ARITHMETIC AND ZARISKI-DENSE SUBGROUPS: weak commensurability, eigenvalue rigidity, and applications to locally symmetric spaces

> Andrei S. Rapinchuk University of Virginia

KIAS (Seoul) April, 2019

1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements
- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* (i.e., *diagonalizable*) matrices,

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* (i.e., *diagonalizable*) matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in \overline{F})$

be their eigenvalues.

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* (i.e., *diagonalizable*) matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in \overline{F})$

be their eigenvalues. Then γ_1 and γ_2 are *weakly commensurable*

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* (i.e., *diagonalizable*) matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in F)$

be their eigenvalues. Then γ_1 and γ_2 are *weakly commensurable*

if
$$\exists a_1, \ldots, a_{n_1}$$
, $b_1, \ldots, b_{n_2} \in \mathbb{Z}$

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* (i.e., *diagonalizable*) matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in F)$

be their eigenvalues. Then γ_1 and γ_2 are *weakly commensurable*

if $\exists a_1, \ldots, a_{n_1}$, $b_1, \ldots, b_{n_2} \in \mathbb{Z}$ such that

$$\lambda_1^{a_1}\cdots\lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1}\cdots\mu_{n_2}^{b_{n_2}} \neq 1.$$

Let $G_1 \subset \operatorname{GL}_{n_1}$ and $G_2 \subset \operatorname{GL}_{n_2}$ be reductive *F*-groups,

(2) Subgroups Γ_1 and Γ_2 are *weakly commensurable*

(2) Subgroups Γ_1 and Γ_2 are *weakly commensurable* if *every* semi-simple $\gamma_1 \in \Gamma_1$ of infinite order

(2) Subgroups Γ_1 and Γ_2 are *weakly commensurable* if *every* semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to *some* semi-simple $\gamma_2 \in \Gamma_2$ of infinite order,

(2) Subgroups Γ₁ and Γ₂ are *weakly commensurable* if *every* semi-simple γ₁ ∈ Γ₁ of infinite order is weakly commensurable to *some* semi-simple γ₂ ∈ Γ₂ of infinite order, and vice versa.

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ weakly commensurable

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ weakly commensurable

⁽¹⁾ \Leftrightarrow there exists maximal *F*-tori T_i of G_i such that $\gamma_i \in T_i(F)$ and characters $\chi_i \in X(T_i)$ (i = 1, 2) for which

 $\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1;$

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ weakly commensurable

⁽¹⁾ \Leftrightarrow there exists maximal *F*-tori T_i of G_i such that $\gamma_i \in T_i(F)$ and characters $\chi_i \in X(T_i)$ (i = 1, 2) for which

 $\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1;$

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ weakly commensurable

(1) there exists maximal *F*-tori T_i of G_i such that $\gamma_i \in T_i(F)$ and characters $\chi_i \in X(T_i)$ (i = 1, 2) for which

 $\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1;$

Remark. These reformulations show that weak commensurability is *independent* of matrix realizations of G_i 's.

• F – a field of characteristic zero

- F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups

- \bullet F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ *finitely generated* Zariski-dense subgroup, i = 1, 2

- \bullet F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ *finitely generated* Zariski-dense subgroup, i = 1, 2

Theorem 1

- F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ *finitely generated* Zariski-dense subgroup, i = 1, 2

Theorem 1

If Γ_1 and Γ_2 are weakly commensurable,

- F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ *finitely generated* Zariski-dense subgroup, i = 1, 2

Theorem 1 If Γ_1 and Γ_2 are weakly commensurable, **then** either G_1 and G_2 have same Killing-Cartan type,

- F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ *finitely generated* Zariski-dense subgroup, i = 1, 2

Theorem 1

If Γ_1 and Γ_2 are weakly commensurable, then either G_1 and G_2 have same Killing-Cartan type, or one of them is of type B_{ℓ} and the other of type C_{ℓ} ($\ell \ge 3$).

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} is trace field, which is minimal field of definition of $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g}).$

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} is trace field, which is minimal field of definition of $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g}).$

Theorem 2

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} is trace field, which is minimal field of definition of $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g}).$

Theorem 2												
If	Γ_1	and	Γ2	are	weakly	сотт	ensi	ırab	le, †	then	$K_{\Gamma_1}=K_{\Gamma_2}.$	
Let	9	(Γ)	deno	ote	algebraic	hull	of	Γ,	i.e.	Zari	ski-closure	of

 $\operatorname{Ad}_G(\Gamma)$ in $\operatorname{GL}(\mathfrak{g})$.

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} is trace field, which is minimal field of definition of $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g}).$

Theorem 2											
If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.											
Let $\mathfrak{G}(\Gamma)$ denote <i>algebraic hull</i> of Γ , i.e. Zariski-closure of $\mathrm{Ad}_G(\Gamma)$ in $\mathrm{GL}(\mathfrak{g})$).										
Recall: $\mathfrak{G}(\Gamma)$ is <i>adjoint</i> group defined over K_{Γ} ,											

(i.e., an F/K_{Γ} -form of adjoint group \overline{G})

 K_{Γ} = subfield of *F* generated by Tr Ad_{*G*}(γ), $\gamma \in \Gamma$.

 K_{Γ} is trace field, which is minimal field of definition of $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g}).$

Theorem 2														
If	Γ_1	and	Γ_2	are	weakly	сотт	iensi	urab	le, t	hen	$K_{\Gamma_1} =$	K_{Γ_2} .		
Let	t g	$S(\Gamma)$	denc	ote	algebraic	hull	of	Γ,	i.e.	Zaris Ad	ski-clo _G (Γ)	osure in (of GL(g).	

Recall: $\mathcal{G}(\Gamma)$ is *adjoint* group defined over K_{Γ} , (i.e., an F/K_{Γ} -form of adjoint group \overline{G})

 $\mathfrak{G}(\Gamma)$ is an *important characteristic* of Γ ; it *determines* Γ if it is arithmetic.

Andrei Rapinchuk (University of Virginia)
• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

- apart from ambiguity between types B_ℓ and $\mathsf{C}_\ell,$

 \mathfrak{G}_1 and \mathfrak{G}_2

have same type,

• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

• apart from ambiguity between types B_ℓ and $\mathsf{C}_\ell,$

 $\mathfrak{G}_1 \ and \ \mathfrak{G}_2$

have same type, (i.e., are isomorphic over closure \overline{K} or \mathbb{C}).

• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

• apart from ambiguity between types B_ℓ and $\mathsf{C}_\ell,$

 \mathfrak{G}_1 and \mathfrak{G}_2

have same type, (i.e., are isomorphic over closure \overline{K} or \mathbb{C}).

Thus, \mathcal{G}_1 and \mathcal{G}_2 are \overline{K}/K -forms of one another.

• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

• apart from ambiguity between types B_ℓ and $\mathsf{C}_\ell,$

 \mathfrak{G}_1 and \mathfrak{G}_2

have same type, (i.e., are isomorphic over closure \overline{K} or \mathbb{C}).

Thus, \mathcal{G}_1 and \mathcal{G}_2 are \overline{K}/K -forms of one another.

Critical question: How are G_1 and G_2 related over K?

• Their algebraic hulls $\mathfrak{G}_1 = \mathfrak{G}(\Gamma_1)$ and $\mathfrak{G}_2 = \mathfrak{G}(\Gamma_2)$ are defined over same field

$$K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

• apart from ambiguity between types B_ℓ and $\mathsf{C}_\ell,$

 \mathfrak{G}_1 and \mathfrak{G}_2

have same type, (i.e., are isomorphic over closure \overline{K} or \mathbb{C}).

Thus, \mathcal{G}_1 and \mathcal{G}_2 are \overline{K}/K -forms of one another.

Critical question: How are G_1 and G_2 related over K?

Recall: If Γ_1 and Γ_2 are *arithmetic* then

 $\mathfrak{G}_1 \simeq \mathfrak{G}_2$ over $K \Rightarrow \Gamma_1 \& \Gamma_2$ commensurable.

More specifically:

Finiteness conjecture for weakly commensurable groups.

Finiteness conjecture for weakly commensurable groups.

Let

- G_1 and G_2 be absolutely simple algebraic F-groups, char F = 0;
- $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$.

Finiteness conjecture for weakly commensurable groups.

• G_1 and G_2 be absolutely simple algebraic *F*-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathcal{G}_2^{(1)}, \ldots, \mathcal{G}_2^{(r)}$ of *F*/*K*-forms of G_2 such that

Finiteness conjecture for weakly commensurable groups.

• G_1 and G_2 be absolutely simple algebraic *F*-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathcal{G}_2^{(1)}, \ldots, \mathcal{G}_2^{(r)}$ of *F*/*K*-forms of G_2 such that if

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup *weakly commensurable to* Γ_1 ,

Finiteness conjecture for weakly commensurable groups.

• G_1 and G_2 be absolutely simple algebraic *F*-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathcal{G}_2^{(1)}, \ldots, \mathcal{G}_2^{(r)}$ of *F*/*K*-forms of G_2 such that if

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup *weakly commensurable to* Γ_1 ,

then Γ_2 can be conjugated into some $\mathcal{G}_2^{(i)}(K) (\subset \mathcal{G}_2(F))$.

