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Results First signs of eigenvalue rigidity

Let F be a field of characteristic zero (in applications, F = C).

Definition.
(1) Let γ1 ∈ GLn1(F) and γ2 ∈ GLn2(F) be semi-simple (i.e.,

diagonalizable) matrices,

let

λ1, . . . , λn1 and µ1, . . . , µn2 (∈ F)

be their eigenvalues. Then γ1 and γ2 are weakly commensurable

if ∃ a1, . . . , an1 , b1, . . . , bn2 ∈ Z such that

λa1
1 · · · λ

an1
n1 = µb1

1 · · · µ
bn2
n2 6= 1.
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Results First signs of eigenvalue rigidity

Let G1 ⊂ GLn1 and G2 ⊂ GLn2 be reductive F-groups,

Γ1 ⊂ G1(F) and Γ2 ⊂ G2(F) be Zariski-dense subgroups.

(2) Subgroups Γ1 and Γ2 are weakly commensurable

if

every semi-simple γ1 ∈ Γ1 of infinite order

is weakly commensurable to

some semi-simple γ2 ∈ Γ2 of infinite order,

and vice versa.
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Results First signs of eigenvalue rigidity

Equivalent reformulations:

Semi-simple γ1 ∈ G1(F) and γ2 ∈ G2(F) weakly commensurable

(1)⇔ there exists maximal F-tori Ti of Gi such that γi ∈ Ti(F)

and characters χi ∈ X(Ti) (i = 1, 2) for which

χ1(γ1) = χ2(γ2) 6= 1;

(2)⇔ there exist F-defined representations

ρ1 : G1 −→ GLm1 and ρ2 : G2 −→ GLm2

such that ρ1(γ1) and ρ2(γ2) have a nontrivial common

eigenvalue.

Remark. These reformulations show that weak commensurability is
independent of matrix realizations of Gi’s.
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Results First signs of eigenvalue rigidity

Let

• F – a field of characteristic zero

• G1 and G2 – absolutely almost simple algebraic F-groups

• Γi ⊂ Gi(F) – finitely generated Zariski-dense subgroup, i = 1, 2

Theorem 1

If Γ1 and Γ2 are weakly commensurable, then either G1 and G2

have same Killing-Cartan type, or one of them is of type B` and

the other of type C` (` > 3).
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Results First signs of eigenvalue rigidity

For a Zariski-dense subgroup Γ ⊂ G(F), let

KΓ = subfield of F generated by Tr AdG(γ), γ ∈ Γ.

KΓ is trace field, which is minimal field of definition of

AdG(Γ) ⊂ GL(g).

Theorem 2

If Γ1 and Γ2 are weakly commensurable, then KΓ1 = KΓ2 .

Let G(Γ) denote algebraic hull of Γ, i.e. Zariski-closure of

AdG(Γ) in GL(g).

Recall: G(Γ) is adjoint group defined over KΓ,
(i.e., an F/KΓ-form of adjoint group G)

G(Γ) is an important characteristic of Γ; it determines Γ if it is
arithmetic.
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Results First signs of eigenvalue rigidity

To summarize: if Γ1 and Γ2 as above are weakly commensurable,

then

• Their algebraic hulls G1 = G(Γ1) and G2 = G(Γ2) are defined
over same field

KΓ1 = KΓ2 =: K;

• apart from ambiguity between types B` and C`,

G1 and G2

have same type,

(i.e., are isomorphic over closure K or C).

Thus, G1 and G2 are K/K-forms of one another.

Critical question: How are G1 and G2 related over K?

Recall: If Γ1 and Γ2 are arithmetic then

G1 ' G2 over K ⇒ Γ1 & Γ2 commensurable.
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Results First signs of eigenvalue rigidity

More specifically:

If we fix Γ1, what are possibilities for G2?

Finiteness conjecture for weakly commensurable groups.

Let
• G1 and G2 be absolutely simple algebraic F-groups, char F = 0;
• Γ1 ⊂ G1(F) be a finitely generated Zariski-dense subgroup, KΓ1 = K.

Then there exists a finite collection G
(1)
2 , . . . , G(r)

2 of F/K-forms
of G2 such that

if

Γ2 ⊂ G2(F) is a finitely generated Zariski-dense subgroup
weakly commensurable to Γ1,

then Γ2 can be conjugated into some G
(i)
2 (K) (⊂ G2(F)).

(Additionally, one expects that r = 1 in certain situations ...)
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Results First signs of eigenvalue rigidity

Example. Let A be a central simple K-algebra, G = PSL1,A.

Fix a f. g. Zariski-dense subgroup Γ ⊂ G(K) with KΓ = K.

FINITENESS CONJECTURE⇒ There are only finitely many c.s.a. A′

such that for G′ = PSL1,A′ ,

∃ f.g. Zariski-dense subgroup Γ′ ⊂ G′(K)

weakly commensurable to Γ.

