ARITHMETIC AND ZARISKI-DENSE SUBGROUPS:

weak commensurability, eigenvalue rigidity, and applications to locally symmetric spaces

Andrei S. Rapinchuk
University of Virginia

KIAS (Seoul) April, 2019

(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations
(4) Groups with good reduction
- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
(1) Results
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices,

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues.

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable if $\exists a_{1}, \ldots, a_{n_{1}}, b_{1}, \ldots, b_{n_{2}} \in \mathbb{Z}$

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable if $\exists a_{1}, \ldots, a_{n_{1}}, b_{1}, \ldots, b_{n_{2}} \in \mathbb{Z}$ such that

$$
\lambda_{1}^{a_{1}} \cdots \lambda_{n_{1}}^{a_{n_{1}}}=\mu_{1}^{b_{1}} \cdots \mu_{n_{2}}^{b_{n_{2}}} \neq 1
$$

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups,

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups, $\Gamma_{1} \subset G_{1}(F)$ and $\Gamma_{2} \subset G_{2}(F)$ be Zariski-dense subgroups.

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups, $\Gamma_{1} \subset G_{1}(F)$ and $\Gamma_{2} \subset G_{2}(F)$ be Zariski-dense subgroups.
(2) Subgroups Γ_{1} and Γ_{2} are weakly commensurable

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups, $\Gamma_{1} \subset G_{1}(F)$ and $\Gamma_{2} \subset G_{2}(F)$ be Zariski-dense subgroups.
(2) Subgroups Γ_{1} and Γ_{2} are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups, $\Gamma_{1} \subset G_{1}(F)$ and $\Gamma_{2} \subset G_{2}(F)$ be Zariski-dense subgroups.
(2) Subgroups Γ_{1} and Γ_{2} are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order,

Let $G_{1} \subset \mathrm{GL}_{n_{1}}$ and $G_{2} \subset \mathrm{GL}_{n_{2}}$ be reductive F-groups, $\Gamma_{1} \subset G_{1}(F)$ and $\Gamma_{2} \subset G_{2}(F)$ be Zariski-dense subgroups.
(2) Subgroups Γ_{1} and Γ_{2} are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

Equivalent reformulations:

Equivalent reformulations:

Semi-simple $\gamma_{1} \in G_{1}(F)$ and $\gamma_{2} \in G_{2}(F)$ weakly commensurable

Equivalent reformulations:

Semi-simple $\gamma_{1} \in G_{1}(F)$ and $\gamma_{2} \in G_{2}(F)$ weakly commensurable
$\stackrel{(1)}{\ominus}$
there exists maximal F-tori T_{i} of G_{i} such that $\gamma_{i} \in T_{i}(F)$ and characters $\chi_{i} \in X\left(T_{i}\right)(i=1,2)$ for which

$$
\chi_{1}\left(\gamma_{1}\right)=\chi_{2}\left(\gamma_{2}\right) \neq 1
$$

Equivalent reformulations:

Semi-simple $\gamma_{1} \in G_{1}(F)$ and $\gamma_{2} \in G_{2}(F)$ weakly commensurable
$\stackrel{(1)}{\Leftrightarrow}$ there exists maximal F-tori T_{i} of G_{i} such that $\gamma_{i} \in T_{i}(F)$ and characters $\chi_{i} \in X\left(T_{i}\right)(i=1,2)$ for which

$$
\chi_{1}\left(\gamma_{1}\right)=\chi_{2}\left(\gamma_{2}\right) \neq 1 ;
$$

$\stackrel{(2)}{\Leftrightarrow}$
there exist F-defined representations

$$
\rho_{1}: G_{1} \longrightarrow \mathrm{GL}_{m_{1}} \quad \text { and } \quad \rho_{2}: G_{2} \longrightarrow \mathrm{GL}_{m_{2}}
$$

such that $\rho_{1}\left(\gamma_{1}\right)$ and $\rho_{2}\left(\gamma_{2}\right)$ have a nontrivial common eigenvalue.

Equivalent reformulations:

Semi-simple $\gamma_{1} \in G_{1}(F)$ and $\gamma_{2} \in G_{2}(F)$ weakly commensurable
$\stackrel{(1)}{\Leftrightarrow}$ there exists maximal F-tori T_{i} of G_{i} such that $\gamma_{i} \in T_{i}(F)$ and characters $\chi_{i} \in X\left(T_{i}\right)(i=1,2)$ for which

$$
\chi_{1}\left(\gamma_{1}\right)=\chi_{2}\left(\gamma_{2}\right) \neq 1
$$

$\stackrel{(2)}{\Leftrightarrow}$
there exist F-defined representations

$$
\rho_{1}: G_{1} \longrightarrow \mathrm{GL}_{m_{1}} \quad \text { and } \quad \rho_{2}: G_{2} \longrightarrow \mathrm{GL}_{m_{2}}
$$

such that $\rho_{1}\left(\gamma_{1}\right)$ and $\rho_{2}\left(\gamma_{2}\right)$ have a nontrivial common eigenvalue.

Remark. These reformulations show that weak commensurability is independent of matrix realizations of G_{i} 's.

Let

- F - a field of characteristic zero

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups
- $\Gamma_{i} \subset G_{i}(F)$ - finitely generated Zariski-dense subgroup, $i=1,2$

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups
- $\Gamma_{i} \subset G_{i}(F)$ - finitely generated Zariski-dense subgroup, $i=1,2$

Theorem 1

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups
- $\Gamma_{i} \subset G_{i}(F)$ - finitely generated Zariski-dense subgroup, $i=1,2$

Theorem 1

If Γ_{1} and Γ_{2} are weakly commensurable,

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups
- $\Gamma_{i} \subset G_{i}(F)$ - finitely generated Zariski-dense subgroup, $i=1,2$

Theorem 1

If Γ_{1} and Γ_{2} are weakly commensurable, then either G_{1} and G_{2} have same Killing-Cartan type,

Let

- F - a field of characteristic zero
- G_{1} and G_{2} - absolutely almost simple algebraic F-groups
- $\Gamma_{i} \subset G_{i}(F)$ - finitely generated Zariski-dense subgroup, $i=1,2$

Theorem 1

If Γ_{1} and Γ_{2} are weakly commensurable, then either G_{1} and G_{2} have same Killing-Cartan type, or one of them is of type B_{ℓ} and the other of type $C_{\ell}(\ell \geqslant 3)$.

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.
K_{Γ} is trace field, which is minimal field of definition of

$$
\operatorname{Ad}_{G}(\Gamma) \subset \mathrm{GL}(\mathfrak{g}) .
$$

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.
K_{Γ} is trace field, which is minimal field of definition of

$$
\operatorname{Ad}_{G}(\Gamma) \subset \mathrm{GL}(\mathfrak{g}) .
$$

Theorem 2

If Γ_{1} and Γ_{2} are weakly commensurable, then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.
K_{Γ} is trace field, which is minimal field of definition of

$$
\operatorname{Ad}_{G}(\Gamma) \subset \mathrm{GL}(\mathfrak{g}) .
$$

Theorem 2

If Γ_{1} and Γ_{2} are weakly commensurable, then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.