Finiteness conjecture for weakly commensurable groups.

• G_1 and G_2 be absolutely simple algebraic *F*-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathcal{G}_2^{(1)}, \ldots, \mathcal{G}_2^{(r)}$ of *F*/*K*-forms of G_2 such that if

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup *weakly commensurable to* Γ_1 ,

then Γ_2 can be conjugated into some $\mathcal{G}_2^{(i)}(K) \ (\subset G_2(F))$.

(Additionally, one expects that r = 1 in certain situations ...)

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

FINITENESS CONJECTURE \Rightarrow There are only finitely many c.s.a. A'

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

FINITENESS CONJECTURE \Rightarrow There are only finitely many c.s.a. A' such that for $G' = PSL_{1,A'}$,

 \exists f.g. Zariski-dense subgroup $\Gamma' \subset G'(K)$

weakly commensurable to Γ .

Example. Let *A* be a central simple *K*-algebra, $G = PSL_{1,A}$. **Fix** a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

FINITENESS CONJECTURE \Rightarrow There are only finitely many c.s.a. A' such that for $G' = PSL_{1,A'}$,

 \exists f.g. Zariski-dense subgroup $\Gamma' \subset G'(K)$

weakly commensurable to Γ .

• Similar consequences for orthogonal groups of quadratic forms etc.

• *K* a number field (although Γ_1 does not have to be arithmetic)

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

• Some other cases (later)

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

• Some other cases (later)

General case is work in progress ...

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Let

• G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense arithmetic subgroup, i = 1, 2.

Let

• G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense arithmetic subgroup, i = 1, 2.

(1) Assume G_1 and G_2 are of same type, different from $A_n, D_{2n+1} (n > 1), and E_6.$

Let

• G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense arithmetic subgroup, i = 1, 2.

(1) Assume G_1 and G_2 are of same type, different from A_n , D_{2n+1} (n > 1), and E_6 .

If Γ_1 and Γ_2 are weakly commensurable, then they are commensurable.

Let

• G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense arithmetic subgroup, i = 1, 2.

(1) Assume G_1 and G_2 are of same type, different from A_n , D_{2n+1} (n > 1), and E_6 .

If Γ_1 and Γ_2 are weakly commensurable, then they are commensurable.

(2) In **all** cases, arithmetic $\Gamma_2 \subset G_2(F)$ weakly commensurable to a given arithmetic $\Gamma_1 \subset G_1(F)$, form finitely many commensurability classes.

Let

• G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense arithmetic subgroup, i = 1, 2.

(1) Assume G_1 and G_2 are of same type, different from A_n , D_{2n+1} (n > 1), and E_6 .

If Γ_1 and Γ_2 are weakly commensurable, then they are commensurable.

(2) In all cases, arithmetic $\Gamma_2 \subset G_2(F)$ weakly commensurable to a given arithmetic $\Gamma_1 \subset G_1(F)$, form finitely many commensurability classes.

Remark. Types excluded in (1) are *honest exceptions*.

(cont.)

(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

(cont.)

(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

In particular, Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.
(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

In particular, Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.

(4) (arithmeticity theorem) Let now $F = \mathbb{R}$ and $\Gamma_1 \subset G_1(\mathbb{R})$ be an arithmetic lattice.

(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

In particular, Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.

(4) (arithmeticity theorem) Let now $F = \mathbb{R}$ and $\Gamma_1 \subset G_1(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_2 \subset G_2(\mathbb{R})$ is a lattice weakly commensurable to Γ_1 , then Γ_2 is also arithmetic.

(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

In particular, Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.

(4) (arithmeticity theorem) Let now $F = \mathbb{R}$ and $\Gamma_1 \subset G_1(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_2 \subset G_2(\mathbb{R})$ is a lattice weakly commensurable to Γ_1 , then Γ_2 is also arithmetic.

Remark. Above results were proved in a more general context of *S*-arithmetic subgroups.

(3) If Γ_1 and Γ_2 are weakly commensurable, and $K = K_{\Gamma_1} = K_{\Gamma_2}$, then $\operatorname{rk}_K \mathfrak{G}(\Gamma_1) = \operatorname{rk}_K \mathfrak{G}(\Gamma_2)$.

In particular, Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.

(4) (arithmeticity theorem) Let now $F = \mathbb{R}$ and $\Gamma_1 \subset G_1(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_2 \subset G_2(\mathbb{R})$ is a lattice weakly commensurable to Γ_1 , then Γ_2 is also arithmetic.

Remark. Above results were proved in a more general context of *S*-arithmetic subgroups. (4) is valid for *S*-arithmetic lattices over any locally compact field *F*.

Let

• G_1 and G_2 be absolutely almost simple F-groups of types B_{ℓ} and C_{ℓ} ($\ell \ge 3$);

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense (K, \mathcal{G}_i) -arithmetic subgroup, i = 1, 2.

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense (K, \mathcal{G}_i) -arithmetic subgroup, i = 1, 2.

Then Γ_1 and Γ_2 are weakly commensurable **iff** \mathfrak{G}_1 and \mathfrak{G}_2 are *twins*, *i.e.*

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense (K, \mathcal{G}_i) -arithmetic subgroup, i = 1, 2.
- **Then** Γ_1 and Γ_2 are weakly commensurable **iff** \mathfrak{G}_1 and \mathfrak{G}_2 are *twins*, *i.e.*
- G_1 and G_2 are both split over all nonarchimedean places of K;

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense (K, \mathcal{G}_i) -arithmetic subgroup, i = 1, 2.
- **Then** Γ_1 and Γ_2 are weakly commensurable **iff** \mathfrak{G}_1 and \mathfrak{G}_2 are *twins*, *i.e.*
- G_1 and G_2 are both split over all nonarchimedean places of K;
- G_1 and G_2 are simultaneously either split or anisotropic over all archimedean places.

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense (K, \mathcal{G}_i) -arithmetic subgroup, i = 1, 2.

Then Γ_1 and Γ_2 are weakly commensurable **iff** \mathcal{G}_1 and \mathcal{G}_2 are *twins*, *i.e.*

- G_1 and G_2 are both split over all nonarchimedean places of K;
- G_1 and G_2 are simultaneously either split or anisotropic over all archimedean places.

Together, Theorems 3 and 4 cover all situations where Zarsiki-dense *S*-arithmetic subgroups of absolutely almost simple groups can be weakly commensurable.

Andrei Rapinchuk (University of Virginia)

1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Let *G* be a semi-simple algebraic \mathbb{R} -group; $\mathcal{G} = G(\mathbb{R})$.

Let *G* be a semi-simple algebraic \mathbb{R} -group; $\mathcal{G} = G(\mathbb{R})$.

- \mathcal{K} maximal compact subgroup of \mathcal{G} ;
 - $\mathfrak{X} := \mathcal{K} \backslash \mathcal{G}$ corresponding symmetric space.

Let *G* be a semi-simple algebraic \mathbb{R} -group; $\mathcal{G} = G(\mathbb{R})$.

• \mathcal{K} - maximal compact subgroup of \mathcal{G} ;

 $\mathfrak{X} := \mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.

• For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma} = \mathfrak{X}/\Gamma$ - corresponding locally symmetric space. $\operatorname{rk} \mathfrak{X}_{\Gamma} := \operatorname{rk}_{\mathbb{R}} G$

Let *G* be a semi-simple algebraic \mathbb{R} -group; $\mathcal{G} = G(\mathbb{R})$.

• \mathcal{K} - maximal compact subgroup of \mathcal{G} ;

 $\mathfrak{X} := \mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.

- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma} = \mathfrak{X}/\Gamma$ - corresponding locally symmetric space. $\operatorname{rk} \mathfrak{X}_{\Gamma} := \operatorname{rk}_{\mathbb{R}} G$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Let *G* be a semi-simple algebraic \mathbb{R} -group; $\mathcal{G} = G(\mathbb{R})$.

• \mathcal{K} - maximal compact subgroup of \mathcal{G} ;

 $\mathfrak{X} := \mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.

- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma} = \mathfrak{X}/\Gamma$ - corresponding locally symmetric space. $\operatorname{rk} \mathfrak{X}_{\Gamma} := \operatorname{rk}_{\mathbb{R}} G$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Now, let G_1 and G_2 be absolutely almost simple \mathbb{R} -groups, $\Gamma_i \subset \mathcal{G}_i = G_i(\mathbb{R})$ be a discrete torsion-free subgroup, \mathfrak{X}_{Γ_i} - corresponding locally symmetric space, i = 1, 2.

Results							Geometric applications					
Proposition (G. Prasad, A.R.)												
Assume	that	\mathfrak{X}_{Γ_1}	and	\mathfrak{X}_{Γ_2}	have	finite	volume	(i.e.,	Γ_1	and Γ_2	are	
lattices).												