• Similar consequences for orthogonal groups of quadratic
forms etc.
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Results First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K
(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple
real Lie groups

• Some other cases (later)

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 12 / 89
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Results Weakly commensurable arithmetic groups

1 Results
First signs of eigenvalue rigidity
Weakly commensurable arithmetic groups
Geometric applications

2 Generic elements

3 Division algebras with the same maximal subfields
Algebraic and geometric motivations
Genus of a division algebra
Generalizations

4 Groups with good reduction
Basic definitions and examples
Finiteness Conjecture for Groups with Good Reduction
Implications of the Finiteness Conjecture for Groups with Good
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Application to Nonarithmetic Riemann Surfaces

5 Some open problems
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Results Weakly commensurable arithmetic groups

Theorem 3

Let

• G1 and G2 be absolutely almost simple F-groups, char F = 0;

• Γi ⊂ Gi(F) be a Zariski-dense arithmetic subgroup, i = 1, 2.

(1) Assume G1 and G2 are of same type, different from

An, D2n+1 (n > 1), and E6.

If Γ1 and Γ2 are weakly commensurable, then they are
commensurable.

(2) In all cases, arithmetic Γ2 ⊂ G2(F) weakly commensurable

to a given arithmetic Γ1 ⊂ G1(F), form finitely many

commensurability classes.

Remark. Types excluded in (1) are honest exceptions.
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Results Weakly commensurable arithmetic groups

(cont.)

(3) If Γ1 and Γ2 are weakly commensurable, and K = KΓ1 = KΓ2 ,

then rkK G(Γ1) = rkK G(Γ2).

In particular, Γ1 contains nontrivial unipotents ⇔ Γ2 does.

(4) (arithmeticity theorem) Let now F = R and Γ1 ⊂ G1(R) be

an arithmetic lattice.

If Γ2 ⊂ G2(R) is a lattice weakly commensurable to Γ1,

then Γ2 is also arithmetic.

Remark. Above results were proved in a more general context of

S-arithmetic subgroups.

(4) is valid for S-arithmetic lattices over

any locally compact field F.
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Results Weakly commensurable arithmetic groups

Theorem 4 (R. Garibaldi, A.R.)

Let

• G1 and G2 be absolutely almost simple F-groups of types
B` and C` (` > 3);

• Γi ⊂ Gi(F) be a Zariski-dense (K,Gi)-arithmetic subgroup, i = 1, 2.

Then Γ1 and Γ2 are weakly commensurable iff G1 and G2 are
twins, i.e.

• G1 and G2 are both split over all nonarchimedean places of K;

• G1 and G2 are simultaneously either split or anisotropic over
all archimedean places.

Together, Theorems 3 and 4 cover all situations where Zarsiki-dense
S-arithmetic subgroups of absolutely almost simple groups can be
weakly commensurable.
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Results Geometric applications
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Results Geometric applications

Notations

Let G be a semi-simple algebraic R-group; G = G(R).

• K - maximal compact subgroup of G;

X := K\G - corresponding symmetric space.

• For Γ ⊂ G discrete torsion free subgroup,

XΓ = X/Γ - corresponding locally symmetric space.

rk XΓ := rkR G

• XΓ is arithmetically defined if Γ is arithmetic.

Now, let G1 and G2 be absolutely almost simple R-groups,

Γi ⊂ Gi = Gi(R) be a discrete torsion-free subgroup,

XΓi - corresponding locally symmetric space, i = 1, 2.
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Results Geometric applications

Proposition (G. Prasad, A.R.)

Assume that XΓ1 and XΓ2 have finite volume (i.e., Γ1 and Γ2 are

lattices). If XΓ1 and XΓ2 are length-commensurable,

Q · L(XΓ1) = Q · L(XΓ2),

then Γ1 and Γ2 are weakly commensurable.

For rank one locally symmetric spaces different from non-

arithmetic Riemann surfaces, proof uses result of Gel’fond

and Schneider (1934):

if α and β are algebraic numbers 6= 0, 1, then

log α

log β

is either rational or transcendental.
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Results Geometric applications

In other cases we need to assume truth of following

Conjecture (Shanuel) If z1, . . . , zn ∈ C are linearly independent over Q,

then the transcendence degree over Q of field generated by

z1, . . . , zn; ez1 , . . . , ezn

is > n.

A finite volume locally symmetric space XΓ of a simple real

group is automatically arithmetically defined unless X is either

real hyperbolic space Hn or complex hyperbolic space Hn
C.

(Margulis + Corlette + Gromov-Shoen)
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Results Geometric applications

Theorem 5

Let (as above)

• XΓ1 be an arithmetically defined locally symmetric space,

• XΓ2 be a locally symmetric space of finite volume.

• If XΓ1 and XΓ2 are length-commensurable, then

(1) XΓ2 is arithmetically defined;

(2) XΓ1 is compact ⇔ XΓ2 is compact.

• The set of XΓ2 ’s length-commensurable to XΓ1 is a union of
finitely many commensurability classes.

It consists of single commensurability class if G1 and G2 are
of same type different from An, D2n+1 (n > 1), or E6.
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Results Geometric applications

Corollary

Let M1 and M2 be arithmetically defined hyperbolic d-manifolds,
where d 6= 3 is even or ≡ 3(mod 4).

