A^ which will be given in the next section
(Proposition 3.2) does not use the preliminary reduction provided by Proposition 2.2
(i.e. it applies equally whether or not V contains any archimedean places). The reason
for including Proposition 2.2 in this section is that, in our opinion, the technique of its
proof will be useful in establishing Conjecture (U).
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We present now a couple of technical results to be used in the analysis of My(G)
in later sections.

Proposition 2.4. — Let G be an arbitrary absolutely simple simply connected K-group of
type other than D; V\, VgC V^ two finite disjoint subsets, and U an open subgroup of G^).
Assume that for each v eV^, there exists a maximal ^-torus GyC G, which splits over a cyclic
Galois extension L^ ofK.^, such that the restriction map

?::IP(G(Vi))->IP( n G,(KJ)
<?evi

is injective. Then the restriction map

H^G^i)) -^H^K) nU)

is also injective. In particular, taking Vg = 0, the restriction map

H2(G(V^))^H2(G(K))

is injective.
If the restriction map ^ : H^G^)) -^H^C^K,)) is injective for every v e Vi and

Vi n T = 0, where T is the set of nonarchimedean places of K at which G is anisotropic, then
^ is also injective.

(Recall that, in fact, T == 0 if G is not of type A.)

Proof. — Since G is not of type D, for each v e V^, one can pick a maximal K^-torus
C^C G which splits over a cyclic Galois extension L^ of K^. This assertion is obvious
ifG is K,,-isomorphic to a group of the form SL^ ̂  , \ a central division algebra over K,,,
since then one can let G^ = R^/^(GLi), where L^ is a maximal unramified field
extension of K,, contained in A,,. The case of an arbitrary inner form G/K^ immediately
reduces to the case just considered. That is, if S^ C G is a maximal K^-split torus and
Z = ZJSJ is its centralizer, then H == [Z, Z] is a product over K^ of absolutely simple,
K^-anisotropic groups, and each of these factors is K^-isomorphic to a group of the
form SL^ ^. This implies that there exists a maximal K^-torus T^ C H which splits over
a certain unramified, hence cyclic, extension of K^. Then Cy = S^ Ty is a maximal K,,
torus of G with the required property. It remains to consider the cases where G/K,, is
either of type ̂  or 2^. In the first case, G is K^-isomorphic to the special unitary
group SU{f) of a nondegenerate hermitian form f in n ^ 2 variables over a quadratic
extension LJK,,. Fix an orthogonal basis of L^ and consider the matrix realization
of G in terms of this basis. Then

C, = { diag(^, . . . , ^) | z, E R^(GLi), ^ .. . ^ == 1 }

is a maximal K,,-torus of G which splits over the quadratic extension LJK^. Finally,
ifGis of type ^g, then G is known to be quasi-split over K^ (cf. [24], Proposition 6.15);
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let Cy be a maximal K^-torus of G contained in a Borel subgroup defined over K,,.
Then Cy splits over the quadratic extension of K^ over which G becomes an inner form.

Now, using [24: Cor. 3 in § 7.1], we can find a maximal K-torus C C G such that
C is conjugate to G^ by an element of G(KJ, for every v e Vi u Vg. We will show that
the restriction map H^G^i)) 4. H^G^) n U) is injective. Obviously, p can be
written as the composite of the following two restriction maps:

H2(G(Vi)) ̂  IP(G(Vi)) -^ IP(C(K) n U).

The injectivity of ^ immediately implies that of S. On the other hand, G has the weak
approximation property with respect to Vi u Vg ([24: Proposition 7.8]). In particular,
C(K) n U is dense in C(V\), so the injectivity ofr is an easy consequence of the following
lemma.

Lemma 2.5. — Let G be a K-torus, V C V^ be a finite subset. If A is a dense subgroup
of C(V), then the restriction map

IP(G(V)) -I H^A)

is injective.

Proof. — Let x e Ker 6, and let

1 -^I-^E-^C(V) ->1

be the corresponding extension. Since the commutator map

9 : G(V) x G(V) -> I, {a, b) ̂  [2; ?] for any Se n-^a), ^ben-^b)

is (well-defined and) continuous, and is trivial on the dense subgroup A x A, it is trivial
identically, i.e. E is commutative. Furthermore, there exists a continuous section
CT : W -> E of n over a compact-open subgroup W, and an abstract section T : A ->• E
over A. Let F = W n A. Then ^ defined by ^(y) = a(j) ^W~1 for y G F, is a homo-
morphism of F to I. As I is injective, ^ can be extended to a homomorphism f^: A -> I;
define T : A —^E by the formula: r(a) = r(fl) ^(a). Then

(8) T | r == c | r.
Since A is dense in G(V), we have C(V) = AW. Now, we define a : C(V) ->• E as
follows:

for a == be {b e A, c e W) let a(a) == r(&) a(c).

By virtue of (8), a is well-defined. Since E is commutative, a is a group homomorphism.
Finally, a coincides on W with CT, and therefore it is a continuous section of TT. Lemma 2.5
is proved.

15
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To prove the last assertion of 2.4, it remains to observe that if V\ n T = 0,
then H^G^)) is trivial for every y e V i , and therefore by the Ktinneth formula,
H^GC^i)) =^^^H2(G(K,)). So, the injectivity of ^ for each v eV^ obviously
implies that of ^. Proposidon 2.4 is thus proved.

Proposition 2.6. — Assume that G is not of type Ai, and let Vi, V^, T and U be as in
Proposition 2.4. If\^C T, ̂  ̂  restriction map H2(G(Vi)) -> H2(G(K) n U) is injective.

Proof. — IfTis empty, there is nothing to prove, so we assume that T is nonempty.
It follows from Theorem 6.5 in [24], that for v eT, the group G is K^-isomorphic to
the group SL^ p^, where D^ is a central division algebra over K^. Let Ly C Dp be a maxi-
mal unramified field extension of K^, and G^ ^ R^ (GL^) be the corresponding
maximal Kp-torus in G. Then, as shown in [24], proof of Theorem 9.12, the result of
[32] on the injectivity of the map H2(G(KJ) ^ H^G^K,)) in case D, is not the quater-
nion algebra implies the injectivity of

^H2(G(Vl))^H2(^^^G,(KJ),

and the proposition follows from 2.4.
We conclude this section with the following finiteness result.

Theorem 2.7. — Let G be an absolutely simple simply connected algebraic group defined
over a global field K. For any (possibly, empty) set S of places ofK, the metaplectic kernel M(S, G)
is finite.

This assertion was proved in [29: Theorem 2.10] if S contains V^, G is isotropic
at v for all v ^ S and S^gg K^-rank G ^ 2. Combining this result with the finiteness of
H2(G(KJ) for any nonarchimedean v (if G is K^-isotropic, the finiteness follows from
[30: Theorem 9.4], and if G is K^-anisotropic, it follows from Theorem 8.1 of [32] as
in this case G(KJ is isomorphic to the group SLi(D) for some central division algebra D
over K,,), one can derive the finiteness of M(S, G) for any S which contains V^, in
particular, for arbitrary S in case K is a function field. Indeed, using, in addition, the
well-known finiteness of H^G^J), and arguing by induction on the number of
elements in a finite set V of nonarchimedean places of K with the help of the Kunneth
formula, we obtain the finiteness ofH^G^)) for any such V. As we saw in 1.13, for
any two finite sets S^ C 82 containing V^, there exists an injective homomorphism

^:H2(G(A(S,)))->H2(G(A(S^)))

whose cokernel is the finite group 11̂ (82 - Si)) X 11̂ (83 - Si), Hl(G(A(Sl)))),
and ̂ (M(S2, G)) C M(Si, G). Thus, the finiteness ofM(Sa, G) implies that of M(S^ G),
and our assertion follows. We observe that as the map 9^ embeds M(S, G) into M(0, G),
to prove Theorem 2.7, it is enough to prove the finiteness of the latter.

If G is K-isotropic, the finiteness of M(0, G) is a consequence of Theorem 3.4
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of [29]. The remaining case of a K-anisotropic group G over a number field K was
considered by Raghunathan (cf. [S3], Theorem 2.1) using some topological arguments
and the cocompactness of the arithmetic subgroups in G^ := G(V^). These arguments
do not appear to work if the group G is K-isotropic. So one would naturally like to have
a proof of the finiteness of M(0, G) which is equally applicable to both, isotropic and
anisotropic, cases. We will now show that the finiteness of M(0, G) follows immediately
from the triviality of M^(G) :== My^(G). We begin with the following consequence of
that triviality.

Lemma 2.8. — There exists a finite subsets So of^ containing V^, such that for any
S D So, Ker(H2(GJ ̂  IP(G(o(S)))) is finite.

Proof. — Let

(9) i ^ r ^ F ^ G , - > l , F=^(GJ,

be the simply connected covering of G^. We claim that

r^rnCp-^K^p-^K))]
is of finite index in F. Indeed, in the quotient of (9) by F':

i ^ r/r -> p = F/r -^ G^ -^ i,
the restriction of p' to the image of [p'^G^)), p'^G^))] is injective, so p' splits
over A = [G(K), G(K)] implying that the dual group (F/r')* is embeddable into the
group M = Ke^H^GJ -.H^A)). Let the index [G(K) : A], which is finite by [18],
be /. Considering the corestriction map Cor^, we find that

/M C Ker(H2(GJ -> H^(G(K))) == { 0 },

so M is a group of exponent /. Since F is finitely generated, we obtain that F/F' is finite,
as claimed. Furthermore, by finite generation, there exists a finite set So 3 V^ such
that F' == F n [p^G^So))), p'^G^So)))]. We will show that this So has the desired
property.

Indeed, let

1 -> I -> E ̂  G^ -> 1

be the extension corresponding to some x e Ke^H^GoJ -> H^G^S)))), where S D So.
Then we have the following commutative diagram:

1 —> I —^ E -^ G, —> 1
(ID) of 4 ||

1 —> F —> F -^-> G^. —> 1.
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Now, if 9 : G(o(S)) -> E is a section of TT over G(o(S)), then

SOp-^G^S))), p-^G^S)))]) = [TT-^G^S))), ̂ (G^S)))]

is contained in 9(G(o(S))); using this observation together with the commutativity
of (10), we find that F'= F n [p-^G^S))), p-^G^S)))] is contained in Ker 6.
This means that under the natural identification of H^G^) with Horn (F, I),
Ker(H2(GJ -^H2(G(o(S)))) embeds into the finite group Hom(r/r', I), hence it is
finite. The lemma is proved.

Let S be a finite set of places of K, containing the subset So given by Lemma 2.8,
such that the groups H^n^gG^)), i= 1,2, are trivial (1.8). The factorization
G(A) = G(A,) x G^, where A^, is the ring of finite adeles, gives rise to the factorization
IP(G(A)) ==IP(G(A,)) x H2(GJ; let p : H^(G(A)) -^(GJ be the corresponding
projection. Obviously, the kernel of the restriction p | M(0, G) coincides with M(V^, G),
hence it is finite. So we need to show that R:=p(M(0,G)) is also finite. Since
H^Goo) = Hom(TCi(G^), I), and the fundamental group ^(G^) is finitely generated,
it is enough to show that R has a finite exponent d. We will show that one can take
d==d^d^ where ^ (resp. ^) is the order of Ker(H2(GJ -^H^G^S)))) (resp. of
H2(G(S —V^)) ) ; notice that the finiteness of d^ follows from the previous lemma,
and the finiteness of d^ was discussed above.

By our construction, for W = G(S) X Il^g G(o^), we have:

(11) H2(W) == H^(G(S)) = IP(GJ x H2(G(S ~ V^)),

and p is the composite of the following restriction maps:

H2(G(A)) ^ H2(W) -^ H2(GJ.

I f x e M(0, G), then obviously ^(x) e Ker(H2(W) ~> H2(G(o(S)))), and in view of (11)
we obtain that d^(x) e Ker(H2(GJ -> H2(G(o(S)))). So,

flfpM = ^ i ^ P W

is trivial, and the theorem is proved.

3. Groups of type A^

The goal of this section is to prove the following, which, in view of the reduction
described in 1.13, at once implies the main theorem for groups of type A^.

Theorem 3.1. — Let G be an absolutely simple simply connected K-group of type A^. Let
S be ajinite set of places ofK which contains a noncomplex place VQ such that G is K^ -split. Then
the metaplectic kernel

M(S, G) = Ker(H2(G(A(S))) ^H2(G(K)))

is trivial.
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As is well known, G == SL^ p for a quaternion central algebra D over K. In the
proof of Theorem 3.1 we will use the fact that

(1) [G(K), G(K)] = G(K) n [G(T), G(T)j,

where T is the set of nonarchimedean places v at which G is anisotropic, or, equivalently,
D,, := D ®^ Ky is a division algebra. Note that for G of type A^, normal subgroups of
G(K) have the standard description and (1) is a consequence of this description. (1) holds
more generally for any group of the form G = SL^ p, where D is a central simple
K-algebra of arbitrary degree (cf. [24], § 9.2).

We begin our proof of Theorem 3.1 by proving first the triviality of My(G).

Proposition 3.2. — For a simply connected Vi-group G of type A^ and a finite set V of places
of K, the restriction map

H2(G(V)) -^H^K))

is injective.

Proof. — Without any loss of generality, we may (and will) assume that V D T U V^.
We will prove that a topological central extension

1 ^I^E-^G(V) ->1,

which admits a splitting 8: G(K) -^ E, is trivial, i.e. there exists a continuous group-
theoretic section p : G(V) —»E. To this end, in view of the weak approximation pro-
perty, it suffices to show that 8 is continuous with respect to the topology on G(K)
induced from that on G(V). Moreover, since 8 is a group homomorphism, we only need
to prove that for some open subset UoC G(V), the restriction of 8 to G(K) n UQ is
continuous.

According to Lemma 1.7, there exists an open neighborhood Q of the identity
in G(V) and a continuous section 6:0, ~> E which is a <( local homomorphism ",
i.e. Q(xy) = Q{x) Q(jy) for all x ^ y eO, such that xy et2. We pick a neighborhood of the
identity U C t2, which is a pro-p group in case K is of characteristic p > 0, contained
in [G(T), G(T)] x G(V — T) and which has the following properties: U-1 == U,
UUUU C a, and for any x e Tl^v{± 1 }, x 4= 1, U n xU == 0. Let H == GL^- In
case K is of characteristic zero, we let W = (11̂  ̂ y K^) .U; W is an open neighborhood
of the identity in H(V). In case K is of positive characteristic, let W be a compact-open
subgroup of H(V) which normalizes U and is such that for every a e W, the automor-
phism Sg = Into of G(V) lifts to an automorphism ^ of E acting trivially on I; see
Proposition 1.12 (i).

Consider the variety

Z = {(j/, z) e (G - { ± 1 }) x G | Trd^(^) = Trd^(jQ},
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and the two morphisms

,p: H x (G - { ± 1 }) -> Z, <p(^) = (^, M),

and ^ : Z -> G, 40? ^) = zf

It is easy to check that 9 is submersive at every point of H X (G — { db 1 }), and that ^
is submersive outside the closed sub variety {(jy,jy~2) \y £ G} n Z of Z of codimension
two. It follows from the Implicit Function Theorem ([42]) that there exist nonempty
open subsets Bi X ̂  C G(V) X G(V) and Uo C U such that
(i) <p(W x U ) D ( B i x B^) nZ(V);

(ii) ^((BI X Bg) n Z(V)) D Uo, and no element of Uo has reduced trace ± 2$ in parti-
cular, Uo does not contain ± 1.

Let K == 4' ° 9 : (^jQ h-)' E^sYI be the commutator map. We need the following:

Lemma 3.3. — G(K) n UoC K((W n H(K)) x (U n G(K))).

Proof. — Fix z e G(K) n Uo and consider Y == ^~l{z) identified with a subvariety
of G in terms of its projection on the first component. Y is defined by the equations

f Trd^(^) = Trd^(j^)
tNrd^(^) =1.

Since Trd^^z — l)j0 (resp. Nrdp/^(jy)) is a linear (resp. quadratic) form in the
coordinates ofjy, Y is isomorphic to a quadric in the three-dimensional affine space.
Therefore, Y(K) + 0 if, and only if, Y(KJ 4= 0 for all v eV^ (Hasse-Minkowski
Theorem), and if Y(K) =)= 0, then Y is a rational variety and hence it has the weak
approximation property with respect to any finite subset of V^.

Clearly, z e B^ and there exists somej^o e ̂ i such that (j/o? z) e Z(V), implying that
Y(KJ + 0 at least for u e V. However, since V D T, for v ^ V, we have G(KJ ^ SLa(K,),
implying that z is a commutator in G(KJ ([45]), and again Y(K^) =(= 0. Hence,
Y(K) 4= 0, and Y has the weak approximation property with respect to V. So, there
is an element y^ e Y(K) n B^ C Y(K) n U. Obviously, the elements zy^ and y^ have
the same characteristic polynomial, and therefore they are conjugate in H(K) == D*
(the Skolem-Noether Theorem). In other words, if X = { x e H [ xy^ x~1 == zy^ },
X(K) 4= 0. But X is a principal homogeneous space of the centralizer Cg(j^) (which
is a Zariski open subset in an affine space), so X has the weak approximation property
with respect to V. It follows from condition (i) above that X(V) n W =f= 0, hence there
exists an ^ e X(K) n W. Then z = [^,j/J eic((W n H(K)) x (U n G(K))), as
required. The lemma is proved.

To complete the proof of Proposition 3.2, we will show that on G(K) n Uo,
8 coincides with 6, and therefore it is continuous. So, pick a z e G(K) n Uo, and using
Lemma 3.3, write it in the form z = [x,y\, where x eH(K) n W, y e G(K) n U.
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If K is of characteristic zero, then by our choice of W, x can be uniquely written in the
form x == a.c, a e II^y K^, c e U, and then we let ̂  denote the inner automorphism
Int^ of E, where Ven'1^). Obviously, ̂  is a lift of s^, Sa,(U) C Q and

(2) 6(s^)) ==^(6^)) for any u e U.

We claim that (2) also holds ifK is of characteristic^ > 0, where ̂  is the lift of ̂  = Int x,
which exists by our choice ofW. Observe first that H^G^)) is a finite group of order
prime to p. Indeed, if D splits over v, then G(KJ ^ SLg(KJ, and it follows from
Theorem 1.1 that the order ofH^G^J) is prime top, and ̂ [^(KJ) obviously vanishes.
On the other hand, if D^ = Dcx^^ ls a division algebra, then G(KJ ^ SL^DJ,
the commutator subgroup of G(KJ is of index prime to p, and hence H1(G(K„)) is
of order prime to p, moreover, the cohomology group H^G^J) vanishes; see [32].
These facts, in conjunction with the Ktinneth formula, imply the above assertion about
H^G^)). Now it follows that the homomorphism 9 : U -> I,

9(^) ^-W^)))^)-1, for u eU,

takes values in the prime-to-^ torsion component of I. Since U is a pro-p group, this
implies that 9 is trivial, and we obtain (2).

It follows from (2) that

(3) e(.)==e([^])=^(e(^))6(j/)-1.

Since U C [G(T), G(T)] x G(V - T), from 1 .10 (ii) we conclude that

8(^))=^(8(j/)),

and therefore,

(4) 8(.) = 8(e,(j)j^) = 5(s,(j0) S(^)-1 =?,(8(^)) 8(j/)-1.

Since 6(j^) 8(j/)~1 e I, and^ acts trivially on I, comparing (3) and (4), we get Q{z) == S(z),
as claimed. Proposition 3.2 is proved.

Remarks. — 1. In the proof of Lemma 3.3, we have employed some ideas first
used in [23] to prove that if T == 0, then G(K) = [G(K), G(K)].

2. In the case where VC V^, one can give another proof of Proposition 3.2 using
Sury's generalization [44] of Margulis9 theorem [19] describing normal subgroups
of G(K): As before, we may assume that V 3 T. Consider an abstract group-theoretic
section 8: G(K) —^ E and a continuous section 6 : Q -> E of TT, over G(K) and some
open subgroup £1 of G(V), respectively. Then, as is easily seen, 8 and 0 coincide on
N = [G(K) n a, G(K) n Q]. On the other hand, it follows from [44] that N is open
in G(K) in the topology induced from G(V), and the continuity of 8 follows. However,
our argument is more direct and allows us to include also archimedean places. Besides,
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as we will show in § 9, once we have an independent proof of Proposition 3.2, the result
of [44] can be derived directly from [19].

To prove the triviality of M(S, G), it suffices to establish the following:

Theorem 3.4. — Suppose S contains a noncomplex place Vy such that D ®^ K^ ^ M^(Ky),
and let q be a prime. Assume that q == 2 i/Vo is real. Then M(S, G) does not contain any element
of order q.

Assuming Theorem 3.4 for a moment, we shall show how it implies Theorem 3.1.
Since M(S, G) is finite (Theorem 2.7), its triviality is equivalent to the fact that it does
not contain any element of order q, for any prime q. Since there is no restriction on q
in Theorem 3.4 if VQ is nonarchimedean, we obtain the triviality of M(S, G) in this
case. However, once we know this, from 1.13 we conclude that for arbitrary S, M(S, G)
is isomorphic to a subgroup of p(K). It follows that the mere existence of a real place
VQ e V^ implies that M(S, G) is of order ^ 2. If, moreover, VQ is in S and G splits over K,, ,
we can use Theorem 3.4, with q == 2, to conclude that, in fact, M(S, G) is trivial.

In proving Theorem 3.4, we may obviously assume without loss of generality that
S n T = 0. Now, to begin the argument, we fix an A: e M(S, G) of order q and consider
the corresponding extension:

(5) 1 -^I^E^G(A(S)) ^1.

There exists a finite subset S' C Vs which contains S u T u V^ and also has the
following property (cf. [29: 2.2-2.3]):

For v ^S', H^^o) vanishes and the restriction map H^G^J) ->H2(^o) is trivial,
for some (and consequently^ for any) maximal compact subgroup ^Q of G(K,,).

Then

IP(G(A(S))) = IP(G(S' - S)) x n IP(G(KJ),
v^S'

so we can write x in the form x == (^s '_g, (^)^^s'). To prove that x = 0, it suffices
to make sure that Xy == 0 for every v ^ S'. (Indeed, assuming this, we would have
A^_g eKer(H2(G(S' - S)) ->H2(G(K))), however the latter kernel is trivial by
Proposition 3.2.) Let ̂  e p.(KJ be the character corresponding to x^ (see Theorem 1.1).
We need to show that ^ is trivial for all v ff: S'. Fix a ^ ^ S'. Since D ®^ K^ == ̂ (^
for v = VQ, y^, there exists a maximal subfield LCD, which is a separable quadra-
tic extension of K, such that the local degree [L,,: KJ is one for v lying above
v == v^ i == 0, 1 (cf. A. 6). Let B 2^ R^^(GL^) be the corresponding maximal K-torus
of H = GL.i p, and B() = B n G be the associated maximal K-torus of G. Let a be
the nontrivial automorphism of L over K. Then or induces a continuous automorphism
of B(KJ for every place v of K.
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Let So be the union of S' and the set of nonarchimedean places ramified in the
extension L/K (note that, by our construction, v^ ^So). There is a neighborhood t2
of the identity in G(So — S) such that the extension

!->!-> 7^-^(80 - S)) ̂  G(So - S) -> 1

admits a continuous local section over Q, see 1.7. Next, pick a neighborhood U of the
identity contained in [G(T), G(T)] X G(So — (S u T)) which has the following pro-
perties: UU C Q, and U n xV == 0, for any ^ e l l^g^_g{± 1 }, x 4= 1. A consequence
of these properties is that for any elements a, b e Bo(So — S) n U, their lifts 2^ b commute
in 7^~l(G(So — S)). It is convenient to reformulate this fact in a slightly different way.
IfKis of characteristic zero, let W = (n^g^_g K^) .U; W is obviously a neighborhood
of the identity in H(S() — S). Any a e W can be written as a product a == oc.^, where
a ell^g _g K^, M eU in a unique way, and then the automorphism ^ = Into lifts
to the automorphism ^ == Int 2", for any ffen'1^). We conclude from the above that
for all a e B(So — S) n W, and b e Bo(So — S) n U, we have

(6) ^(b) y-"1 = 1 for any Ven-^b).