Assume that \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have finite volume (i.e., Γ_1 and Γ_2 are lattices). If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable,

 $\mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_1}) = \mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_2}),$

Assume that \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have finite volume (i.e., Γ_1 and Γ_2 are lattices). If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable,

$$\mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_1}) = \mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_2}),$$

then Γ_1 and Γ_2 are weakly commensurable.

Assume that \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have finite volume (i.e., Γ_1 and Γ_2 are lattices). If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable,

$$\mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_1}) = \mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_2}),$$

then Γ_1 and Γ_2 are weakly commensurable.

For rank one locally symmetric spaces different from nonarithmetic Riemann surfaces, proof uses result of Gel'fond and Schneider (1934):

Assume that \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have finite volume (i.e., Γ_1 and Γ_2 are lattices). If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable,

$$\mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_1}) = \mathbb{Q} \cdot L(\mathfrak{X}_{\Gamma_2}),$$

then Γ_1 and Γ_2 are weakly commensurable.

For rank one locally symmetric spaces different from nonarithmetic Riemann surfaces, proof uses result of Gel'fond and Schneider (1934):

if α and β are algebraic numbers $\neq 0, 1$, then

 $\frac{\log \alpha}{\log \beta}$

is either rational or transcendental.

Conjecture (Shanuel) If $z_1, \ldots, z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q} ,

Conjecture (Shanuel) If $z_1, ..., z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q} , then the transcendence degree over \mathbb{Q} of field generated by

 $z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}$

is $\geq n$.

Conjecture (Shanuel) If $z_1, ..., z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q} , then the transcendence degree over \mathbb{Q} of field generated by

$$z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}$$

is $\geq n$.

A finite volume locally symmetric space \mathfrak{X}_{Γ} of a simple real group is automatically *arithmetically defined* unless \mathfrak{X} is either real hyperbolic space \mathbb{H}^n or complex hyperbolic space $\mathbb{H}^n_{\mathbb{C}}$.

(Margulis + Corlette + Gromov-Shoen)

Let (as above)

• \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If X_{Γ1} and X_{Γ2} are length-commensurable, then
 (1) X_{Γ2} is arithmetically defined;

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then
- (1) \mathfrak{X}_{Γ_2} is arithmetically defined;
- (2) \mathfrak{X}_{Γ_1} is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_2}$ is compact.

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then
- (1) \mathfrak{X}_{Γ_2} is arithmetically defined;
- (2) \mathfrak{X}_{Γ_1} is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_2}$ is compact.
- The set of \mathfrak{X}_{Γ_2} 's length-commensurable to \mathfrak{X}_{Γ_1} is a union of *finitely many commensurability classes.*

Let (as above)

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then
- (1) \mathfrak{X}_{Γ_2} is arithmetically defined;
- (2) \mathfrak{X}_{Γ_1} is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_2}$ is compact.
- The set of \mathfrak{X}_{Γ_2} 's length-commensurable to \mathfrak{X}_{Γ_1} is a union of *finitely many commensurability classes.*

It consists of single commensurability class if G_1 and G_2 are of same type different from A_n , D_{2n+1} (n > 1), or E_6 .

Corollary

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are length-commensurable, **then** they are commensurable.
Corollary

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are length-commensurable, **then** they are commensurable.

• Hyperbolic manifolds of different dimensions are **not** length-commensurable.

Corollary

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$. If M_1 and M_2 are length-commensurable, then they are commensurable.

• Hyperbolic manifolds of different dimensions are **not** length-commensurable.

• A *complex* hyperbolic manifold cannot be lengthcommensurable to a *real* or *quaternionic* hyperbolic manifold, etc.

 \bullet either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or

- \bullet either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or
- $L(\mathfrak{X}_{\Gamma_1})$ and $L(\mathfrak{X}_{\Gamma_2})$ are very different.

- either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or
- $L(\mathfrak{X}_{\Gamma_1})$ and $L(\mathfrak{X}_{\Gamma_2})$ are very different.

For a Riemannian manifold *M*, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by L(M).

- either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or
- $L(\mathfrak{X}_{\Gamma_1})$ and $L(\mathfrak{X}_{\Gamma_2})$ are very different.

For a Riemannian manifold *M*, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by L(M).

For Riemannian M_1 and M_2 , we set $\mathfrak{F}_i = \mathfrak{F}(M_i)$, i = 1, 2.

- either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or
- $L(\mathfrak{X}_{\Gamma_1})$ and $L(\mathfrak{X}_{\Gamma_2})$ are very different.

For a Riemannian manifold *M*, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by L(M).

For Riemannian M_1 and M_2 , we set $\mathfrak{F}_i = \mathfrak{F}(M_i)$, i = 1, 2.

 (T_i) Compositum $\mathcal{F}_1\mathcal{F}_2$ has infinite transcendence degree over \mathcal{F}_{3-i} .

- either \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, or
- $L(\mathfrak{X}_{\Gamma_1})$ and $L(\mathfrak{X}_{\Gamma_2})$ are very different.

For a Riemannian manifold *M*, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by L(M).

For Riemannian M_1 and M_2 , we set $\mathfrak{F}_i = \mathfrak{F}(M_i)$, i = 1, 2.

 (T_i) Compositum $\mathcal{F}_1\mathcal{F}_2$ has infinite transcendence degree over \mathcal{F}_{3-i} .

So, $L(M_i)$ contains "many" elements that are algebraically independent from *all* elements of $L(M_{3-i})$.

 (N_i) $L(M_i) \not\subset A \cdot \mathbb{Q} \cdot L(M_{3-i})$ for any finite $A \subset \mathbb{R}$.

 (N_i) $L(M_i) \not\subset A \cdot \mathbb{Q} \cdot L(M_{3-i})$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

 (N_i) $L(M_i) \not\subset A \cdot \mathbb{Q} \cdot L(M_{3-i})$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_1 and G_2 are of same type different from A_n , D_{2n+1} (n > 1) and E_6 , and that Γ_1 and Γ_2 are arithmetic.

 (N_i) $L(M_i) \not\subset A \cdot \mathbb{Q} \cdot L(M_{3-i})$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_1 and G_2 are of same type different from A_n , D_{2n+1} (n > 1) and E_6 , and that Γ_1 and Γ_2 are arithmetic. **Then** either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are commensurable (in particular, length-commensurable),

 (N_i) $L(M_i) \not\subset A \cdot \mathbb{Q} \cdot L(M_{3-i})$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_1 and G_2 are of same type different from A_n , D_{2n+1} (n > 1) and E_6 , and that Γ_1 and Γ_2 are arithmetic. **Then** either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are commensurable (in particular, length-commensurable), or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.

Assume that both G_1 and G_2 are of one of following types: A_n , D_{2n+1} (n > 1) or E_6 , subgroups Γ_1 and Γ_2 are arithmetic, and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1, 2\}$.

Assume that both G_1 and G_2 are of one of following types: A_n , D_{2n+1} (n > 1) or E_6 , subgroups Γ_1 and Γ_2 are arithmetic, and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1, 2\}$.

Then either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are length-commensurable (although not necessarily commensurable),

Assume that both G_1 and G_2 are of one of following types: A_n , D_{2n+1} (n > 1) or E_6 , subgroups Γ_1 and Γ_2 are arithmetic, and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1, 2\}$.

Then either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are length-commensurable (although not necessarily commensurable), or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.

Assume that both G_1 and G_2 are of one of following types: A_n , D_{2n+1} (n > 1) or E_6 , subgroups Γ_1 and Γ_2 are arithmetic, and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1, 2\}$.

Then either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are length-commensurable (although not necessarily commensurable), or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.

Corollary

Let M_i (i = 1, 2) be quotients of real hyperbolic space \mathbb{H}^{d_i} with $d_i \neq 3$ by a torsion free discrete subgroup Γ_i of $G_i(\mathbb{R})$ where $G_i = \text{PSO}(d_i, 1)$.

Assume that both G_1 and G_2 are of one of following types: A_n , D_{2n+1} (n > 1) or E_6 , subgroups Γ_1 and Γ_2 are arithmetic, and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1, 2\}$.

Then either $M_1 = \mathfrak{X}_{\Gamma_1}$ and $M_2 = \mathfrak{X}_{\Gamma_2}$ are length-commensurable (although not necessarily commensurable), or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.

Corollary

Let M_i (i = 1, 2) be quotients of real hyperbolic space \mathbb{H}^{d_i} with $d_i \neq 3$ by a torsion free discrete subgroup Γ_i of $G_i(\mathbb{R})$ where $G_i = \text{PSO}(d_i, 1)$.

(1) If $d_1 > d_2$ then (T_1) and (N_1) hold.

(cont'd)

Assume now that $d_1 = d_2 =: d \neq 3$ and Γ_1 and Γ_2 are arithmetic.

(cont'd)

Assume now that $d_1 = d_2 =: d \neq 3$ and Γ_1 and Γ_2 are arithmetic.

(2) If *d* is even or $\equiv 3 \pmod{4}$, then either M_1 and M_2 are commensurable, hence length-commensurable, or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.

(cont'd)

Assume now that $d_1 = d_2 =: d \neq 3$ and Γ_1 and Γ_2 are arithmetic.