If M1 and M2 are length-commensurable, then they are
commensurable.

• Hyperbolic manifolds of different dimensions are not
length-commensurable.

• A complex hyperbolic manifold cannot be length-

commensurable to a real or quaternionic hyperbolic

manifold, etc.
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Results Geometric applications

There is a series of results stating that

• either XΓ1 and XΓ2 are length-commensurable, or

• L(XΓ1) and L(XΓ2) are very different.

For a Riemannian manifold M, we let F(M) denote subfield
of R generated by L(M).

For Riemannian M1 and M2, we set Fi = F(Mi), i = 1, 2.

(Ti) Compositum F1F2 has infinite transcendence degree
over F3−i.

So, L(Mi) contains “many” elements that are algebraically inde-

pendent from all elements of L(M3−i).
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Results Geometric applications

Note that (Ti) implies

(Ni) L(Mi) 6⊂ A ·Q · L(M3−i) for any finite A ⊂ R.

Using Shanuel’s conjecture, we prove

Theorem 6

Assume that G1 and G2 are of same type different from An,

D2n+1 (n > 1) and E6, and that Γ1 and Γ2 are arithmetic.

Then either M1 = XΓ1 and M2 = XΓ2 are commensurable (in

particular, length-commensurable),

or (Ti) and (Ni) hold for at

least one i ∈ {1, 2}.
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Let Mi (i = 1, 2) be quotients of real hyperbolic space Hdi with

di 6= 3 by a torsion free discrete subgroup Γi of Gi(R) where

Gi = PSO(di, 1).

(1) If d1 > d2 then (T1) and (N1) hold.
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Results Geometric applications

(cont’d)

Assume now that d1 = d2 =: d 6= 3 and Γ1 and Γ2 are arithmetic.

(2) If d is even or ≡ 3(mod 4), then either M1 and M2

are commensurable, hence length-commensurable, or (Ti)

and (Ni) hold for at least one i ∈ {1, 2}.

(3) If d ≡ 1(mod 4) and in addition KΓi 6= Q for at least

one i ∈ {1, 2} then either M1 and M2 are length-

commensurable (although not necessarily commensurable),

or (Ti) and (Ni) hold for at least one i ∈ {1, 2}.
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Results Geometric applications

Theorem 8

Assume that G1 and G2 are either of same type or one of them

is of type B` and other of type C`, and let Mi = XΓi (i = 1, 2)

be arithmetically defined locally symmetric spaces.

If M2 is compact and M1 is not, then (T1) and (N1) hold.

Results for isospectral locally symmetric spaces are

derived from those for length-commensurable spaces.
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Generic elements
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Generic elements

Let A ∈ GLn(F), and let χA(t) = characteristic polynomial of A.

A is generic over F if

• A is diagonalizable,

• χA(t) is irreducible over F, and

• Galois group of χA(t) over F is symmetric group Sn.

It is well-known how to construct irreducible polynomials of

degree n over Q with Galois group Sn for any n > 2

⇒ GLn(Q) contains Q-generic elements.

We will now generalize notion of generic elements and

existence theorem to arbitrary semi-simple groups.
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Generic elements

Let G be a semi-simple algebraic group over a field F,

let T be a maximal F-torus, and Φ = Φ(G, T) corresponding

root system.

Recall: action of G = Gal(F/F) on character group X(T) gives

rise to group homomorphism

θT : G −→ Aut(Φ).

Note: Im θT ' Gal(E/F) where E minimal splitting field of T.

Definition.

(1) T is generic over F if Im θT contains Weyl group W(Φ).

(2) A semi-simple element γ ∈ G(F) is generic over F if

T := ZG(γ)
◦ is a torus (i.e., γ is regular) which is generic

over F.
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Generic elements

A field F ⊂ C is finitely generated if it is obtained by adjoi-

ning to Q finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated
field F,

let Γ ⊂ G(F) be a finitely generated Zariski-dense subgroup.

(1) Γ contains an F-generic element γ ∈ Γ without components
of finite order;

(2) if γ ∈ Γ is F-generic then there exists a finite index
subgroup ∆ ⊂ Γ such that γ∆ consists of F-generic
elements.

Remarks. “Components” in (1) refer to almost direct product
G = G1 · · ·Gr of simple groups.

(2) means that set of F-regular elements is open in Γ for profinite
topology.
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Generic elements

For a semi-simple R-group G, an element γ ∈ G(R) is

R-regular if number of eigenvalues of modulus 1

of AdG(γ),

is minimal possible.

Such γ is automatically regular semi-simple and T = ZG(γ)
◦

contains a maximal R-split torus.

• If F ⊂ R then γ in (1) can be selected to be
R-regular.

Such elements were used to study dynamics of actions,

rigidity, Auslander problem about properly discontinuous

groups of affine transformations, etc.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 32 / 89



Generic elements

For a semi-simple R-group G, an element γ ∈ G(R) is

R-regular if number of eigenvalues of modulus 1

of AdG(γ),

is minimal possible.

Such γ is automatically regular semi-simple and T = ZG(γ)
◦

contains a maximal R-split torus.