Now suppose the characteristic of K is p > 0. We assume, as we may, that U
chosen above is a pro-p group. Let W be as in Proposition 1.12 (i) for V == So — S.
Then for every a e W, the automorphism ̂  == Int a of G(SQ — S) admits a lift ^. We
claim that for any a e W and b e U, (6) still holds. To prove the claim we argue as
follows. As we have already seen in the proof of Proposition 3.2, H2(G(So -- S)) is a
finite group of order prime to p. It follows that for a fixed a e B(So — S) n W, the map
b ^^a(b) ?~1 defines a homomorphism of B(S() — S) n U into I, which takes values in
the prime-to-^ torsion component of I. As U, and hence Bo(So — S) n U, is a pro-p group,
this implies that?^ ) b~1 = 1. Thus (6) holds both in characteristic zero and in positive
characteristic.

Now let us turn to an analysis of the extension (5) over the group G(A(So)):

1 ^I-^-i(G(A(So)))-^G(A(So)) ^1.

According to Proposition 1 .12 (ii), the automorphism ê , == Int a, for a in H(A(So)), admits
a unique lift. Hence it follows from Proposition 1 .10 (iv) that the automorphism ê  = Int a
for a e W X H(A(So)) admits a lift ̂  to E. For a = (a,) e (B(So ~ S) n W) X B(A(So))
and b == (&J e (Bo(So - S) n U) X Bo(A(So)), from equation (4) of § 1, we have

(7) ^a(b)^~1- n ^(b^(b.r\
v^So

so, for the computation of ̂ {b ) A~1, it is sufficient to compute the local expressions
^a (^v) (^)~1? ^or ^^o. There are two different cases to consider where the local
degree [Ly: KJ, v \ v, is either 2 or 1.

16
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First let [L,,: KJ == 2. We claim that in this case

(8) ^A)^)-1-1

for any fl,6B(KJ, 6,eBo(KJ. To show this, we let P == { b e B(K,) | det b e o;}.
Since v ^So, the extension L/K is unramified at v, and consequently, identifying the
elements ofK^ with the corresponding scalar matrices in GLg(K,,), we have the following:

(9) B(KJ=K:.P.

Obviously, P is compact, and therefore it is contained in a maximal compact subgroup V
ofGL^K,,). Then %o = ̂  n SL^KJ is a maximal compact subgroup of SLg(K,,), and
by our choice of So, ?(^0) vanishes and the restriction map H^SL^K,,)) -^H2^)
is trivial. It follows from (9) that %o is invariant under s^ == Int^, and hence there
exists a section 9 : ̂  -> E, := TC-^G^)), and v(c,^)) = ^(9^)) tor every g e ̂
this immediately implies (8).

Consider now the second possibility where [L^: KJ = 1. In this case, B is diago-
nalizable over K^. Fix an element g e SL^KJ such that g1Sg~1 is diagonal. Pick some
a, eB(K,), b, eBo(KJ, let ga,g-1 = ̂ , ̂ ^-1 = 6;, and

< = diag(fli, ̂ ), &; == diag(6, 6-1).

Then

(io) W^-^W)^)-^
This " commutator " can be computed using either Steinberg's relations in the universal
topological central extension ofSL2(K,,), or else by means of an explicit expression for a
2-cocycle which defines a central extension of GL^KJ inducing the given extension
ofSL^KJ. Generalizing the formula exhibited earlier by Kubota in 1967 for a 2-cocycle
on SL^KJ, Kazhdan and Patterson ([14], p. 41) obtained the following expression
for a 2-cocycle on GLg(KJ:

fin £ ^ <n-v \(^Slg2) ^glg2)\ l^^ ^glg2)\]
\ j • i ) ^[gifgz) — 7.v \\——,—T-?——,—T- • "^(^i),——,—— hL\ ^gi) oc(^) /, \ v / a(^) ;J

where, by definition,

/^ll ^12\ f^21 if^21+ 0,
a =

\^21 X22/ [ X22 ^ ^21 = 0.

Note that the cocycle ^ is not continuous since it corresponds to the Steinberg section,
to be denoted by K^, which is not continuous. It can be used however to calculate the
expression in (10). Indeed, by definition, for any g^g^ eGL^KJ, we have

K.C?l«?2) = K,C?i) K,(^) S,C?1.<?2).
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implying that

[Si. £2] == ̂ (gi g2) K,C?2 gi) ~1. S î, g2) ~1 Ug2, gi) •

Now, observing that the right-hand side of (10) coincides with |%',^'], and that a,
and by commute in GL^KJ, we conclude that it is equal to

(12) W^^W.^^^^^}}.Vv^ A/
Next, we fix elements a e B(K), b e Bo(K), and compute the expression in (10) for their
replicas ̂ , b, in B(K,). By Hubert's Theorem 90, b can be written in the form b == asis
for some s eL* = B(K). Also, let w be the extension of v to L which corresponds to
the embedding L c-^ K^. Then it follows from the above that

^ fV\ f^\-i i i a ^ \ ( ( a a \\ ( ( (^ / ^ \S«.) C.) = ̂ .7Jj = ̂ -^.(('y, »M)J-

where (*,*)«, is the norm residue symbol on L^, of power #(Ji(LJ = ^(KJ. Since
w^ == w and ^ 2 = ^ 0 0 are the two distinct extensions of v to L, we conclude, using
the properties of the norm residue symbol, that there exist characters ^ e {l(K^), one
for each extension v \ v to L, of order equal to the order of^, such that

(i3) s^^-^nxj^,.))."i" u^ /„/
Now, if K : G(K) ->- E is a splitting of (5) over G(K), then for all a e H(K) n W and
b e [G(K), G(K)], K(e,(^)) = ̂ (h)) (Proposition 1.10 (ii)). Since by our choice of U,
Bo(K) nU<^[G(K),G(K)], for any a e B ( K ) n W , & 6 B o ( K ) n U , we obtain the
equality: ̂ (b) 'b~1 = 1. In view of (6)-(8) and (13), this yields the relation:

(i4) n nxJ(^,.))=i
v G V o v\v \\d /;/

for any a e L* n W and anyj e L* such that as/s e U, where Vo = { v f So | [L^ : KJ = 1 }.
Letting ^ === 1 for v | v if y ^ Vg, we can rewrite (14) as the following reciprocity law:

n,.((",,))-!.
-.ev^ \\a )-J

Fix some extensions WQ \ VQ and w^\u^. By our construction, /^ == 1. We shall
now prove that /^ is trivial. Since %j = 1 for every v e V1', and additionally ? = 2 if
^o is real, the triviality of 5^ will immediately follow from the proposition in Appendix B
if we can find an a e L* such that

w^aja) = 1
WQ^ala) = = 1 if VQ is nonarchimedean,

and aa/a < 0 in L,̂  if VQ is real,
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and moreover, a e W. However, the existence of such an a easily follows from the weak
approximation property for L, since the places

WQ^ WQ o (T, w-^ and w-^o a

are pairwise distinct and do not lie over any place in So — S.
As the order of ̂  equals that of /^, we conclude that /„ is trivial; this is what

was needed to establish Theorem 3.1.

3.5. We shall now prove that in case G is of type A^, the absolute metaplectic kernel
M(0, G) is isomorphic to FL(K). Later, in § 8, we shall show, using certain results of
Deligne [10], and ifG/K is special, assuming that Conjecture (U) holds for every finite
set V of places of K, that in fact for all absolutely simple simply connected K-groups G,
M(0, G) is isomorphic to p.(K).

Let D be a quaternion central algebra over K and, as before, G = SL^ ̂ . If
D = M^K), then G == SLg and M(0, G) is known to be isomorphic to p.(K) from
the work of Moore ([22]). So we need to handle only the case where D is a quaternion
division algebra. Let a be the standard involution of D, h the hyperbolic a-hermitian
form on D2 and H = SU(A). Clearly, H is a simply connected group of type Gg. If
{ < ? i , e^} is an orthogonal basis, then the transformations of the form

pi^^i
gi.g2 eG = SLi^,

[ ^2 ̂  g2 ^2

constitute a K-subgroup of H, identifiable with G x G. Any splitting field L for G
splits also H, and each factor in G x G corresponds to a long-root subgroup with respect
to a suitable L-split maximal torus in H. Let us identify G with one of these factors.
Now, since G^ = B^, H is isomorphic to the spinor group of a nondegenerate quadratic
form/in 5 variables. Take 9 ==/! (—/) and Jf = Spin(9). Clearly, ̂  is K-split, so
by [21] there exists an element x (=M(0,^f) of order (JL = ̂  moreover, x = {x^),
where Xy (eH2^^^))) has order (JL for every noncomplex y. We assert that the
restriction of x to G(A) is an element y e M(0, G) of order equal to the order of x.
If v eV^ is such that G is K.-split, then H2(G(KJ) is a direct factor of H2(G(A))
and the corresponding component y^ of y is the image of x^ under the restriction map
H2^^)) ->H2(G(KJ). So it suffices to show that this map is injective (it is, in fact,
an isomorphism). For this purpose, we observe that since the Witt index of/over K^
is 2, the restriction map H2(^(KJ) -> H2(H(KJ) is injective (cf. [29], Proposition 1.9).
On the other hand, G is identified (over KJ with a long-root subgroup of H with
respect to a K^-split maximal torus in H, therefore the map H2(H(K^)) ->H2(G(KJ)
is also injective; this finishes the proof.
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4. Groups of type lAy

In this section we shall prove the following theorem for groups of inner type Ay;
r> 1. As observed in 1.13, the fact that for an arbitrary S, for G/K of inner type Ay
M(S, G) is isomorphic to a subgroup of p.(K) follows from this theorem.

Theorem 4.1. — Let G/K be an absolutely simple simply connected group of inner type A.
Let S be a finite set of places ofK. containing a place VQ which is either nonar chime dean and G is
K,, -isotropic^ or is real and G(K^,) is not (topologically) simply connected. Then M(S, G) is
trivial.

Any group G of the type under consideration is of the form G = SL^ p, where
D is a central division algebra over K. However, in our argument it is more convenient
to think of G as the group SL^ ^, where ̂  === M^(D). Let d be the degree ofj^ (i.e. the
square root of dim^ ^/). Then the assumptions in the statement of the theorem mean
that J^ : = ^ ®^ K^ is not a division algebra if VQ is nonarchimedean, and is the
full matrix algebra M^(K^) if VQ is real.

We begin by proving the triviality of My(G).

Proposition 4.2. — For an absolutely simple simply connected K.-group G of inner type A
over K and a finite set V of places of K, the restriction map

p^:H2(G(V))->H2(G(K))

is injective.

Proof. — In view of Theorem 2.1 and Proposition 3.2, we may (and will)
assume that VC V^, and G is not of type Ai. Let Vi = V n T, ¥3 = V — Vr
Then H^G^^)) is trivial, and therefore, by the Klinneth formula we have
H^GCV)) == H^G^i)) x H^GC^)). Let

x = (^,^) eKer(H2(G(V)) -^IP(G(K))).

There exists an open subgroup U C G(V2) such that the restriction of x^ to U is trivial.
Then x^ e Ke^H^G^)) ->H2{G('K.) n U)), and from Proposition 2.6 we conclude
that A:i = 0. Therefore ^ e KerQH^G^)) -^H^G^))), and it suffices to prove
that the latter kernel is trivial. In other words, we may assume in addition that V n T = 0.

Now we will introduce new V\ and Vg. Namely, if, as before, G = SLi ^, write
the algebra ̂  := J^^K,,, for v eV^, as ^ = M^ (DJ, where D^, is a central
division algebra of degree dy over K^,, and then take

Vi = { v e V | n, > 2 ) and Vg = V - V^.

Again, by the Kunneth formula,

H2(G(V)) = IF(G(Vi)) x IP(G(V,)).
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Let x== {x^x^ eKer^GCV)) —H^K))). Just as above, there exists an open
subgroup U of G(V^) such that the restriction of x^ to U is trivial, and then
x^ e Ker^GCVi)) -> H2(G(K) n U)). To use Proposition 2.4 to conclude that ̂  = 0,
it is enough to verify that for every v eVi, there exists a maximal K^-torus €„ of G,
which splits over a cyclic extension of K^, such that ^ : H2(G(KJ) ->H2(C,,(KJ) is
injective. Such a C^ is constructed as follows. With notations as above, let L^ C D^ be
a maximal unramified field extension of Ky. Take