- (2) If d is even or $\equiv 3 \pmod{4}$, then either M_1 and M_2 are commensurable, hence length-commensurable, or (T_i) and (N_i) hold for at least one $i \in \{1, 2\}$.
- (3) If $d \equiv 1 \pmod{4}$ and in addition $K_{\Gamma_i} \neq \mathbb{Q}$ for at least one $i \in \{1,2\}$ then either M_1 and M_2 are lengthcommensurable (although not necessarily commensurable), or (T_i) and (N_i) hold for at least one $i \in \{1,2\}$.

Assume that G_1 and G_2 are either of same type or one of them is of type B_ℓ and other of type C_ℓ , and let $M_i = \mathfrak{X}_{\Gamma_i}$ (i = 1, 2)be arithmetically defined locally symmetric spaces.

Assume that G_1 and G_2 are either of same type or one of them is of type B_ℓ and other of type C_ℓ , and let $M_i = \mathfrak{X}_{\Gamma_i}$ (i = 1, 2)be arithmetically defined locally symmetric spaces.

If M_2 is compact and M_1 is not, then (T_1) and (N_1) hold.

Assume that G_1 and G_2 are either of same type or one of them is of type B_ℓ and other of type C_ℓ , and let $M_i = \mathfrak{X}_{\Gamma_i}$ (i = 1, 2)be arithmetically defined locally symmetric spaces.

If M_2 is compact and M_1 is not, then (T_1) and (N_1) hold.

Assume that G_1 and G_2 are either of same type or one of them is of type B_ℓ and other of type C_ℓ , and let $M_i = \mathfrak{X}_{\Gamma_i}$ (i = 1, 2)be arithmetically defined locally symmetric spaces.

If M_2 is compact and M_1 is not, then (T_1) and (N_1) hold.

Results for isospectral locally symmetric spaces are derived from those for length-commensurable spaces.

1 Result

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

A is generic over F if

- A is generic over F if
- *A* is diagonalizable,

- A is generic over F if
- A is diagonalizable,
- $\chi_A(t)$ is irreducible over *F*, and

- A is generic over F if
- A is diagonalizable,
- $\chi_A(t)$ is irreducible over *F*, and
- Galois group of $\chi_A(t)$ over *F* is symmetric group S_n .

- A is generic over F if
- A is diagonalizable,
- $\chi_A(t)$ is irreducible over *F*, and
- Galois group of $\chi_A(t)$ over *F* is symmetric group S_n .

It is well-known how to construct irreducible polynomials of degree *n* over \mathbb{Q} with Galois group S_n for any $n \ge 2$

- A is generic over F if
- A is diagonalizable,
- $\chi_A(t)$ is irreducible over *F*, and
- Galois group of $\chi_A(t)$ over *F* is symmetric group S_n .

It is well-known how to construct irreducible polynomials of degree *n* over \mathbb{Q} with Galois group S_n for any $n \ge 2$

 \Rightarrow GL_n(Q) contains Q-generic elements.

- A is generic over F if
- A is diagonalizable,
- $\chi_A(t)$ is irreducible over *F*, and
- Galois group of $\chi_A(t)$ over *F* is symmetric group S_n .

It is well-known how to construct irreducible polynomials of degree *n* over \mathbb{Q} with Galois group S_n for any $n \ge 2$

 \Rightarrow GL_n(Q) contains Q-generic elements.

We will now generalize notion of generic elements and existence theorem to arbitrary semi-simple groups.
Recall: action of $\mathcal{G} = \text{Gal}(\overline{F}/F)$ on character group X(T) gives rise to group homomorphism

 $\theta_T \colon \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi).$

Recall: action of $\mathcal{G} = \text{Gal}(\overline{F}/F)$ on character group X(T) gives rise to group homomorphism

 $\theta_T \colon \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi).$

Note: Im $\theta_T \simeq \text{Gal}(E/F)$ where *E* minimal splitting field of *T*.

Recall: action of $\mathcal{G} = \text{Gal}(\overline{F}/F)$ on character group X(T) gives rise to group homomorphism

 $\theta_T \colon \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi).$

Note: Im $\theta_T \simeq \text{Gal}(E/F)$ where *E* minimal splitting field of *T*.

Definition.

(1) *T* is generic over *F* if $\text{Im } \theta_T$ contains Weyl group $W(\Phi)$.

Recall: action of $\mathcal{G} = \text{Gal}(\overline{F}/F)$ on character group X(T) gives rise to group homomorphism

 $\theta_T \colon \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi).$

Note: Im $\theta_T \simeq \text{Gal}(E/F)$ where *E* minimal splitting field of *T*.

Definition.

(1) *T* is generic over *F* if $\text{Im } \theta_T$ contains Weyl group $W(\Phi)$.

(2) A semi-simple element $\gamma \in G(F)$ is generic over F if $T := Z_G(\gamma)^\circ$ is a torus (i.e., γ is *regular*) which is generic over F.

Theorem 9 (G. Prasad, A.R.)

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F,

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

(1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

- (1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
- (2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

- (1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
- (2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

Remarks. "Components" in (1) refer to almost direct product $G = G_1 \cdots G_r$ of simple groups.

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

- (1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
- (2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

Remarks. "Components" in (1) refer to almost direct product $G = G_1 \cdots G_r$ of simple groups. (2) means that set of *F*-regular elements is open in Γ for profinite topology.

is minimal possible.

is minimal possible.

Such γ is automatically regular semi-simple and $T = Z_G(\gamma)^{\circ}$ contains a maximal \mathbb{R} -split torus.

is minimal possible.

Such γ is automatically regular semi-simple and $T = Z_G(\gamma)^{\circ}$ contains a maximal \mathbb{R} -split torus.

• If $F \subset \mathbb{R}$ then γ in (1) can be selected to be \mathbb{R} -regular.

is minimal possible.

Such γ is automatically regular semi-simple and $T = Z_G(\gamma)^{\circ}$ contains a maximal \mathbb{R} -split torus.

• If $F \subset \mathbb{R}$ then γ in (1) can be selected to be \mathbb{R} -regular.

Such elements were used to study dynamics of actions, rigidity, Auslander problem about properly discontinuous groups of affine transformations, etc.

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T = Z_G(\gamma)^{\circ}$.

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T = Z_G(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $GL_n(\mathbb{R})$ are Zariski-closed, one obtains that

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T = Z_G(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $GL_n(\mathbb{R})$ are Zariski-closed, one obtains that

Any dense subgroup of compact semi-simple Lie group contains a *Kronecker element*, *i.e.* an element such that closure of cyclic subgroup generated by it is a maximal torus.

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T = Z_G(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $GL_n(\mathbb{R})$ are Zariski-closed, one obtains that

Any dense subgroup of compact semi-simple Lie group contains a *Kronecker element*, *i.e.* an element such that closure of cyclic subgroup generated by it is a maximal torus.

This is false for dense subgroups of compact tori!

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements

Division algebras with the same maximal subfields

- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements

Division algebras with the same maximal subfields

- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

• D_1 and D_2 have same maximal subfields if

• deg D_1 = deg D_2 =: n;

• for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

- D_1 and D_2 have same maximal subfields if
 - $\deg D_1 = \deg D_2 =: n;$

• for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

 $\bullet D_1$ and D_2 have same maximal subfields if

•
$$\deg D_1 = \deg D_2 =: n;$$

• for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K.

A. Reid (1992): *Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.*

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

A. Reid (1992): *Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.*

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

However, most Riemann surfaces are not arithmetic

A. Reid (1992): *Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.*

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

However, most Riemann surfaces are not arithmetic \Rightarrow One needs to understand to what degree this fact extends to more general fields
Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

However, most Riemann surfaces are not arithmetic \Rightarrow One needs to understand to what degree this fact extends to more general fields

We will see a statement about *arbitrary* Riemann surfaces later,

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

However, most Riemann surfaces are not arithmetic \Rightarrow One needs to understand to what degree this fact extends to more general fields

We will see a statement about *arbitrary* Riemann surfaces later, but first let us analyze situation in detail.

Andrei Rapinchuk (University of Virginia)

"Most" Riemann surfaces are of the form:

• Let
$$\mathbb{H} = \{ x + iy \mid y > 0 \}.$$

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

•

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• <u>Some</u> properties of *M* can be understood in terms of the *associated quaternion algebra.*

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• <u>Some</u> properties of *M* can be understood in terms of the *associated quaternion algebra*.

Let

• π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• <u>Some</u> properties of *M* can be understood in terms of the *associated quaternion algebra*.

Let

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$
- $\tilde{\Gamma} = \pi^{-1}(\Gamma) \subset M_2(\mathbb{R}).$

• Let
$$\mathbb{H} = \{ x + iy \mid y > 0 \}.$$

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• <u>Some</u> properties of *M* can be understood in terms of the *associated quaternion algebra*.

Let

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$
- $\tilde{\Gamma} = \pi^{-1}(\Gamma) \subset M_2(\mathbb{R}).$

Set $A_{\Gamma} = \mathbb{Q}[\tilde{\Gamma}^{(2)}] \subset M_2(\mathbb{R})$, $\tilde{\Gamma}^{(2)} \subset \tilde{\Gamma}$ generated by squares.