Let $\mathcal{G}(\Gamma)$ denote algebraic hull of Γ, i.e. Zariski-closure of $\operatorname{Ad}_{G}(\Gamma)$ in $\operatorname{GL}(\mathfrak{g})$.

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.
K_{Γ} is trace field, which is minimal field of definition of

$$
\operatorname{Ad}_{G}(\Gamma) \subset \mathrm{GL}(\mathfrak{g}) .
$$

Theorem 2

If Γ_{1} and Γ_{2} are weakly commensurable, then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.
Let $\mathcal{G}(\Gamma)$ denote algebraic hull of Γ, i.e. Zariski-closure of $\operatorname{Ad}_{G}(\Gamma)$ in $G L(\mathfrak{g})$.

Recall: $\mathcal{G}(\Gamma)$ is adjoint group defined over K_{Γ}, (i.e., an F / K_{Γ}-form of adjoint group \bar{G})

For a Zariski-dense subgroup $\Gamma \subset G(F)$, let
$K_{\Gamma}=$ subfield of F generated by $\operatorname{Tr} \operatorname{Ad}_{G}(\gamma), \gamma \in \Gamma$.
K_{Γ} is trace field, which is minimal field of definition of

$$
\operatorname{Ad}_{G}(\Gamma) \subset G L(\mathfrak{g})
$$

Theorem 2

If Γ_{1} and Γ_{2} are weakly commensurable, then $K_{\Gamma_{1}}=K_{\Gamma_{2}}$.
Let $\mathcal{G}(\Gamma)$ denote algebraic hull of Γ, i.e. Zariski-closure of $\operatorname{Ad}_{G}(\Gamma)$ in $G L(\mathfrak{g})$.

Recall: $\mathcal{G}(\Gamma)$ is adjoint group defined over K_{Γ}, (i.e., an F / K_{Γ}-form of adjoint group \bar{G})
$\mathcal{G}(\Gamma)$ is an important characteristic of Γ; it determines Γ if it is arithmetic.

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K
$$

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K
$$

- apart from ambiguity between types B_{ℓ} and C_{ℓ},

$$
\mathcal{G}_{1} \text { and } \mathcal{G}_{2}
$$

have same type,

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K
$$

- apart from ambiguity between types B_{ℓ} and C_{ℓ},

$$
\mathcal{G}_{1} \text { and } \mathcal{G}_{2}
$$

have same type, (ie., are isomorphic over closure \bar{K} or \mathbb{C}).

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K
$$

- apart from ambiguity between types B_{ℓ} and C_{ℓ}, \mathcal{G}_{1} and \mathcal{G}_{2}
have same type, (ie., are isomorphic over closure \bar{K} or \mathbb{C}).
Thus, \mathcal{G}_{1} and \mathcal{G}_{2} are \bar{K} / K-forms of one another.

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K
$$

- apart from ambiguity between types B_{ℓ} and C_{ℓ}, \mathcal{G}_{1} and \mathcal{G}_{2}
have same type, (ie., are isomorphic over closure \bar{K} or \mathbb{C}).
Thus, \mathcal{G}_{1} and \mathcal{G}_{2} are \bar{K} / K-forms of one another.

Critical question: How are \mathcal{G}_{1} and \mathcal{G}_{2} related over K ?

To summarize: if Γ_{1} and Γ_{2} as above are weakly commensurable, then

- Their algebraic hulls $\mathcal{G}_{1}=\mathcal{G}\left(\Gamma_{1}\right)$ and $\mathcal{G}_{2}=\mathcal{G}\left(\Gamma_{2}\right)$ are defined over same field

$$
K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K ;
$$

- apart from ambiguity between types B_{ℓ} and C_{ℓ}, \mathcal{G}_{1} and \mathcal{G}_{2}
have same type, (ie., are isomorphic over closure \bar{K} or \mathbb{C}).
Thus, \mathcal{G}_{1} and \mathcal{G}_{2} are \bar{K} / K-forms of one another.

Critical question: How are \mathcal{G}_{1} and \mathcal{G}_{2} related over K ?
Recall: If Γ_{1} and Γ_{2} are arithmetic then

$$
\mathcal{G}_{1} \simeq \mathcal{G}_{2} \text { over } K \Rightarrow \Gamma_{1} \& \Gamma_{2} \text { commensurable. }
$$

More specifically:

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

Let

- G_{1} and G_{2} be absolutely simple algebraic F-groups, char $F=0$;
- $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_{1}}=K$.

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

Let

- G_{1} and G_{2} be absolutely simple algebraic F-groups, char $F=0$; - $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_{1}}=K$. Then there exists a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

Let

- G_{1} and G_{2} be absolutely simple algebraic F-groups, char $F=0$;
- $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_{1}}=K$. Then there exists a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that if
$\Gamma_{2} \subset G_{2}(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_{1},

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

- G_{1} and G_{2} be absolutely simple algebraic F-groups, char $F=0$;
- $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_{1}}=K$. Then there exists a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that if
$\Gamma_{2} \subset G_{2}(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_{1},
then Γ_{2} can be conjugated into some $\mathcal{G}_{2}^{(i)}(K)\left(\subset G_{2}(F)\right)$.

More specifically: If we fix Γ_{1}, what are possibilities for \mathcal{G}_{2} ?

Finiteness conjecture for weakly commensurable groups.

Let

- G_{1} and G_{2} be absolutely simple algebraic F-groups, char $F=0$;
- $\Gamma_{1} \subset G_{1}(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_{1}}=K$. Then there exists a finite collection $\mathcal{G}_{2}^{(1)}, \ldots, \mathcal{G}_{2}^{(r)}$ of F / K-forms of G_{2} such that if
$\Gamma_{2} \subset G_{2}(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_{1},
then Γ_{2} can be conjugated into some $\mathcal{G}_{2}^{(i)}(K)\left(\subset G_{2}(F)\right)$.
(Additionally, one expects that $r=1$ in certain situations ...)

Example. Let A be a central simple K-algebra, $G=\mathrm{PSL}_{1, A}$.

Example. Let A be a central simple K-algebra, $G=\operatorname{PSL}_{1, A}$.
Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma}=K$.

Example. Let A be a central simple K-algebra, $G=\mathrm{PSL}_{1, A}$.
Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma}=K$.

Finiteness conjecture \Rightarrow There are only finitely many c.s.a. A^{\prime}

Example. Let A be a central simple K-algebra, $G=\mathrm{PSL}_{1, A}$.
Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma}=K$.

Finiteness conjecture \Rightarrow There are only finitely many c.s.a. A^{\prime} such that for $G^{\prime}=\mathrm{PSL}_{1, A^{\prime}}$,
\exists f.g. Zariski-dense subgroup $\Gamma^{\prime} \subset G^{\prime}(K)$ weakly commensurable to Γ.

Example. Let A be a central simple K-algebra, $G=\mathrm{PSL}_{1, A}$.
Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma}=K$.

Finiteness conjecture \Rightarrow There are only finitely many c.s.a. A^{\prime} such that for $G^{\prime}=\mathrm{PSL}_{1, A^{\prime}}$,
\exists f.g. Zariski-dense subgroup $\Gamma^{\prime} \subset G^{\prime}(K)$
weakly commensurable to Γ.