C. = (RL^(GL,) x .. .XR^K/GL,)) n SL,̂ .
~~~'—————i—^—' ' ~~<^u^in.

Then G^ splits over L^, which is a cyclic extension of K^. Let
H,=SL^CSL^=G.

Note that H^ ^ R^/K^1'^)- As shown in [30], Proposition 8.42, the restriction map
H2(G(KJ) ^H2(H,(KJ)°is injective. Now, let BCSL^^ be the diagonal torus.
Since n^> 2, according to Lemma 1.6 the restriction map^H^H^K^)) -^H2(B(KJ)
is injective, and then, so is the composite map

H2(G(KJ) ->H2(H,(KJ) ->H^(B(KJ).

However, BC G^, which implies the injectivity of ^.
It remains to prove that the restriction H^G^g)) -^H2(G(K)) is injective.

Obvously, Vg = 0 if d is odd, so we assume that d is even. Let Vo = { v e V^ [ dy + 1 },
and let L/K be an extension of degree rf/2 such that L^ (:= L®^ KJ is an unramified
field extension of K^ of degree d/2 for all v e Vo. Furthermore, let M/K be a quadratic
extension linearly disjoint from L/K and satisfying the following local conditions:
M^, = K,, for w [ v, v e Vg;
MJKy is a totally ramified quadratic extension for v eVo — Vg;
M ^ = C for z c j y , y e VS.

Then F = LM embeds in ^ as a maximal subfield (cf. Appendix A). Let A be
the centralizer of L in j^, H == SL.i ^ be the corresponding K-group of G. It follows
from Proposition 3.2 that IP^Vg)) -^H^H^)) is injective. On the other hand, for
v e Va, there is an identification of G over K,, with SLg p such that under this identifi-
cation, H gets identified with the subgroup SL^ ̂  C SL^ ̂  and H^G^J) -> H2(H(KJ)
is injective by Proposition 8.42 of [30]. Sin^e H^G^Vg)) = 11̂ ^ K^0^))? t^s
implies the injectivity of H^G^)) -^H^I^Va)), and completes th^ proof of Propo-
sition 4.2.

The next step in the proof of the triviality ofM(S, G) in Theorem 4.1, is reduction
to the case where d = p is a prime. As above, let Vo = {v e V^ [ ̂  ={= 1 }, and let
S ' = = S u V o U V ^ . Then

H2(G(A(S))) = H^S' ~ S)) x n H^K,)).
•^s'
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Let x == (^s'-s? (^)^s') eM(S, G). It suffices to prove that ^ === 0 for each u ^ S'.
(Indeed then, ^_g e Ke^H^S' - S)) ^H^K))); since the latter is trivial
by Proposition 4.2, we obtain x == 0, as required.) Fix ^ ^ S'. By our assumption,
^ro = ̂ J^o)' where ^> 1 if ^o is nonarchimedean, and n^ == d (i.e. d^ = 1)
if^o is real. Letj& be a prime divisor of 7^, and let L/K be an extension of degree m = dfp^
with the following local properties:

L,, (:= L®^KJ is a field extension of K^ of degree m for all » eVo;
LO^K^K^;

f C"172 if y is real, v 4= z^o ^d ^ is even,
L ®j^ K.y === ^

[ R"1 if v == !?o is real.

Furthermore, let M/K be an extension of degree p, linearly disjoint from L/K,
such that:

M,, is a field extension of degree p linearly disjoint from LJK,,, for all v e Vo — { VQ };
M^K^K^for z = 0 , l ;
M ®K K^ = C for real v + VQ if p = 2.

Then F = LM embeds into j^ as a maximal subfield (note that if VQ is real, then
by assumption cfi^^ is the full matrix algebra over K^, and there is no local obstruction
to the embedding at z^)- Let 38 be the centralizer ofLin^;^isa central simple algebra
over L of degree^; we will denote the K-subgroup SL^ ^ ofG by H, and let ^ denote
the L-group whose group of G-rational points, for any commutative L-algebra C, is
the group SLi(^?®^G). Then H ^ R^/K^). Now assume the triviality of the meta-
plectic kernel in the situation described in Theorem 4.1 for the groups corresponding
to simple algebras of prime degree. Clearly, M(S, H) ^ M(^;^f), where y consists
of all extensions of places from S to L. Since the class of 38 in the Brauer group of L
coincides with the image of the class of ^ under the natural map Br(K) -^ Br(L)
(cf. [26: § 13.3]), it follows from our construction that 38 splits completely over any
extension of VQ to L; besides, if VQ is real then so are all its extensions. This means that
the conditions of Theorem 4.1 are satisfied for ^ and y, and therefore M(S, H) is
trivial. In particular, the restriction of x^ to H(K^) is trivial. On the other hand,
G ^ SL^ over K^, and G = R^/B^GLi) is a maximal K^-split torus in G. Being the
maximal semi-simple subgroup of the centralizer in G of R^/K^^i)? ̂  subgroup H
contains the 3-dimensional root subgroup G^ for some root a of G with respect to G.
Since all the roots in this case have the same length, by Theorem 1.2, the restriction
map H^G^^)) -^H^H^K^)) is injective. Hence, x^ == 0, as required.

Now we may (and will) assume that G = SL^, where ^ is a central simple
algebra of prime degree p > 2 (if^ = 2, G is of type A^, the case already treated in § 3).
To establish Theorem 4.1 it is sufficient to prove the following (cf. the argument after
the statement of Theorem 3.4):
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Theorem 4.3. — Let q be a prime. Assume that q = 2 if VQ is real. Then M(S, G)
contains no elements of order q.

Proof. — We fix a finite set S' 3 S u V^ such that for v f S' the following is true:
(i) ^(^K^M,(KJ;

(ii) for some (and consequently, for all) maximal compact subgroup ̂  of G(KJ, the
restriction map H2(G(KJ) -> H2^,) is trivial (cf. 1.8).

Then,

IP(G(A(S))) = IP(G(S' - S)) x n H2(G(KJ),
v^S'

and it is enough to show that if A: == (^_g, (^)^g.) e M(S, G) is an element of order q,
then Xy == 0 for all v ff: S'. Fix a ^ ^ S'. It follows from A. 6 that there exists a maximal
subfield L C ^ which is a cyclic extension of K, and such that [L^.: KJ = 1 for w,\ v,,
i = 0, 1. Let CT be a generator of the Galois group of L/K. Let G == R^01^) be the
maximal torus ofG corresponding to L. Our proof is based on an analysis of the commu-
tator [2; V] for a, b e C(A(S)), where

1 ^I-^E-^G(A(S)) -^1

is the extension corresponding to x and S'en-1^), ^GTr"1^). As observed in 1.7,
there exists an open neighborhood U of the identity in G(S' — S) such that for
a, be G(S' - S) n U we have [2; T] = 1. So, if a == (<zJ, b = (6J e U x C(A(S')),
then

[yj]= n [%,&:]
v^S'

(Lemma 1.9), and it is enough to calculate the local commutators [%, 6J for v ^ S'.
There are two different cases to consider (w \ v) : (i) [L^ : KJ === p, and (ii) [L : K ] = 1.

We assert that in the first case, for any a^b^e C(KJ, [%, ?J == 1. Indeed, in
this case G is K^-anisotropic, hence C(KJ is compact and is contained in a maximal
compact subgroup ^ of G(KJ. Since by our choice of S', TT splits over ^, %, ^
commute, as claimed.

In the second case G is a K^-split maximal torus of G ^ SLy, so there exists a
g eG(KJ such that gCg~1 is the diagonal torus. Now, if ^ corresponds to the cha-
racter ^ e p.(KJ (see 1.1), then for ^, ̂  e C(K^) of the form

a, = g-1 diag(ffi, . . . , ̂ ) g, b, = ̂ -1 diag(6i, ..., ̂ ) ^,

we have

[%^J = x.( n (^ u),
i=l
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where (*, *)„ is the norm residue symbol on K^ of power ^ = #pi(KJ; cf. 1.5. It
follows that, if for elements a, b e G(K), we denote their replicas in G(KJ by a^ b ,
then the corresponding commutator equals

[%. ^J = X.(n^, &)), where II^a, 6) = Fl (a\a), ^(6))^,

w is some extension of v to L, and (*, *)„ is the norm residue symbol on L^ = K,, of
power ^. By Hubert's Theorem 90, any a, b e G(K) can be written in the form

^oM ^^
s t

for some s, t e L*. Given such a and 6, we have:

n,(a,&)
=nZ.(4^

< = 0 \ \^; \ t j ] ^

= ̂  (a-"^), ̂ ^(f)),. ̂  (a'M, o'^))^ ̂  ((T'M, a-^));1. ̂ n1 ((T^1^), o-^)),1

r-1 / / r2 \ \
= n a< ___——-,o'(f) .

.=o \ \<T(^) a \s)] ' ^

Since Wi = w, Wg = w o <r, ..., Wy == w o o1'-1 are the distinct extensions of o to L,
it follows from the properties of the norm residue symbol that there exist characters
X» e ^(K,,), one for each extension v of v to L, of order equal to the order of^, such that

[^J-JTxJf J ^^ ) ) .
»|. \\CT(J) <T 1^) /,/

Now, since TC splits over G(K), for a, b e G(K) we should have [a; ?']=!. So, letting
V = { v e Vs — S' | [L^ : KJ = 1 }, we conclude from the above computation that if
s, t e L* are such that a(s)ls, a(t)/t e G(K) n U, then

(1) n nxJ(,/ \^.^=i.oev- »i, \\a(s)a 1^) ;̂

Setting -^=\fovv\v,vi V, we can rewrite (1) in the form of a reciprocity law

/ / j.2 \ \-n x-i———,f = i.
oevL \\c{s)a \s) )-J

since X«,o == l for "'o I »o, and additionally, ^ =^ 1 tor all v e V1-, and q = 2 in case
PO is real, in order to use the proposition in Appendix B to conclude that ̂  = 1 for

17
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w^ | yi (and hence /^ = 1, or, equivalently, x^ ==0), we need to make sure that there
exists an s e L* such that

w^lW c-\s))) = 1
and ^(^/(cr^) o-"1^))) =1 if VQ is nonarchimedean,

^7((r(J) (T-1^)) < 0 in L^ if ^ is real.

However, the existence of such an s e L* is guaranteed by the weak approximation
property for L since the places

WQ^ WQ o (T, WQ o <r~1, w^ w-^ o cr, and w^o a~1

are pairwise distinct and none of them lie over any place contained in S' — S. Thus
the proof of the triviality of M(S, G) in Theorem 4.1 is complete.

Proposition 4.4. — If VQ is a nonarchimedean place such that <a^ == ^®^ K^ is a
division algebra andp is the characteristic of the residue field ofK^, then in case p > 2, M({ VQ }, G)
does not have p-torsion.

Of course, there is nothing to prove in case K does not contain a nontrivial
p-th root of unity (in particular, if it is of positive characteristic). So we assume that
K contains a nontrivial p'th root of unity. For the proof, we need to construct a finite
field extension L of K which splits ^ and has the following property: the ^-primary
component ^.(K)p (= the set of elements of (J(.(K) of^-power order) is contained in
N^^L)). Ifp does not divide d, we can take for L any maximal subfield in ^/. Ifp [ d,
let d =p6.l, {l,p) == 1. Let F be an extension ofK of degree I such that F,, := F ®^ ̂
is an unramified field extension ofK,, of degree / for all v for which ̂  ^ M^Ky). If^pp
is a primitive j^-th root of unity, and L == F(^pp), the degree [Ly,: KJ is divisible by n
for all v such that j^, ^ M^(K^) and all w \ v, for all p sufficiently large, implying that
L is a splitting field for ^ for all (B t> 0. On the other hand, since p + 2, one easily verifies
(cf. [10], Exemple 5.8) that N^(L),) = pi(F),, and therefore N^(L),) == (Ji(K)^.
So L is as required.

We have the following commutative diagram:

M(0, G/L) ——"——> M(0, G)

83! 84J^ ^
n.i^H^G^J) ̂  H^G^J).

Since G/L is split, M(0, G/L) is isomorphic to p.(L). Then, using the argument given
in [32: 8.2], one shows that the image of the composite map 83 o 83 contains an element
of order equal to the order of ^^(^(L),,) = ^-(K)y. Since M(0, G) is isomorphic to
a subgroup of [1(K), we conclude that the restriction of 84 to the ^-primary component
M(0, G)p is injective; this implies the triviality of M({yo}, G)y.
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5. Groups of type ̂

In this section we shall prove the following analog of Theorem 4.1 for groups
of type ^y.

Theorem 5.1. — Let G be an absolutely simple simply connected group of type ̂ \ (r> 1)
over a global field K. Let S be a finite set of places ofK containing a place VQ which is either non-
archimedean and G is K^-isotropic, or VQ is real and G(K^) is not (topologically) simply connected.
Assume that Conjecture (U) o/§ 2 holds for any finite subset V ofV^ — S. Then M(S, G) is
trivial.

It is well known (see, for example, [24], § 2.3) that G can be realized as a special
unitary group SU(/), where/is a nondegenerate hermitian form on the w-dimensional
vector space D771, D being a central division algebra over a quadratic extension L of K,
provided with an involution a of the second kind which restricts to the nontrivial auto-
morphism of L/K. However, for our purpose it is more convenient to describe this
group in a slightly different way: Let ^ == MJD) and F be the matrix of/with respect
to the standard basis of D7". Let n == Vdim^ ̂ . Define an involution T on ^ by

^(^O-F-^JF.

Then SU(/) can be identified with SU(^, r) == { x e SL^ | x^{x) = 1 }. In the sequel,
we will mostly use the realization of G as SU(e^, r). For real VQ, the condition that
G(K^) is not (topologically) simply connected is equivalent to the condition that if
[Lwo ^ KJ = 1, WQ | VQ, then ^ ̂  E^ ^ MJKJ ® M,(KJ, and if [L,,: KJ = 2,
then G is K^-isotropic.

If n = 2, then G is of type A^; since this case has already been treated in § 3, we
may (and will) assume in this section that n > 2.

As in the previous two sections, we begin by proving the triviality of My(G).

Proposition 5.2. — Let V be a finite set of places ofK such that Conjecture (U) holds for V.
Then the restriction map

p^:H2(G(V))^IP(G(K))

is infective.

Proof. — Since Conjecture (U) holds for V, Ker p^ == Ker p^, where Vo is the
subset of V consisting of all the nonarchimedean places. Therefore, after replacing V
by Vo, we may assume that VCV^. Let Vi == V n T, Va = V - Vi, where
T == { v e V^ | G is K^-anisotropic }. Then

H2(G(V)) = H2(G(Vi)) x H2(G(V^).
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For any x = (^, x^) e Ker p^, there exists an open subgroup U C G(Vg) such that the
restriction of x^ to U is trivial. It follows that

^ eKer(H2(G(Vi))->R2(G(K) n U)),

and by Proposition 2.6, ^ = 0 (recall that n is assumed to be > 2). Then

x, E Ker(H2(G(V2)) -^ H2(G(K))),

and it remains to prove that Ker p^ == 0. Thus we are reduced to the case where
V n T = 0. To proceed with the proof, we need to introduce another Vi and Vg.
Let Vg be the set of u e V such that G is K^-isomorphic to a group of the form SL^ ^
for some division algebra A, over K,; Vi = V - V^. We claim that for every v e V^
there exists a maximal K^-torus G^, whose splitting field is a cyclic extension of K^
such that the restriction map H2(G(KJ) -> H^G^K,)) is injective. This was established
for the case [L ,̂ : KJ = 1, w | y, in the course of proof of Proposition 4.2, and it follows
for the case [L^ : KJ = 2 from

Lemma 5.3. — Let v eV^ be such that [1^ : KJ = 2, w \ v. Then there exists a
maximal K^-forus C C G which splits over L^ and such that the restriction map

H2(G(KJ)->H2(C(KJ)
is injective.

Proof.— As is well known, G is K^-isomorphic to the special unitary group SV{g)
of a nondegenerate isotropic r-hermitian form g on L^, n > 3. Let { ^ , . . . , <?„} be a
basis of L^ with respect to which g has the following form:

W 8^ •••^J = (^2+^l) + 003X^3 + ... +OC^;^,

where T denotes the nontrivial automorphism of LJK^ a, e K^. We will show that
for G one can take the following torus:

(2) G = {(.i, ...,,J e R (̂GLi)2 x R&K(GLi)'-21 î ̂  = 1, and c, c, ... .„ = 1 }.

We embed C into G, letting its element act on the basis vectors by homotheties: c(e^ == c, e,.
Let h = x[x^ + x^x^ and H = SU(A). Then H is K^-isomorphic to SL^, and is,

in fact, a long-root subgroup (with respect to a suitable maximal K^-split torus of G);
so by Theorem 1.2, the restriction map

p:H2(G(KJ)->H2(H(KJ)

is injective. Now, let x e KerCH^KJ) -^H^G^))), x =t= 0, and

1 -> I^E^G(KJ -^1

be the central extension corresponding to x. Thenj/ = p(^) corresponds to the induced
extension

1 ̂  I ̂  E' = Tr-WKJ) -^ H(KJ -. 1,
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ofH(KJ. Let ^ e {Ji(KJ be the character associated withj/ (Theorem 1.1). Let a e L^,,
(3 eK^, and consider the following two elements of G(KJ:

a = (a, (a-T, a-1 a-, 1, . . ., 1); b = ((B, (B-1, 1, . . . , 1).

Since x restricts trivially to C(KJ, for any lifts a'e^1^), b eTr"1^), we have

(3) [^]=1.

Let us now calculate this commutator in a different way. Clearly, C normalizes H,
and the automorphism ofH induced by Int a coincides with the automorphism £g which is
the restriction of Intc to SLgC GLg, where c = diag(y, 1), y = N^/^ (a)- ^s m

§ 3, we let ?g denote the lift ofs^ to E', and then using equations (10) and (12) of § 3, we
obtain that

(4) [^J]=^)y-l=x((T^U

where (*, *)„ is the norm residue symbol on K^ of power ^ = ^(KJ. Comparing (3)
and (4) we get ^((y, (B)J = 1 for every y ^N^/R (Ly,), (B eK^. But as we will show
in a moment, this implies that % is trivial, thereby proving the lemma. Indeed,
for any y e K;, y2 eN^/K,(L*J, so by our assumption /((y2, (B),) = ^((y, P),) == 1,
implying at least that /2 is trivial. If we assume that ^ is of order two, then for a fixed
y e K ^ , the fact that ^((y, (B)J =1, for any (B e K^ entails yeK^ 2 . Consequently,
in our setting, N^^ (L^,) C K^2. A contradiction, since by local class field theory
[K:: N^(L*J] =^2,° while | K:/K:2 | ^ 4. Lemma 5.3 is proved.

Now a straightforward argument using Proposition 2.4 shows that Ker py = Ker py^,
i.e. we may assume that V consists entirely of places v such that G is K,,-isomorphic
to SLg ^ (if n = A/dim^ ̂  is odd, then Vg = 0 and the proof is complete). Let Vg
be the union of V^ with the set of all v e V^ such that G is not K^-quasi-split (note
that in view of our assumption about V, Vo 3 V). Also, fix some v^ ^ Vo with the property
[L ,̂ : K,, ] == 2, w^ | z/i, and construct a separable extension F/K of degree n as follows:

Let M/K be an extension of degree n/2 satisfying the following local requirements:
(1J M ®K K, ^ K^2 for any v e Vo u { ̂  } such that [L^,: KJ == 2, w [ v;
(2^) M ®^ K^, is an unramified field extension of K^ for any nonarchimedean v e VQ

such that [L ,̂ : KJ === 1, w \ v.

Furthermore, let N be a separable quadratic extension of K, which is linearly
disjoint from M over K and has the following properties:
(1^) N ® ^ ^ ^ K? if either v e V u { ̂ }, or v e Vo - V and [L^,: KJ = 2, w | v;
(2^) N®^K^ is a totally ramified quadratic extension of K^ for any nonarchimedean

v e Vo — V such that [L^ : KJ = 1, w [ y;
(3^) N ®K K^ = C for any real v such that [L^ : KJ = 1.

Let F == MN. Then F (resp. P === FL == F ®g: L) is an extension of K (resp. L)
of degree n. Indeed, in view of (1^), (1^), we have F®^K,, r^ K^, and therefore



134 GOPAL PRASAD AND ANDREI S. RAPINCHUK

F (and even F', the normal closure of F over K) and L are linearly disjoint over K,
since by our construction L^, == L ®^ K^ is an extension of K^, of degree 2. Define
an automorphism a of P over K by the formula a = idp®K T (clearly, G | L == r). We
claim that there exists an embedding

e : (P, o) ̂  (̂ , T),

of algebras with involutions. Indeed, since F' and L are linearly disjoint over K, by
Proposition A. 2, it is enough to prove the existence of local embeddings

£,:(P®^K^)^(^®^K,,T),

and in fact we need to take care only o f y e V g (cf. [24], p. 340). However, if [L^,: KJ = 2,
then by our construction F®^K^, ^ K^, and the existence of ^ follows from Propo-
sition A. 4. By Proposition A. 3, for y e V o such that [L^,: KJ = 1, the condition
for the existence of ^ is as follows: if ^ ®^ K,, ^ M^ (AJ ® M^ (A^), where A,,
is a division algebra over K^,, A^ is the opposite algebra, then for any place v of F lying
over v, the degree [Fy: KJ should be divisible by the degree of \. However, by our
construction, for real y's we have F^ = C, and for nonarchimedean y's the degree
[Fy : KJ equals either %/2 or n, depending on whether or not v belongs to V, yielding
the desired property.

Let us identify P with its image under s. Put R = ML, and let S8 denote the
centralizer of R in ja .̂ Then 33 is r-invariant, let Ho = SU(^?, r); clearly, Ho is a
simple group of type A^ defined over M. Take H = R^g(Ho). Then it follows from
Proposition 8.42 of [30], and a result of § 3, that the restriction maps

H^V)) -^H^HCV)) and H^V)) -^ H^K))

are injective, implying the injectivity of py- Proposition 5.2 is proved.

Now we are ready to give reduction to the case where the algebra ^ has prime
degree (over L). Let W == S u Vo, where Vg is the union of V^ with the set of all
v e Vs such that G is not K^-quasi-split. Then

H2(G(A(S))) == H^W - S)) x H2(G(A(W)))

= H2(G(W - S)) x n H2(G(KJ).
v^W

Let x = (^w-s? (^)t^w)) eM(S,G). Assuming the theorem for the special unitary
groups of algebras of prime degree, we will show that Xy = 0 for all v f W. Then

^_g 6Ker(H^(G(W - S)) -^(G(K))),

and since this kernel is trivial by Proposition 5.2, it will follow that x == 0.
Fix some v^ ^ W. As we will show below, one can construct a K-subgroup H
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ofG of the form H = RE/i^11')? where E/K is an extension of degree n\p (p is a suitable
prime divisor ofn) and H' == SU(^, r), 3S is a central simple algebra over EL of dimen-
sion p2 with involution T of the second kind, having the following properties:

(lg) H is K^-isotropic and, moreover, ify^ is real, then H(K^) is not simply connected;
(2n) the restriction map p^ : H^G^)) -^H^H^)) is injective.

The embedding H <-^ G induces a homomorphism 9 : M(S, G) -> M(S, H). Assu-
ming the theorem for H', we get M(S, H) = { 0 }. So, (^(x) == 0, implying p^(^) = 0,
and therefore, x^ == 0 because p,, is injective.

To construct H with the properties (lg), (2n) above (note that this construction
will depend on the choice of z^), we fix a place ^ i W u { ^ }, which extends uniquely
to a place w^ of L (then [L^ : K^] = 2). Our choice of p, a prime divisor of n, is sub-
ject to only one condition: if [L^ : KJ = 1 and A^K,^ M^ (AJ © M^ (A;^),
where A^ is a division algebra over K^ and A^ is the opposite algebra, then p should
divide m^ (m^ > 1 since, by our assumption, G is K^-isotropic). It is not difficult to see
that there exists a tower of separable extensions F 3 E 3 K, [F : E] ===/?, [E : K] = w/j&,
with the following local properties:

(i) for v = VQ, w\v
if [L, : KJ = 2, then E ®^ K, == K;^ and F ®^ K, = L, © K^-2;
if [L^ : KJ = 1, then E, :== E ®^ K, is a field, F ®g E, == E? if o = ^ is non-
archimedean, and F®^^ == K^ if v is real;

(ii) for v == »i, w | y
if [L, : KJ == 2, then

f L^, ^ = 2w
E®^K,==

[L;©K,, ^ = 2 m + l ;

(14,, ^ = 2 /
F®sK,=

[L,©K,, ; z = 2 / + l ;

if [L, : KJ = 1, then F ®^ K, = K;;
(iii) FOO^=K^;
(iv) for v eVo, v + ^o?

F ® ^ K , = K ; i f [ L , : K J = 2 ;
F ®^ K, == R^ if [L, : KJ = 1, ̂  ®^ K,^ M^(AJ © M^(A;), and R, is a maxi-
mal field extension of K,, contained in A,,.

Now take P = FL = F ®K L, (T = idp ®^ T. As before, since the normal closure F'
of F over K is linearly disjoint from L, to prove the existence of an imbedding

e : (P, o) ̂  (^),
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it suffices to establish the existence of local embeddings

£,:(P®3,K^)c^(^(^K,,T),

for all y e V o . However, the existence of local embeddings easily follows from Propo-
sitions A. 3, A. 4 in view of conditions (i), (iv). We identify P with its image in ^
under s; let R = EL and 88 be the centralizer of R in e .̂ We will now show that
H == ^/•i^11')? where H' == SU(^, r), satisfies the requirements (1^), (2s), above. Let
T = (RR/E^G1'!) n G)° (the identity component) be the torus in G corresponding
to R, and G == C^(T) be its centralizer. Then C is a reductive subgroup in G, whose
connected center is T and the semi-simple part [G, C] is H. It follows from (i) that T
ls K^-anisotropic, while the maximal torus T'C G associated with P and containing T
is K^-isotropic; this implies that H is K^-isotropic. Besides, if VQ is real and
V^wo: ̂ J == I? wo\ V09 then by our construction any extension VQ of VQ to E is again
real and the group H' is E^-isomorphic to SL^, this implies that the group H(KJ is
not simply connected. Furthermore, in view of (ii), T' contains a maximal K^ -Iplit
torus Z' C G. Let Z be the maximal K^-split subtorus of T. It is easy to see that the
(L®K K^)-linear span of Z(K^) is R®^ K^ which implies that C coincides with the
identity component of the centralizer of Z. Therefore, H contains a root subgroup G^
corresponding to some root a eO(Z', G). If [L^ : KJ = 1, then G is K^-isomorphic
to SL^; in particular, all roots have the same length, and the injectivity of the map

p,:H2(G(K^))^H^G,(K^)),

and consequently, the injectivity of p^ in (2s) follows immediately from Theorem 1.2.
^ [L^ : K^] == 2, the injectivity of p^ is a consequence of Proposition 1.3.

So now let G == SU(J^, r), where dim^ ̂  == p2, p is a prime. I f j & = = 2 , then G
is of type A^, the case already considered in § 3. Therefore, we assume that p > 2. It
suffices to show that there exists a finite set W of places of K containing S u T u V^,
where T is the set of nonarchimedean places at which G is anisotropic, with the following
property:

(*) For any x e M(S, G) of prime order, and any v f W, we have r^(x) == 0, where
r„:H2(G(A(S))) -^H2(G(KJ) is the restriction map.

Indeed, since M(S, G) is finite (Theorem 2.7), its triviality is equivalent to the
absence of nontrivial elements of prime order. As

IP(G(A(S))) - H2(G(W - S)) x n H2(G(KJ),
v ̂  W

assertion (*) will imply that the set of elements of prime order in M(S, G) is embeddable
into

Ker(H2(G(W - S)) ^H^K))) = { 0 }

(cf. Proposition 5.2), and we will have proved the theorem.
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Remark. — The proof of (*) does not depend on Conjecture (U) of § 2.