Andrei Rapinchuk (University of Virginia)

(trace field).

(trace field).

(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

(trace field).

(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

• If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;

(trace field).

(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

- If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ , but is an invariant of the commensurability class of Γ .

Andrei Rapinchuk (University of Virginia)

• geometrically: a closed geodesic $c_{\gamma} \subset M$,

if
$$\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1} \end{pmatrix}$$
 $(t_{\gamma} > 1)$ then *length* $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

• *geometrically*: a closed geodesic $c_{\gamma} \subset M$,

if
$$\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0\\ 0 & t_{\gamma}^{-1} \end{pmatrix}$$
 $(t_{\gamma} > 1)$ then *length* $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

• *algebraically*: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

• geometrically: a closed geodesic $c_{\gamma} \subset M$,

if
$$\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0\\ 0 & t_{\gamma}^{-1} \end{pmatrix}$$
 $(t_{\gamma} > 1)$ then *length* $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

• algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_i = \mathbb{H}/\Gamma_i$ (i = 1, 2) be Riemann surfaces.

• *geometrically*: a closed geodesic $c_{\gamma} \subset M$,

if
$$\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0\\ 0 & t_{\gamma}^{-1} \end{pmatrix}$$
 $(t_{\gamma} > 1)$ then *length* $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

• algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_i = \mathbb{H}/\Gamma_i$ (i = 1, 2) be Riemann surfaces.

Assume that M_1 and M_2 are length-commensurable,

• geometrically: a closed geodesic $c_{\gamma} \subset M$,

if
$$\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0\\ 0 & t_{\gamma}^{-1} \end{pmatrix}$$
 $(t_{\gamma} > 1)$ then *length* $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

• algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_i = \mathbb{H}/\Gamma_i$ (i = 1, 2) be Riemann surfaces.

Assume that M_1 and M_2 are *length-commensurable*, i.e.

$$\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2).$$

$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$

$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

Given closed geodesics $c_{\gamma_i} ⊂ M_i$ for i = 1, 2 such that
 $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n ∈ \mathbb{Z}),$

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

- ② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$
 - elements γ_1^m and γ_2^n are conjugate

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$

elements γ_1^m and γ_2^n are conjugate \Rightarrow

 $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$

elements γ_1^m and γ_2^n are conjugate \Rightarrow

 $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

So, A_{Γ_1} and A_{Γ_2} share "lots" of maximal etale subalgebras.

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z}),$

elements γ_1^m and γ_2^n are conjugate \Rightarrow

 $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

So, A_{Γ_1} and A_{Γ_2} share "lots" of maximal etale subalgebras. (Not all – but we will ignore it for now ...)

Andrei Rapinchuk (University of Virginia)

• For M_1 and M_2 to be commensurable, A_{Γ_1} and A_{Γ_2} must be isomorphic.

• For M_1 and M_2 to be commensurable, A_{Γ_1} and A_{Γ_2} must be isomorphic.

Thus, proving that length-commensurable M_1 and M_2 are commensurable

• For M_1 and M_2 to be commensurable, A_{Γ_1} and A_{Γ_2} must be isomorphic.

Thus, proving that length-commensurable M_1 and M_2 are commensurable <u>must</u> involve answering a version of question (*), at least implicitly.
• For M_1 and M_2 to be commensurable, A_{Γ_1} and A_{Γ_2} must be isomorphic.

Thus, proving that length-commensurable M_1 and M_2 are commensurable <u>must</u> involve answering a version of question (*), at least implicitly.

We will see what can be said about A_{Γ} 's for length-commensurable Riemann surfaces.

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*.

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields,

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields, i.e. for *F*/*K* we have

 $D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties),

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties), which are infinite extensions of *K*.

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same splitting fields, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then
$$\langle [D_1] \rangle = \langle [D_2] \rangle$$
 in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties), which are infinite extensions of *K*.

What happens if one allows only splitting fields of <u>finite degree</u>, or just <u>maximal subfields</u>?

Andrei Rapinchuk (University of Virginia)

• Amitsur's Theorem is no longer true in this setting.

This leads to question (*) and its variations.

This leads to question (*) and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

This leads to question (*) and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

• Yes – D. Saltman

This leads to question (*) and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements

Division algebras with the same maximal subfields

• Algebraic and geometric motivations

• Genus of a division algebra

Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Let D be a finite-dimensional central division algebra over K.

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element?

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;genus of every division algebra is finite.

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;genus of every division algebra is finite.

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that *D* is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia)

Andrei Rapinchuk (University of Virginia)

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k,

then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Same statement is true for division algebras of exponent 2.

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2.

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2. (Indeed, $[D^{\text{op}}] \in \mathbf{gen}(D)$ and $[D^{\text{op}}] \neq [D]$.)

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2. (Indeed, $[D^{\mathrm{op}}] \in \mathbf{gen}(D)$ and $[D^{\mathrm{op}}] \neq [D]$.)
- gen(D) can be infinite.

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2. (Indeed, $[D^{\mathrm{op}}] \in \mathbf{gen}(D)$ and $[D^{\mathrm{op}}] \neq [D]$.)
- gen(D) can be infinite.

(For quaternions - J.S. Meyer (2014), for algebras of prime degree p > 2 - S.V. Tikhonov (2016).)

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2. (Indeed, $[D^{\mathrm{op}}] \in \mathbf{gen}(D)$ and $[D^{\mathrm{op}}] \neq [D]$.)
- gen(D) can be infinite.

(For quaternions - J.S. Meyer (2014), for algebras of prime degree p > 2 - S.V. Tikhonov (2016).)

Construction yields examples over fields that are infinitely generated

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2. (Indeed, $[D^{\mathrm{op}}] \in \mathbf{gen}(D)$ and $[D^{\mathrm{op}}] \neq [D]$.)
- gen(D) can be infinite.

(For quaternions - J.S. Meyer (2014), for algebras of prime degree p > 2 - S.V. Tikhonov (2016).)

Construction yields examples over fields that are infinitely generated

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.
Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K = \mathbb{Q}$)

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K = \mathbb{Q}$)

• If D_1 and D_2 already have same maximal subfields, we are done.

Otherwise, pick $K(\sqrt{d_1}) \hookrightarrow D_1$ such that $K(\sqrt{d_1}) \not\leftrightarrow D_2$.

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K = \mathbb{Q}$)

• If D_1 and D_2 already have same maximal subfields, we are done.

Otherwise, pick $K(\sqrt{d_1}) \hookrightarrow D_1$ such that $K(\sqrt{d_1}) \not\hookrightarrow D_2$.

(E.g.,
$$\mathbb{Q}(\sqrt{11}) \hookrightarrow D_1$$
 but $\mathbb{Q}(\sqrt{11}) \not\leftrightarrow D_2$.)

- Find K_1/K such that

- Find K_1/K such that

For K_1 one can take the function field of a quadric.

For K_1 one can take the function field of a quadric.

In our example, K_1 is function field of $-x_1^2 + 7x_2^2 + 7x_3^2 = 11x_4^2$

For K_1 one can take the function field of a quadric.

In our example, K_1 is function field of $-x_1^2 + 7x_2^2 + 7x_3^2 = 11x_4^2$

Then (2) is obvious, and (1) follows from the fact that $x_0^2 + x_1^2 - 21x_2^2 - 21x_3^2$

remains anisotropic over K_1 .

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

For *infinite* genus, one starts with $D_p = \left(\frac{-1, p}{Q}\right)$, $p \equiv 3 \pmod{4}$.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

For *infinite* genus, one starts with $D_p = \left(\frac{-1, p}{Q}\right)$, $p \equiv 3 \pmod{4}$.

Note that \mathcal{K} is infinitely generated.

Andrei Rapinchuk (University of Virginia)

Theorem 11 (C+R²)Let K be a finitely generated field.

Theorem 11 (C+R²)Let K be a finitely generated field. Then for any centraldivision K-algebra D the genus gen(D) is finite.

Theorem 11 (C+R²) Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is <u>finite</u>.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

Let K *be a* finitely generated *field. Then for any central division* K*-algebra* D *the genus* **gen**(D) *is finite.*

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is finite.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree nhaving same maximal subfields,

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is finite.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree nhaving same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

Let K *be a* finitely generated *field. Then for any central division* K*-algebra* D *the genus* **gen**(D) *is finite.*

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree nhaving same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

(When *n* is divisible by char $K^{(v)}$, we need some additional assumptions)

• Recall that a c. s. a. A over K (or its class $[A] \in Br(K)$) is *unramified* at v if

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v.$

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v.$$

If $(n, \operatorname{char} K^{(v)}) = 1$ or $K^{(v)}$ is perfect, there is a *residue map* $r_v: {}_n \operatorname{Br}(K) \longrightarrow H^1(\mathfrak{G}^{(v)}, \mathbb{Z}/n\mathbb{Z}),$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v.$$

If $(n, \operatorname{char} K^{(v)}) = 1$ or $K^{(v)}$ is perfect, there is a *residue map* $r_v: {}_n\operatorname{Br}(K) \longrightarrow H^1(\mathfrak{G}^{(v)}, \mathbb{Z}/n\mathbb{Z}),$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

• Then $x \in {}_{n}Br(K)$ is unramified at $v \Leftrightarrow r_{v}(x) = 0$.