- Similar consequences for orthogonal groups of quadratic forms etc.

The finiteness conjecture is known in the following cases:

The finiteness conjecture is known in the following cases:

- K a number field (although Γ_{1} does not have to be arithmetic)

The finiteness conjecture is known in the following cases:

- K a number field (although Γ_{1} does not have to be arithmetic)
- G_{1} is an inner form of type A_{ℓ} over K
(so, previous example is already a theorem ...)

The finiteness conjecture is known in the following cases:

- K a number field (although Γ_{1} does not have to be arithmetic)
- G_{1} is an inner form of type A_{ℓ} over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

The finiteness conjecture is known in the following cases:

- K a number field (although Γ_{1} does not have to be arithmetic)
- G_{1} is an inner form of type A_{ℓ} over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

- Some other cases (later)

The finiteness conjecture is known in the following cases:

- K a number field (although Γ_{1} does not have to be arithmetic)
- G_{1} is an inner form of type A_{ℓ} over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

- Some other cases (later)

General case is work in progress ...
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations
(4) Groups with good reduction
- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Theorem 3

Let

- G_{1} and G_{2} be absolutely almost simple F-groups, $\operatorname{char} F=0$;
- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense arithmetic subgroup, $i=1,2$.

Theorem 3

Let

- G_{1} and G_{2} be absolutely almost simple F-groups, $\operatorname{char} F=0$;
- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense arithmetic subgroup, $i=1,2$.
(1) Assume G_{1} and G_{2} are of same type, different from

$$
A_{n}, \quad D_{2 n+1}(n>1), \text { and } E_{6} .
$$

Theorem 3

Let

- G_{1} and G_{2} be absolutely almost simple F-groups, $\operatorname{char} F=0$;
- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense arithmetic subgroup, $i=1,2$.
(1) Assume G_{1} and G_{2} are of same type, different from

$$
A_{n}, \quad D_{2 n+1}(n>1), \text { and } E_{6} .
$$

If Γ_{1} and Γ_{2} are weakly commensurable, then they are commensurable.

Theorem 3

Let

- G_{1} and G_{2} be absolutely almost simple F-groups, $\operatorname{char} F=0$;
- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense arithmetic subgroup, $i=1,2$.
(1) Assume G_{1} and G_{2} are of same type, different from

$$
A_{n}, \quad D_{2 n+1}(n>1), \text { and } E_{6} .
$$

If Γ_{1} and Γ_{2} are weakly commensurable, then they are commensurable.
(2) In all cases, arithmetic $\Gamma_{2} \subset G_{2}(F)$ weakly commensurable to a given arithmetic $\Gamma_{1} \subset G_{1}(F)$, form finitely many commensurability classes.

Theorem 3

Let

- G_{1} and G_{2} be absolutely almost simple F-groups, char $F=0$;
- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense arithmetic subgroup, $i=1,2$.
(1) Assume G_{1} and G_{2} are of same type, different from

$$
A_{n}, \quad D_{2 n+1}(n>1), \text { and } E_{6} .
$$

If Γ_{1} and Γ_{2} are weakly commensurable, then they are commensurable.
(2) In all cases, arithmetic $\Gamma_{2} \subset G_{2}(F)$ weakly commensurable to a given arithmetic $\Gamma_{1} \subset G_{1}(F)$, form finitely many commensurability classes.

Remark. Types excluded in (1) are honest exceptions.

(cont.)

(cont.)

(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.
(cont.)
(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.

In particular, Γ_{1} contains nontrivial unipotents $\Leftrightarrow \Gamma_{2}$ does.
(cont.)
(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\operatorname{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\operatorname{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.

In particular, Γ_{1} contains nontrivial unipotents $\Leftrightarrow \Gamma_{2}$ does.
(4) (arithmeticity theorem) Let now $F=\mathbb{R}$ and $\Gamma_{1} \subset G_{1}(\mathbb{R})$ be an arithmetic lattice.
(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.

In particular, Γ_{1} contains nontrivial unipotents $\Leftrightarrow \Gamma_{2}$ does.
(4) (arithmeticity theorem) Let now $F=\mathbb{R}$ and $\Gamma_{1} \subset G_{1}(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_{2} \subset G_{2}(\mathbb{R})$ is a lattice weakly commensurable to Γ_{1}, then Γ_{2} is also arithmetic.
(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.

In particular, Γ_{1} contains nontrivial unipotents $\Leftrightarrow \Gamma_{2}$ does.
(4) (arithmeticity theorem) Let now $F=\mathbb{R}$ and $\Gamma_{1} \subset G_{1}(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_{2} \subset G_{2}(\mathbb{R})$ is a lattice weakly commensurable to Γ_{1}, then Γ_{2} is also arithmetic.

Remark. Above results were proved in a more general context of S-arithmetic subgroups.
(3) If Γ_{1} and Γ_{2} are weakly commensurable, and $K=K_{\Gamma_{1}}=K_{\Gamma_{2}}$, then $\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{1}\right)=\mathrm{rk}_{K} \mathcal{G}\left(\Gamma_{2}\right)$.

In particular, Γ_{1} contains nontrivial unipotents $\Leftrightarrow \Gamma_{2}$ does.
(4) (arithmeticity theorem) Let now $F=\mathbb{R}$ and $\Gamma_{1} \subset G_{1}(\mathbb{R})$ be an arithmetic lattice.

If $\Gamma_{2} \subset G_{2}(\mathbb{R})$ is a lattice weakly commensurable to Γ_{1}, then Γ_{2} is also arithmetic.

Remark. Above results were proved in a more general context of S-arithmetic subgroups. (4) is valid for S-arithmetic lattices over any locally compact field F.

Theorem 4 (R. Garibaldi, A.R.)

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(K, \mathcal{G}_{i}\right)$-arithmetic subgroup, $i=1,2$.

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(K, \mathcal{G}_{i}\right)$-arithmetic subgroup, $i=1,2$.

Then Γ_{1} and Γ_{2} are weakly commensurable iff \mathcal{G}_{1} and \mathcal{G}_{2} are twins, ie.

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(K, \mathcal{G}_{i}\right)$-arithmetic subgroup, $i=1,2$.

Then Γ_{1} and Γ_{2} are weakly commensurable iff \mathcal{G}_{1} and \mathcal{G}_{2} are twins, ie.

- \mathcal{G}_{1} and \mathcal{G}_{2} are both split over all nonarchimedean places of K;

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(K, \mathcal{G}_{i}\right)$-arithmetic subgroup, $i=1,2$.

Then Γ_{1} and Γ_{2} are weakly commensurable iff \mathcal{G}_{1} and \mathcal{G}_{2} are twins, ie.

- \mathcal{G}_{1} and \mathcal{G}_{2} are both split over all nonarchimedean places of K;
- \mathcal{G}_{1} and \mathcal{G}_{2} are simultaneously either split or anisotropic over all archimedean places.