In a large part of our argument, VQ will be assumed to satisfy the following addi-

tional condition:

(**) VQ either splits over L or is nonarchimedean.

We observe that if v is a nonarchimedean place not contained in T, then G is
quasi-split over K,,. In fact, if v is any nonarchimedean place which does not split over L,
then 1̂ , :== L ®^ K^ is a field extension of K^ of degree 2, and G is isomorphic over Ky
to the special unitary group SU(A), where h is a hermitian form over LJK,, in p variables,
which is K^-quasi-split since p is odd. On the other hand, if v is any place which splits
over L but G does not split over K^, then the group G is K^-isomorphic to SL^ ^,
where A is a division algebra of degree p over Ky; in particular, G is K,,-anisotropic.

Let W be the finite set of places of K which contains S u T u V^, all places
ramified in L/K, and in case K is of characteristic zero, all dyadic places, and all those »'s
such that for some w \ o, the extension L,JQ^ is ramified, where / is the prime corres-
ponding to v.

Next, fix an element x e M(S, G) of some prime order y, and let

(5) 1 ->I -> <s?-^G(A(S)) ->1

be the corresponding extension. Also, fix ^ ^ W and pick a separable quadratic exten-
sion F/K, linearly disjoint from L over K, and having the following local properties:

(6)
F^ === Ky for v e T u V^ and any v | »,

F,. = L for i = 0, 1, and any v, \ v,, w, \ »,.

If VQ is archimedean, it splits over L in view of the assumption (**), hence the
conditions in (6) are not incompatible. Now, using Proposition A. 7, we can construct
a cyclic extension E/F of degree p such that E/K is a Galois extension with dihedral
Galois group, and which has the following local properties:

(7)
E^ = F,, for v e V^ u { ̂ , ^ } and any v \ v, v

[E,:F,] ==p for y e T , v\v, v\v.

Let 6 be an element of order 2 in Gal(E/K), a an element of Gal(E/F) of order p,
M = E8, and P == ML. Since E and L are linearly disjoint over K, for R = PF == EL
we have the following natural decomposition:

(8) Gal(R/K) == Gal(E/K) x Gal(L/K).

We shall let T denote the nontrivial element of Gal (L/K) and also the element
(id^,T) eGal(R/K), as well as its restriction to P.

18
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Lemma 5.4. — The pair (P, r) is embeddable into (^, r).

It follows from the results in Appendix A that it is sufficient to establish the existence
of local embeddings

^:(P®^K^T)^(^(^K^T)

for v e T u V^. However, if v e V^ and G is not K^-quasi-split, then [L^ : KJ = 2,
w | y. Since in this case M 0^ K^ ^ K^, the existence of £„ follows from Proposition A. 4.
On the other hand, if v e T, then v splits over L, and the existence of e^ follows from
Proposition A. 3 and the second condition in (7).

Clearly, the Galois closure of P over K is R. From (8) it is clear that the Galois
group Gal(R/K) has the following presentation:

Gal(R/K) == < (T, 6, T | ̂  == T2 == 62 = [cr, T] == [T, 6] = 1, 6-1 oO = a-1 >.

Using this presentation we see that the following is a complete list of cyclic subgroups
of Gal(R/K) up to conjugacy:

(i) < CTT >, order = 2p;
(ii) < ( T > , order =p;

(iii)i < T > ;
(111)2 < T O > ;
(111)3 < 6 > ;
(iv) < ^ > .

(Note that the subgroups in items (iii), are all of order two.)
We will identify P with a r-stable field contained in ^ in terms of an embedding

provided by Lemma 5.4. Let B = Rp^(GLi) n G be the corresponding maximal
K-torus in G. The following lemma provides a rich supply of elements in B(K).

Lemma 5.5. — For any s e R*, the element a == roe/a, where a = N^p(aj/^), belongs
to B(K).

Indeed, a belongs to U(<^, r). On the other hand,

^ . ^ _ ^Np^(a)) _ T(N^(^)) _
^W- ^^ - ̂ ^ -1.

Let W = W u V(R), where V(R) is the set of nonarchimedean places of K
which are ramified in R (clearly, ^ ^W). It is a consequence of 1.7 that there exists
an open neighborhood of the identity U in G(W — S) == n^^,_g G(KJ, such that
for any two commuting elements fl, b e U, the elements a'en"1^), 'be^1^) also
commute. The proof of Theorem 5.1, just as the proof of Theorem 4.1, uses the formula
for the commutator [2',?] of lifts ^eTi;"1^), ^e^"1^) of elements a, b e B(K) n U
(in fact, we will only deal with elements of the form described in Lemma 5.5). By 1.9
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it is enough to calculate the local commutators [%, ̂ J, where a^, by denote the images
of a, b under the natural imbedding G(K) ̂  G(KJ, % e^-1^), ^ en-1^). Every
y ^ W is unramified in the extension R/K, and therefore the corresponding local Galois
group is cyclic. Fix an extension u of v to R such that Gal(R,,/KJ is one of the groups
in the above list, and let u and w denote the restrictions of u to P and L respectively.
We should distinguish between two cases when Gal(R^/KJ belongs, respectively, to types
either (i) or (ii), or to the remaining types.

We claim that in the first case, [%, ?J == 1. Indeed, it suffices to show that the
restriction map

H2(G(KJ)->H2(B(KJ)

is trivial. According to Theorem 1.1, H^G^)) is a cyclic group of order ^ = ^(KJ.
On the other hand, PJL^ is an extension of degree p, and therefore, B(KJ == F x Q,,
where F is a cyclic group of order prime to I, the characteristic of the residue field of K^,
and Q, is a certain pro-/ group, so H^B^)) is an /-group. Since ̂  is prime to / (ifK
is of positive characteristic, this is immediate, and if K is of characteristic zero, it is a
consequence of our assumption that the extension PJQ,; is unramified and / =)= 2), our
assertion follows.

Now we take up the second case. If Gal(R^/KJ belongs to (iii)3 or (iv), then
[L^,: KJ = 1, and G is K^-isomorphic to SLp. Moreover, B is conjugate to the diagonal
torus in SLp, so for the computation of the commutator we can use the formula given
in Proposition 1.5. To handle the case [L^ : KJ =2, observe that since #(A(KJ is
prime to /, surjectivity of the norm map on the residue fields implies that

NI^XLJ) == (x(K,),

so we may use the following:

Lemma 5.6. — Let g be a nondegenerate hermitian form on 14, d^ 3, defined in terms
of the nontrivial element of Gal(L ,̂/KJ and G = SU(g) be naturally embedded in
H == R ,̂/K (SL^). Assume that
(i) L /̂K,, is unramified;

(ii) N^XLJ) == (i(KJ.

Then
(•) H^G^J) has order equal to ̂  and the restriction map

^HWK^^H^KJ)

is surjective.
{••)For xeH^H^K,)) = H^SL^LJ), corresponding to Xe{l(LJ, ^(x) = 0 if, and

only if, X restricts trivially to (Ji(KJ C (J(.(LJ, or, equivalent the character

^N^K^P(LJ
is trivial.
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Proof. — In terms of a suitable basis of 14, g is given by equation (1) in the proof
of Lemma 5.3; let G be the maximal torus described by equation (2) in the proof of
the same lemma. Since H^G^J) is a cyclic group of order dividing ^ = ^(K,,)
(cf. [30], Theorem 9.4), it suffices to show that the image of the composite map

H^(H(K,)) -^H2(G(K,)) ^IP(G(KJ)

contains an element of order ^. Let ^eH^H^KJ) = H^SL^LJ) be an element
corresponding to a character X e p. (LJ of order ^(LJ, and let

1 ̂  i -> E -^ H(K,) -> 1

be the corresponding extension. To show that x restricts to an element of order ^ in
H^G^J), it is enough to find a, b e G(K^) such that for some a^en-^o), H'en-^b),
the commutator [2^ b ] has order ^. Take

^(a^)-1,^1^,!,...,!),

^(Mprsr1^!,...,!),
a, (3 e L^. Then by Proposition 1.5, we have

[% ̂ ] = ̂  PL- ((0-\ (Pr1).. (a-1 a-, r1 P^J

= ̂ (N ,̂((a, (B2/^),)),

where (*, *)„ is the norm residue symbol on L^ of power ;8^(LJ. Take for p a prime
element in K^. Since LJK^ is unramified, (3 == (B2/^ remains prime in L^, and
therefore there exists a eL^ such that (a, (B)^, is a generator of (x(LJ. Then in view
of (9) and condition (ii), the elements a, A are as required, this proves (•). Since H^H^KJ)
is cyclic of order ^ == ff(Ji(LJ, assertion (••) is a consequence of the fact that Ker (?„
and the subgroup S C p(LJ of elements trivial on (JL(K^) have the same order, equal to
(JL^,/^. Finally, by virtue of (ii), X e(l(LJ falls into 2 if and only if the composite
XoN^K is the trivial character of (x(LJ. Lemma 5.6 is proved.

It follows from Lemma 5.6, and the discussion preceding it, that for any v f W,
there exists \ e p.(LJ (w \ v) such that ^ = r^(x) is obtained as the restriction of the
cohomology class in H^SL^L,,,)) corresponding to \. Put

^(\ i f [L , :KJ=l ,

^"koN^ if [L , :KJ==2.

We shall prove that /^ = 1. For this, we will need the expression for the local commu-
tator in terms of /„ when Gal(R,,/K^) belongs to one of the cases (iii), or (iv). First,
suppose that we are not in the case (iii) 3. Then R^ == L^, and therefore B is diagona-
lizable over L^, i.e. gBg~lC Dy for some g eGLy(LJ. Moreover, if

^ = g-1 diag(^, ..., a^) g, V = g-1 diag(6i, ..., ^) g,
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then

(io) ^^^(n (^)j.» = 1
Note that for a, b eB(K), the product in (10) is equal to

^,(a^):=p^ l((T^(<z),a i(6))„
i=0

where (*,*)„ is the norm residue symbol on R,; of power ^(LJ. Let us calculate
11̂ , b) for elements a, b of the form described in Lemma 5.5; let

(11) a==Ta/a, &==T(3/(3,

where a == N^p^/.?), [B = N^p(or^) for some j^ e R*. Observing that b == c.Q{c),
where

w{t).t
'==T(/)~a(^5

and that 6 (a) = a, we see that

(^(a), ^(A)), = (a1^), o1^)),. ((G1 6) (^ (d1 6) (.)),.

Furthermore, using the formula for c and the fact that r(a) = a~1, we obtain

(12) V (o^), ̂ M),
»=0

= "n (^(a), (T•+1 T(f))». 'n1 ((T*(a), <T«(f)).;. "n1 (^(a), (T* T(f))5-1. V (^(a), ̂ -"(f));-1

t=0 »==0 i==0 i=0

-•n(..(——L.(,)).'n(^——),.•,(„)-. -o\ \(T ^a); ;„ . -o \ ^-l(a)/ "J,;

= n1 (a* (——), ̂ (f)). "n1 (a1 T (——), o* T(^ .
, -o \ \<j ^a); ;» .=o ^ \<T ^a); " ] „

Similarly,

(13) "n (o* 6(a), o1 e(c)),; = "n1 (Oo1^), eo'(c)),;
t-0 i-0

= "n1 (ecr1 (——1 eo*^)). "n1 (ecr' T (-^), eo1 r ( f ) ) .i=o \ \CT \a)j /„ .=0 \ \(T '(a); ' ] „
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Combining (12) and (IS), we get

(H) n^, b) = n L (——1 ̂ t)\ ,w \ ^ w/ A
where <o runs through Gal(R/K).

The case (iii)3 (i.e. where Gal(R^/KJ is generated by 6) is different from the
others, for here the torus B does not split over L^,. To be more precise, in this case

(15) P(^L,=L,©R^

where m = {p — 1)/2. (Indeed, one easily checks that all extensions u^ of w to P are
obtained as restrictions of the following places of R:

^ : == u o a\ i == 0, ..., m.

Besides, by our construction, P is fixed by 6, so UQ == u and P = L^,. On the other
hand, none of the CT^P), i = 1, . . ., m, is fixed by 6, hence P .̂ = R^., which implies (15).)
In terms of the decomposition (15), an element a eB(KJ has components a, cr^a), . . .,
(^(a). So it follows from Proposition 1.5 that

w

(16) [a- ^] = X,(n,(a, &)), where n,(a, ^) = (a, &)„. n ((T*(a), (T^)),;.
1= 1

Now, assume again that a, & are as in (11). Then it follows from the properties of the
norm residue symbol (cf. [41], p. 209) that (a, b)^ = (a, c)^. Besides, for any i we
have (o'(a), G\Q(c)))^ = (cr~'(a), (y~'(<:))^. Taking all this into account and arguing as
above, we obtain that

(i7) n^, b) = 'rr (o- (-—), o^)). 'n1 h r (-—), o1 T(^)) .
,=o \ \a ^a); /^ ^o \ \CT 1^)/ ^

In spite of the apparent differences in formulas (14) and (17), they allow us to obtain
the following uniform formula for local commutators: if u f W, there exist characters
^ e p.(L^), w | y, one for each extension v of v to R, of order equal to the order of ^,
such that

(18) ^^"^(o^^))'v\v \\c [a) j ^ J

where (*, *)^ is the norm residue symbol on R^ of power ^(L^). On the other hand,
since the central extension (5) splits over G(K), [2, b] == 1, which in view of (18) leads
to the relation

(i9) n n^ll—— t\\=i,
.GV -.1. \\a '(a) /,;

which holds for all t £ R*, and a := a(s} (s e R*) constructed in Lemma 5.5 so that
a and b :== b(t) belong to the open subset U chosen above; V above consists of places
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v ^ W such that for some extension u \ v, the Galois group Gal(R,,/KJ is one of the
groups in items (iii), or (iv) of the above list. Letting ^ = 1 for v\ y, v ^V, we can
rewrite (19) in the form of a reciprocity law:

."^•((^•i)-1-
As x e M(S, G) was assumed to be of prime order q, for all v we have ^ == 1. Now,
to apply the proposition in Appendix B we need the following:

Lemma 5.7. — For s e R*, let a == a(s) be the element constructed in Lemma 5.5, v e Vs,
u be its extension to R as above.

(i) If v eV^ and Gal(R^/KJ belongs to one of the types (iii)̂  or (iv), then there exists
s e R* such that for the corresponding element a we have ^(a/o"1^)) = 1.

(ii) Ifv is real and R^ = K,,, then there exists s e R* such that a(s) is negative in the
completion R^ = R.

(iii) For 7e R*, if a = fl(7), ^^ taking 7 sufficiently close to s with respect to all places
u o co, ex) e Gal(R/K), ̂  ^72 TT^Z^ dja"1^) fl̂  <?fo^ ^0 fl/cr""1^), w^A respect to u, as we desire.

Proof. — (i) is obtained by direct computations. We have

a _ T(a)/q _ ^.G-^a) _ ^sfs) .6(<y^)). a-^^sis) .6(0^))
a-1^) ~ CT-l(T(a)/a) ""a.^c-1) (a) ~ (c^) .e(^) .TG-^^/J) .6(0^))

_ ^2. T6g(^)2. Tg^). Qq2^). 6(J). Tg-1^)
~ T(^)2.6(TM2. G(s). Teo2^). rO^). a- \s) '

It follows that if Gal(R^/KJ is generated by rO, then

u[ g ) = M(^) + (^o (7) (^) + (MOW2) G?) + (^OTCT-1) {S)
^ W/

- (z7o T) (J) - {uo a2) (s) - (uo (7-1) (s) ~ (z7o TO) (s).

Now, since the order of <j is > 2, all places u o o,

(0 £ Q : = { (7, O-"" 1, (72, T, T(T, TO" 1, TCT2 },

are different from u, and therefore by weak approximation, there exists s e R* such that
u{s) = 1 and (u o co) (s) =0 for co e Q.

From the above computations it follows that this element satisfies (i). Next, let
Gal(RJKJ be trivial. Then

(20) u (— f l ) = 2{u{s) + {u o TOO) M - {u o T) (.) - {u o Qa) (s)) + (u o ra) (^)
\0 W/

+ {uoQa2) {s) + {uo 6) (J) + {uo To-1) (.?) - (z7o a) (s) - (uo^Qa2) {s)

- (MoT6) M - (^oa-1) {s).
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Let

^1 === { e, T, 6(7, TOO- }, 4s == { (T, (T- \ TCT, TG-- 1, 6, TO, 6(T2, T9(y2 }.

Then Q^ and fig are disjoint, and all the elements listed above in these sets are distinct.
So by weak approximation one can find an s e R* such that

( u o Q ) { s ) = = l and (uo^){s)==0 for co eQ^ u Qg — { 6}.

Again, it easily follows from the above formula that this s satisfies our requirements,
proving (i). An obvious multiplicative analog of (20) shows that in the set-up of (ii),
it suffices to pick an s e R* which is negative in R^ and positive in all R^
co e i2i u tig — { 6 }. Assertion (iii) is obvious. Lemma 5.7 is proved.

We now first take up the case where VQ is nonarchimedean. Since ^ = 1 for
^o I ̂  to prove that ̂  = 1 it is enough to find an s e R* such that the corresponding
a == a(s) belongs to U, and the condition

(21) ^i———)-^\^ w
is satisfied for v' == VQ, ̂  (some fixed extensions of VQ, u^). However, the existence of
such an s immediately follows from Lemma 5.7 (i) and (ii), since by our construction,
^^(^•/K^.), for i = 0, 1, is either trivial or is generated by r6.

Next, let VQ be real. Once we have considered the case of VQ nonarchimedean,
then by 1.13 the order of M(S, G) cannot exceed 2 since the existence of a real VQ e V1^
implies that (i(K) = { ± 1 }. So q can only be equal to 2. To apply the above argument
using the proposition in Appendix B, we need to show that there exists an s e R* such
that for a == a{s), a/G-^a) < 0 in R^ = R and a/0-1^) satisfies (21) for v = v^. Again,
this immediately follows from Lemma 5.7, since by our construction Gal(R,, /K^) is trivial.

We will now drop the assumption (**), i.e. we will prove the triviality of M(S, G)
also when VQ is real, [L^ : KJ =2, WQ \ VQ, and G is K^-isotropic. We assume (as
we may) that S does not contain any nonarchimedean places where G is anisotropic
(i.e. in our previous notation, S n T = 0), and therefore,

(22) H^(G(A)) = H^(G(S)) x IF(G(A(S))).

Suppose there is a nontrivial element c e M(S, G). Then the element c' = ( lg,<:)
(defined in terms of (22)) is a nontrivial element ofM(0, G). Again, as above, it follows
from 1.13 that M(0, G) is of order at most two. To derive a contradiction, we will
show that the order of M(0, G) is exactly two, and its nontrivial element restricts to a
nontrivial element in H^G^J). For this, consider ^ as a vector space over K, and
introduce on it the following quadratic form:

/W=Tr^Trd^(T(^).
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Then G acts on ^ by left translations: a »-> ga, [a e s/, g e G). This action obviously
preserves/, so we have an embedding G<->SO(/). Since G is simply connected, this
embedding lifts to an embedding G <-^ Spin(/) = H. The property of this embedding
that we need in our argument is the following:

Lemma 5.8. — The restriction map p : H2(H(KJ) -^H^G^J) is infective.

Proof. — We begin with the following simple observation. Let Y == C71, h be the
nondegenerate hermitian form on Y defined as follows:

h{z^ ..., ^) = a^ N(^) + ... + a, N(^),

where a, e R, and for z == x + iy, ' N ( z ) == x2 +j/2 is the norm of z. Let

9(^1, •. . , ̂ p^j = ̂  +y2,) + ... + ̂  +y,)
be the corresponding quadratic form on Y, Y regarded as a vector space over R. Then
SU(h) C 80(9), and by the simply connectedness of SV{h) we obtain an embedding

G = SU(A) c-> Spin(9) == H'.

Ifp > 2 (which is the case in our set up), then the restriction map H2(H'(R)) -> H2(G'(R))
is injective. Indeed, it suffices to show that the map 7Ti(G'(R)) -^7ri(H'(R)) of the
fundamental groups is surjective. We may assume that not all the a^s are of the same
sign (otherwise, both fundamental groups are trivial); let a^ . . . , f l ; be positive, and
a^i, ...,^ be negative. Then one easily verifies that the map 7ri(Z) -> TCi(H'(R)),
where Z = { diag(^, 1, . . ., 1, z~1) [ z e C, N(^) == 1 }, is already surjective.

Now, identify j^®^ K^ wlt^ MpW m suc!1 a way ^at T has the form

T^^F-^F

where F = diag(^, . . ., a^), ^ eR, and the bar denotes complex conjugation. Then
G can be identified with SU(A) where h is as above, and Mp(C) as a G-module is
isomorphic to Y2', Y = C^ with the standard action of G on Y. Let 9 be the qua-
dratic form on Y as above, H' == Spin((p). As we noted above, the restriction map
po : H2(H /(R))-> H2(G(R)) is injective. Obviously,/ coincides with the orthogonal
sum of p copies of 9, and there are two embeddings of H' into H == Spin(/): the first
is given by the diagonal action of H' on Y^ == My(C), and the second is given by the
action only on the first component. Let pi, pg be the corresponding restriction maps
from H2(H(R)) to H^H^R)). Then pi = P .p2? where p stands for multiplication by p.
It follows from simple topological considerations that H^IH^R)) = Z^ and pg is injective.
Since p is odd, we conclude that pi is injective. Hence p == po o pi is also injective, and
the lemma is proved.

19
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5.9. To complete the proof, we now consider the quadratic form g ==fl (—/)
and G==Spin(^), then the restriction map H^KJ) -> H^H^KJ) is injective.
Since g is a hyperbolic form, G is K-split, and therefore according to [21], there exists an
element^ e M(0, C) of order two. It is a consequence of the fact that M{{vo}, G) is trivial
thatj/ projects onto a nontrivial element of H^G^J). Now, combining Lemma 5.8
with the injectivity result mentioned above, we conclude that y restricts to an element
of order two in M(0, G), with nontrivial projection to H2(G(K^)), as required.

5.10. Remark. — The argument given in 4.4 can be used to show that ifS contains
a nonarchimedean place VQ at which G is anisotropic, and p is the characteristic of the
residue field of K^, then in case p + 2, M(S, G) has no j^-torsion.

6. Groups of other classical types

The previous three sections, which contain the computation of the metaplecdc
kernel for the groups of type A, actually constitute the most difficult part of the proof
of the main theorem. In this and the next section we will complete the proof for groups
of all other types via a certain reduction process to the groups of type A. This reduction
is based on the following simple observation:

Lemma 6.1. — Let G be an absolutely simple simply connected VL-groupy and S a finite
set of places of K. Assume that M^(G) == Ke^H^G^)) ->H2(G(K))) is trivial for any
finite set V of places ofK, and that for all but finitely many v ^ S, there exists a V^-subgroup H
ofG such that: a) M(S, H) is trivial, and b) the restriction map ^ : H^G^)) -> H Î̂ KJ)
is injective. Then M(S, G) is trivial.

Proof. — Let T be the set of nonarchimedean places of K where G is anisotropic.
Let Vo be a finite set of places of K containing S u T u V^, and also all those v ^ S
for which a subgroup H of G with the two properties described in the lemma does not
exist. We have

H2(G(A(S))) = IP(G(Vo - S)) x I! H2(G(K,)),
v^Vo

so any x in M(S, G) can be written in the form x == (^_g, (^)^vo)- Fix a y ^Vo?
and consider the corresponding subgroup H of G given by the lemma. From the commu-
tative diagram

M(S, G) ———> M(S, H)

i i
H2(G(K.)) -^ HWKJ),

using the triviality of M(S, H) and the injectivity of ?•„, we conclude that Xy = 0. This
implies that -Vyo-s ls contained in My^_g(G), which is trivial by our assumption, so
the lemma is proved.
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This section is devoted to groups of classical types; these are treated using their
geometric realizations. It is a well known consequence of Harder's theorem on the
vanishing of the Galois cohomology of simply connected, semi-simple groups over global
function fields that over such a field any absolutely simple group of type other than
A is isotropic ([12]). Since the isotropic groups have been adequately treated in [29],
we shall assume in this and the next section that K is of characteristic zero, i.e. it is a number field.
We note that most of our arguments work without any restriction on the characteristic
ofK$ however, at a few places it is convenient to assume that the characteristic is not 2.

We will assume that S contains a place VQ, which is either nonarchimedean, or
is real and the group G(K^) is not (topologically) simply connected, and using Lemma 6.1
prove that M(S, G) is trivial. In view of the reduction described in 1.13, this will prove
the main theorem for all groups of classical types.

First we consider the group G == Spin(/), where/is a nondegenerate quadratic
form over K in r ^ 7 variables (then G is of type D, if r is even, and of type B, ifris
odd). For technical reasons, in case r == 5, it is convenient to use the identification
Bg == Gg and to consider this case as pertaining to the series G. On the other hand, in
view of the identification D3 == A^, the case r = 6 has actually already been considered.
If VQ is real, then the condition that G(K^) is not (topologically) simply connected is
equivalent to the condition that the Witt index of/ over K^ is ^ 2.

Lemma 6.2. — Let f be a nondegenerate quadratic form over K and V a finite set of places
ofK. Assume that for every v in V, the Witt index of f over Ky is ^ d, where d is a positive integer.
Then there exists a sub form g of fin 2d variables with Witt index d over Ky,for all v in V.

Proof. — An obvious inductive argument shows that it suffices to consider the
case d == 1, i.e. to show that if/is K^-isotropic for every v e V, then there exists a binary
subform g off with the same property. The subspace over K,, generated by a pair of
vectors a^, by is the hyperbolic plane if, and only if,

(^^-/(^/(^eK:2,

where ( [ ) denotes the bilinear form associated with/. Clearly, if this condition holds
for a certain pair <^, &„, it holds for any other pair which is sufficiently close to this
one. So, for every v e V, picking a pair a,,, b^ over K,,, which spans a hyperbolic plane,
we can use the weak approximation property to find a pair a, b over K such that the
subspace generated by this pair is isotropic over K^, for all v in V. This proves the
lemma.

Now pick an arbitrary v - ^ ^ S u V^. Since r ^ 7, for any nonarchimedean y, the
Witt index of/over K^ is ^ 2. We have observed above that if Vy is real, the Witt index
of/over K^ is also ^ 2. Now, according to Lemma 6.2, there exists a 4-dimensional
subform g of f with Witt index 2 over K^., i == 0, 1. We claim that the subgroup
H = Spin(^) of G has properties a) and b) of Lemma 6.1. Indeed, as is well known,
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H is isomorphic over K either to the direct product Hi X Hg of two groups of type A^,
or to a group of the form RL/K^), where L/K is a quadratic extension, and ^ is a
group of type A^ defined over L. Since the rank of H over Ky is 2, in the first case both
the H^s are K^-isotropic, while in the second case VQ splits over L, and Jf is isotropic