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v.$$

If $(n, \operatorname{char} K^{(v)}) = 1$ or $K^{(v)}$ is perfect, there is a *residue map* $r_v: {}_n\operatorname{Br}(K) \longrightarrow H^1(\mathfrak{G}^{(v)}, \mathbb{Z}/n\mathbb{Z}),$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

• Then $x \in {}_{n}Br(K)$ is unramified at $v \Leftrightarrow r_{v}(x) = 0$.

Given a set *V* of discrete valuations of *K*, one defines corresponding *unramified Brauer group*:

 $Br(K)_V = \{ x \in Br(K) \mid x \text{ unramified at all } v \in V \}.$

• To prove Theorem 1 (Stability Theorem) we use: if K = k(x) and V = set of geometric places, then ${}_{n}Br(K)_{V} = {}_{n}Br(k)$

when $(n, \operatorname{char} k) = 1$ (Faddeev)

• To prove Theorem 1 (Stability Theorem) we use: if K = k(x) and V = set of geometric places, then ${}_{n}Br(K)_{V} = {}_{n}Br(k)$

when $(n, \operatorname{char} k) = 1$ (Faddeev)

• There are **two** proofs of Theorem 2. **Both** show that a finitely generated field *K* can be equipped with set *V* of discrete valuations so that one can make some finiteness statements about unramified Brauer group.

• To prove Theorem 1 (Stability Theorem) we use: if K = k(x) and V = set of geometric places, then ${}_{n}Br(K)_{V} = {}_{n}Br(k)$

when $(n, \operatorname{char} k) = 1$ (Faddeev)

- There are **two** proofs of Theorem 2. **Both** show that a finitely generated field *K* can be equipped with set *V* of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
 - More recent argument works in all characteristics, **but** gives no estimate of size of **gen**(*D*).
 - Earlier argument works when (n, char K) = 1, gives finiteness of ${}_{n}\text{Br}(K)_{V}$ and estimate

where *r* is number of $v \in V$ that ramify in *D*.

• To prove Theorem 1 (Stability Theorem) we use: if K = k(x) and V = set of geometric places, then ${}_{n}\text{Br}(K)_{V} = {}_{n}\text{Br}(k)$

when $(n, \operatorname{char} k) = 1$ (Faddeev)

- There are **two** proofs of Theorem 2. **Both** show that a finitely generated field *K* can be equipped with set *V* of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
 - More recent argument works in all characteristics, **but** gives no estimate of size of **gen**(*D*).

• Earlier argument works when $(n, \operatorname{char} K) = 1$, gives finiteness of ${}_{n}\operatorname{Br}(K)_{V}$ and estimate $|\operatorname{gen}(D)| \leq |{}_{n}\operatorname{Br}(K)_{V}| \cdot \varphi(n)^{r}$

where *r* is number of $v \in V$ that ramify in *D*.

• To prove Theorem 1 (Stability Theorem) we use: if K = k(x) and V = set of geometric places, then ${}_{n}\text{Br}(K)_{V} = {}_{n}\text{Br}(k)$

when $(n, \operatorname{char} k) = 1$ (Faddeev)

- There are **two** proofs of Theorem 2. **Both** show that a finitely generated field *K* can be equipped with set *V* of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
 - More recent argument works in all characteristics, **but** gives no estimate of size of **gen**(*D*).
 - Earlier argument works when (n, char K) = 1, gives finiteness of ${}_{n}\text{Br}(K)_{V}$ and estimate

 $|\operatorname{gen}(D)| \leq |_{n}\operatorname{Br}(K)_{V}| \cdot \varphi(n)^{r}$

where *r* is number of $v \in V$ that ramify in *D*.

Andrei Rapinchuk (University of Virginia)

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.
Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

- The answer is not known for any finitely generated K.
- One can construct examples where $_2Br(K)_V$ is "large."

Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements

Division algebras with the same maximal subfields

- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

• To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field *K*. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field *K*. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

• Let *G* be an absolutely almost simple *K*-group.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

Let G be an absolutely almost simple K-group.
 gen_K(G) = set of isomorphism classes of K-forms G' of G having same K-isomorphism classes of maximal K-tori.

Question 1'. When does $gen_K(G)$ reduce to a single element?

Theorem 12 (G. Prasad-A.R.)

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $gen_K(G)$ is finite;

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_{K}(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture. (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture. (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;

(2) If G is an absolutely almost simple group over a finitely generated field K of "good" characteristic then $\operatorname{gen}_K(G)$ is finite.

Andrei Rapinchuk (University of Virginia)

• Results for division algebras do **not** automatically imply results for $G = SL_{m.D.}$

• Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

• Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

Theorem 13 (C+R²)

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$ we have $|\mathbf{gen}_K(G)| = 1$. • Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

Theorem 13 (C+R²)

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$ we have $|\mathbf{gen}_K(G)| = 1$.

(2) Let $G = SL_{m,D}$, where D is a central division algebra over a finitely generated field K. Then $gen_K(G)$ is finite.

Andrei Rapinchuk (University of Virginia)

Theorem 14 (C + R²)

Let K = k(C) where C is a geometrically integral smooth

curve over a number field k,

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

• Spin_n(q), q a quadratic form over K and n is <u>odd</u>, or

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over quadratic extension L/K.

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over quadratic extension L/K. Then $gen_K(G)$ is finite.

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over quadratic extension L/K. Then $gen_K(G)$ is finite.

Theorem 15 (C+R²)

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over quadratic extension L/K. Then $gen_K(G)$ is finite.

Theorem 15 ($C+R^2$)

Let G be a simple algebraic group of type G_2 .

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, *h* a hermitian form over quadratic extension L/K. Then $gen_K(G)$ is finite.

Theorem 15 (C+R²)

Let G be a simple algebraic group of type G_2 . (1) If K = k(x), where k is a number field, then $|\mathbf{gen}_K(G)| = 1$;

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, *h* a hermitian form over quadratic extension L/K. Then $gen_K(G)$ is finite.

Theorem 15 (C+R²)

Let G be a simple algebraic group of type G₂.
(1) If K = k(x), where k is a number field, then |gen_K(G)| = 1;
(2) If K = k(x₁,...,x_r) or k(C), where k is a number field, then gen_K(G) is finite.

Andrei Rapinchuk (University of Virginia)

Generally speaking, these (and other similar) results were obtained by *extending* strategy used for *division algebras*.

Generally speaking, these (and other similar) results were obtained by *extending* strategy used for *division algebras*.

What is a substitute for notion of *unramified algebra?*

Generally speaking, these (and other similar) results were obtained by *extending* strategy used for *division algebras*.

What is a substitute for notion of *unramified algebra?*

This brings us to groups with good reduction.

1 Result

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems
1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements
- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Let G be an absolutely almost simple algebraic K-group

• G has good reduction at a discrete valuation v of K

• *G* has *good reduction* at a discrete valuation v of K if there exists a *reductive group scheme G* over valuation ring $\mathcal{O}_v \subset K_v$ of completion such that

1 generic fiber $\mathcal{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$;

Special fiber (reduction) <u>G</u>^(v) = 𝔅 ⊗_{𝔅ν} K^(v) (K^(v) residue field) is a connected simple group of same type as *G*.

• *G* has *good reduction* at a discrete valuation v of K if there exists a *reductive group scheme G* over valuation ring $\mathcal{O}_v \subset K_v$ of completion such that

Q generic fiber $\mathfrak{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$;

Special fiber (reduction) <u>G</u>^(v) = 𝔅 ⊗_{𝔅ν} K^(v) (K^(v) residue field) is a connected simple group of same type as *G*.

• *G* has *good reduction* at a discrete valuation v of K if there exists a *reductive group scheme G* over valuation ring $\mathcal{O}_v \subset K_v$ of completion such that

Q generic fiber $\mathfrak{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$;

② special fiber (reduction) $\underline{G}^{(v)} = \mathcal{G} \otimes_{\mathcal{O}_v} K^{(v)}$ (*K*^(*v*) residue field) is a connected simple group of same type as *G*.

0. If G is K-split then G has a good reduction at any v,

0. If *G* is *K*-split then *G* has a good reduction at any *v*, given by Chevalley construction.

0. If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$

0. If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$

(in other words, A is unramified at v).

0. If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$

(in other words, A is unramified at v).

2. $G = \text{Spin}_n(q)$ has good reduction at v

0. If *G* is *K*-split then *G* has a good reduction at any *v*, given by Chevalley construction.

1. $G = SL_{1,A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

 $A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v$

(in other words, A is unramified at v).

2. $G = \operatorname{Spin}_n(q)$ has good reduction at v if $q \sim \lambda(a_1x_1^2 + \cdots + a_nx_n^2)$ with $\lambda \in K_v^{\times}$, $a_i \in \mathcal{O}_v^{\times}$ (assuming that char $K^{(v)} \neq 2$).