• If F ⊂ R then γ in (1) can be selected to be
R-regular.

Such elements were used to study dynamics of actions,

rigidity, Auslander problem about properly discontinuous

groups of affine transformations, etc.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 32 / 89



Generic elements

For a semi-simple R-group G, an element γ ∈ G(R) is

R-regular if number of eigenvalues of modulus 1

of AdG(γ),

is minimal possible.

Such γ is automatically regular semi-simple and T = ZG(γ)
◦

contains a maximal R-split torus.

• If F ⊂ R then γ in (1) can be selected to be
R-regular.

Such elements were used to study dynamics of actions,

rigidity, Auslander problem about properly discontinuous

groups of affine transformations, etc.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 32 / 89



Generic elements

For a semi-simple R-group G, an element γ ∈ G(R) is

R-regular if number of eigenvalues of modulus 1

of AdG(γ),

is minimal possible.

Such γ is automatically regular semi-simple and T = ZG(γ)
◦

contains a maximal R-split torus.

• If F ⊂ R then γ in (1) can be selected to be
R-regular.

Such elements were used to study dynamics of actions,

rigidity, Auslander problem about properly discontinuous

groups of affine transformations, etc.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 32 / 89



Generic elements

Using that Weyl group of irreducible root system acts
(absolutely) irreducibly, one proves following:

If γ ∈ G(F) is generic without components of finite order, then it

generates Zariski-dense subgroup of T = ZG(γ)
◦.

Combining this with fact that compact subgroups of GLn(R)

are Zariski-closed, one obtains that

Any dense subgroup of compact semi-simple Lie group contains a

Kronecker element, i.e. an element such that closure of cyclic

subgroup generated by it is a maximal torus.

This is false for dense subgroups of compact tori!
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Division algebras with the same maximal subfields Algebraic and geometric motivations

Consider the following question:

(∗) Let D1 and D2 be finite-dimensional central division algebras

over a field K.

How are D1 and D2 related if they have

same maximal subfields?

• D1 and D2 have same maximal subfields if

deg D1 = deg D2 =: n;

for P/K of degree n, P ↪→ D1 ⇔ P ↪→ D2.
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Division algebras with the same maximal subfields Algebraic and geometric motivations

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic

Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D1 and D2 be two quaternion division algebras over a

number field K.

If D1 and D2 have same maximal subfields

then D1 ' D2.

However, most Riemann surfaces are not arithmetic

⇒
One needs to understand to what degree this fact extends to

more general fields

We will see a statement about arbitrary Riemann surfaces
later,

but first let us analyze situation in detail.
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Division algebras with the same maximal subfields Algebraic and geometric motivations

• Let H = { x + iy | y > 0 }.

“Most” Riemann surfaces are of the form:

M = H/Γ

where Γ ⊂ PSL2(R) is a discrete torsion free subgroup

.

• Some properties of M can be understood in terms of the

associated quaternion algebra.

Let
• π : SL2(R) → PSL2(R);

• Γ̃ = π−1(Γ) ⊂ M2(R).

Set AΓ = Q[Γ̃(2)] ⊂ M2(R), Γ̃(2) ⊂ Γ̃ generated by squares.
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Division algebras with the same maximal subfields Algebraic and geometric motivations

One shows: AΓ is a quaternion algebra with center

KΓ = Q(tr γ | γ ∈ Γ(2))

(trace field).

(Note that for general Fuchsian groups, KΓ is not necessarily
a number field.)

• If Γ is arithmetic, then AΓ is the quaternion algebra

involved in its description;

• In general, AΓ does not determine Γ, but is an invariant

of the commensurability class of Γ.
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Division algebras with the same maximal subfields Algebraic and geometric motivations

To a (nontrivial) semi-simple γ ∈ Γ̃(2) there corresponds:

• geometrically: a closed geodesic cγ ⊂ M,

if γ ∼ ±
(

tγ 0
0 t−1

γ

)
(tγ > 1) then length `(cγ) = 2 log tγ;

• algebraically: a maximal etale subalgebra KΓ[γ] ⊂ AΓ.

Let Mi = H/Γi (i = 1, 2) be Riemann surfaces.

Assume that M1 and M2 are length-commensurable,

i.e.

Q · L(M1) = Q · L(M2).
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Division algebras with the same maximal subfields Algebraic and geometric motivations

Then:

1 KΓ1 = KΓ2 =: K;

2 Given closed geodesics cγi ⊂ Mi for i = 1, 2 such that

`(cγ2)/`(cγ1) = m/n (m, n ∈ Z),

elements γm
1 and γn

2 are conjugate ⇒

K[γ1] ⊂ AΓ1 and K[γ2] ⊂ AΓ2 are isomorphic.

So, AΓ1 and AΓ2 share “lots” of maximal etale subalgebras.

(Not all – but we will ignore it for now ...)
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Division algebras with the same maximal subfields Algebraic and geometric motivations

• For M1 and M2 to be commensurable, AΓ1 and AΓ2 must

be isomorphic.

Thus, proving that length-commensurable M1 and M2 are

commensurable

must involve answering a version of question

(∗), at least implicitly.