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_{1} and G_{2} be absolutely almost simple F-groups of types

$$
B_{\ell} \text { and } C_{\ell}(\ell \geqslant 3)
$$

- $\Gamma_{i} \subset G_{i}(F)$ be a Zariski-dense $\left(K, \mathcal{G}_{i}\right)$-arithmetic subgroup, $i=1,2$.

Then Γ_{1} and Γ_{2} are weakly commensurable iff \mathcal{G}_{1} and \mathcal{G}_{2} are twins, ie.

- \mathcal{G}_{1} and \mathcal{G}_{2} are both split over all nonarchimedean places of K;
- \mathcal{G}_{1} and \mathcal{G}_{2} are simultaneously either split or anisotropic over all archimedean places.

Together, Theorems 3 and 4 cover all situations where Zarsiki-dense S-arithmetic subgroups of absolutely almost simple groups can be weakly commensurable.
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations
(4) Groups with good reduction
- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Notations

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space. $\mathrm{rk} \mathfrak{X}_{\Gamma}:=\mathrm{rk}_{\mathbb{R}} G$

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup,
$\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space. $\mathrm{rk} \mathfrak{X}_{\Gamma}:=\mathrm{rk}_{\mathbb{R}} G$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup,
$\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space.
$\mathrm{rk} \mathfrak{X}_{\Gamma}:=\mathrm{rk}_{\mathbb{R}} G$
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Now, let G_{1} and G_{2} be absolutely almost simple \mathbb{R}-groups, $\Gamma_{i} \subset \mathcal{G}_{i}=G_{i}(\mathbb{R})$ be a discrete torsion-free subgroup, $\mathfrak{X}_{\Gamma_{i}}$ - corresponding locally symmetric space, $i=1,2$.

Proposition (G. Prasad, A.R.)

Proposition (G. Prasad, A.R.)

Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have finite volume (i.e., Γ_{1} and Γ_{2} are lattices).

Proposition (G. Prasad, A.R.)

Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have finite volume (i.e., Γ_{1} and Γ_{2} are lattices). If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable,

$$
\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{1}}\right)=\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{2}}\right),
$$

Proposition (G. Prasad, A.R.)

Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have finite volume (i.e., Γ_{1} and Γ_{2} are lattices). If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable,

$$
\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{1}}\right)=\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{2}}\right),
$$

then Γ_{1} and Γ_{2} are weakly commensurable.

Proposition (G. Prasad, A.R.)

Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have finite volume (i.e., Γ_{1} and Γ_{2} are lattices). If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable,

$$
\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{1}}\right)=\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{2}}\right),
$$

then Γ_{1} and Γ_{2} are weakly commensurable.

For rank one locally symmetric spaces different from nonarithmetic Riemann surfaces, proof uses result of Gel'fond and Schneider (1934):

Proposition (G. Prasad, A.R.)

Assume that $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have finite volume (i.e., Γ_{1} and Γ_{2} are lattices). If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable,

$$
\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{1}}\right)=\mathbb{Q} \cdot L\left(\mathfrak{X}_{\Gamma_{2}}\right),
$$

then Γ_{1} and Γ_{2} are weakly commensurable.

For rank one locally symmetric spaces different from nonarithmetic Riemann surfaces, proof uses result of Gel'fond and Schneider (1934):
if α and β are algebraic numbers $\neq 0,1$, then

$$
\frac{\log \alpha}{\log \beta}
$$

is either rational or transcendental.

In other cases we need to assume truth of following

In other cases we need to assume truth of following
Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over Q,

In other cases we need to assume truth of following
Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree over \mathbf{Q} of field generated by $z_{1}, \ldots, z_{n} ; e^{z_{1}}, \ldots, e^{z_{n}}$
is $\geqslant n$.

In other cases we need to assume truth of following
Conjecture (Shanuel) If $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree over \mathbb{Q} of field generated by

$$
z_{1}, \ldots, z_{n} ; e^{z_{1}}, \ldots, e^{z_{n}}
$$

is $\geqslant n$.

A finite volume locally symmetric space \mathfrak{X}_{Γ} of a simple real group is automatically arithmetically defined unless \mathfrak{X} is either real hyperbolic space \mathbb{H}^{n} or complex hyperbolic space $\mathbb{H}_{\mathrm{C}}^{n}$.
(Margulis + Corlette + Gromov-Shoen)

Theorem 5
 Let (as above)
 - $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,

Theorem 5Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.

Theorem 5

Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.
- If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, then

Theorem 5

Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.
- If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, then
(1) $\mathfrak{X}_{\Gamma_{2}}$ is arithmetically defined;

Theorem 5

Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.
- If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, then
(1) $\mathfrak{X}_{\Gamma_{2}}$ is arithmetically defined;
(2) $\mathfrak{X}_{\Gamma_{1}}$ is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_{2}}$ is compact.

Theorem 5

Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.
- If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, then
(1) $\mathfrak{X}_{\Gamma_{2}}$ is arithmetically defined;
(2) $\mathfrak{X}_{\Gamma_{1}}$ is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_{2}}$ is compact.
- The set of $\mathfrak{X}_{\Gamma_{2}}$'s length-commensurable to $\mathfrak{X}_{\Gamma_{1}}$ is a union of finitely many commensurability classes.

Theorem 5

Let (as above)

- $\mathfrak{X}_{\Gamma_{1}}$ be an arithmetically defined locally symmetric space,
- $\mathfrak{X}_{\Gamma_{2}}$ be a locally symmetric space of finite volume.
- If $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, then
(1) $\mathfrak{X}_{\Gamma_{2}}$ is arithmetically defined;
(2) $\mathfrak{X}_{\Gamma_{1}}$ is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_{2}}$ is compact.
- The set of $\mathfrak{X}_{\Gamma_{2}}$'s length-commensurable to $\mathfrak{X}_{\Gamma_{1}}$ is a union of finitely many commensurability classes.

It consists of single commensurability class if G_{1} and G_{2} are of same type different from $A_{n}, D_{2 n+1}(n>1)$, or E_{6}.

Corollary

Let M_{1} and M_{2} be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3(\bmod 4)$.

If M_{1} and M_{2} are length-commensurable, then they are commensurable.

Corollary

Let M_{1} and M_{2} be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3(\bmod 4)$.

If M_{1} and M_{2} are length-commensurable, then they are commensurable.

- Hyperbolic manifolds of different dimensions are not length-commensurable.

Corollary

Let M_{1} and M_{2} be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3(\bmod 4)$.

If M_{1} and M_{2} are length-commensurable, then they are commensurable.

- Hyperbolic manifolds of different dimensions are not length-commensurable.
- A complex hyperbolic manifold cannot be lengthcommensurable to a real or quaternionic hyperbolic manifold, etc.

There is a series of results stating that

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or
- $L\left(\mathfrak{X}_{\Gamma_{1}}\right)$ and $L\left(\mathfrak{X}_{\Gamma_{2}}\right)$ are very different.

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or
- $L\left(\mathfrak{X}_{\Gamma_{1}}\right)$ and $L\left(\mathfrak{X}_{\Gamma_{2}}\right)$ are very different.

For a Riemannian manifold M, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by $L(M)$.