at both the extensions of VQ. In either case, Theorem 3.1 implies that M(S, H) is trivial
(note that i f H = = RL/E^)? then ^S, H) == M(^Jf), where y consists of all exten-
sions of places in S to L). On the other hand, the injectivity of the restriction map
H^G^)) -^H^H^)) follows from Proposition 1.9 of [29] since the Witt index
of g over K,, is ^ 2.

A minor modification of the above argument allows us to establish the triviality
of My(G) as well. Let Vi be the set of all v e V such that the Witt index of/ over K,,
is ^ 1. Obviously, any v in Vi is real, and the group G(KJ is topologically simply
connected, implying that H^G^J) is trivial. Let Vg be the union of V\ and the set
of all complex v in V, and Vo = V — V^. Since G is isotropic at all nonarchimedean
places, we have

IP(G(V)) = n W(G(KJ) = n H^(G(K,)).
v e v v e Vo

Let g be a 4-dimensional subform of/with Witt index 2 at every v in Vo. Using Pro-
position 1.9 of [29] if v is nonarchimedean, and a simple topological argument if v
is real, we conclude that H^G^)) -> H^H^K,,)) is injective for any v e Vo. Therefore,
the restriction map H^G^)) -^H^H^V)) is injective. On the other hand, from the
above description of the structure of H it is plain that Proposition 3.2 applies to give
the triviality of M^(H). Combining these facts, we obtain the triviality of My(G). Now
Lemma 6.1 implies that M(S, G) is trivial.

Next we consider the case G == SU(/), where/ is a hermitian form in n ^ 2
variables over a quaternion division algebra D/K, with respect to the standard invo-
lution "~ of D; such a G is of type €„. If VQ is real and D,, := D ®^ K,, is a division
algebra, then G(K^) is simply connected (cf. [13: § 9.4]). It follows that the condition
that G(K^) is not (topologically) simply connected is equivalent to the condition that
D^ = D^K^o ls tlle "^trix algebra M^K^) (and then G ^ Sp^ over K^). Now,
ifD^ ^ M^(K^), the construction of a K-subgroup H of G, having properties a) and b)
of Lemma 6.1, is especially easy: for H one takes the unitary group of the one-dimensional
subspace e. D, spanned by any anisotropic vector e e D". Indeed, such an H is isomorphic
to SL.i p, and since VQ splits D, M(S, H) is trivial by Theorem 3.1. On the other hand,
for any v which splits D, the group G can be identified over K,, with the symplectic
group Sp^, and under this identification H corresponds to the naturally embedded
subgroup Spg C Sp .̂ So H is a long-root subgroup of G with respect to an appropriate
maximal K^-split torus, and the injectivity of the restriction map H^G^J) -> H^H^K.,,))
follows from Theorem 1.2.

The other case (i.e. where VQ is nonarchimedean and D^ is a division algebra)
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requires a little more work. First of all, we observe that it suffices to consider the case
n = 2. In fact, let G' be the unitary group of a nondegenerate two-dimensional subspace
ofD71 which is isotropic at every archimedean place where f is isotropic (the existence of
such a subspace follows from an obvious continuity argument). Then one easily checks
that for any y, G' contains a long-root subgroup with respect to a suitable maximal
K^-split torus. Now if v is nonarchimedean, then from Theorem 1.2, and if v is archi-
medean, then by a simple topological argument, we deduce the injectivity of the restric-
tion map H2(G(K„)) —>- H^G^KJ). Since G is isotropic at every nonarchimedean place,
H2(G(A(S))) = n^sH^^K,,)), and therefore the restriction map

H2(G(A(S)))^H2(G'(A(S)))

is also injecdve. This implies the injectivity of the map M(S, G) -> M(S, G'), and so
it will suffice to establish that M(S, G') is trivial. Hence, in the sequel we assume n == 2.
In this case, the construction of H described in the next lemma is a generalization of
the construction given in [29: 1.7].

Lemma 6.3. — Given a finite set V of nonarchimedean places of K, there exists a Vi-sub-
group H qfG, which is either the direct product ̂  X ^2 °f two simply connected T^-subgroups J^
of type AI, or is a group of the form RL/K^^)? where L/K is a quadratic extension and J^ is a
simply connected li-group of type A^, such that H is ^-quasi-split and the restriction map
H2(G(KJ) -^H^H^)) is infective for every v in V.

Proof. — Let {e^ e^} be an orthogonal basis of D2 with respect to/; a,: =/(^) (e K*).
Since for any anisotropic vector e e D^y^.D^) = K^;, it is clear from the weak approxi-
mation property that we can replace e^ by a multiple so that — a^/a^ e K^2 for all v e V.
Let Vo be the subset of V consisting of those v for which D,,: == D ®^ K,, is a division
algebra, and let M be a maximal field extension of K contained in D such that M^/K,,
is an unramified quadratic extension for v e Vo, and My == K^ for v e V — Vo, v \ v.
Let M=K(<z) , a2eK.

Now let s/ == M^D), and define the involution T of ^ by the formula

^^i-.F-^F,

where F = diag(ai, ag) is the matrix of/, and (x^Y = (^). Then our unitary group
G == SU(/) is given by the equation

x^(x) == 1.

Let b e ̂  be the following element:

( ° 1-^ai/ocg) a 01
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It is easy to verify that r(6) = b and 62 == (ai/ag).^ = — (ai/a^) fl2 e K*. Let H be
the centralizer of b in G. First of all, we claim that over the algebraic closure K, H is
a semi-simple group of type A^ + A^. Indeed, let 8 <= K be such that 82 == b2. Then
for 6' == S~1 6, &'2 = 1, and therefore, b' T(&') == 1. However, an easy verification shows
that the centralizer of any noncentral element of order two in G ^ Sp^ is isomorphic
to Spg X Sp2, i.e. it is a semi-simple group of type A^ + A^, and of course, H coincides
with the centralizer of b\ To figure out the arithmetic properties of H, we consider the
centralizer S8 of b in e^. Clearly, S8 is a quaternion algebra over L = K(6), if L is a
quadratic extension of K, and is the direct sum 88^ @ 88^ of two quaternion algebras
over K , i f L = = K © K . The involution T acts as the identity on L; in particular, T induces
an involution of 38, and H is the unitary group of 88 with respect to the restriction of T.
The fact that H is semi-simple means that, in the first case, T restricts to the canonical
involution of S8 over L, and in the second case, it restricts to the direct sum of the
canonical involutions of 38^. Then H equals RL/K^)? where ^ = SL^ ^, in the first
case, and it equals ̂  X ^25 where ̂  = SL^ ^. in the second case. It follows from our
construction that L^/K,, is an unramified quadratic extension if v eVo, and L,; = K,,
if v e V — Vo, v | v. In the second case, the verification of the required properties of H
is almost immediate. Viz., here b2 eK;2, i.e. 8 e K^ and V eG(KJ. Thus, the above
identification of the embedding H C G with the embedding Spg x Spg C Sp^ is defined
over K^. Since each of these factors is a long-root subgroup in Sp^, we obtain the
injectivity of the restriction H2(G(KJ) -^H^I-nKJ); moreover, H is obviously
K,-split.

Now suppose that 1 ,̂/K,, is an unramified quadratic extension. The proof that H
has the required properties in this case uses Proposition 8.44 of [30]. Let-^i,/^} be
a basis of D2, with respect to which f has the matrix

/ o ^
[-s OJ'

where s e D^ is such that Int s induces the nontrivial automorphism of some maximal
unramified quadratic extension P of K,, contained in D,, (such a basis always exists);
let F == Rp/^ (SLg) with respect to this basis. According to proposition 8.44 of [30],
the restriction map H2(G(K.J) ->H2(F(K^)) is injective. Now to complete the proof,
we will show that F and H are conjugate by an element of G(K^). In principle, this
can be done by brute force; however, we prefer an indirect argument. Obviously,
M^P) is the centralizer of P in M^DJ, and F is the corresponding unitary group. It
suffices to show that P is conjugate to L,, by an element from G(KJ. Since both P and L^
are unramified quadratic extensions of K^, by the Skolem-Noether Theorem, there
exists g e GL^DJ such that g'Pg~1 = L,,. Then, from the fact that T acts as the identity
on both fields, we conclude that ^{g).g belongs to the centralizer of P, i.e. to M^P).
On the other hand, T restricted to M^P) is the involution of the latter such that the
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space of symmetric elements coincides with P (this follows from the fact that the corres-
ponding unitary group is semi-simple), implying that for t in Ma(P), r(^) .t = deft.
Therefore, there exists t e M^P) such that ^[g).g == ^{t).t, and then g ' == gt~1 is the
required unitary element which conjugates P to L^,. The proof of Lemma 6.3 is now
complete.

To exhibit a subgroup H of G having properties a) and b) of Lemma 6.1, pick
a v^ ^ S u V^, and take the subgroup H constructed in Lemma 6.3 for V == { z ^ , v^}.
Then in view of Theorem 3.1, it is clear from the structure ofH that M(S, H) is trivial.
On the other hand, by Lemma 6.3, the restriction H2(G(K^ )) -> H^H^ )) is injective.

Now we will prove the triviality of My(G) for any finite set V of places of K. For
the same reason as above, it suffices to consider the case where n == 2. To begin with,
observe that My(G) = MyjG), where Vo consists of all the nonarchimedean v in V.
Indeed, let V = V — Vo, and let F be the unitary group of a nondegenerate one-
dimensional subspace of D2. Since F ^ SL^ p, My(F) is trivial, and it is enough to
show that the restriction map H2(G(V')) -^H^V')) is injective. However, i f y e V is
such that Dy = D 00^ K^ is a division algebra, then the group G(KJ is topologically
simply connected, so H2(G(K,)) vanishes, and the restriction H^G^J) ->H2(F(K,))
is trivially injective. Otherwise, D^ == M^K^), and there is an identification of G with
Sp4 over K^ under which F gets identified with the canonically embedded subgroup
Sp^C Sp4. So again the restriction H2(G(K^)) ->H2(F(KJ) is injective, proving the
required fact. Thus, we may assume that V consists entirely of nonarchimedean places.
Consider the subgroup H of G constructed in Lemma 6.3 for our V. Since G is isotropic
at every nonarchimedean place, H;2(G(V)) == n^^H2(G(KJ), and we conclude from
Lemma 6.3 that the restriction H^G^)) -^iP^V)) is injective; in particular, the
map My(G) -^My(H) is injective. But according to Proposition 3.2, My(H) is trivial,
so My(G) is trivial too. Lemma 6.1 now implies that M(S, G) is trivial.

To conclude the proof of the main theorem for classical groups, consider the case
where G is the simply connected cover of the special unitary group SU(/) of a non-
degenerate skew-hermitian form / in n ̂  4 variables over a quaternion central division
algebra D over K, with respect to the standard involution (denoted as -) of D (recall
that such a G is of type DJ.

I f y e V ^ is such that D ^ : = D ® K ^ is isomorphic to M^KJ, then G/K^ is
isomorphic to the spinor group Spin(/J of a quadratic form fy in 2n variables over K,,
which is obtained as follows. Pick an orthogonal basis {<? i , . . . , < ? „ } of D71, and let
^ ==/(^i) (we write f(x) instead of f{x, x)). Fix an isomorphism ^ : D^ ^ Ma(KJ, and
consider the involution T^ of M^KJ that corresponds to ~ (in other words, let
^v = \ ° ~ ° \1)9 Then ^ can be described by the formula T^(^) == CyXt c ^ ' 1 , where (

denotes the matrix transpose and ^ in M^KJ is a skew-symmetric matrix. Then for
every i = 1, . . . , n, A, = v^(a,) Cy is a symmetric matrix and f^ is the form with the
matrix diag(Ai, ..., AJ. It is well known that if^o is real and D^ is a division algebra,
then the fundamental group 7Ci(G(KJ) is isomorphic to Z (in fact, the maximal compact
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subgroup of G(KJ in this case is isomorphic to V(n), the two-sheeted covering of the
compact unitary group V(n), cf. [13: § 9.4]). So the assumption that G(KJ is not
simply connectedmeans that ifD^ ^ M^KJ, then the Witt index of the corresponding
quadratic form fy is ^ 2.

We need the following analog of Lemma 6.3:

Lemma 6.4. — Let V ̂  aj&^ j^ of places ofK. Assume that for every real v in V such
that D^ ^ M^KJ, ̂  M /̂ m^ o/^ quadratic form f^ corresponding to f is ^ 2. Then there
exists a ̂ subgroup H ofG of the form R^W, where L/K is a quadratic extension, L^ == K^
v \ v, ifv is real, and^f is a simply connected L-group of type A^, having the following properties for
every v in V: a) H is K^-isofropic, and moreover, b) the restriction map H^G^J) -> H^^KJ)
is injective.

Proof. — First let us recall the following elementary fact (cf. [43]): For any place v
where D splits, an element a of D; is contained in /(D^) if, and only if, the binary
quadratic form with matrix ^(a) ^ is equivalent to a subform off,. So, for every real v
in V such that D, ^ M^KJ, one can pick an s, e D^ so that for a, =/(^), the matrix
^(^J ^ is (positive or negative) definite. Using the weak approximation property
and a continuity argument, we see that there exists an s in D" such that for a =f{s),
the matrix ^(a) ^ is definite for any real v (eV) such that D^ ^ Mg(KJ. Let W be
the orthogonal complement ofj in D\ Then for every v in V, there exists ^ in W ®^ K^
such that/(^) === — a. In case D^ ^ M^KJ, this follows from our construction and
the assumption that the Witt index off, is ^ 2 if v is real, and from the fact that a
nondegenerate quadratic form over Ky in ^ 6 variables contains any binary form as
a subform if v is nonarchimedean. On the other hand, if D^, is a division algebra, then
a skew-hermitian form over D, in ^ 3 variables represents any skew-symmetric element
in D^ (cf. [43]). Now fix a nonarchimedean place y° ^ V such that D^o ^ M^K^o).
Using the above argument we can pick an anisotropic t^ e W ®^ K^ so that
det(v,o(^./(^o))) ^K;j. Obviously, for any v, the set Q, = {f{h) \ h e^.D;}is open in
the set of all skew-symmetric elements of D^, so there exists / eW such that/(^) et^,
for every v in V u { v°}.

Let g denote the restriction of/ to the D-subspace spanned by s and t, and H be
the simply connected cover of the group SV(g). Then H is a semi-simple K-group of
type Dg == AI + AI. Hence, H is K-isomorphic either to the direct product ̂  x e^
of two K-groups of type A^, or to a group of the form R^/E^)? where L/K is a quadratic
extension and Jf7 is an L-group of type A^. We claim that in our setting the second
possibility holds. Indeed, our claim is equivalent to the fact that H is an outer form
over K. By our construction, H/K^o is isomorphic to Spin(^o)? and the discrimi-
nant of the quadratic form ^o is not a square in K^o. Hence, H is an outer form
over K,o, and therefore over K. If v eV is such that D, ^ IV^KJ, then g, has Witt
index 2. So, H splits over K^, and Proposition 1.9 of [29] if v is nonarchimedean, and
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a simple topological argument if v is archimedean, yields the injectivity of the restriction
map H^KJ) ^H^H^)). If D, is a division algebra, then g is the 2-dimensional
hyperbolic form over D^, implying that H is K^-isomorphic to SLg x SL^ ^ . Besides,
it is easy to check that the factor SL^ is a long-root subgroup of G/K^ with
respect to a suitable maximal K^-split torus, hence the injectivity of the restriction
H^G^J) -.H^H^)) in case v is nonarchimedean (Theorem 1.2). To establish the
injectivity for a real y, it suffices to observe that the embedding H(KJ C G(KJ gives
rise to an embedding of the respective maximal compact subgroups U(2) C V{n), which
are the 2-sheeted coverings of the compact unitary groups U(2) C U(^). Since the
embedding U(2) C V{n) induces an isomorphism of the fundamental groups, our
assertion follows. The proof of Lemma 6.4 is complete.

Now, given ^ <^S uV^, the K-subgroup H of G constructed in Lemma 6.4
for V =={VQ, z^}, satisfies Lemma 6.1 (we have already observed above that if VQ is
real, then the hypothesis of Lemma 6.4 holds). In fact, M(S, H) == M(^,j^), where
y is the set of all extensions of places in S to L. Also, if VQ is real, then so are both of
its extensions, and ̂  is isotropic with respect to at least one of these. Using this obser-
vation, we obtain from Theorem 3.1 that M(S, H) is trivial. The assertion about the
injectivity of the map H^G^)) —H^K^)) is a part of Lemma 6.4.

It remains to establish the triviality of My(G). Let Vo be the set of real v in V
such that D^ ^ M^KJ and the Witt index of/^ is ^ 1; V := V — Vo. Then for any
y e V o , the group G(KJ is topologically simply connected, implying that H2(G(KJ)
vanishes, and hence M^(G) = My,(G). So we may assume that V satisfies the assump-
tions of Lemma 6.4. Let H be the subgroup of G given by Lemma 6.4. Since at every
nonarchimedean place G is isotropic, we conclude from 6.4 b ) that the restriction
map R2(G(V)) ->H2(H(V)) is injective. Hence, the map M^(G) -> M^(H) is also
injective. On the other hand, Proposition 3.2 implies that My(H) is trivial for any V.
This proves the triviality of My(G). Lemma 6.1 now applies to give the triviality
of M(S, G).

As is well known (see, for example, [24: § 2.3]), the three types of classical groups
considered in this section, plus the split symplectic group Spgy, exhaust all groups of
types B,., G, and D,. (except for ^DJ. The result of Moore [22] for split groups implies
the triviality of M(S, G) for split symplectic groups, and thus we have established the
main theorem for all classical groups.

7. Groups of exceptional types

In this section, we will deal with groups of exceptional types. As in the previous
section, we assume that S contains a place VQ^ which is either nonarchimedean, or is
real and G(K^) is not (topologically) simply connected, and prove that M(S, G) is
trivial by constructing, in each of the groups under consideration, a subgroup satisfying
Lemma 6.1. To give this construction, we make use of some results on Galois cohomology

20
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(cf. [24], Ch. 6). To simplify our presentation, we assume here that K is of characteristic
zero, i.e. it is a number field. As recalled in the previous section, ifGis of type other than A,
and K is a global function field, then G/K is isotropic, and for such groups, the triviality
of M(S, G) is already proved in [29].

We begin by considering the groups of types Ey, Eg, F^ and Gg. As the following
proposition shows, each one of these groups splits over a suitable quadratic extension
ofK.

Proposition 7.1. — Let G be an absolutely simple simply connected algebraic group of one
of the types Ey, Eg, F^ or G^, defined over a global field K, and let V be a finite set of places ofK
such that G splits over K^ for every v e V. Then there exists a maximal K-torus T of G, which
is anisotropic over K and splits over a quadratic extension L/K such that L-, = K ,̂ for every
v e V, v | v.

Proof. — Since the Dynkin diagrams of the types Ey, Eg, F^ and G2 do not have
any nontrivial symmetries, G is the Galois twist ^GQ of the corresponding split group Go,
for some ^ e H^K, Go), where Go = Go/Z is the adjoint group. First, we show that
there exists a quadratic extension L/K such that the image ̂  of^ in H^L, Go) is trivial,
and L, = K^ for every v e V. Let Vo be the set of all v's such that ^, the image of ^
in H^K^, Go), is nontrivial; Vo is finite and disjoint from V. Define L by the following
local conditions:
(i) L,==K, for all o e V ;

(ii) [L^,: KJ == 2 for any nonarchimedean v eVo, and L^ = C for any archimedean
^eVo.

In view of the Hasse principle for the Galois cohomology of adjoint groups (cf. [24],
Theorem 6.22), to establish the triviality of SL? it is sufficient to establish that of its
image ̂  m H^Ly,, Go), for every place w of L. But the triviality of ^ is obvious
except, possibly, in the case where G is of type Ey and w lies over some nonarchimedean
v eVo. In this case, H^K,, Z) = Br(K)2, and therefore the image of ^ in H^K,, Z)
becomes trivial over L^. Now, since H^K^, Go) = { 1 }, this implies that ̂  is trivial.

So G splits over L. Let B be a Borel subgroup of G defined over L such that
T :== B n B° (where a is a generator of Gal (L/K)) is a maximal K-torus of G (cf. [24],
Lemma 6.17). As T == B n B°, o takes all positive roots in 0(T, G) (with respect to
the ordering defined by B) to negative roots. However, for the root systems under
consideration, the only automorphism with this property is multiplication by — 1,
which shows that T is anisotropic over K, and it splits over L.

A K-torus T which is anisotropic over K and splits over some quadratic extension L
of K is called admissible (or, more precisely, LIK-admissible), and a semi-simple group
containing an admissible maximal torus is called admissible. This terminology was
introduced by Weisfeiler ([49]) who developed an efficient structure theory of admissible
groups. His crucial observation was that since cr, the generator of Gal (L/K), acts on
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the character group X(T) as multiplication by - 1, for any root a e<D(T, G), the root
subgroup G^ generated by the one-parameter unipotent root subgroups U^ and U_^,
is defined over K (observe that G^ is a simple simply connected group of type A^, and5

therefore it is isomorphic to the group SL^, for some quaternion algebra D over K).
These root subgroups will be used to construct in a group G of one of the types Ey, Eg,
F^, or Gg, a subgroup H with the properties described in Lemma 6.1.

Groups of type F^ and Gg. — First of all, observe that a group G of any of these two
types must split over K^. Indeed, any group of type Eg, F^ or Gg splits at any non-
archimedean place (cf. [46]). If^ is real, then the fact that G(KJ is not topologically
simply connected implies that G should at least be K^-isotropic. However, a group of
type G^ is isotropic if, and only if, it is split (cf. [46]).°0n the other hand, there exists
only one nonsplit isotropic R-form of type F4, and this form has relative rank one. The
maximal compact subgroups of the group of R-points of this form are isomorphic to
the spinor group of a positive-definite quadratic form in 9 variables (cf. [13]), which
is topologically simply connected. This implies that the group of real points itself is
simply connected, hence our claim.

Let v be an arbitrary place not in S u V^. It follows from the above that Propo-
sition 7.1 applies to V = { ^, y}; let T be a maximal torus given by this proposition.
Pick an arbitrary long root a in the root system 0 == <I>(T, G), and let H == G^. Then
H splits over K^, and therefore, M(S, H) is trivial by Theorem 3.1. On the other hand,
T is a maximal K^-split torus in a K^-split group G, and H is a long-root subgroup,
hence the restriction map H^G^,)) —H^H^KJ) is injective (1.2).

Groups of type Ey and Eg. — Let v be an arbitrary place outside S u V^ such that
G is K^-split (since all forms of these types are inner, almost all places of K have this
property). Let T be a maximal K-torus of G given by Proposition 7.1 for V == { y},
and L be its splitting field. If VQ is nonarchimedean, let H be the subgroup generated
by the root subgroups G^ and Gp for a pair of adjacent (in the Dynkin diagram) simple
roots a, p. Then H is a simple simply connected admissible group of type Ag which splits
over L, hence H ^ SU(<p), where <p is a hermitian form in 3 variables over L/K. It
follows that H is K^-isotropic, and therefore M(S, H) is trivial (Theorem 5.1). If ^ is
real, then it is obvious, for example from the Cartan decomposition and the conjugacy
of maximal compact tori in real Lie groups, that there exists a root a eO(T, G) such
that the root subgroup G^ is K^-isomorphic to SLg. Then for H = G^, M(S, H) is
again trivial. The injectivity of the restriction map of the second cohomology groups,
at v, follows from Theorem 1.2.

Now we will establish the triviality of My(G) for these four types. In view of
Theorem 2.1, we may (and will) assume that V contains neither any complex place,
nor any real place v such that the maximal compact subgroups of G(KJ are semi-simple.
But it follows from [13] that for G of any of the types Eg, F4 or Gg, and any archimedean
place v, every maximal compact subgroup of G(KJ is semi-simple, and the proof for
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these types is reduced to the case where V consists entirely of nonarchimedean places.
To carry out this reduction for groups of type Ey, observe that if T is an admissible
maximal torus in G splitting over L, then Ly == C for any real v e V, since in the real
split form of type Ey, the maximal compact subgroups of the group of R-points are
semi-simple (cf. [13]). Therefore, T(K^) is a maximal compact torus in the real Lie
group G(KJ, so the map 7Ti(T(KJ) -^7Ti(G(KJ) is surjective. Let H denote the
subgroup of G generated by the root subgroups G^ for a == a^ {i 4= 2) and a, where the