We will see what can be said about AΓ’s for length-com-

mensurable Riemann surfaces.
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Division algebras with the same maximal subfields Algebraic and geometric motivations

Algebra

Amitsur’s Theorem

Let D1 and D2 be central division algebras over K.

If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of

finite degree, or just maximal subfields?
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Division algebras with the same maximal subfields Algebraic and geometric motivations

• Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

This leads to question (∗) and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over K = Q(x) determined by their

maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)
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Division algebras with the same maximal subfields Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)
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Division algebras with the same maximal subfields Genus of a division algebra

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char k 6= 2. If |gen(D)| = 1 for every quaternion algebra D over k,

then |gen(D′)| = 1 for any quaternion algebra D′ over k(x).

• Same statement is true for division algebras of exponent 2.

• |gen(D)| > 1 if D is not of exponent 2.

(Indeed, [Dop] ∈ gen(D) and [Dop] 6= [D].)

• gen(D) can be infinite.

(For quaternions - J.S. Meyer (2014), for algebras of prime
degree p > 2 - S.V. Tikhonov (2016).)

Construction yields examples over fields that are infinitely generated

( in fact, HUGE )
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Division algebras with the same maximal subfields Genus of a division algebra

Construction

• Start with nonisomorphic quaternion algebras D1 and D2

over K (char K 6= 2) having a common maximal subfield.

(E.g., take D1 =

(
−1, 3

Q

)
and D2 =

(
−1, 7

Q

)
over K = Q)

• If D1 and D2 already have same maximal subfields, we
are done.

Otherwise, pick K(
√

d1) ↪→ D1 such that K(
√

d1) 6↪→ D2.

(E.g., Q(
√

11) ↪→ D1 but Q(
√

11) 6↪→ D2.)
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Division algebras with the same maximal subfields Genus of a division algebra

• Find K1/K such that

1 D1 ⊗K K1 6' D2 ⊗K K1;

2 K1(
√

d1) ↪→ D2 ⊗K K1.

For K1 one can take the function field of a quadric.

In our example, K1 is function field of

−x2
1 + 7x2

2 + 7x2
3 = 11x2

4

Then (2) is obvious, and (1) follows from the fact that

x2
0 + x2

1 − 21x2
2 − 21x2

3

remains anisotropic over K1.
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Division algebras with the same maximal subfields Genus of a division algebra

• If there exists K1(
√

d2) ↪→ D1 ⊗K K1 and K1(
√

d2) 6↪→
D2 ⊗K K1 we construct K2/K1 similarly.

This generates a tower K ⊂ K1 ⊂ K2 ⊂ · · ·

Set K =
∞⋃

i=1

Ki.

• Then D1 ⊗K K 6' D2 ⊗K K and have same maximal subfields.

For infinite genus, one starts with Dp =

(
−1, p

Q

)
, p ≡ 3(mod 4).

Note that K is infinitely generated.
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Division algebras with the same maximal subfields Genus of a division algebra

Theorem 11 (C+R2)

Let K be a finitely generated field.

Then for any central

division K-algebra D the genus gen(D) is finite.

• Proofs of both theorems use analysis of ramification and

info about unramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be

prime to characteristic of residue field K(v).

If D1 and D2 are central division K-algebras of degree n

having same maximal subfields,

then either both algebras are

ramified at v or both are unramified.

(When n is divisible by char K(v), we need some additional assumptions)
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Division algebras with the same maximal subfields Genus of a division algebra

• Recall that a c. s. a. A over K (or its class [A] ∈ Br(K))

is unramified at v if

there exists Azumaya algebra A/Ov

such that

A⊗K Kv ' A⊗Ov Kv.

If (n , char K(v)) = 1 or K(v) is perfect, there is a residue map

rv : nBr(K) −→ H1(G(v), Z/nZ),

where G(v) is absolute Galois group of K(v).

• Then x ∈ nBr(K) is unramified at v ⇔ rv(x) = 0.

Given a set V of discrete valuations of K, one defines
corresponding unramified Brauer group:

Br(K)V = { x ∈ Br(K) | x unramified at all v ∈ V }.
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Division algebras with the same maximal subfields Genus of a division algebra

• To prove Theorem 1 (Stability Theorem) we use:
if K = k(x) and V = set of geometric places, then

nBr(K)V = nBr(k)

when (n, char k) = 1 (Faddeev)

• There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

More recent argument works in all characteristics, but
gives no estimate of size of gen(D).

Earlier argument works when (n , char K) = 1, gives
finiteness of nBr(K)V and estimate

| gen(D) | 6 | nBr(K)V | · ϕ(n)r

where r is number of v ∈ V that ramify in D.
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finiteness of nBr(K)V and estimate
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Division algebras with the same maximal subfields Genus of a division algebra

Question. Does there exist a quaternion division algebra D

over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

• One can construct examples where 2Br(K)V is “large.”
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Division algebras with the same maximal subfields Generalizations

1 Results
First signs of eigenvalue rigidity
Weakly commensurable arithmetic groups
Geometric applications

2 Generic elements

3 Division algebras with the same maximal subfields
Algebraic and geometric motivations
Genus of a division algebra
Generalizations

4 Groups with good reduction
Basic definitions and examples
Finiteness Conjecture for Groups with Good Reduction
Implications of the Finiteness Conjecture for Groups with Good
Reduction
Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 55 / 89



Division algebras with the same maximal subfields Generalizations

• To define the genus of an algebraic group, we replace
maximal subfields with maximal tori in the definition
of genus of division algebra.