What can one say about those \overline{K}/K -forms of G that have good reduction at all $v \in V$?

What can one say about those \overline{K}/K -forms of G that have good reduction at all $v \in V$?

To make this problem *meaningful* one needs to specify K, V and/or G.

What can one say about those \overline{K}/K -forms of G that have good reduction at all $v \in V$?

To make this problem *meaningful* one needs to specify K, V and/or G.

Most popular case: K field of fractions of Dedekind ring R, and V consists of places associated with maximal ideals of R.

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly and in some cases even classified.

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and assume that V contains almost all places of K. Then number of K-forms of G that have good reduction at all $v \in V$ is finite.

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$ then $G' = G'_0 \otimes_k K$ for some k-form G'_0 of G_0 .

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$ then $G' = G'_0 \otimes_k K$ for some k-form G'_0 of G_0 .

Case $R = k[x, x^{-1}]$, and $V = \{ v_{p(x)} | p(x) \in k[x] \text{ irreducible}, \neq x \}.$

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$ then $G' = G'_0 \otimes_k K$ for some k-form G'_0 of G_0 .

Case
$$R = k[x, x^{-1}]$$
, and $V = \{ v_{p(x)} | p(x) \in k[x] \text{ irreducible, } \neq x \}.$

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. Then K-forms of $G_0 \otimes_k K$ that have good reduction at all $v \in V$ are in bijection with $H^1(k((x)), G_0)$.

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$ then $G' = G'_0 \otimes_k K$ for some k-form G'_0 of G_0 .

Case
$$R = k[x, x^{-1}]$$
, and $V = \{ v_{p(x)} | p(x) \in k[x] \text{ irreducible, } \neq x \}.$

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. Then K-forms of $G_0 \otimes_k K$ that have good reduction at all $v \in V$ are in bijection with $H^1(k((x)), G_0)$.

This was used to prove conjugacy of Cartan subalgebras in some infinite-dimensional Lie algebras.

1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements
- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

Groups with good reduction

• Basic definitions and examples

• Finiteness Conjecture for Groups with Good Reduction

- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Geometrically: Let *X* be a normal model for *K* of *finite type* over \mathbb{Z} .

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Geometrically: Let *X* be a normal model for *K* of *finite type* over \mathbb{Z} . Then $v \in V$ correspond to *prime divisors* on *X*.

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Geometrically: Let *X* be a normal model for *K* of *finite type* over \mathbb{Z} . Then $v \in V$ correspond to *prime divisors* on *X*.

Algebraically: Choose an integrally closed \mathbb{Z} -subalgebra $A \subset K$ of finite type with fraction field *K*.
Analysis of *Finiteness conjecture for weakly commensurable groups* has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Geometrically: Let *X* be a normal model for *K* of *finite type* over \mathbb{Z} . Then $v \in V$ correspond to *prime divisors* on *X*.

Algebraically: Choose an integrally closed \mathbb{Z} -subalgebra $A \subset K$ of finite type with fraction field *K*. Then $v \in V$ correspond to *height one* prime ideals of *A*.

Analysis of *Finiteness conjecture for weakly commensurable groups* has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an *almost* canonical set of discrete valuations V called divisorial.

Geometrically: Let *X* be a normal model for *K* of *finite type* over \mathbb{Z} . Then $v \in V$ correspond to *prime divisors* on *X*.

Algebraically: Choose an integrally closed \mathbb{Z} -subalgebra $A \subset K$ of finite type with fraction field *K*. Then $v \in V$ correspond to *height one* prime ideals of *A*.

• Two divisorial sets differ only in *finitely many* valuations.

Example.

Example. Let $K = \mathbb{Q}(x)$.

Height one primes are principal ideals generated

Height one primes are principal ideals generated

• either by a rational prime $p \in \mathbb{Z}$,

Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding *divisorial set* is $V = V_0 \cup V_1,$

Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding *divisorial set* is $V = V_0 \cup V_1$,

where

Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding *divisorial set* is $V = V_0 \cup V_1,$

where

• *V*⁰ consists of extensions of *p*-adic valuations ("constant" valuations), and

Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding *divisorial set* is $V = V_0 \cup V_1$,

where

- *V*⁰ consists of extensions of *p*-adic valuations ("constant" valuations), and
- V_1 of discrete valuations associated with irreducible polynomials in $\mathbb{Q}[x]$, i.e. with closed points of $\mathbf{A}^1_{\mathbb{Q}}$ ("geometric" valuations).

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

True if

• *K* is a global field;

- *G* is an inner form of type A_n ;
- *G* is spinor group of a quadratic form, certain unitary group, or a group of type G_2 over K = k(C), function field of a curve over a global field *k*.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

True if

• *K* is a global field;

- *G* is an inner form of type A_n ;
- *G* is spinor group of a quadratic form, certain unitary group, or a group of type G_2 over K = k(C), function field of a curve over a global field *k*.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

True if

- *K* is a global field;
- *G* is an inner form of type A_n ;

• *G* is spinor group of a quadratic form, certain unitary group, or a group of type G_2 over K = k(C), function field of a curve over a global field *k*.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

True if

- *K* is a global field;
- *G* is an inner form of type A_n ;
- *G* is spinor group of a quadratic form, certain unitary group, or a group of type G_2 over K = k(C), function field of a curve over a global field *k*.

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Then the number of K-isomorphism classes of (inner) \overline{K}/K -forms of G that have good reduction at all $v \in V$ is finite.

(One may need to assume that char K is "good" for G)

True if

- *K* is a global field;
- *G* is an inner form of type A_n ;
- *G* is spinor group of a quadratic form, certain unitary group, or a group of type G_2 over K = k(C), function field of a curve over a global field *k*.

V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, *Spinor groups with good reduction*, Compos. Math. **155**(2019), no. 3, 484-527.

1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
- Generic elements
- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Theorem 16 (C + R^2)

Theorem 16 (C + R^2)

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Theorem 16 (C + R^2)

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

Theorem 16 (C + R^2)

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then every $G' \in \operatorname{gen}_K(G)$ has good reduction at v, and reduction $\underline{G'}^{(v)} \in \operatorname{gen}_{K^{(v)}}(\underline{G}^{(v)})$.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K,

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G' \in \operatorname{gen}_K(G)$ has good reduction at <u>all</u> $v \in V \setminus S$.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G' \in \operatorname{gen}_K(G)$ has good reduction at <u>all</u> $v \in V \setminus S$.

Since $V \setminus S$ is also divisorial,

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G' \in \operatorname{gen}_K(G)$ has good reduction at <u>all</u> $v \in V \setminus S$.

Since $V \setminus S$ is also divisorial, finiteness of $\text{gen}_K(G)$ would follow from Finiteness Conjecture for Groups with Good Reduction.
Given an algebraic group G over a field K with a set of valuations V,

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K,

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G,V}$ is proper,

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G,V}$ is proper, i.e., preimage of any finite set is finite.

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G,V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\overline{G},V}$

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G,V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\overline{G},V}$ for any semi-simple *adjoint* group \overline{G} over an arbitrary finitely generated field *K*

Given an algebraic group *G* over a field *K* with a set of valuations *V*, one considers *global-to-local map*

$$\iota_{G,V} \colon H^1(K,G) \longrightarrow \prod_{v \in V} H^1(K_v,G)$$

BOREL, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G,V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\overline{G},V}$ for any semi-simple *adjoint* group \overline{G} over an arbitrary finitely generated field *K* and any divisorial set *V*.

Andrei Rapinchuk (University of Virginia)

Our results confirm this in the following cases:

Our results confirm this in the following cases:

• PSL_n over a finitely generated field K, (n, char K) = 1;

Our results confirm this in the following cases:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;

Our results confirm this in the following cases:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;
- *G* of type G_2 over K = k(C), *k* a number field.

Our results confirm this in the following cases:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;
- *G* of type G_2 over K = k(C), *k* a number field.

We expect $\iota_{G,V}$ to be proper for any reductive *G* over a finitely generated field *K* and any divisorial *V*

Our results confirm this in the following cases:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;
- *G* of type G_2 over K = k(C), *k* a number field.

We expect $\iota_{G,V}$ to be proper for any reductive *G* over a finitely generated field *K* and any divisorial *V* (possibly, under some restrictions on characteristic)

Our results confirm this in the following cases:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;
- *G* of type G_2 over K = k(C), *k* a number field.

We expect $\iota_{G,V}$ to be proper for any reductive *G* over a finitely generated field *K* and any divisorial *V* (possibly, under some restrictions on characteristic)

I. RAPINCHUK, A.R. (2019): True for tori over finitely generated fields of characteristic zero.

Andrei Rapinchuk (University of Virginia)

This is derived just as *finiteness of genus* using the following.

This is derived just as *finiteness of genus* using the following.

Theorem 17

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero,

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K,

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G'

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G' with the property that there exists a finitely generated Zariski-dense subgroup $\Gamma' \subset G'(K)$ weakly commensurable to Γ ,

This is derived just as *finiteness of genus* using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G' with the property that there exists a finitely generated Zariski-dense subgroup $\Gamma' \subset G'(K)$ weakly commensurable to Γ , has good reduction at all $v \in V \setminus V(\Gamma)$.