simple roots are labelled as in [7], Table VI (cf. also the Ey-diagram below), and <? is
the maximal root. Then H is an admissible group of type Ay containing T and defined
over K. It follows from the above that the map 7Ci(H(KJ) ->7Ti(G(K^)) is surjective,
implying that the restriction map H2(G(K.y)) -^H^H^)) is injective. Since My(H)
is trivial (cf. § 4, 5), this implies that My(G) = My^(G), where V^ consists of all the
nonarchimedean places in V, yielding the desired reduction.

So assume now that V consists of nonarchimedean places only. Our proof of the
triviality of My(G) in this case applies equally to groups of type Eg (both inner and
outer forms), and that is why at this point we include these in our consideration. In
view of Proposition 2.4, it suffices to find, for any nonarchimedean y, a maximal
K^-torus Cy of G, which splits over a cyclic extension of K^, such that the restriction
map ^ : H^G^)) ->IP(C,(KJ) is injective.

Lemma 7.2. — Let G be an absolutely simple simply connected VL-group of one of the
following types: ^Eg, Ey, Eg, F^ or Gg, and v be a nonarchimedean place ofK such that G is
VLy-quasi-split. If Cy is a maximal Ky-torus of G contained in a Borel subgroup defined over K ,̂,
then the restriction map ^ : 11^(1^)) -^H^C^K,,)) is injective.

(Note that Cy splits over Ky if G is not of type ^g, and over a quadratic extension
ofKy if it is of type %.)

Proof. — Let L be the splitting field of C^, and 0 be the root system of G with
respect to Cy. If G is not of type Gg, let a, (B e<D be two adjacent simple roots (simple
with respect to the ordering on 0 obtained by fixing a Borel subgroup defined over K.̂ ,
and containing Cy), a, (3 are assumed to be long if G is of type F4, and are assumed to
be fixed by the Galois group of L/K^, if G is of type ^g. Let H^, be the subgroup of G
generated by the root subgroups G^ and Gp. Then Hy is an absolutely simple simply
connected group of type Ag which is defined and split over K,,; so it is K^-isomorphic
to SL.3, Sy :== Cy n H^, is a maximal K^-split torus ofH^. Since H^ contains a root sub-
group corresponding to a long relative root, the restriction map H^G^J) -> H^H^KJ)
is injective (1.2). On the other hand, by Lemma 1.6, the restriction map
H2(H^(KJ) -^H^S^KJ) is also injective, implying the injectivity of ^.

If G is of type Gg, for Hy we take the subgroup of G generated by the G^ where
a runs through all the long roots of O. As is well known, Hy is again a simple simply
connected group of type Ag, and we can argue as before.
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If G is of one of the types Eg, F^ or Gg, then it splits over any nonarchimedean
completion K^, and Lemma 7.2 applies. Furthermore, ifG is of type ^g over K,, then
it is K^-quasi-split (cf. [24], Prop. 6.15), and again one can use Lemma 7.2. What
remains to be done is to construct a <( nice 39 torus in the case where G/K^, is a nonsplit
form of type ̂  or Ey.

Lemma 7.3. — Let G be an absolutely simple simply connected group of type ^g or Ey,
and v be a nonarchimedean place of K such that G is not K^-split. If Cy is a maximal K^-torus
ofG which contains a maximal K^-split torus S^, then the restriction map H2(G(KJ) -> H2(G^(KJ
is injective.

Proof. — It is enough to show that the restriction H^G^J) -^H^S^KJ) is
already injective. Let O^ be the (relative) root system of G with respect to S^, and let
0^ be the subsystem of nonmultipliable roots in <S>^ (i.e. a e 0^, belongs to $^ if, and
only if, 2a ^OJ. As is shown in [4: 7.2], there exists a split semi-simple K^-subgroup H^
of G, which contains S y , and whose root system with respect to Sy is 0^. This H^, has
the following property: If an a eO; is the restriction of only one root in 0 :== $(C^, G),
then the relative root subgroup G^ is contained in H^. Moreover, since G is simply
connected, so is H^ ([5: 4.6]). Let O0 be the subset of the root system 0 consisting of
the roots with trivial restriction to S^,. Then for the inner forms, S^ is the identity
component of the intersection flaeooKera, implying that the character group X(SJ
is naturally identified with the quotient X(GJ/X°, where X° is the subgroup of cha-
racters which are linear combinations of roots in 0° with rational coefficients, and two
roots a, (B e 0 restrict to the same relative root if, and only if, their difference (a — (B)
lies in X°.

The Tits indices (cf. [46]) of the groups under consideration are:

oci 03 oc4 05 ag 04 oc3 04 a5 ag ay
——• ®——@——^——.——@——.

02 ^2

Using Tables V and VI in [7], it is easy to check that the maximal root o? of the root
system of type Eg (resp. Ey) is the only root with coefficients 2 at ocg, and 3 at 04 (resp.
coefficient 2 at o^). So, if we let a denote the relative root obtained as the restriction
of S', then in either case a is the only root that restricts to a. Obviously, a is the maximal
root in the corresponding relative root system. It follows that the relative root sub-
group G^ is contained in the split subgroup H^, and Theorem 1.2 implies the injectivity
of the restriction map IP(G(KJ) -^H^H^KJ). On the other hand, the root sys-
tem 0; is of type G2 in case G is of type Eg, and of type F4 in case G is of type Ey;
arguing as in the proof of Lemma 7.2, we obtain the injectivity of the restriction
H2(H,(KJ) ->IP(S,(KJ). This proves the lemma.
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Remark. — Let G and S, be as in the preceding lemma, then the centralizer Zg(S )
of S, contains a maximal K,-torus C, which splits over an unramified extension of K'
This is clear from the fact that the commutator subgroup ofZo(S,) is a direct product
of certain groups of the form SL^, D a central division algebra over K,.

Groups of type Eg. — For a pair (G, F) consisting of a field F and an absolutely
simple simply connected F-group G of type Eg, we introduce the following property:

(*) G is T-isofropic, and in the F-index of G, the vertex ̂  (in the Dynkin diagram above)
is distinguished.

Proposition 7.4. — Let G be an absolutely simple simply connected K-group of type Eg,
and V be a finite set of places ofK such that for every v e V, the pair (G, K,) satisfies (*). Then
there exists a quadratic extension L/K, such that L; = K^for every v e V, v \ v, and the pair (G L)
satisfies (*).

Proof. — Let Go be the quasi-split group such that G is the Galois twist ,G, for
a suitable class ^ eW(K, Go), where Go = Go/Z is the adjoint group of Go. Labelling
simple roots with respect to a K-torus contained in a Borel K-subgroup of Go as above,
we let Co denote the identity component of ("h^Ker a,, HQ = [Zg (Go), Zg (Gg)]
(obviously, Ho is generated by the G,;s, for i^2), and Ho = HQ/Z (as is well known,
and easy to see, Z, the center of Go, is contained in Ho). We need to find a quadratic
extension L/K such that L, = K, for v e V, and the image ̂  of S in H^L, Go) belongs
to the image of the map W(L, H,) -> H^L, Go). We claim that this is the case for any
quadratic extension L with the following local properties:
(i) L ;̂ = K, for v e V,
(u) L, = C for any archimedean v ^ V.

Indeed, since the map

^H^K.Ho) ^H^Z)

is surjective ([24: Theorem 6.20]), there exists a ^ e W(K, Ho) such that 8 )̂ = <o.(n
where ̂ : H^K, Go) ^ H^K, Z). Let G' == ,GQ, H' == ,H,, etc., and let v e H^K, G')
be the class such that G = ,G'. Consider the following commutative diagram with
exact rows:

W(L,H') -^ H\L,H') -^ H^Z)

(1) i81 I- ||
H^G') -^ H^G') -^ H^Z).

We wish to show that the image v^ ofv in H^L, G') belongs to the image ofe^. By our
construction, y^vj is trivial, hence VL = Yi(p) for a suitable peH^G'). On the
other hand, for any archimedean place w of L, there exists 6^ e H^L ,̂ H') such that
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v^ == (£2)^(6^). This is immediate if w does not lie over a place in V; otherwise,
v^ belongs to the image of the map H^K^, M') -^H^K^, G'), where M' = ^Z^(Go)
and M' = M'/Z. However, as M'/H' is a one-dimensional K^-split torus, the map
H^K^, H') ->-?(1^, M') is surjective and the required fact follows. By looking at
the local analog of the diagram (1) at w, we conclude that Qy, = (Pi),o(p.,J,
^eIP(L,,H'). Since HI(L,, Z) = { 1 }, the map HI(L,, G') -> IP(L,, G') is
injective, and therefore (si)^(^J = p«,5 fo1' any archimedean place w of L. By [24:
Theorem 6.6], the maps

^H^L.H'^n^H^.H'),

^H^G')-^ n H^L^G')
w £ •oo

are bijective. It follows that if [L eH^L, H') is such that <p(pi) == ([jij, then e^) = p,
and the proposidon is proved.

Analyzing the classification of absolutely simple real algebraic groups (cf. [46])
and E. Cartan's list of symmetric spaces (cf. [13]), we see that if VQ is real, and G is an
inner form of type Eg over K^ such that the group G(K^) is not topologically simply
connected, then G is K^-split (the only other inner form of type Eg is a form of R-rank 2,
and any maximal compact subgroup of the group of R-points of this form is of type F4,
hence it is simply connected). On the other hand, if v is any place of K such that G is
isotropic at », and moreover, is an outer form if v is real, then (G, KJ satisfies (*). This
implies that the pair (G, K^) satisfies (•). Let v be an arbitrary nonarchimedean place
of K such that G is K^-quasi-split. Let L/K be a quadratic extension given by Propo-
sition 7.4 for V = = = { ^ 0 , »}, and let cr be the nontrivial automorphism of L/K. Then
the vertex a^ is distinguished over L. In the conjugacy class of maximal parabolic
L-subgroups corresponding to the root 03, we can choose a parabolic subgroup P such
that M := P n P° is a maximal reductive subgroup of P (cf. [24: Lemma 6.17']). The
group M is obviously defined over K, and M == B.H (an almost direct product), where
H == [M, M] is a simple simply connected group of type Ag, and B is a one-dimen-
sional L/K-admissible torus. Since the K^-rank of G is > 1 in all cases (cf. [46]), H is
K^-isotropic. Besides, ifz^ is real and G is an inner form over K^, then, as we observed
above, G is K^, -split, implying that H is also K^-split. On the other hand, if G is an
outer form over K^, then so is H. Thus, for VQ real, the group H(K^) is never topo-
logically simply connected. Now, if H is an inner form over K, we immediately obtain
from Theorem 4.1 the triviality of M(S, H). If H is an outer form over K, the assertion
of Theorem 5.1 on the triviality of M(S, H) depends on the validity of Conjecture (U),
however for our purposes the weaker assertion (*) in § 5 (which is independent of Conjec-
ture (U)) will suffice. Indeed, taking into account the finiteness ofM(S, H) (Theorem 2.7),
we see that (*) implies the existence of a finite set W of places of K containing S, such
that for anyjy e M(S, H), the y-component j/y eH^H^KJ) is trivial, for every v f W.
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On the other hand, H contains a root subgroup with respect to a maximal K^-split
torus in G containing B, and therefore the restriction map H^G^J) —^H^I-HKJ)
is injective (this follows from Proposition 1.3 if G is quasi-split, but not split over K^,,
and from Theorem 1.2 if it splits over Ky since in this case all roots have the same
length). This implies that for any x e M(S, G) andy ^ W, the y-component Xy e H^G^J)
is also trivial. So, arguing as in the proof of Lemma 6.1, we see that to complete the
proof of the main theorem for groups of type Eg, we need only establish the triviality
of M^(G).

Lemmas 7.2 and 7.3, in conjunction with Proposition 2.4, yield the triviality
ofM^(G) for the case where V consists entirely of nonarchimedean places. On the other
hand, in view of Theorem 2.1, we may assume that V does not contain any place v
which is either complex, or is real and the maximal compact subgroups of G(KJ are
semi-simple. It is known that if v is an archimedean place such that G is an inner form
over K^, then the maximal compact subgroups of G(KJ are semi-simple. So, what
remains to be proven is that if G is of type ^g, and v is a real place in V such that the
maximal compact subgroups in G(KJ are not semi-simple, then

(2) M^(G)=M^^(G).

At this point, it is convenient to assume that G is K-anisotropic (this assumption does
not restrict generality since the results in [29] imply the triviality of My(G) if G is
isotropic). Let L/K be a totally imaginary quadratic extension, linearly disjoint (over K)
from the quadratic extension over which G becomes an inner form, and let a be the
nontrivial automorphism of L/K. As shown in [24], p. 385, the vertices oc^ and 04 in
the L-index of G are distinguished (we use the enumeration of vertices given in the
Eg-diagram above (in the proof of Lemma 7.3)). In the conjugacy class of parabolic
L-subgroups corresponding to the subset { oc^, 03, ocg, a@} of simple roots, we choose a P
such that M : = P n P° is a maximal reductive subgroup of P. Obviously, M is defined
over K and M = B.H (an almost direct product), where H == [M, M] and B is a
2-dimensional L/K-admissible torus. Since B(KJ is compact and G(KJ contains a
6-dimensional compact torus (cf. [13]), there exists a maximal K-torus TC M such
that T(KJ is compact. We can pick a system II of simple roots in the root system 0(T, G)
and label the roots in II so that H is generated by the root subgroups G^ for
a e { oci, 03, a^, as} (we fix this system II for the rest of the argument). Then the
centralizer R of H in G is a simple simply connected K-group of type Ag generated
by G^ and G^, a the maximal root. Moreover, since R contains B as a maximal torus,
it is isomorphic to SU(<p), where 9 is a hermitian form in 3 variables over L/K. We will
now show that by replacing T by a conjugate under a suitable element of G(L), one
can arrange R to be K^-isotropic.

Assume that R is K^-anisotropic. Since T is anisotropic over K^, = R, all root
subgroups G^ are defined over K^,; in particular, we have the following decomposition
of H as a direct product over K^: H = H^ x H^, where H^ and Hg are generated by
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the G^ for a e { a^, 03 } and { ocg, oc^ }, respectively. We claim that the subgroups Hi(K.J
and H^KJ cannot be both compact. Indeed, assume the contrary. Since H^, Hg and
R commute elementwise, the product ^ = Hi(KJ H^KJ R(KJ is a compact sub-
group of G(KJ, hence it is contained in a maximal compact subgroup ^C G(KJ.
But ^ is an almost direct product of a one-dimensional compact torus y and a simple
compact Lie group Q of type D^ (cf. [13]). Then e^C ^, contradicting the fact that
the rank ofjf is 6, and that of Q is 5. So suppose for definiteness that Hg(K^) is non-
compact. Consider the Weyl group W = N(T)/T. Since T(KJ is compact, we have:
W == W(KJ. There exists a w e W mapping { oc^ a} into { ocg, ocg }. Then for any repre-
sentative ^ eN(T) (LJ of w we have: g^g~1 = Hg. Now, let t ==^~1^0 (we use (T
to denote the nontrivial element of Gal(LJKJ as well). Obviously, a(t).t== 1, so t
defines an element ^ e H^LJK^,, T). It easily follows from the weak approximation
property for T at archimedean places (cf. [24], § 7.3) that the Galois cohomology map

H^L/K.T)^ n H^/K^T)
KGVS,

is surjective. (For the sake of completeness, we briefly sketch the argument. Let
^ == R^T")? r == ^/^(T), and let a be the rational K-automorphism of ^o induced
by CT. It is an easy consequence of the definitions that for any field extension P/K, there
exists a natural bijection: H^PL/PK, T) ^ ^"(P)/S(P), where S(P) consists of elements
of the form: fl"1.^0, a e ^o(P)- For any y, S(K^) is open in ^(K^), so the weak approxi-
mation yields the surjectivity of the map

r(K)/2(K)-> n r(Kj/s(Kj,
v e v^

and the required fact follows.) Thus, there exists ^ e H^L/K, T) which restricts to ^
at 9, and to the trivial class at every archimedean u =t= v. It follows from our construction
that the image ^ of ^ in H^K, G) belongs to the kernel of the map

H^K, G) -> n H^K,, G).
u6V^

From the Hasse principle for G, we conclude that ^ is trivial. This implies that the
element s e T(L) representing ^ has a presentation of the form: s == h~1 .h°; h e G(L).
We claim that the torus T' == h'Th~1 is as desired. Indeed, from the fact that A"1.^0 e T,
one easily obtains that the restriction of the inner automorphism Int A to T is defined
over K; in particular, T' is defined over K and the group T'(K^) is compact. Also,
the groups B' = h'Sh~1 and R' == hRh~1 are defined over K and are L/K-admissible.
It remains to be shown that the group R'(KJ is noncompact. But it is a consequence
of our construction that the cocycle in T(LJ defined by s is equivalent to the initial
cocycle defined by t, i.e. there exists d e T(LJ such that

^r^-^-1^0,
21
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and therefore r = hdg~1 eG(KJ. Then hd = rg, which implies that the groups
^ = ̂ R^-1 and R' = (Afif) R(^f)~1 are conjugate by an element of G(KJ, and since
H^KJ is noncompact, so is R'(K^). So we may (and we will) assume that for our
original T, R, ..., the group R(K^) is noncompact. As we remarked above, R is iso-
morphic to SU(<p), where <p is a hermitian form in 3 variables over L/K, and therefore
My(R) is trivial. So to establish (2) we need only prove the following:

Lemma 7.5. — The restriction map H^G^J) -^H^R^)) is injective.

Proof. — It suffices to show that the map 7T:i(R(KJ) -^ 7Ti(G(KJ) is surjective.
Obviously, ^ := H(K^) R(KJ contains the maximal compact torus T(KJ of G(KJ,
and therefore the map n^) ->7Ti(G(KJ) is surjective. Since the K^-rank of G is 2,
and R is K^-isotropic, the K^-rank ofHis ^ 1, implying that at least one of the factors Hi
and Hg is K^-anisotropic. Suppose for definiteness that H^ is K^-anisotropic. We let
F=HiR , and consider the product map (JL : F(KJ x Hg(KJ ->J^. As F and Hg
commute elementwise, p. is a group homomorphism, and it is easy to check that Ker p.
has order 3. Then as Tr^H^KJ) = 0, the cokernel of the map 7Ti(F(K^)) -^ 7Ti(G(KJ)
is of order dividing 3.

Now let ^ be a maximal compact subgroup of G(KJ containing H^KJ. As
we already mentioned above, ^ = «$ ,̂ an almost direct product of a one-dimensional
compact torus y and a compact simple simply connected Lie group Q of type D.. Then
the intersection y n Q is of order dividing 4. As ^{3>) == 0, the order of the cokernel
of the map TCi(<^) ->7Ti(G(K,)) also divides 4. But the centralizer of Hg in G is F, so
yc F(KJ, and therefore the order of Coker ^ must, at the same time, divide 4. So
we conclude that ^ is surjective. Hence, as F is a direct product of Hi and R, ^(^(H^K,,)))
and <KTTI(R(KJ)) (== L(7Ti(R(KJ))) generate 7Ti(G(K,)). Now, to establish the sur-
jectivity oft, it remains to observe the following. IfHi(KJ is compact, 7Ti(Hi(KJ) == 0,
which immediately implies what we want. If, however, Hi(KJ is not compact, we have

(3) î(Hi(KJ)) = ̂ i(R(K,))),

and the required fact again follows. To establish (3), we will show that 7Ti(Hi(KJ)
and 7Ti(R(K,,)) have the same image already in 7i:i(U(KJ), where U is the K^-subgroup
generated by the G^ for a e { ai, a^, 03, 04, a'}. Indeed, since U is of type Ag, it can be
identified with SU(/) where/is a hermitian form over LJK^ (== C/R) in 6 variables.
Under this identification each of the groups R and Hi gets identified with a subgroup
of SU(/) of the form SU^); where g is a suitable 3-dimensional subform of/having
signature (1, 2) or (2, 1). However, it is well-known (and is easy to verify) that for any
such g, the map of the fundamental groups TC^SU^) (R)) ->7Ti(SU(/) (R)) is an
isomorphism; this completes the proof.

Groups of types ^D^. — In view of the results of [29], we need consider only the
anisotropic forms of type 3'6D4. So we shall assume in the sequel that G is an anisotropic
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group of type 3t6D4. Let E denote the minimal Galois extension of K over which G
becomes inner. Also, let F = E if E/K is of degree 3, and let F be a subextension of E
of degree 3 over K if E/K is of degree 6. We need the following analog of Proposition 7.1
for this case.

Proposition 7.6. — Let V be a finite set of places ofK such that G is ^-quasi-split for
every v e V. There exists a quadratic extension L/K, which is linearly disjoint from E/K, and
has the following properties: G is quasi-split over L, and ii-y == K^/or every v e V and v | v.

Proof. — We have: G = ^Go, where Go is the corresponding quasi-split group
and ^eH^K.Go), Go = Go/Z being the adjoint group. We will construct a qua-
dratic extension L/K such that the image SL °^ S under the restriction map
H^K, Go) ~> H^L, Go) is trivial. Let Vo be the set of all places v of K such that the
image ^ of S; in H^K^, Go) is nontrivial $ then Vo is finite, and disjoint from V. Let v
be the image of^ in H^K, Z). As a Galois module, Z is isomorphic to R^/R^), where
^g == { ± 1 }, and therefore, for any extension L/K which is linearly disjoint from E/K,
there is a natural map

^: H^L, Z) ^ H^L, R^(pt,)) == Br(FL),,

which is injective. For any nonarchimedean v eVo, let M(^) be a quadratic extension
of K^, which is linearly disjoint from E^, v\ v; then the image of 6^(v) in Br(FM(o))
is trivial. Now let L/K be a quadratic extension linearly disjoint from E/K, with the
following local properties:

(i) L,=K, for ^ e V ,
(ii) Ly = M.(v) for any nonarchimedean v eVo, ^

(iii) L ,̂ == C for any archimedean v eVo.

Then, by the Hasse-Brauer-Noether Theorem, 6j^ takes y^, the image of v in
H^L, Z), to the trivial element, implying that v^ is itself trivial. Since the Galois
cohomology of a simply connected group over a nonarchimedean local field is trivial,
we conclude that for any w eV^, the image Sw of SL m ^(Ly,, Go) is trivial. On the
other hand, for any v e V^ such that ^ is nontrivial, we have L,, == C, implying that
S^ is, in fact, trivial for any w e V1'. In view of the Hasse principle for the Galois
cohomology of adjoint groups, this yields the triviality of ^5 as required. The proposition
is proved.

7.7. Now we need to recall some constructions from ([24], § 6.8), used therein
to prove the Hasse principle for the triality forms of type D4. Fix a quadratic exten-
sion L/K linearly disjoint from E/K, Gal (L/K) = < a >, over which G possesses a Borel
subgroup B; by Lemma 6.17 of [24] we may (and will) assume that the intersection
C == B n <y(B) is a maximal K-torus of G. The splitting field of C is LE, and if we lift a
to an element of Gal(LE/K) = Gal(L/K) x Gal(E/K) by letting it act trivially on E,
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then its action on the character group X(C) is just multiplication by — 1. It follows
that if we label simple roots in 0(G, G) as in [7], Table IV:

then for a = a^, or a, the maximal root, the corresponding root subgroup G^ is defined
over K. Let H be the subgroup of G generated by G^ and G^; H is an absolutely simple
simply connected admissible K-group of type Ag, and hence it is isomorphic to SU(^),
where ^ is a hermitian form over L/K in 3 variables.

Lemma 7.8. — Let v be a nonarchimedean place of K. Assume that if G is ^^-quasi-split,
then !.„ == K^, v \ y. Then the restriction map HP(G(KJ) -^H^I^KJ) is injective.

Proof. — If G is quasi-split over K^,, our assertion follows from Theorem 1.2.
Hence we assume that G is not quasi-split over K^,. Then, as any triality form of type D4
is automatically Ky-quasi-split (cf. [24: Proposition 6.15]), the group G/K^ is none
of these, so it is isomorphic either to Spin(/), / a quadratic form in 8 variables of
Witt index 2, or to the simply connected cover of SU(A), h a skew-hermitian form in
4 variables (of Witt index 1 or 2) over a quaternion central division algebra D/K with
respect to the natural involution of D.

First we consider the case where G = Spin(/). As the Witt index of f over K^,
is 2, G is an inner form over K^, (otherwise it would be quasi-split over KJ. Then C
is an L^/K^-admissible torus. If we let g denote the norm form of L^/K^, then there
exists a basis with respect to which f has the following form:

f(x^ ..., ̂ ) = a^g{x^ x^) + ... + a^g(x^ A-g),

and G can be identified with R^/K (GL^)4. After choosing a different basis, if
necessary, we can assume that H is identified with the special unitary group SU(cp),
where 9 is the hermitian form over L^/KS, in 3 variables with coefficients a^ a^ a^
and SU(9) is naturally imbedded in G. Now, to prove the injectivity of the map
H^G^J) -^H^H^)), we choose possibly a different basis to ensure that a^ = 1,
flg = — 1. Let/' = g{x^ x^) — g{x^ ^4), and let 9' be the corresponding 2-dimensional
hermitian form. Then G' = Spin(/') is the direct product of two factors, H^ and Hg,
each of which is isomorphic to SLg, and is in fact, a root subgroup in G corresponding
to a long (relative) root; hence the injectivity of the map H^G^J) -^H^H^KJ)