• Let G1 and G2 be semi-simple groups over a field K.

G1 & G2 have same isomorphism classes of maximal K-tori

if every maximal K-torus T1 of G1 is K-isomorphic to

a maximal K-torus T2 of G2, and vice versa.

• Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori.
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Division algebras with the same maximal subfields Generalizations

Question 1′. When does genK(G) reduce to a single element?

Question 2′. When is genK(G) finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1 or E6, then |genK(G)| = 1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
|Z(G)| 6 2, we have |genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic then genK(G) is
finite.
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Division algebras with the same maximal subfields Generalizations

• Results for division algebras do not automatically imply
results for G = SLm,D.

Theorem 13 (C+R2)
(1) Let D be a central division algebra of exponent 2 over

K = k(x1, . . . , xr) where k is a number field or a finite

field of characteristic 6= 2. Then for G = SLm,D (m > 1) we

have |genK(G)| = 1.

(2) Let G = SLm,D, where D is a central division algebra over

a finitely generated field K. Then genK(G) is finite.
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Division algebras with the same maximal subfields Generalizations

Theorem 14 (C + R2)

Let K = k(C) where C is a geometrically integral smooth

curve over a number field k,

and let G be either

• Spinn(q), q a quadratic form over K and n is odd, or

• SUn(h), h a hermitian form over quadratic extension L/K.

Then genK(G) is finite.

Theorem 15 (C+R2)

Let G be a simple algebraic group of type G2.

(1) If K = k(x), where k is a number field, then |genK(G)| = 1;

(2) If K = k(x1, . . . , xr) or k(C), where k is a number field,

then genK(G) is finite.
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Division algebras with the same maximal subfields Generalizations

Generally speaking, these (and other similar) results were

obtained by extending strategy used for division algebras.

What is a substitute for notion of
unramified algebra?

This brings us to groups with good reduction.
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Groups with good reduction Basic definitions and examples

Let G be an absolutely almost simple algebraic K-group

(typically, simply connected or adjoint)

• G has good reduction at a discrete valuation v of K

if

there exists a reductive group scheme G over valuation ring

Ov ⊂ Kv of completion such that

1 generic fiber G⊗Ov Kv is isomorphic to G⊗K Kv;

2 special fiber (reduction) G(v) = G⊗Ov K(v) (K(v) residue field)
is a connected simple group of same type as G.
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Groups with good reduction Basic definitions and examples

Examples.

0. If G is K-split then G has a good reduction at any v,

given by Chevalley construction.

1. G = SL1,A has good reduction at v if there exists an

Azumaya algebra A over Ov such that

A ⊗K Kv ' A ⊗Ov Kv

(in other words, A is unramified at v).

2. G = Spinn(q) has good reduction at v

if

q ∼ λ(a1x2
1 + · · ·+ anx2

n) with λ ∈ K×v , ai ∈ O×v

(assuming that char K(v) 6= 2).
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Groups with good reduction Basic definitions and examples

General problem: Let V be a set of discrete valuations of K.

What can one say about those K/K-forms of G that

have good reduction at all v ∈ V?

To make this problem meaningful one needs to specify K,
V and/or G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 65 / 89



Groups with good reduction Basic definitions and examples

General problem: Let V be a set of discrete valuations of K.

What can one say about those K/K-forms of G that

have good reduction at all v ∈ V?

To make this problem meaningful one needs to specify K,
V and/or G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 65 / 89



Groups with good reduction Basic definitions and examples

General problem: Let V be a set of discrete valuations of K.

What can one say about those K/K-forms of G that

have good reduction at all v ∈ V?

To make this problem meaningful one needs to specify K,
V and/or G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 65 / 89



Groups with good reduction Basic definitions and examples

General problem: Let V be a set of discrete valuations of K.

What can one say about those K/K-forms of G that

have good reduction at all v ∈ V?

To make this problem meaningful one needs to specify K,
V and/or G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 65 / 89



Groups with good reduction Basic definitions and examples

General problem: Let V be a set of discrete valuations of K.

What can one say about those K/K-forms of G that

have good reduction at all v ∈ V?

To make this problem meaningful one needs to specify K,
V and/or G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 65 / 89



Groups with good reduction Basic definitions and examples

Basic case R = Z:

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Qp.

Then nonsplit groups with good reduction can be constructed

explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic
group over a number field K, and assume that V contains almost
all places of K. Then number of K-forms of G that have good
reduction at all v ∈ V is finite.
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Groups with good reduction Basic definitions and examples

Case R = k[x], K = k(x), and V = { vp(x) | p(x) ∈ k[x] irreducible }.