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or
- $L\left(\mathfrak{X}_{\Gamma_{1}}\right)$ and $L\left(\mathfrak{X}_{\Gamma_{2}}\right)$ are very different.

For a Riemannian manifold M, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by $L(M)$.

For Riemannian M_{1} and M_{2}, we set $\mathcal{F}_{i}=\mathcal{F}\left(M_{i}\right), i=1,2$.

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or
- $L\left(\mathfrak{X}_{\Gamma_{1}}\right)$ and $L\left(\mathfrak{X}_{\Gamma_{2}}\right)$ are very different.

For a Riemannian manifold M, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by $L(M)$.

For Riemannian M_{1} and M_{2}, we set $\mathcal{F}_{i}=\mathcal{F}\left(M_{i}\right), i=1,2$.
$\left(T_{i}\right)$ Compositum $\mathcal{F}_{1} \mathcal{F}_{2}$ has infinite transcendence degree over \mathcal{F}_{3-i}.

There is a series of results stating that

- either $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable, or
- $L\left(\mathfrak{X}_{\Gamma_{1}}\right)$ and $L\left(\mathfrak{X}_{\Gamma_{2}}\right)$ are very different.

For a Riemannian manifold M, we let $\mathcal{F}(M)$ denote subfield of \mathbb{R} generated by $L(M)$.

For Riemannian M_{1} and M_{2}, we set $\mathcal{F}_{i}=\mathcal{F}\left(M_{i}\right), i=1,2$.
$\left(T_{i}\right)$ Compositum $\mathcal{F}_{1} \mathcal{F}_{2}$ has infinite transcendence degree over \mathcal{F}_{3-i}.

So, $L\left(M_{i}\right)$ contains "many" elements that are algebraically independent from all elements of $L\left(M_{3-i}\right)$.

Note that $\left(T_{i}\right)$ implies

Note that $\left(T_{i}\right)$ implies
$\left(N_{i}\right) L\left(M_{i}\right) \not \subset A \cdot \mathbb{Q} \cdot L\left(M_{3-i}\right)$ for any finite $A \subset \mathbb{R}$.

Note that $\left(T_{i}\right)$ implies
$\left(N_{i}\right) L\left(M_{i}\right) \not \subset A \cdot \mathbb{Q} \cdot L\left(M_{3-i}\right)$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Note that $\left(T_{i}\right)$ implies
$\left(N_{i}\right) L\left(M_{i}\right) \not \subset A \cdot \mathbb{Q} \cdot L\left(M_{3-i}\right)$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_{1} and G_{2} are of same type different from A_{n}, $D_{2 n+1}(n>1)$ and E_{6}, and that Γ_{1} and Γ_{2} are arithmetic.

Note that $\left(T_{i}\right)$ implies
$\left(N_{i}\right) L\left(M_{i}\right) \not \subset A \cdot \mathbb{Q} \cdot L\left(M_{3-i}\right)$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_{1} and G_{2} are of same type different from A_{n}, $D_{2 n+1}(n>1)$ and E_{6}, and that Γ_{1} and Γ_{2} are arithmetic.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are commensurable (in particular, length-commensurable),

Note that $\left(T_{i}\right)$ implies
$\left(N_{i}\right) L\left(M_{i}\right) \not \subset A \cdot \mathbb{Q} \cdot L\left(M_{3-i}\right)$ for any finite $A \subset \mathbb{R}$.

Using Shanuel's conjecture, we prove

Theorem 6

Assume that G_{1} and G_{2} are of same type different from A_{n}, $D_{2 n+1}(n>1)$ and E_{6}, and that Γ_{1} and Γ_{2} are arithmetic.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are commensurable (in particular, length-commensurable), or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

Theorem 7

Assume that both G_{1} and G_{2} are of one of following types: A_{n}, $D_{2 n+1}(n>1)$ or E_{6}, subgroups Γ_{1} and Γ_{2} are arithmetic, and in addition $K_{\Gamma_{i}} \neq \mathbb{Q}$ for at least one $i \in\{1,2\}$.

Theorem 7

Assume that both G_{1} and G_{2} are of one of following types: A_{n}, $D_{2 n+1}(n>1)$ or E_{6}, subgroups Γ_{1} and Γ_{2} are arithmetic, and in addition $K_{\Gamma_{i}} \neq \mathbf{Q}$ for at least one $i \in\{1,2\}$.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable (although not necessarily commensurable),

Theorem 7

Assume that both G_{1} and G_{2} are of one of following types: A_{n}, $D_{2 n+1}(n>1)$ or E_{6}, subgroups Γ_{1} and Γ_{2} are arithmetic, and in addition $K_{\Gamma_{i}} \neq \mathbb{Q}$ for at least one $i \in\{1,2\}$.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable (although not necessarily commensurable), or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

Theorem 7

Assume that both G_{1} and G_{2} are of one of following types: A_{n}, $D_{2 n+1}(n>1)$ or E_{6}, subgroups Γ_{1} and Γ_{2} are arithmetic, and in addition $K_{\Gamma_{i}} \neq \mathbb{Q}$ for at least one $i \in\{1,2\}$.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable (although not necessarily commensurable), or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

Corollary

Let $M_{i}(i=1,2)$ be quotients of real hyperbolic space $\mathbb{H}^{d_{i}}$ with $d_{i} \neq 3$ by a torsion free discrete subgroup Γ_{i} of $G_{i}(\mathbb{R})$ where $G_{i}=\operatorname{PSO}\left(d_{i}, 1\right)$.

Theorem 7

Assume that both G_{1} and G_{2} are of one of following types: A_{n}, $D_{2 n+1}(n>1)$ or E_{6}, subgroups Γ_{1} and Γ_{2} are arithmetic, and in addition $K_{\Gamma_{i}} \neq \mathbb{Q}$ for at least one $i \in\{1,2\}$.

Then either $M_{1}=\mathfrak{X}_{\Gamma_{1}}$ and $M_{2}=\mathfrak{X}_{\Gamma_{2}}$ are length-commensurable (although not necessarily commensurable), or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

Corollary

Let $M_{i}(i=1,2)$ be quotients of real hyperbolic space $\mathbb{H}^{d_{i}}$ with $d_{i} \neq 3$ by a torsion free discrete subgroup Γ_{i} of $G_{i}(\mathbb{R})$ where $G_{i}=\operatorname{PSO}\left(d_{i}, 1\right)$.
(1) If $d_{1}>d_{2}$ then $\left(T_{1}\right)$ and $\left(N_{1}\right)$ hold.

(cont'd)

Assume now that $d_{1}=d_{2}=: d \neq 3$ and Γ_{1} and Γ_{2} are arithmetic.

(contd)

Assume now that $d_{1}=d_{2}=: d \neq 3$ and Γ_{1} and Γ_{2} are arithmetic.
(2) If d is even or $\equiv 3(\bmod 4)$, then either M_{1} and M_{2} are commensurable, hence length-commensurable, or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

(contd)

Assume now that $d_{1}=d_{2}=: d \neq 3$ and Γ_{1} and Γ_{2} are arithmetic.
(2) If d is even or $\equiv 3(\bmod 4)$, then either M_{1} and M_{2} are commensurable, hence length-commensurable, or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.
(3) If $d \equiv 1(\bmod 4)$ and in addition $K_{\Gamma_{i}} \neq \mathbb{Q}$ for at least one $i \in\{1,2\}$ then either M_{1} and M_{2} are lengthcommensurable (although not necessarily commensurable), or $\left(T_{i}\right)$ and $\left(N_{i}\right)$ hold for at least one $i \in\{1,2\}$.