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

<u>Challenges</u> in analysis of **Finiteness Conjecture for Groups** with Good Reduction:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

<u>Challenges</u> in analysis of **Finiteness Conjecture for Groups** with Good Reduction:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

<u>Challenges</u> in analysis of **Finiteness Conjecture for Groups** with Good Reduction:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

1 Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction

Application to Nonarithmetic Riemann Surfaces

5 Some open problems

Let

$M = \mathbb{H}/\Gamma$

Let

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy | y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.
$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy | y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy | y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy \mid y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

Γ is finitely generated;
Γ is Zariski-dense in PSL₂.

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy \mid y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL₂.

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy \mid y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL₂.

(of course, these hold automatically if M is compact)

$$M = \mathbb{H}/\Gamma$$

where $\mathbb{H} = \{ x + iy | y > 0 \}$ and $\Gamma \subset PSL_2(\mathbb{R})$ a *discrete torsion-free* subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL₂.

(of course, these hold automatically if M is compact)

Let A_{Γ} be the *associated* quaternion algebra.

Question.

If Γ is *arithmetic* then the associated quaternion algebra remains the same for all Riemann surface that are length-commensurable to $M = \mathbb{H}/\Gamma$.

If Γ is *arithmetic* then the associated quaternion algebra remains the same for all Riemann surface that are length-commensurable to $M = \mathbb{H}/\Gamma$.

What about non-arithmetic surfaces?

If Γ is *arithmetic* then the associated quaternion algebra remains the same for all Riemann surface that are length-commensurable to $M = \mathbb{H}/\Gamma$.

What about non-arithmetic surfaces?

Replacing length-commensurability with much stronger relation of isospectrality we have:

If Γ is *arithmetic* then the associated quaternion algebra remains the same for all Riemann surface that are length-commensurable to $M = \mathbb{H}/\Gamma$.

What about non-arithmetic surfaces?

Replacing length-commensurability with much stronger relation of isospectrality we have:

Compact Riemann surfaces isospectral to a given one consist of finitely many isometry classes

If Γ is *arithmetic* then the associated quaternion algebra remains the same for all Riemann surface that are length-commensurable to $M = \mathbb{H}/\Gamma$.

What about non-arithmetic surfaces?

Replacing length-commensurability with much stronger relation of isospectrality we have:

Compact Riemann surfaces isospectral to a given one consist of finitely many isometry classes \Rightarrow there are finitely many isomorphism classes of associated quaternion algebras.

Let $M_i = \mathbb{H} / \Gamma_i$ $(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset PSL_2(\mathbb{R})$ is discrete and Zariskidense.

Let $M_i = \mathbb{H} / \Gamma_i$ $(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset PSL_2(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras A_{Γ_i} $(i \in I)$ split into finitely many isomorphism classes over common center (= trace field of all Γ_i 's).

Let $M_i = \mathbb{H} / \Gamma_i$ $(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset PSL_2(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras A_{Γ_i} $(i \in I)$ split into finitely many isomorphism classes over common center (= trace field of all Γ_i 's).

PROOF uses good reduction.

Let $M_i = \mathbb{H} / \Gamma_i$ $(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset PSL_2(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras A_{Γ_i} $(i \in I)$ split into finitely many isomorphism classes over common center (= trace field of all Γ_i 's).

PROOF uses good reduction.

This is one of the first examples of application of techniques from arithmetic geometry to length-commensurable non-arithmetic Riemann surfaces.

Result

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications

Generic elements

- 3 Division algebras with the same maximal subfields
 - Algebraic and geometric motivations
 - Genus of a division algebra
 - Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces

5 Some open problems

The answer is **no** in general.

The answer is **no** in general.

Example. Let $\Gamma = SL_2(\mathbb{Z})$, and set

$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 and $u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$.

The answer is no in general.

Example. Let $\Gamma = SL_2(\mathbb{Z})$, and set

$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 and $u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$.

Then for $m \ge 3$, subgroup

$$\Delta_m := \langle u^+(m) , u^-(m)
angle$$

is of infinite index in Γ , **but** is weakly commensurable to it.

Weak commensurability follows from inclusion

$$\Gamma(m^2) \subset \bigcup_{g\in \operatorname{GL}_2(\mathbb{Q})} g \,\Delta_m g^{-1},$$

where

$$\Gamma(m^2) = \{ x \in \Gamma \mid x \equiv I_2 \pmod{m^2} \}$$

is congruence subgroup of level m^2 (proved by looking at traces).

Weak commensurability follows from inclusion

$$\Gamma(m^2) \subset \bigcup_{g \in \operatorname{GL}_2(\mathbb{Q})} g \, \Delta_m \, g^{-1},$$

where

$$\Gamma(m^2) = \{ x \in \Gamma \mid x \equiv I_2 \pmod{m^2} \}$$

is congruence subgroup of level m^2 (proved by looking at traces).

A similar construction does not work for $SL_n(\mathbb{Z})$, $n \ge 3$, as it always produces finite index subgroups.

Weak commensurability follows from inclusion

$$\Gamma(m^2) \subset \bigcup_{g\in \operatorname{GL}_2(\mathbb{Q})} g \,\Delta_m g^{-1},$$

where

$$\Gamma(m^2) = \{ x \in \Gamma \mid x \equiv I_2 \pmod{m^2} \}$$

is congruence subgroup of level m^2 (proved by looking at traces).

A similar construction does not work for $SL_n(\mathbb{Z})$, $n \ge 3$, as it always produces finite index subgroups.

So, we would like to propose the following

If $\Gamma_2 \subset G_2(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_1 , then is Γ_2 necessarily arithmetic?

If $\Gamma_2 \subset G_2(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_1 , then is Γ_2 necessarily arithmetic? Do we need finite generation?

If $\Gamma_2 \subset G_2(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_1 , then is Γ_2 necessarily arithmetic? Do we need finite generation?

It is not even known if a subgroup Δ of $\Gamma = SL_n(\mathbb{Z}), n \ge 3$, weakly commensurable to Γ , necessarily has finite index.

If $\Gamma_2 \subset G_2(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_1 , then is Γ_2 necessarily arithmetic? Do we need finite generation?

It is not even known if a subgroup Δ of $\Gamma = SL_n(\mathbb{Z}), n \ge 3$, weakly commensurable to Γ , necessarily has finite index.

Problem can be stated for higher-rank *S*-arithmetic subgroups, but is wide-open even for $SL_2(\mathbb{Z}[1/p])$.

Problem 2. Let G_1 and G_2 be simple groups over $F = \mathbb{R}$ or \mathbb{C} , and let Γ_i be a (finitely generated) Zariski-dense subgroup of $G_i(F)$ for i = 1, 2. Assume that Γ_1 and Γ_2 are weakly commensurable.

Problem 2. Let G_1 and G_2 be simple groups over $F = \mathbb{R}$ or \mathbb{C} , and let Γ_i be a (finitely generated) Zariski-dense subgroup of $G_i(F)$ for i = 1, 2. Assume that Γ_1 and Γ_2 are weakly commensurable.

Does discreteness of Γ_1 imply discreteness of Γ_2 ?

Problem 2. Let G_1 and G_2 be simple groups over $F = \mathbb{R}$ or \mathbb{C} , and let Γ_i be a (finitely generated) Zariski-dense subgroup of $G_i(F)$ for i = 1, 2. Assume that Γ_1 and Γ_2 are weakly commensurable.

Does discreteness of Γ_1 imply discreteness of Γ_2 ?

The answer is 'yes' for a nonarchimedean locally compact field F, but archimedean case is open.
Does compactness of $G_1(F)/\Gamma_1$ imply compactness of $G_2(F)/\Gamma_2$?

Does compactness of $G_1(F)/\Gamma_1$ imply compactness of $G_2(F)/\Gamma_2$?

Geometric version: Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be length-commensurable locally symmetric spaces of finite volume.

Does compactness of $G_1(F)/\Gamma_1$ imply compactness of $G_2(F)/\Gamma_2$?

Geometric version: Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be length-commensurable locally symmetric spaces of finite volume.

Does compactness of \mathfrak{X}_{Γ_1} imply compactness of \mathfrak{X}_{Γ_2} ?

Does compactness of $G_1(F)/\Gamma_1$ imply compactness of $G_2(F)/\Gamma_2$?

Geometric version: Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be length-commensurable locally symmetric spaces of finite volume.

Does compactness of \mathfrak{X}_{Γ_1} imply compactness of \mathfrak{X}_{Γ_2} ?

Recall: The answer is 'yes' if one space is arithmetically defined.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 5. For inner and outer forms of types A_n (n > 1), D_{2n+1} (n > 1) and E_6 , construct examples of isospectral compact arithmetically defined locally symmetric spaces that are not commensurable.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 5. For inner and outer forms of types A_n (n > 1), D_{2n+1} (n > 1) and E_6 , construct examples of isospectral compact arithmetically defined locally symmetric spaces that are not commensurable.

Currently, such construction is available only for inner forms of type A_n .