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G0 be a connected
reductive group over k. If G′ is a K-form of G0 ⊗k K that has
good reduction at all v ∈ V then G′ = G′0 ⊗k K for some k-form
G′0 of G0.

Case R = k[x, x−1], and V = { vp(x) | p(x) ∈ k[x] irreducible, 6= x }.

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G0 be a connected
reductive group over k. Then K-forms of G0 ⊗k K that have good
reduction at all v ∈ V are in bijection with H1(k((x)) , G0).

This was used to prove conjugacy of Cartan subalgebras in some
infinite-dimensional Lie algebras.
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Groups with good reduction Finiteness Conjecture

Analysis of Finiteness conjecture for weakly commensurable groups
has led us to consider higher-dimensional version of problem,

never treated before.

Every finitely generated field K has an almost canonical set
of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type
over Z.

Then v ∈ V correspond to prime divisors on X.

Algebraically: Choose an integrally closed Z-subalgebra A ⊂ K
of finite type with fraction field K.

Then v ∈ V correspond
to height one prime ideals of A.

• Two divisorial sets differ only in finitely many valuations.
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Groups with good reduction Finiteness Conjecture

Example.

Let K = Q(x). One can take A = Z[x].

Height one primes are principal ideals generated

• either by a rational prime p ∈ Z,
• or by an irreducible content 1 polynomial π(x) ∈ Z[x].

So, corresponding divisorial set is

V = V0 ∪ V1,

where

• V0 consists of extensions of p-adic valuations (“constant”

valuations), and

• V1 of discrete valuations associated with irreducible

polynomials in Q[x], i.e. with closed points of A1
Q

(“geometric” valuations).
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Groups with good reduction Finiteness Conjecture

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group
over a finitely generated field K, and V be a divisorial set of
valuations of K.

Then the number of K-isomorphism classes of (inner) K/K-forms
of G that have good reduction at all v ∈ V is finite.

(One may need to assume that char K is “good” for G)

True if

K is a global field;
G is an inner form of type An;
G is spinor group of a quadratic form, certain unitary
group, or a group of type G2 over K = k(C), function
field of a curve over a global field k.

V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, Spinor groups with good
reduction, Compos. Math. 155(2019), no. 3, 484-527.
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Groups with good reduction Implications of Finiteness Conjecture

1 Results
First signs of eigenvalue rigidity
Weakly commensurable arithmetic groups
Geometric applications

2 Generic elements

3 Division algebras with the same maximal subfields
Algebraic and geometric motivations
Genus of a division algebra
Generalizations

4 Groups with good reduction
Basic definitions and examples
Finiteness Conjecture for Groups with Good Reduction
Implications of the Finiteness Conjecture for Groups with Good
Reduction
Application to Nonarithmetic Riemann Surfaces

5 Some open problems
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Groups with good reduction Implications of Finiteness Conjecture

• Finiteness of genus

Theorem 16 (C + R2)

Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K(v) is finitely generated, and G has good

reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).
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Groups with good reduction Implications of Finiteness Conjecture

Corollary.

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K, and V be a divisorial set

of places of K.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.

Since V \ S is also divisorial,

finiteness of genK(G) would

follow from Finiteness Conjecture for Groups with Good

Reduction.
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Groups with good reduction Implications of Finiteness Conjecture

• Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of

valuations V,

one considers global-to-local map

ιG,V : H1(K, G) −→ ∏
v∈V

H1(Kv, G)

BOREL, SERRE (1964): If K is a number field and V consists of

almost all valuations of K,

then ιG,V is proper, i.e., preimage of

any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would

imply properness of ιG,V

for any semi-simple adjoint group G

over an arbitrary finitely generated field K and any divisorial

set V.
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Groups with good reduction Implications of Finiteness Conjecture

In particular, its kernel X(G) would be finite.

Our results confirm this in the following cases:

• PSLn over a finitely generated field K, (n , char K) = 1;

• SOn(q) over K = k(C), k a number field;

• G of type G2 over K = k(C), k a number field.

We expect ιG,V to be proper for any reductive G over a

finitely generated field K and any divisorial V

(possibly,

under some restrictions on characteristic)

I. RAPINCHUK, A.R. (2019): True for tori over finitely generated
fields of characteristic zero.
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Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero,

and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero,

and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero,

and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero,

and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero,

and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V

such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′

with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ,

has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

• Finiteness Conjecture for Weakly Commensurable Subgroups

This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic

group over a finitely generated field K of characteristic zero, and

let V be a divisorial set of places of K.

Given a Zariski-dense subgroup Γ ⊂ G(K) with trace field K,

there exists a finite subset V(Γ) ⊂ V such that any absolutely

almost simple algebraic K-group G′ with the property that there

exists a finitely generated Zariski-dense subgroup Γ′ ⊂ G′(K) weakly

commensurable to Γ, has good reduction at all v ∈ V \V(Γ).

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 77 / 89



Groups with good reduction Implications of Finiteness Conjecture

Challenges in analysis of Finiteness Conjecture for Groups

with Good Reduction:

It is not known how to classify forms by cohomological

invariants.