for i == 1,2. To complete the proof, it remains to observe that H' = SU(9') coincides
with one of these factors (the easiest way to see this is to notice that the unitary group U(9')
is contained in S0(/') = H^ H^ (almost direct product), and therefore it is not possible
that the projection of H' on both factors is nontrivial, since a semi-simple subgroup



COMPUTATION OF THE METAPLECTIC KERNEL 165

ofSO(/'), which projects onto both Hi and H^, can not commute with any nontrivial
torus).

Next we turn to the case where G is the simply connected cover of SU(A), h as
above. Recall that a subgroup of a reductive algebraic group is called regular if it is
normalized by a maximal torus. We claim that H contains a regular K^-subgroup H',
isomorphic to SLg. To give an explicit construction of such an H', we realize H as
SU(cp), where 9 is the hermitian form over L^/K,, with matrix diag(— 1, 1, a), and then
for H' take the special unitary group of the subform of 9 with the matrix diag(— 1, 1).
Obviously, H' is a regular subgroup of H; on the other hand, H is centralized by a
subtorus of C of dimension 2, hence our claim. Now, by looking at the natural
8-dimensional representation of SOg, we conclude that the subspace W of D4, fixed
pointwise by H'(KJ, has dimension 2 (over D), and therefore, H' is contained in the
simply connected cover Go of the special unitary group of the orthogonal complement W-1.
As is well known, Go = G^ X Gg, where Gi = SLg and Gg == SL^ p. This implies
that H' = Gi. However, G^ is a root subgroup corresponding to a long relative root
(with respect to a suitable maximal split torus of G), hence the injectivity of
H^G^J) -^H^KJ). The lemma is proved.

Now let VQ be nonarchimedean. Given a nonarchimedean ^, we pick L/K as
in Proposition 7.6, satisfying L^ = K^ if G is K^-quasi-split. Then it immediately
follows from Lemma 7.8 that the subgroup H constructed above satisfies Lemma 6.1.

To consider the case of real VQ, we need to make one preliminary observation.
Let L and C be as described in 7.7. For a root a e<I>(C, G), let G(a) be the subgroup
of G generated by the root subgroup G^ and all of its Galois conjugates. It is easy to
check that either G(oc) == G^ (i.e. G^ is defined over K), or G^ is defined over a sub-
extension F o f E of degree 3 over K, and then G(a) = Rp/K:(Ga)- Now, if ^ is a non-
archimedean place such that Ly^ = K^, ^ | v^ (in particular, G is K^ -quasi-split),
then for any a eO(C, G), the group G(a) contains a root subgroup with respect to the
relative root obtained as the restriction of a (it suffices to check this for a simple root,
in which case it is verified by a direct computation), and therefore the restriction map
H^K^)) ^H^oc) (K^)) is injective (1.3).

Now we will construct a subgroup H of G with the properties described in
Lemma 6.1. Take a v^ such that the group G is K^ -quasi-split. If G is also K^ -quasi-
split, we can pick L such that L,,. = K^. for z = 0, 1, ^ [ v,. Let C be as in 7.7, and
H = G^. It follows from the above discussion that H is a K-subgroup of type A^ which
splits over K^, hence the triviality of M(S, H). On the other hand, as we have just
observed, the restriction map H^G^ )) -^H^H^)) is injective.

So now we may (and do) assume that G is not K^-quasi-split. We claim that
in our set-up, this, in conjunction with the assumption that G(K^) is not topologically
simply connected, implies that G becomes an inner form over K^ (i.e. E^ = K^,).
Indeed, outer forms of this type over R are isomorphic to Spin(y), where f is a
quadratic form of signature (s, 8 — s), s odd. The assumption that G(K^) is not
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topologically simply connected amounts to saying that s =)= 1,7. Hence s can only be
3 or 5, and for any of these values of s, G is K^-quasi-split.

We choose L in such a way that L,, = Ky . As we observed above, there exists
a root a e<D(G, G) such that the group G^ is K^-isotropic. Let H = G(a). Then one
easily verifies that H is as required. (The verification is immediate if H is of type A^,
otherwise, H = RF/KG^)^ where ̂  is a group of type A^ and F is a subfield of E of
degree 3 over K. Then M(S, H) == M^,^), where y consists of all extensions of
places in S to F. Since G is an inner form over K^, all extensions of VQ are real, and
^ is isotropic with respect to one of these, so the triviality of M(<^, Jf) follows.)

Now it remains only to verify the triviality of My(G). To begin with, we show that

M^(G) = MvJG),

where Vo consists of all nonarchimedean places in V. It suffices to show that given an
archimedean v e V,

(4) Mv(G)=M^_^(G).

Obviously, we can assume that v is real and G(KJ is not topologically simply connected.
As we saw above, if G is an outer form over Ky, this assumption implies that G is
K^-quasi-split. In this case, pick a quadratic extension L of K over which G is quasi-
split and L, == K,, and let H == G^. Then the restriction map H^G^J) -> H^KJ)
is injecdve, which, in view of the triviality of My(H), implies (4). If G is an inner form
over K,,, then there exists a root a e0(0, G) such that the root subgroup G^ is K,,-
isotropic, and for any such a, the restriction map H^G^,,)) ~> H^G^KJ) is injective.
Now letting H == G(a), and arguing as above, we obtain (4).

So we can assume now that V consists entirely of nonarchimedean places. Let H
be the subgroup generated by G^ and G';. Since G is isotropic at every nonarchimedean
place, H^G^)) = II^y H^G^)), and Lemma 7.8 implies the injectivity of the
restriction map H^G^V)) ^H^H^V)). However, the triviality of My(H) has already
been established from which the triviality of My(G) follows.

8. The absolute metaplectic kernel

We assume in this section that ifG/K is special, Conjecture (U) o/*§ 2 holds/or every finite
set V of places ofK.

As before, let A ^ A(0) be the adele ring of K. We will show here that the central
extension ofG(A), splitting over G(K), constructed by Deligne in § 6 of[10], corresponds
to an element of order (A := #^(K) in the absolute metaplectic kernel M(0, G), where
G is an arbitrary absolutely simple simply connected K-group (in 3.5 we have given
an explicit construction of an element of M(0, G) of order [L in the case G === SL^ ^,
D a quaternion central algebra over K, using a suitable embedding of G in a simply
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connected absolutely simple K-split group; an explicit construction, based on the same
idea, can also be given in a number of other cases, for example, i fG= SL^ ^, D a central
division algebra over K, and either the degree of D is odd, or else K contains V— 1,
a primitive 4-th root of unity, however this method is inadequate to cover the general
case). According to our main theorem, M(0, G) is isomorphic to a subgroup ofp.(K).
Together these imply the following:

Theorem 8.1. — For an arbitrary absolutely simple simply connected algebraic group G
defined over a global field K, M(0, G) ^ p.(K).

Let ^ be an absolutely simple simply connected algebraic group defined over a
local field F. Deligne constructs a canonical topological central extension ([10: 5.9.1])
(1) 1 -> pi(F) -> ^(FF -> ^(F) -> 1.

As explained by him, this extension is functorial in ^ in the following sense: Given a
homomorphism ^ ->• J^, if after an extension of scalars splitting ^ and J^, the image
of a short coroot of ^ has squared length r, the length of coweights of ̂  being nor-
malized so that it is one for short coroots ofj?; then the pull-back of (1) for ^f is r dmes
the extension for ^. Deligne's construction is also functorial in F, see [10: 3.9].

We shall let <^y denote the element ofH^^F)) associated to the central exten-
sion (1).

8.2. Now let G be an absolutely simple simply connected group defined over a
global field K, and (JL = #(Ji(K). In § 6 of [10], Deligne shows that the element

^(^K^nH^K,)),
v

where fl^ ̂  = (#(JI(K^)/(JI) CQ^ defines a topological central extension

(2) 1 ->(X(K)-^E-^G(A)-^1 ,

of the adele group G(A), and this extension splits over the subgroup G(K) (cf. 6.4.7
of [10]), i.e. d e M(0, G). Now, to verify that d has order exactly ^, it suffices to show
that ^Q ̂  has order ^ for some v. Let v be a nonarchimedean place where G splits. (It
is well known that there exist infinitely many such places.) Then CQ ^ has order ff(Ji(K^)
[10: Proposition 3.7], and so the order of ^^ is [L.

8.3. Assume that G(K) is perfect (then so is G(A)). As M(0, G) ^ p,(K), there
exists a topological central extension
(3) 1 -> p.(K) -> E -> G(A) -> 1

of G(A) which splits over G(K) and which is universal with respect to this property,
i.e. given a topological central extension of G(A) by a topological group G, which splits
over G(K), there is a unique homomorphism 9 : (JI(K) -> G such that the given central
extension of G(A) is obtained from (3) using a (( push-out" construction in terms of
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the homomorphism 9. Since the topological central extension (2) of G(A) by ^(K),
splitting over G(K), given by Deligne corresponds to an element of order pi = ffpi(K) in
the absolute metaplectic kernel

M(0, G) == Ker(H2(G(A)) ^H2(G(K))) and M(0, G) ^ jl(K),

it follows that this extension is in fact universal.
We shall now use Theorem 8.1 to prove the following theorem which completes

the computation in [30]:

Theorem 8.4. — Let ^ be an absolutely simple simply connected group defined and isotropic
over a local field F. We assume that F =(= C, and ifV == R, then 7ri(^(R)) is nontrivial and it
is not isomorphic to Z. Then H^^F)) is isomorphic to p.(F) and (1) is a universal topological
central extension of ^(F).

Proof. — We pick a dense global subfield KC F with pt(K) = pt(F), and which
is totally imaginary if F is a nonarchimedean local field of characteristic zero. It follows
from a result of A. Borel and G. Harder (contained in their paper in /. reine und angew.
Math., 298 (1978), 53-64) that ^ admits a K-form; we let G be any such K-form except
when F = R and ^ is an outer form of type Ay in which case we take G to be a K-form
which is the special unitary group of a hermitian form over a quadratic extension of K.
Then according to Theorem 8.1, M(0, G) ^ p.(K) ^ jl(F). (Note that if G/K is special,
then either K is of positive characteristic or it is a totally imaginary number field and
Conjecture (U) holds for any finite set V of places of K.) Let v be the place of K corres-
ponding to the embedding K C F. Then, according to our main theorem, M({ v }, G)
is trivial and hence the natural homomorphism

M(0,G)^H2(G(KJ)(^H2(^(F)))

is injective. This implies that H^^F)) contains a subgroup isomorphic to p.(F). But
it is known that ifF is nonarchimedean, H^^F)) is a cyclic group of order ^ [L :== (^(F)
[30: Theorem 9.4]. If F == R, then, in view of our hypothesis, ^(^(F)) == Zg and
hence H^^R)) = Hom(7Ti(^(R)), I) is a cyclic group of order two. We conclude that
]-P(^(F)) is isomorphic to p.(F) in all cases.

The restriction of the central extension (2) to G(KJ (^ ^(F)) corresponds to
an element of order [L in H^^F)). On the other hand, since pi(KJ = ^(K), this
restriction is just Deligne's extension (1). Thus Deligne's extension, as an element of
H^^F)), has order equal to the order ofH^^F)), hence it is a universal topological
central extension of ^(F). This proves the theorem.

8.5. If F = R and TCi(^(R)) = Z, then using the argument employed to prove
Theorem 8.4, we can show that (1) is the unique nontrivial 2-sheeted covering of ^(R).

Let F be now a nonarchimedean local field whose residue field is of characteristic
p > 2 and D be a central division algebra over F. Let ^ = SL^ p. Then Proposition 4.4
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implies that Deligne's central extension (1) of^(F) == SLi(D) corresponds to an element
of H^SL^D)) of order p " ' in terms of any embedding of ^.(F) in R/Z, where p^ is the
order of the ^-primary component of (Ji(F). We expect this to be the case also \S p = 2.
Also, ifD is not the quaternion central division algebra over either Q^ or Q^, H^SL^D)),
which is known to be finite and cyclic, is expected to be of order p" ([28: § 2]). If this
holds, then Deligne's extension ofSLi(D) is a " universal3? topological central extension
(note that SLi(D)/[SLi(D), SLi(D)] is a finite cyclic group of order prime to p) if D
is not the quaternion central division algebra over either Q^ or Q^.

9. The congruence subgroup problem over semi-local number rings

We shall assume here that K is a number field. For a finite set V ofnonarchimedean
places of K, let Oy denote the subring consisting of elements in K which are integral
with respect to all places in V, i.e.

Oy = { a e K | v{a) ^ 0 for all v e V }.

Clearly, Oy is a semi-local ring. Now let G be a simple simply connected algebraic
K-subgroup of SL^. The goal of this section is to show that for the group
G(0y) := G(K) n SL^(Oy)5 the congruence subgroup problem has positive solution.
The precise statement of this result, and the subsequent argument, make essential use
of the notion of the congruence kernel, which imitates the original definition for
S-arithmetic subgroups given by Serre. We introduce two topologies T^ and T^, on the
group G(K), called the arithmetic topology and the congruence topology, respectively.
In T^, the family of all normal subgroups of finite index in F :== G(0y) (note that, in
fact, any noncentral normal subgroup of F has finite index, cf. [18]) constitute a funda-
mental system of neighborhoods of the identity, whereas in T^, the congruence sub-
groups r(a) corresponding to the nonzero ideals aC Oy, constitute a fundamental System
of neighborhoods of the identity (obviously, T^ is stronger that T^) . Since the topologies T ,̂
and Tg are defined in terms of normal subgroups of F, for each of them, the induced
right and left uniform structures on F coincide (cf. [6], Gh. Ill, § 3, ex. 3). But F is
itself an open subgroup of G(K) with respect to either topology, implying that the map
x ^->x~1 on G(K) takes a Gauchy filter for, say, the right uniform structure on G(K)
induced by T ,̂ or T^, again to a Cauchy filter for the same uniform structure. According
to Theorem 1 in loc. cit., No. 4, this property ensures the existence (and the uniqueness)
of completions G and G of the group G(K) in the category of topological groups with
respect to the topologies T^ and T^, respectively. Since T^ is stronger than T^, there exists
a natural continuous homomorphism n of G to G which gives rise to the following exact
sequence:

(1) 1 ->C->G-^G->1,

where C : = Ker n is the congruence kernel.
22
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Theorem 9.1. — Suppose that normal subgroups ofG(K) have the standard description (seethe
introduction), andY contains all the nonarchimedean places where G is anisotropic. Then C is trivial
i.e. any noncentral normal subgroup of T contains the congruence subgroup F(a) for some ideal a.

Proof. — To begin with, notice that the congruence completion G can be identified
with G(V) =n^^G(KJ. This immediately follows from the weak approximation
theorem for G (cf. [24], Theorem 7.8) and the observation that the congruence topo-
logy T<; on G(K) coincides with the topology induced via the diagonal embedding
G(K) c^G(V). In our argument we will use the following generalization of Proposi-
tion 3.2 of [34] (cf. also Proposition 9.3 of [24]).

For a subset XC G(K), let X (resp. X) denote the closure of X in G (resp. G).

Proposition 9.2. — There exists a ^^-open subgroup U of Y with the following property.
for any noncentral normal subgroup N C F and any x e N n F, we have

R(N,^):=Z(N,^) ( N n F ) D U,

where Z(N, x) = {y e F \yxy~1 x~1 e N }.

(Note that R(N, x) coincides with the closure of Z(N, x) in F with respect to T^)
We begin with the following lemma.

Lemma 9.3. — There exists a compact open subgroup Ug of G(V) such that for any
maximal K-forus BC G, the closure B(K) (C B(V)) contains B(V) n Uo.

Proof. — Let r be the rank of G and G^ be the set of regular semi-simple elements
in G. Since K is of characteristic zero, for any integer n > 0, the set (G^))"* ofn-th powers
is an open neighborhood of the identity (this is the only place in our argument where
the fact that K is of characteristic zero is used), hence it contains an open compact
subgroup W = W(%). Obviously, for any maximal K-torus B of G, (B n G,,) (V) n W
is dense in B(V) n W. On the other hand, the inclusion WC GC^ implies that

(B nGJ (V) nWCBW.

So it is enough to prove the following: Let n == n(r) be any positive integer which is
divisible by the order of any finite subgroup of the group GL,(Z) (for example, n{r)
can be taken to be equal to the index in GLy(Z) of the principal congruence subgroup
of level 3). Then for any K-torus B of dimension r, we have the inclusion:

(2) B^DBW.

Let B be an arbitrary K-torus of dimension r. If L is the minimal splitting field of B,
then the natural action of the Galois group Gal(L/K) on the character group ofB gives
a faithful representation in GL/Z), in particular, the order ofGal(L/K) divides n. Let
Ii == ^L/K:(B), and let T] : H -> B be the " norm " map (cf., for example, the proof of
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Proposition 6.7 in [24]). Obviously, N = Ker T] is a subtorus of H denned over K. As
B splits over L, by Hilbert's Theorem 90 one has

H^K.H) -H^B) = 1.

Picking an L-isomorphism B ->- (CrL.i)1', and applying the restriction of scalars functor,
we obtain a K-isomorphism H -> ^/^(GLi)1'. Thus, H is quasi-split over K, in parti-
cular, it has the weak approximation property with respect to any finite set of places.
This implies that B(K) D Y](H(V)), and it remains to be shown that

(3) ^H^pBW.

Corresponding to the exact sequence

1->N ^H-^B-^1,

one has the exact sequence

(4) H(V)^>B(V)-> n H^K^N).
y e v

By our construction, N splits over L, which implies that for any v e V^,
H^K^, N) = H^L^/K^, N), where w | v. However, the order of the Galois group
Gal(L^,/K^) divides the order of Gal(L/K), which in turn divides n. This implies that
the extreme right term of (4) is annihilated by multiplication by n, so (3) holds. The
lemma is proved.

Proof of Proposition 9.2. — Let Uo be a compact-open subgroup as in the preceding
lemma; we assume, as we may, that Uo is a normal subgroup of F. We will show that
one can then take U == F n Uo. Let U^ = U n G^, where, as in the proof of
Lemma 9.3, Gy, is the set of regular semisimple elements in G. Then Uy"/ = U,,.
Since U, and hence also Uyg, is Zariski-dense in G, and G^ is Zariski-open, we conclude
that U = U ^ U y g . Therefore, it suffices to show that R(N, x) contains Uyg. Pick
z eU,,, and let B denote the maximal K-torus in G containing z, By = B n Gyy.
Consider the map

9:G(V) xB,(V)-^G(V),

given by: 9^, b) = gbg~1. It follows from the Inverse Function Theorem ([42]) that
y is an open map. So if Ui D Ug D .. . is a descending chain of normal subgroups of F
converging to {^}, then W, == <p(U,, By(V)) is open in G(V) for every i ^ 1. As N
is a subgroup of F of finite index, B/V) n N + 0. This implies th t, for every i, W, N
contains a neighborhood of the identity, and therefore N C W, N. In particular, we can
write

x == 9(u,, b,)y,
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for some u, eU,, b, eB,(V) and ̂  eN. It follows that the element xy^1 is regular,
and for its centralizer C^ in G, we have

^CW^B^).

Consider the open sets

H=^-i(NnUo), z S 1.

Clearly, Q, C Uo and ^ n G,(V) + 0. Now it follows from our choice of Uo that for
every i one can pick an element z, e G,(K) n Q,. Since u, -^e and N is open in G(V),
for sufficiently large z, we have

z-1 z, e r n ((z-1 u, zu^1) N) = F n N.

It remains to observe that by our construction, ^ e Z(N, x), and therefore z e R(N, x).
In the notation introduced in the first paragraph, we have

Proposition 9.4. — Let x e G and Zg(;v) be the centralizer of x in G. Then

7r(Z3M)3U,

where U is the open subgroup of F given by Proposition 9.2.

Proof. — Let N1 D N3 3 ... be a descending chain of normal subgroups of F of
finite index constituting a neighborhood base for ^ at the identity. Then

(5) G =^m(r nN,)/N,.

For every i ̂  1, pick an element x, e F n (A:N,); since A; e G, we automatically have
x, eF nN,. Then

(6) Z ( N i , ^ ) D Z ( N 2 , ^ ) D . . . and nZ(N^J=Z^).

In view of the fact that

(7) nN ,=C, .

(6) implies that

(8) n Z(N^,) N, == Zf(x) C.

Indeed, the left-hand side of (8) contains the right-hand side. To prove the opposite
inclusion, pick an arbitrary z from the left-hand side of (8), and for every i ^ 1 write it as

z == z, ̂ , where z, e Z(N,, ^), n, e N,.

Then we can choose convergent subsequences ^ -^, ̂  ->HQ. It follows from (6),
(7) that ZQ e Zf(x), HQ e C, and (8) is proved.

Since n is a closed map, to prove the proposition it suffices to show that n{Zf{x)) 3 U.
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Fix ueV, and consider the fibre F = •K~\U). It follows from Proposition 9.2 that
F n (Z(N,,^) N,) =(= 0 for every i. Since F is compact, this fact combined with (8)
implies that F n Z^(x) C =4= 0, i.e. u e 7r(Zr(A:)), as required. Proposition 9.4 is proved.

Another important ingredient of the proof is the following:

Proposition 9.5. — If D C C is an open subgroup which is normal in G, then D = G.

Proof. — Consider the quotient of (1) by D:

(9) 1 ̂ L == C/D ^H = G/D 4. G(V) -^ 1.

Since G is a profinite group (cf. (5)) and D is an open subgroup, L is finite. While proving
the congruence subgroup property for S-arithmetic groups with bounded generation,
it was established in [37], [25] that if normal subgroups of G(K) have the standard
description and S is disjoint from T (where T is the set of nonarchimedean places where
G is anisotropic), then any such extension with finite L (or more generally, with L
satisfying the finiteness condition (F) in Serre's book [40]) is central. Obviously, in
our situation the condition on S has to be replaced by the assumption that V 3 T, and
then the argument from loc. cit. yields the centrality of (9). For the sake of completeness,
we reproduce this argument here.

The positive solution of the Kneser-Tits problem over local fields ([31] and [24:
§ 7.2]) implies that for v i T, the group G(KJ does not have any proper subgroups of
finite index; it follows that the group G(V - T) == n^_^ G(KJ does not have any
such subgroup either. On the other hand, Z, the centralizer ofLin H, is a closed normal
subgroup of finite index in H, and we conclude that 6(Z) 3 G(V — T) $ in other words,
Zi = Z n e-^V - T)) maps onto G(V - T). Since the groups G(T) and G(V - T)
commute elementwise, for any r e=R :== e-^Gfr)), z eZi, the commutator [r, z] falls
into L, and for a fixed r, the map 9,: Z^ -> L, 9,^) == [r, z] is a homomorphism.
Now pick any finite subset A C R , and consider the homomorphism PA^I^L^
PA^) = (?r(^))reA5 where d= #A. Again, the fact that Z(A) == Ker 9^ is of finite
index in Z^, implies that 6(Z(A)) = G(V - T), i.e. O-^G^ - T)) = Z(A).L. This
being true for any finite A, we conclude, using the finiteness of L that
6-i(G(V - T)) = Z^.L, where Z, = 1̂  Z(A). Hence,

(10) 6 (Z2)=G(V~T)

(note that by our construction, Z^ is the centralizer of R in Zi). Furthermore, we claim
that

(11) LCZg .

Indeed, for v e T, the group G(KJ is compact, and consequently, R is a profinite group.
On the other hand, by virtue of (10), H = R.Z^, implying that H/Zg is profinite too.
So, if (11) does not hold, there exists an open normal subgroup P ofH, of finite index,
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which does not contain L. Then N = P n G(K) is a normal subgroup of finite index
in G(K), and since we assumed that normal subgroups in G(K) have the standard des-
cription, there exists an open normal subgroup W C G(V) such that N == G(K) n W.
Obviously, we have P n G(K) = O-^W) n G(K), so taking the closure we obtain
P = 6 ^W); in particular, P 3 L, a contradiction. Thus, (11) is proved.

Itfollowsfrom (11) thatO-^G^ - T)) = Z^, so it commutes with R = O-^G^)).
Hence L belongs to the center of H.

Once the centrality of (9) has been established, the triviality ofL is deduced from
the triviality of My(G) by a standard argument which we recall now. Consider the
initial segment of the Lyndon-Hochschild-Serre spectral sequence corresponding to (9):

H^GCV)) ̂  H^H) -^ HW^ ̂  H^V)).

Since L is central, H^L)0^' is equal to L, the Pontrjagin dual of L. In view of our assump-
tion that V 3 T, the standard description of normal subgroups in G(K) together with the
weak approximation property imply that [G(K), G(K)J = G(K) n [G(V), G(V)], which
is exactly equivalent to the assertion that 9 is an isomorphism. On the other hand, since (9)