Theorem 8

Assume that G_{1} and G_{2} are either of same type or one of them is of type B_{ℓ} and other of type C_{ℓ}, and let $M_{i}=\mathfrak{X}_{\Gamma_{i}}(i=1,2)$ be arithmetically defined locally symmetric spaces.
Theorem 8
Assume that G_{1} and G_{2} are either of same type or one of them is of type B_{ℓ} and other of type C_{ℓ}, and let $M_{i}=\mathfrak{X}_{\Gamma_{i}}(i=1,2)$ be arithmetically defined locally symmetric spaces.
If M_{2} is compact and M_{1} is not, then $\left(T_{1}\right)$ and $\left(N_{1}\right)$ hold.

Theorem 8

Assume that G_{1} and G_{2} are either of same type or one of them is of type B_{ℓ} and other of type C_{ℓ}, and let $M_{i}=\mathfrak{X}_{\Gamma_{i}}(i=1,2)$ be arithmetically defined locally symmetric spaces.

If M_{2} is compact and M_{1} is not, then $\left(T_{1}\right)$ and $\left(N_{1}\right)$ hold.
Theorem 8
Assume that G_{1} and G_{2} are either of same type or one of them is of type B_{ℓ} and other of type C_{ℓ}, and let $M_{i}=\mathfrak{X}_{\Gamma_{i}}(i=1,2)$ be arithmetically defined locally symmetric spaces.
If M_{2} is compact and M_{1} is not, then $\left(T_{1}\right)$ and $\left(N_{1}\right)$ hold.

Results for isospectral locally symmetric spaces are derived from those for length-commensurable spaces.
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,
- $\chi_{A}(t)$ is irreducible over F, and

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,
- $\chi_{A}(t)$ is irreducible over F, and
- Galois group of $\chi_{A}(t)$ over F is symmetric group S_{n}.

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,
- $\chi_{A}(t)$ is irreducible over F, and
- Galois group of $\chi_{A}(t)$ over F is symmetric group S_{n}.

It is well-known how to construct irreducible polynomials of degree n over \mathbb{Q} with Galois group S_{n} for any $n \geqslant 2$

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,
- $\chi_{A}(t)$ is irreducible over F, and
- Galois group of $\chi_{A}(t)$ over F is symmetric group S_{n}.

It is well-known how to construct irreducible polynomials of degree n over \mathbb{Q} with Galois group S_{n} for any $n \geqslant 2$
$\Rightarrow \mathrm{GL}_{n}(\mathbb{Q})$ contains \mathbb{Q}-generic elements.

Let $A \in \mathrm{GL}_{n}(F)$, and let $\chi_{A}(t)=$ characteristic polynomial of A.
A is generic over F if

- A is diagonalizable,
- $\chi_{A}(t)$ is irreducible over F, and
- Galois group of $\chi_{A}(t)$ over F is symmetric group S_{n}.

It is well-known how to construct irreducible polynomials of degree n over \mathbb{Q} with Galois group S_{n} for any $n \geqslant 2$
$\Rightarrow \mathrm{GL}_{n}(\mathbb{Q})$ contains Q -generic elements.

We will now generalize notion of generic elements and existence theorem to arbitrary semi-simple groups.

Let G be a semi-simple algebraic group over a field F, let T be a maximal F-torus, and $\Phi=\Phi(G, T)$ corresponding root system.

Let G be a semi-simple algebraic group over a field F, let T be a maximal F-torus, and $\Phi=\Phi(G, T)$ corresponding root system.

Recall: action of $\mathcal{G}=\operatorname{Gal}(\bar{F} / F)$ on character group $X(T)$ gives rise to group homomorphism

$$
\theta_{T}: \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi)
$$

Let G be a semi-simple algebraic group over a field F, let T be a maximal F-torus, and $\Phi=\Phi(G, T)$ corresponding root system.

Recall: action of $\mathcal{G}=\operatorname{Gal}(\bar{F} / F)$ on character group $X(T)$ gives rise to group homomorphism

$$
\theta_{T}: \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi)
$$

Note: $\operatorname{Im} \theta_{T} \simeq \operatorname{Gal}(E / F)$ where E minimal splitting field of T.

Let G be a semi-simple algebraic group over a field F, let T be a maximal F-torus, and $\Phi=\Phi(G, T)$ corresponding root system.

Recall: action of $\mathcal{G}=\operatorname{Gal}(\bar{F} / F)$ on character group $X(T)$ gives rise to group homomorphism

$$
\theta_{T}: \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi)
$$

Note: $\operatorname{Im} \theta_{T} \simeq \operatorname{Gal}(E / F)$ where E minimal splitting field of T.

Definition.

(1) T is generic over F if $\operatorname{Im} \theta_{T}$ contains Weyl group $W(\Phi)$.

Let G be a semi-simple algebraic group over a field F, let T be a maximal F-torus, and $\Phi=\Phi(G, T)$ corresponding root system.

Recall: action of $\mathcal{G}=\operatorname{Gal}(\bar{F} / F)$ on character group $X(T)$ gives rise to group homomorphism

$$
\theta_{T}: \mathcal{G} \longrightarrow \operatorname{Aut}(\Phi)
$$

Note: $\operatorname{Im} \theta_{T} \simeq \operatorname{Gal}(E / F)$ where E minimal splitting field of T.

Definition.

(1) T is generic over F if $\operatorname{Im} \theta_{T}$ contains Weyl group $W(\Phi)$.
(2) A semi-simple element $\gamma \in G(F)$ is generic over F if $T:=\mathrm{Z}_{\mathrm{G}}(\gamma)^{\circ}$ is a torus (i.e., γ is regular) which is generic over F.

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F,

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup. (1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoiming to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.
(1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
(2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoiming to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.
(1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
(2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

Remarks. "Components" in (1) refer to almost direct product $G=G_{1} \cdots G_{r}$ of simple groups.

A field $F \subset \mathbb{C}$ is finitely generated if it is obtained by adjoining to \mathbb{Q} finitely many elements (algebraic or transcendental).

Theorem 9 (G. Prasad, A.R.)

Let G be a semi-simple algebraic group over a finitely generated field F, let $\Gamma \subset G(F)$ be a finitely generated Zariski-dense subgroup.
(1) Γ contains an F-generic element $\gamma \in \Gamma$ without components of finite order;
(2) if $\gamma \in \Gamma$ is F-generic then there exists a finite index subgroup $\Delta \subset \Gamma$ such that $\gamma \Delta$ consists of F-generic elements.

Remarks. "Components" in (1) refer to almost direct product $G=G_{1} \cdots G_{r}$ of simple groups.
(2) means that set of F-regular elements is open in Γ for profinite topology.