Even when such description is available (e.g. for type G2),

one needs to prove finiteness of unramified cohomology

in degrees > 2, which is a difficult problem.
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Groups with good reduction Application to Nonarithmetic Riemann Surfaces

1 Results
First signs of eigenvalue rigidity
Weakly commensurable arithmetic groups
Geometric applications

2 Generic elements

3 Division algebras with the same maximal subfields
Algebraic and geometric motivations
Genus of a division algebra
Generalizations

4 Groups with good reduction
Basic definitions and examples
Finiteness Conjecture for Groups with Good Reduction
Implications of the Finiteness Conjecture for Groups with Good
Reduction
Application to Nonarithmetic Riemann Surfaces

5 Some open problems
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Groups with good reduction Application to Nonarithmetic Riemann Surfaces

Let

M = H/Γ

where H = { x + iy | y > 0 } and Γ ⊂ PSL2(R) a discrete torsion-

free subgroup.

Assume that

Γ is finitely generated;

Γ is Zariski-dense in PSL2.

(of course, these hold automatically if M is compact)

Let AΓ be the associated quaternion algebra.
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Groups with good reduction Application to Nonarithmetic Riemann Surfaces

Question.

How does AΓ vary in families of length-commensurable
(compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra

remains the same for all Riemann surface that are length-

commensurable to M = H/Γ.

What about non-arithmetic surfaces?

Replacing length-commensurability with much stronger relation
of isospectrality we have:

Compact Riemann surfaces isospectral to a given one consist
of finitely many isometry classes

⇒ there are finitely many
isomorphism classes of associated quaternion algebras.
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Groups with good reduction Application to Nonarithmetic Riemann Surfaces

Theorem 18

Let Mi = H / Γi (i ∈ I) be a family of length-commensurable

Riemann surfaces, where Γ ⊂ PSL2(R) is discrete and Zariski-

dense.

Then quaternion algebras AΓi (i ∈ I) split into finitely

many isomorphism classes over common center ( = trace field

of all Γi’s ).

PROOF uses good reduction.

This is one of the first examples of application of techniques from
arithmetic geometry to length-commensurable non-arithmetic Riemann
surfaces.
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Some open problems

Arithmeticity. Is a finitely generated Zariski-dense subgroup

weakly commensurable to an arithmetic group itself

arithmetic?

The answer is no in general.

Example. Let Γ = SL2(Z), and set

u+(a) =
(

1 a
0 1

)
and u−(b) =

(
1 0
b 1

)
.

Then for m > 3, subgroup

∆m := 〈u+(m) , u−(m)〉
is of infinite index in Γ, but is weakly commensurable to it.
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Some open problems

Weak commensurability follows from inclusion

Γ(m2) ⊂
⋃

g∈GL2(Q)

g ∆m g−1,

where

Γ(m2) = { x ∈ Γ | x ≡ I2 (mod m2) }

is congruence subgroup of level m2 (proved by looking at

traces).

A similar construction does not work for SLn(Z), n > 3, as it

always produces finite index subgroups.

So, we would like to propose the following
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Some open problems

Problem 1. Let G1 and G2 be simple algebraic groups over

a field F of characteristic zero, and let Γ1 ⊂ G1(F) be an

arithmetic subgroups of rank > 2.

If Γ2 ⊂ G2(F) is a (finitely generated) Zariski-dense subgroup

weakly commensurable to Γ1, then is Γ2 necessarily

arithmetic? Do we need finite generation?

It is not even known if a subgroup ∆ of Γ = SLn(Z), n > 3,

weakly commensurable to Γ, necessarily has finite index.

Problem can be stated for higher-rank S-arithmetic subgroups,

but is wide-open even for SL2 (Z[1/p]).
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Some open problems

Problem 2. Let G1 and G2 be simple groups over F = R or

C, and let Γi be a (finitely generated) Zariski-dense subgroup

of Gi(F) for i = 1, 2. Assume that Γ1 and Γ2 are weakly

commensurable.

Does discreteness of Γ1 imply discreteness of Γ2?

The answer is ‘yes’ for a nonarchimedean locally compact

field F, but archimedean case is open.
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Some open problems

Problem 3. Let G1 and G2 be simple algebraic groups over

F = R or C, and let Γi ⊂ Gi(F) be a lattice for i = 1, 2.

Assume that Γ1 and Γ2 are weakly commensurable.

Does compactness of G1(F)/Γ1 imply compactness of G2(F)/Γ2?

Geometric version: Let XΓ1 and XΓ2 be length-commensurable

locally symmetric spaces of finite volume.

Does compactness of XΓ1 imply compactness of XΓ2?

Recall: The answer is ‘yes’ if one space is arithmetically

defined.
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Some open problems

Problem 4. Develop notion of weak commensurability for

Zariski-dense (and particularly arithmetic) subgroups of

general semi-simple groups.

Problem 5. For inner and outer forms of types An (n > 1),

D2n+1 (n > 1) and E6, construct examples of isospectral

compact arithmetically defined locally symmetric spaces that

are not commensurable.

Currently, such construction is available only for inner forms

of type An.
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