splits over G(K), the image ofi^is contained in My(G) = Ke^H^G^)) -. H^(G(K))),
which is trivial. Hence L is also trivial, and the proof of Proposition 9.5 is complete'.

Now we are in a position to complete the proof of triviality of C. Assume that
C + 1, and let Cy C C be a proper maximal open normal subgroup (so that F = C/G is
a finite simple group). Then,

c':= n,(^Go^-1)
sea

is a closed subgroup ofG, and it is normal in G, so we may take the quotient of (1) by G':

1 -> M = C/G' -> H = G/G' -I G -> 1.

Besides, M is isomorphic to the product of a certain number of copies of F:

M ^ n F., where F, = F for all i.
< 6 I

We consider the two cases where F is respectively a cyclic group of prime order and
a nonabelian finite simple group separately.

Case 1. — Let Z denote the centralizer of M in H. Since M is abelian, we have
MC Z, and ^follows from Proposition 9.4 thatjbr any x e M, the centralizer Z^(x)
contains O-^U), implying the inclusion Z 3 O-^U). Then n{Z) is a normal subgroup
ofG(V) containing U. Since any noncentral normal subgroup ofG(KJ is of finite index
(cf. [24], Proposition 3.17), it follows that the index [G(V) : 7t(Z)J, and therefore also
the index [H : Z], is finite. Now pick a proper open subgroup M() of M. Then

(12) M':= n (AMoA-1)
A £ H
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is again open in M, and besides, it is normal in H. Obviously, the pull-back of M'
under the canonical homomorphism G -> C/C' yields a proper open subgroup in G
normal in G, but such a subgroup cannot exist by Proposition 9.5, a contradiction.

Case 2. — The action ofH by conjugation defines a homomorphism H ->Aut(M).
Obviously, in the case under consideration,

Aut(M) = Si [x n Aut(FJ
»ei

(semi-direct product), where S; is the symmetric group on the set I, and we may
consider the induced homomorphism (B : H —>- S;. Let N = Ker p. Now, pick an i e I,
and consider the element

x = (1, . . . , l , f l , 1, . . . )

for some nonidentity element a eF,. Clearly, (B(Zg(A;)) fixes i, and since M C N , we
conclude from Proposition 9.4 that

e-wcrW)),
where Si(z) is the stabilizer of i. This being true for every i, we eventually obtain that
Q^CU) C N. Arguing as above, we deduce from this inclusion that [H: N] < oo, i.e. the
image (B(H) is finite. This immediately implies that for any open subgroup M^C M,
the subgroup M' given by (12) is again open, so we can conclude the argument exactly
as in the previous case. Theorem 9.1 is proved.

9.6. Remark. — The computation of the congruence kernel usually consists of two
parts: the proof of its centrality, and, computation of the corresponding metaplectic
kernel; and these parts are independent. In our argument, these parts were not presen-
ted separately; however, the triviality of My(G) is used in the proof of Proposition 9.5,
which played a crucial role in the part of the argument that actually corresponds to
the proof of centrality. So it is worth mentioning that, in fact, one can modify this
part of the argument to make it independent of the triviality of My(G), however, the
resulting argument will be more complicated.

Appendix A. On maximal subfields in simple algebras

In our argument, we need to construct maximal subfields in simple algebras (with
or without involution) with special local behavior. For this purpose we use the following
method: first we construct an abstract extension of the center having an appropriate
degree and some specific properties, and then, using a certain embedding criterion,
show that the field under consideration can be embedded into our algebra as a maximal
subfield. An important feature of the embedding criteria in question is that they have
the form of a local-to-global principle, and in fact we need to check only finitely many
local conditions.
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Firs^ we formulate for convenience of reference, a well known result for algebras
without involution (cf. [26], § 18.4).

Proposition A.I. — Let s/ be a central simple algebra over a global field K, dim^ ̂  = w2,
and let P/K be afield extension of degree n. The existence of a T^-imbedding 6 : P ̂  ̂  is equivalent
to the existence of local embeddings Q^: P ®^ ̂  c^ ̂  : == ^ ®K ^S /or a^ v e Vs. Further-
more, if ̂  == M^ (AJ, wfer^ A^ ZJ a division algebra over K ,̂, and dy is the degree of \,
then Qy exists if and only if for any extension v \ v to P, the degree [Py: KJ is divisible by dy.

It is well known that a reductive K-group G is quasi-split at almost all places
(cf. [24], Theorem 6.7); applying this fact to G == SL,i ^ one gets d^ == 1, for almost
all v. It follows that the existence of 6 can be guaranteed by specifying the behavior
of P at finitely many places.

The analogs of these results for algebras with involution of the second kind are not
so well-known. Let s/ be a central simple algebra over a global field L, dim^ ̂  == n2,
T be an involution of ^ of the second kind, and K == V be the field of r-invariant
elements. First, we prove a local-to-global principle for embedding a field extension P/L
of degree n provided with an automorphism of order two, into (^, r) as algebras with
involution. (Note that this assertion was implicitly established in [24], § 6.7, in the
course of the proof of the Hasse principle for Galois cohomology of simple simply
connected groups of type 2Ay, however, in view of its importance for our argument,
we give a detailed proof.)

Proposition A. 2. — Let P/L be an extension of degree n, with an automorphism <r of order
two such that a \ L = T. Assume that either n is odd or F == P° satisfies the following condition:

(LD) the normal closure of F is linearly disjoint from L over K.

Then the existence of an L-embedding 6 : (P, a) <-̂  (J ,̂ r) such that

(1) 6 o ( 7 = T O 6,

is equivalent to the existence of local (L®^ ^s) -embeddings

6 , : (P®KK^<T) ->(^®KK, ,T) ,

satisfying

(2) 6, O ( T = T O 6,,

for all v e V^

Proof. — By Proposition A.I, the existence of local embeddings implies at least
the existence of an L-embedding s : P <-> ̂  as algebras without involution. We will
modify e by an inner automorphism so as to make it respect the involutions. Since the
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embeddings e and T o s o CT of P into ^ agree on L, by the Skolem-Noether Theorem
there exists h e j^* with the property

(3) s(o(^)) = h^{x)) h-1

for all x e P. We have

eW = c^M) = AT(c(oM)) h-1 = (Ar(A)-1) c^) (Ar(A)-1)-1,

i.e. h^{h)~1 eP == s(P). Say h^:{h)~1 == s(fl), a e P. An easy computation shows that
a(a) a == 1, and therefore by Hilbert's Theorem 90, a = ba(b)~1 for some b e P. Then
the element h == s(i)~1 A is r-symmetric. As (3) holds if we replace h by A, we may (and
will) assume, to begin with, that h is r-symmetric.

By the Skolem-Noether Theorem, every 6^ can be written as

(4) W=g^^)g^

for some g^ e(^®^K^)*, and we are going to look for the required 6 among the
embeddings of the form

(5) Q{x) ^g-^Wg, ge^\

It readily follows from (2)-(4) that

(6) ^T(^)=^)A,

for some ^ e (P^K ̂ r- Similarly, for 6 to satisfy (1), we need to find a g such that

(7) g^g) = s(.) A,

for some s e P*. It is easy to check that an element of the form £(<;) h is r-symmetric if,
and only if, c is cr-symmetric. This means that we have to look for s in F = P°, while
s, e (F ®K KJ* for every v e V^

Now, if K is of positive characteristic, then using the vanishing of the Galois
cohomology of the special unitary group associated with e^([12]), and repeating the
argument given in the remark on p. 363 of [24], one shows that a r-symmetric element
x e ̂ * can be written in the form g^(g) for some g e ̂  if, and only if,
Nrd^/j^A:) eN^/K(L*)- In our situation, this means that we need to show that
a == Nrd^(A)"~1 can be written in the form:

(8) a = N^(.) N^),

for some s e F, t e L. It turns out that even in the case K is of characteristic zero, our
problem is equivalent to solving the equation (8), however this reduction requires some
additional argument.

23
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First, we recall that according to Landherr's Theorem ([24], Theorem 6.27), the
solvability of (7) can be described in local terms. Namely, if for v e V^, we let

S(^)={^W|^e(^®^K,n ,

and fix an s e F*, then (7) can be solved for g e ̂  if, and only if,

(9) cMAeS(.)

for all v. Using the remark on p. 363 of [24] once more, we see that (9) for v e V^ is
equivalent to

Nrd^M h) eN^^(L®KK,n.

Obviously, this condition automatically holds for every v eV^ if (.$, <), for some t eL,
is a solution of (8). So it suffices to prove the existence of a solution (^, t) e F* X L* o
the equation (8) with a == Nrd^(A)~1 which simultaneously satisfies (9) for v eV^.
However, a short argument (cf. Lemma 6.27 of [24]) shows that the existence of a
solution satisfying this additional requirement follows from the existence of just any
solution. Indeed, if (8) has a solution, then the variety

X = {(^,j) e R^(GLi) x R^(GLi) | N^) N^(jQ = a}

is a principal homogeneous space, trivial over K, of the torus

R = {{x,y) e R^(GL^) x R^(GLi) | N^) N^(j.) = 1 }.

It follows that X has the weak approximation with respect to V^ (cf. Proposition 7.8
in [24]). If^, s, are as in (6), the pair (^, ^), t, == Nrd^^/L®K,(&T1). is a solution
of (8) over K^. Besides, for any v eV^, the set S(y) is open in the set of r-symmetric
elements of (^ ®^ K-J*- ^°5 t^kmg a solution (s, t) of (8) with s sufficiently close to
s^ for all v e V^, we will ensure (9) for these v.

If n is odd, then (8) can be solved explicitly: one can take s = fl, t == a(l-ro)/2

(note that a e K* since h is r-symmetric). In the general case, we need the so called
multinorm principle (Proposition 6.11 of [24]). Its assumptions are satisfied in view of
(LD), and therefore one can solve (8) for s e F*, t eL* if, and only if, one can solve
the corresponding local problem

a == •^(B^KKoVKol9/ N(L®KKy)/Ky(^)5

for ^ e (F ®K KJ*, fe (L®RKJ*, for every yeV^. However, as already noted
above, one can take the pair (.?„, ^) for a local solution at v. Proposition A. 2 is proved.

It can be shown (cf. [24], p. 340) that if G == SU(^, r) is quasi-split over K^
(which is, as we mentioned above, the case for almost all y), then 6^ in Proposition A. 2
exists automatically. We will not describe here the precise conditions for the existence
of Qy in general, but will limit ourselves to two particular cases needed in § 5:



COMPUTATION OF THE METAPLECTIC KERNEL 179

Firstly, for w \ v, suppose [L^ : KJ = 1. Then < ̂  M^(AJ C M^(A^), where A,
is a division algebra over K^ A^ is the opposite algebra. Letting ^ denote the degree
of \, we have the following easy consequence of Proposition A.I.

Proposition A. 3. — In the notation as above, the existence of Qy is equivalent to the divisibility
of [F^ : KJ by dy, for any extension v \ v to F = P°.

Next suppose [L^ : KJ = 2. Then G == SU(^, r) is K^-isomorphic to the special
unitary group SU(AJ, where hy is a nondegenerate r-hermitian form on L^,. Let ^ be
the Witt index of ^ (note that if v e V^, then ^ == nft or 7i/2 — 1 if n is even, and
i^== (n- 1)12 ifn is odd).

Proposition A. 4. — Let F®^K,^ (LJ8® (K,)"-28. If s ^ i, (in particular, if
S = 0^ ^72 6 ,̂ ^A:̂ .

Proo/'. — By our assumption, there exists a basis with respect to which hy looks
as follows:

h,(x^ . . ., A;J == (^ ̂  + ̂  ̂ ) + . . . + (^_i ̂  + ̂ L ̂ .-l)

I" ^a + 1 ^2s + 1 ^23 + 1 ~1~ • - • ~1~ ^n ^n xn 3

for some a^eK^ . Let H be the matrix of Ap. Then (^®^K^,T) is isomorphic, as
algebra with involution, to (B == M^(LJ, T'), where T' is given by the formula

(10) T^.^H-^H.

On the other hand, P ®s K^ = (F ®^ ^v) ®K^ L^ is isomorphic to

L^^LJ28®^)-23

with the following action of a:

I1!) ^((^l? • • • ? ^n)) == (^25 ^l? • • • 9 ^285 ^28-15 ^28+19 • • •» ̂ ) •

It follows from (10)-(11) that the embedding

P^K^^B, (^, ...,0 ^diag(^, ...,^J,

respects the involutions. Proposition A. 4 is proved.
To study central simple algebras of dimension p2, p a prime, we need to construct

maximal subfields which are cyclic Galois extensions of the center and have prescribed
local behavior. This is done using the Grunwald-Wang theorem (cf. [I], [48]). For the
sake of completeness, we include here a particular case of the latter, which is sufficient
for our purposes.
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Proposition A. 5. — Let K be a global field, V\, Vg be two finite disjoint sets ofnoncomplex
places ofK., and p be a prime. Assume that Vg consists entirely of nonarchimedean places if p =t= 2.
Then there exists a cyclic extension E/K of degree p such that

f l , yeVi ,
[E,:KJ=

[A ^V^,

for every v \ v.

We recall briefly the main steps of the proof, for we will use a similar argument
in the unitary situation. The main case is p 4= char K. Let J^ denote the idele group
of K. We identify K* with the group of principal ideles, and for each v e Vs we
let iy denote the natural imbedding of K^ into J^. By global class field theory, the
construction of E is equivalent to finding a (continuous) character ^: J^ -> I = R/Z
of order p, trivial on K* and such that the induced character ^ = ^ o iy of K^ is trivial
for v eVi and nontrivial for v eV^. The construction of such a ^ is carried out back-
wards, starting with a prescribed /^. Viz., pick a finite subset SCV^ containing
Vi uVg uV^, so that

(12) JK-JIK*;

where J| is the group of S-integral ideles. Next, introduce /„ for v e S as follows: ^ = 1
for v e S —- V^, and /„ is a character of K^ of order ^ for v e V^, and define

^: K; == n K: -^i, xs((^)) = n x^).
»e s »e s

Now in view of (12), to construct ^ with the required properties, it suffices to construct
a character

^••Us= n u,^i,
v ^ S

of order p^ where Uy is the group of o-adic units, such that

X^s-^Jl^1

restricts trivially to Fg =J| n K*. Let A === Fg n Ker^g; we may assume that
Fg =t= A. One shows (see the proof of Proposition A. 7 below) that there exists a VQ ^ S,
relatively prime to p, such that

r g n U ^ = A ,L 8 • ' ^«o

and in this case

Fg/A ^ u,,/u?,.
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Thinking of /g as a character of Fg/A, we get a character

^bCs^-1^))]-1

of U^/U^, which lifts to a character ̂  of U^. Let <^ be the trivial character of Vy
for y ^ S u { VQ }, then we can take 4's to be Ti.y ̂  g ̂  •

The case where K is of positive characteristic j& is much simpler and can be handled
using the Artin-Schreier construction. As usual, let p(^) = ^ — t. For any v e Vs, ^?(K^)
is an open subgroup of the additive group K^". Now, for every v e Vg we pick
Oy e K.y — p(KJ. By the weak approximation property, there exists a eK such that
a ep(KJ for v eVi, and a e a^ + p(KJ for y eVg. Then the extension 'K(^~l{a))
(i.e. the extension obtained by adjoining a root of the polynomial X^ — X — a) is as
required. The proposition is proved.

A. 6. Now ifj^isa central simple algebra of prime degree^ over a global field K,
and V C Vs is a finite subset consisting of places v such that cQ ,̂ = ^ ®^ K^ is iso-
morphic to My(KJ, then there exists a maximal subfield E C ^ which is cyclic over K
and such that [E^: KJ = 1 for all v e V, v \ v. If p = 2 and K is a number field, this
is obvious, so we assume that either p + 2 or K is a global function field. Let V^ == V
and let Vg be the set of v e Vs such that ̂  is a division algebra (obviously, Vg is
contained in V^). Let E/K be the extension obtained by applying the previous propo-
sition to these V^ and Vg. Then it follows from Proposition A. 1 that E is as required.

We need also a unitary version of Proposition A. 5.

Proposition A. 7. — Let L be a separable quadratic extension of a global field K. Let V\,
Vg be two finite disjoint sets of places ofK., and p be an odd prime. Assume that Vg consists entirely
of nonarchimedean places v such that Ly, == K ,̂, w | v. Then there exists a Galois extension E/K,
containing L, and with dihedral Galois group Gal (E/K) of order 2p, such that

f l , y e V i ,
[E,:LJ=

IA ^V^,

where w [ v, v\w.

Proof, — Let a be the generator of Gal(L/K). As in the previous proposition, we
first consider the main case where p is different from the characteristic of K. According
to global class field theory, to construct the required E we need to construct a character
/ : J^ -> I, of order p, trivial on L*, satisfying ^ o a == ^~ \ and such that Xw : == X ° ^w
is trivial for w e V^, and nontrivial for w e Vg, where V^ is the set of all extensions of
places from V, to L, iy,: L ,̂ ->Jj, is the natural embedding. We pick a finite o-invariant
subset S C V1' containing V^ u Vg u V^ so that Ji, = J^ L*. For w e So := S — Vg,
we let ̂  = 1. Any y e Vg has two distinct extensions w\ w" e Vg; each of the com-
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pletions L^, L^ can be identified with K^, and <r acts on L^ X L^, by switching
the factors. Let ^ be a character of order p of the group

(K: x K;)/K; ̂  K;,

where K; is embedded diagonally. Identifying L^ X L^, with K; x K;, we get a
character ^ •• L^ xL^ -> I with the property ^ o G = ^ 1 . Now, let /g be the
character of 14=11^1^ defined as Xs :=== ^eso Xw-n.ev^ X.- To complete the
construction of the required /, it remains to construct a character

4-s: n u,^i,
w^S

such that ^g o o- == ^g"1, and X : == Xs • ̂ s ls trivial on Fg == J^ n L*.
Let A = Fg n Ker ^g $ we may assume that A 4= Fg. We will show below that

there exists a place VQ of K, which is relatively prime to p, and which splits over L,
such that

(13) r , n U ^ = A ,

where WQ \ VQ. We identify L^ X L^' with K^ x K^ as above, and consider the
following subgroup:

B = lyu^, x uy c H = u^ x u,y.
Using (13) and the fact that ^g o a = ^-1, it is easy to show that

r , n B = A ,

and consequently

r, /A^H/B.

Define ̂  as the character of H lifting the character

^wwr1

of H/B, and take ^ = 1 for w ^ ̂  = S u { w^ w^ }. Then the character

^= n ^.^
w^^

of Ug == 11̂  ̂  g U^ is as required.
It remains to establish the existence of a VQ satisfying (13) (this part of argument

was omitted in the proof of Proposition A. 5, but here we supply the details). Let

Mi==L(^,^r;), M2=L(^,^A),
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where ^ is a primitive p-th root of unity. Since Fg and A are finitely generated and
(y-invariant, both M^ and Mg are Galois extensions of K. Arguing as in ([48], p. 218),
we conclude that M^/Mg is cyclic of degree p. By Ghebotarev's density theorem, there
exists a VQ which is not a restriction of a place from S, VQ is relatively prime to p, and
moreover, MgC Ky and M^/K,^, ^o I ^o? ls cyclic of degree p. One easily verifies that
this VQ is as required.

In the remaining case where p equals the characteristic of K, one argues as follows.
For every y e V ^ , there exists ^ e L ® K ^ such that ^(aj -—^ (^(LOO^ KJ. Using
the weak approximation property, we pick b e L such that b e ^(L®^ ̂ v) ^or v e ̂ i?
and 6 e^ + ^LOO^^J ^or y eV2, and let c == 0(6) — b. Then the field extension
E = L^p""1^)) is as required. The proposition is proved.

It is not always true that given a central simple algebra ^ over a global field L
with involution T of the second kind, K == V, there exists a r-stable maximal subfield P
of ^ which is a Galois extension of K with dihedral Galois group, even if the degree
of ̂ / is prime (however, obstructions arise only at real places). For this reason, we had to
use a more sophisticated construction in § 5.

Appendix B. On the uniqueness of the reciprocity law

Let L be a finite extension of the global field K; (Ji(L) be the group of roots of
unity in L, and [JL = ff^(L). For a non-complex place v of L, we let p.(L^) denote the
group of roots of unity in Ly, and let ^ == ;ffpi(LJ; by convention, (x(LJ = { 1 } and
^ == 0 if v is complex. Let (*, *)^, be the norm residue symbol on L^ of power ^ (if
v is complex, then by definition (*,*)„ = 1). The norm residue symbols satisfy the
following relation known as Artin's reciprocity law, or, the product formula:

n (^A^ = 1 for all x,y e L*
v

(the product is taken over all places of L). An important ingredient in the computation
of the metaplectic kernel for isotropic groups is the uniqueness of this reciprocity law,
proved by Moore ([22], Theorem 7.4) in the following form: Suppose that for every
place v of L, one is given a character ^ e p.(LJ so that

(i) nx^A) = i,
v

for all x,y eL*. Then there exists a character / e p-(L) such that Xv = X 0 ^ ? where
^: [Jf(LJ -> pi(L) is the homomorphism of raising to the power pijpt. A consequence
of this uniqueness is that if ̂  is trivial for at least one noncomplex place VQ, then ̂  = 1
for all v.

In the computation of the metaplectic kernel for anisotropic groups, one encounters
a (c reciprocity law " of the form (1), but which only holds for pairs {x,jy) in a rather
small subset Q^ x Qg of L* X L* (cf. § 3-5). The uniqueness of such a " reciprocity
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law " in the case where L is a cyclic Galois extension of K, and Q.^ = Qg coincides with
L^, the group of elements with norm 1 in the extension L/K, was analyzed in [27].
For our computation (of the metaplectic kernel) we do not need a general uniqueness
result, hence we limit ourselves to stating the following proposition which suffices for
our purposes. It was proved by the second-named author (see [36], Proposition 4);
for the convenience of the reader, we reproduce the proof here.

To give a precise statement, we fix a finite set V of places ofL and let tig === L* n U,
where U is an open neighborhood of the identity in 11̂  yL^.

Proposition B. — Let £1^ be a subset o/'L*, and Qg be as above. Suppose the reciprocity law (1)
holds for all pairs {x,jy) e^ x 0.^, and there exists a prime q such that ^ = 1 for all v. Let
î, ^2 e V1' — V he two noncomplex places such that

(1) if q^> 2, then both v-^ and v^ are nonarchimedean^
(2) there exists an a e £1^ such that v(a) == 1 (i.e. a is a uniformizing element in L^ for

v e{ z/i, v^} n V^, and/or v e{v^, v^} such that L ,̂ == R, a < 0.

Then ̂  == 1 if, and only if, ̂  = 1.

Proof. — Let [x,jy]y = {x.y)^1^^, where (^, q) is the g.c.d. of ^ and q. Obviously,
[x,jy]y is the norm residue symbol on L^ of power q if q divides ^ and is identically one
otherwise. For every v e V1', there is a character 6^ of the subgroup p.(LJ^ generated
by the elements of order q in (Ji(LJ, such that 6^([^]J = X,,((^j)J tor all x,y eL^.
Then

(2) ne,([^]J = 1 for all (x^) E ^ X 0^
v

and we need to prove that if 6^ =1, then Qy == 1.
Of course, there is nothing to prove if ̂  is prime to q, so we may assume that

^g, a primitive q-th root of unity, is contained in L ,̂ . Let F = L(^g), and fix some
extensions w^y w^ ofv^y v^ to F. Let a e Q^ be as in the proposition. If q = 2, then F = L,
and if q> 2, then by our assumption the y,, i = 1, 2, are nonarchimedean, and the
ramification index e(w^ \ v,) is ^ (q — 1); in particular, it is prime to y, and therefore
g.c.d. {w,(a), q) = 1. We need the following elementary lemma:

Lemma B. — For w e V11, denote by { *, * }^ the norm residue symbol on F^ of power q.
Let a be as above, and assume that for each w e V11, a q-th root of unity ^ is given so that the
following conditions are satisfied:

(i) ^ = 1 for almost all w;
(ii) IU.-1;

(iii) for every w, there exists a c^ e F^ w^A ̂  property {a, c^ }̂  = Sw-

TA^ r̂<? ̂ ^ a c e F* J^A that { a, c }^ == ̂  /or ̂  w.
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The proof is left to the reader (see [8: Exercise 2.16]).
We apply this lemma, letting ^ = ^-1, ̂  = ^, ^ = 1 if w + ^, ̂ , and

using a e Q^ as above. Conditions (i) and (ii) of the lemma visibly hold, and (iii) follows
from the fact that g.c.d. (w,(a), q) = 1. As a result, we obtain an element c e P for
which

f^1, w==w^

(3) {^L==j^p w=w^

[l, w 4= ^i, ^2.

We claim that one can pick a c e P, so that it satisfies (3), and moreover, Np^M e0g.
Indeed, there exists an open neighborhood W of the identity in II^^^F^, where V
consists of all extensions of places in V to F, such that Np/i/F" n W) C Qg. It follows
from the weak approximation property that the embedding

Np(^)/p (F (W) ̂  ̂  N ;̂,) .̂ (F, (W) =: N^

is dense; in particular,

(4) NvCW.Np^^F^)').

Since ^, ̂  ^V, it follows from (3) that c eNy. But then in view of (4), there exists
an x e Np(^),p (F (v^)*) such that cx~1 e W, and this element satisfies our requirements.

Now suppose c e F* satisfies (3), and moreover, b == Np/i^) belongs to
Os (= L* n U). If y divides ^, then

[a,6L= n { ^ . L ;
. 10 | V

otherwise, [a, b]^ == 1. It follows that the product on the left-hand side of (2) is equal
to O^(^). But this product must be 1, and we conclude that 6^ = 1. The proposition
is proved.
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