For a semi-simple \mathbb{R}-group G, an element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if number of eigenvalues of modulus 1

$$
\text { of } \operatorname{Ad}_{G}(\gamma) \text {, }
$$

is minimal possible.

For a semi-simple \mathbb{R}-group G, an element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if number of eigenvalues of modulus 1

$$
\text { of } \operatorname{Ad}_{G}(\gamma) \text {, }
$$

is minimal possible.

Such γ is automatically regular semi-simple and $T=Z_{G}(\gamma)^{\circ}$ contains a maximal \mathbb{R}-split torus.

For a semi-simple \mathbb{R}-group G, an element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if number of eigenvalues of modulus 1

$$
\text { of } \operatorname{Ad}_{G}(\gamma) \text {, }
$$

is minimal possible.

Such γ is automatically regular semi-simple and $T=Z_{G}(\gamma)^{\circ}$ contains a maximal \mathbb{R}-split torus.

- If $F \subset \mathbb{R}$ then γ in (1) can be selected to be \mathbb{R}-regular.

For a semi-simple \mathbb{R}-group G, an element $\gamma \in G(\mathbb{R})$ is \mathbb{R}-regular if number of eigenvalues of modulus 1

$$
\text { of } \operatorname{Ad}_{G}(\gamma) \text {, }
$$

is minimal possible.

Such γ is automatically regular semi-simple and $T=Z_{G}(\gamma)^{\circ}$ contains a maximal \mathbb{R}-split torus.

- If $F \subset \mathbb{R}$ then γ in (1) can be selected to be \mathbb{R}-regular.

Such elements were used to study dynamics of actions, rigidity, Auslander problem about properly discontinuous groups of affine transformations, etc.

Using that Weyl group of irreducible root system acts (absolutely) irreducibly, one proves following:

Using that Weyl group of irreducible root system acts (absolutely) irreducibly, one proves following:

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T=Z_{G}(\gamma)^{\circ}$.

Using that Weyl group of irreducible root system acts (absolutely) irreducibly, one proves following:

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T=Z_{G}(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $\mathrm{GL}_{n}(\mathbb{R})$ are Zariski-closed, one obtains that

Using that Weyl group of irreducible root system acts (absolutely) irreducibly, one proves following:

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T=Z_{G}(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $\mathrm{GL}_{n}(\mathbb{R})$ are Zariski-closed, one obtains that

Any dense subgroup of compact semi-simple Lie group contains a Kronecker element, i.e. an element such that closure of cyclic subgroup generated by it is a maximal torus.

Using that Weyl group of irreducible root system acts (absolutely) irreducibly, one proves following:

If $\gamma \in G(F)$ is generic without components of finite order, then it generates Zariski-dense subgroup of $T=Z_{G}(\gamma)^{\circ}$.

Combining this with fact that compact subgroups of $\mathrm{GL}_{n}(\mathbb{R})$ are Zariski-closed, one obtains that

Any dense subgroup of compact semi-simple Lie group contains a Kronecker element, i.e. an element such that closure of cyclic subgroup generated by it is a maximal torus.

This is false for dense subgroups of compact tori!
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations
(4) Groups with good reduction
- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Consider the following question:

Consider the following question:
(*) Let D_{1} and D_{2} be finite-dimensional central division algebras over a field K. How are D_{1} and D_{2} related if they have same maximal subfields?

Consider the following question:
(*) Let D_{1} and D_{2} be finite-dimensional central division algebras over a field K. How are D_{1} and D_{2} related if they have same maximal subfields?

- D_{1} and D_{2} have same maximal subfields if
- $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n ;$

Consider the following question:
(*) Let D_{1} and D_{2} be finite-dimensional central division algebras over a field K. How are D_{1} and D_{2} related if they have same maximal subfields?

- D_{1} and D_{2} have same maximal subfields if
- $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;

Consider the following question:
(*) Let D_{1} and D_{2} be finite-dimensional central division algebras over a field K. How are D_{1} and D_{2} related if they have same maximal subfields?

- D_{1} and D_{2} have same maximal subfields if
- $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
- for P / K of degree $n, \quad P \hookrightarrow D_{1} \Leftrightarrow P \hookrightarrow D_{2}$.

Geometry

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K.

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K. If D_{1} and D_{2} have same maximal subfield then $D_{1} \simeq D_{2}$.

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K. If D_{1} and D_{2} have same maximal subfields then $D_{1} \simeq D_{2}$.

However, most Riemann surfaces are not arithmetic

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K. If D_{1} and D_{2} have same maximal subfields then $D_{1} \simeq D_{2}$.

However, most Riemann surfaces are not arithmetic \Rightarrow
One needs to understand to what degree this fact extends to more general fields

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K. If D_{1} and D_{2} have same maximal subfields then $D_{1} \simeq D_{2}$.

However, most Riemann surfaces are not arithmetic \Rightarrow
One needs to understand to what degree this fact extends to more general fields

We will see a statement about arbitrary Riemann surfaces later,

Geometry

A. Reid (1992): Any two isospectral / iso-length-spectral arithmetic Riemann surfaces are commensurable.

Underlying algebraic fact:

Let D_{1} and D_{2} be two quaternion division algebras over a number field K. If D_{1} and D_{2} have same maximal subfields then $D_{1} \simeq D_{2}$.

However, most Riemann surfaces are not arithmetic \Rightarrow
One needs to understand to what degree this fact extends to more general fields

We will see a statement about arbitrary Riemann surfaces later, but first let us analyze situation in detail.

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:
- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of M can be understood in terms of the associated quaternion algebra.
- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of M can be understood in terms of the associated quaternion algebra.

Let

- $\pi: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathrm{PSL}_{2}(\mathbb{R})$;
- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of M can be understood in terms of the associated quaternion algebra.

Let

- $\pi: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \operatorname{PSL}_{2}(\mathbb{R})$;
- $\tilde{\Gamma}=\pi^{-1}(\Gamma) \subset \mathrm{M}_{2}(\mathbb{R})$.
- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of M can be understood in terms of the associated quaternion algebra.

Let

- $\pi: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \operatorname{PSL}_{2}(\mathbb{R})$;
- $\tilde{\Gamma}=\pi^{-1}(\Gamma) \subset \mathrm{M}_{2}(\mathbb{R})$.

Set $A_{\Gamma}=\mathbb{Q}\left[\tilde{\Gamma}^{(2)}\right] \subset M_{2}(\mathbb{R}), \quad \tilde{\Gamma}^{(2)} \subset \tilde{\Gamma}$ generated by squares.

One shows: A_{Γ} is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)}\right)
$$

(trace field).

One shows: A_{Γ} is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)}\right)
$$

(trace field).
(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

One shows: A_{Γ} is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)}\right)
$$

(trace field).
(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

- If Γ is arithmetic, then A_{Γ} is the quaternion algebra involved in its description;

One shows: A_{Γ} is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)}\right)
$$

(trace field).
(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

- If Γ is arithmetic, then A_{Γ} is the quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ, but is an invariant of the commensurability class of Γ.

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- geometrically: a closed geodesic $c_{\gamma} \subset M$,
if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- geometrically: a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- geometrically: a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i=1,2)$ be Riemann surfaces.

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- geometrically: a closed geodesic $c_{\gamma} \subset M$,
if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i=1,2)$ be Riemann surfaces.

Assume that M_{1} and M_{2} are length-commensurable,

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- geometrically: a closed geodesic $c_{\gamma} \subset M$,
if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i=1,2)$ be Riemann surfaces.

Assume that M_{1} and M_{2} are length-commensurable, i.e.

$$
\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

Then:

Then:

(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(3) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements γ_{1}^{m} and γ_{2}^{n} are conjugate

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements γ_{1}^{m} and γ_{2}^{n} are conjugate \Rightarrow
$K\left[\gamma_{1}\right] \subset A_{\Gamma_{1}}$ and $K\left[\gamma_{2}\right] \subset A_{\Gamma_{2}}$ are isomorphic.

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements γ_{1}^{m} and γ_{2}^{n} are conjugate \Rightarrow
$K\left[\gamma_{1}\right] \subset A_{\Gamma_{1}}$ and $K\left[\gamma_{2}\right] \subset A_{\Gamma_{2}}$ are isomorphic.

So, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ share "lots" of maximal etale subalgebras.

Then:

(1) $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
(2) Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements γ_{1}^{m} and γ_{2}^{n} are conjugate \Rightarrow
$K\left[\gamma_{1}\right] \subset A_{\Gamma_{1}}$ and $K\left[\gamma_{2}\right] \subset A_{\Gamma_{2}}$ are isomorphic.

So, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ share "lots" of maximal etale subalgebras.
(Not all - but we will ignore it for now ...)

- For M_{1} and M_{2} to be commensurable, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ must be isomorphic.
- For M_{1} and M_{2} to be commensurable, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ must be isomorphic.

Thus, proving that length-commensurable M_{1} and M_{2} are commensurable

- For M_{1} and M_{2} to be commensurable, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ must be isomorphic.

Thus, proving that length-commensurable M_{1} and M_{2} are commensurable must involve answering a version of question (*), at least implicitly.

- For M_{1} and M_{2} to be commensurable, $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ must be isomorphic.

Thus, proving that length-commensurable M_{1} and M_{2} are commensurable must involve answering a version of question (*), at least implicitly.

We will see what can be said about A_{Γ} 's for length-commensurable Riemann surfaces.

Algebra

Amitsur's Theorem
 Let D_{1} and D_{2} be central division algebras over K.

Algebra

Amitsur's TheoremLet D_{1} and D_{2} be central division algebras over K.If D_{1} and D_{2} have same splitting fields,

Algebra

Amitsur's Theorem

Let D_{1} and D_{2} be central division algebras over K. If D_{1} and D_{2} have same splitting fields, i.e. for F / K we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

Algebra

Amitsur's Theorem

Let D_{1} and D_{2} be central division algebras over K. If D_{1} and D_{2} have same splitting fields, i.e. for F / K we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

Algebra

Amitsur's Theorem

Let D_{1} and D_{2} be central division algebras over K. If D_{1} and D_{2} have same splitting fields, i.e. for F / K we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \Leftrightarrow D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.
Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties),

Algebra

Amitsur's Theorem

Let D_{1} and D_{2} be central division algebras over K. If D_{1} and D_{2} have same splitting fields, i.e. for F / K we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \Leftrightarrow D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.
Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of K.

Algebra

Amitsur's Theorem

Let D_{1} and D_{2} be central division algebras over K. If D_{1} and D_{2} have same splitting fields, ie. for F / K we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \Leftrightarrow D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.
Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of K.

What happens if one allows only splitting fields of finite degree, or just maximal subfields?

- Amitsur's Theorem is no longer true in this setting.
- Amitsur's Theorem is no longer true in this setting. (Counterexamples can be found using cubic algebras over number fields.)
- Amitsur's Theorem is no longer true in this setting. (Counterexamples can be found using cubic algebras over number fields.)

This leads to question $(*)$ and its variations.

- Amitsur's Theorem is no longer true in this setting. (Counterexamples can be found using cubic algebras over number fields.)

This leads to question $(*)$ and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K=\mathbb{Q}(x)$ determined by their maximal subfields?

- Amitsur's Theorem is no longer true in this setting. (Counterexamples can be found using cubic algebras over number fields.)

This leads to question $(*)$ and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K=\mathbb{Q}(x)$ determined by their maximal subfields?

- Yes - D. Saltman
- Amitsur's Theorem is no longer true in this setting. (Counterexamples can be found using cubic algebras over number fields.)

This leads to question $(*)$ and its variations.

Question (G. Prasad-A.R.)

Are quaternion algebras over $K=\mathbb{Q}(x)$ determined by their maximal subfields?

- Yes - D. Saltman
- Same over $K=k(x), k$ a number field
(S. Garibaldi - D. Saltman)
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Definition.

Let D be a finite-dimensional central division algebra over K.

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)

Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)

Question 2. When is $\operatorname{gen}(D)$ finite?

Over number fields:

- genus of every quaternion algebra reduces to one element;
- genus of every division algebra is finite.

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)

Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

- genus of every quaternion algebra reduces to one element;
- genus of every division algebra is finite.

Definition.

Let D be a finite-dimensional central division algebra over K. The genus of D is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen (D) reduce to a single element?
(This means that D is uniquely determined by maximal subfields.)

Question 2. When is $\operatorname{gen}(D)$ finite?

Over number fields:

- genus of every quaternion algebra reduces to one element;
- genus of every division algebra is finite.
(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)
 Let $\operatorname{char} k \neq 2$. If $|\operatorname{gen}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)
Let char $k \neq 2$. If $|\operatorname{gen}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)
Let $\operatorname{char} k \neq 2$. If $|\operatorname{gen}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)
Let $\operatorname{char} k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .
(Indeed, $\left[D^{\mathrm{op}}\right] \in \operatorname{gen}(D)$ and $\left[D^{\mathrm{op}}\right] \neq[D]$.)

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char $k \neq 2$. If $|\operatorname{gen}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .
(Indeed, $\left[D^{\mathrm{op}}\right] \in \operatorname{gen}(D)$ and $\left[D^{\mathrm{op}}\right] \neq[D]$.)
- gen (D) can be infinite.

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char $k \neq 2$. If $|\operatorname{gen}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .
(Indeed, $\left[D^{\mathrm{op}}\right] \in \operatorname{gen}(D)$ and $\left[D^{\mathrm{op}}\right] \neq[D]$.)
- gen (D) can be infinite.
(For quaternions - J.S. Meyer (2014), for algebras of prime degree $p>2$ - S.V. Tikhonov (2016).)

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .
(Indeed, $\left[D^{\mathrm{op}}\right] \in \operatorname{gen}(D)$ and $\left[D^{\mathrm{op}}\right] \neq[D]$.)
- gen (D) can be infinite.
(For quaternions - J.S. Meyer (2014), for algebras of prime degree $p>2$ - S.V. Tikhonov (2016).)

Construction yields examples over fields that are infinitely generated

Theorem 10 (Stability Theorem, Chernousov-I. Rapinchuk, A.R.)

Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for every quaternion algebra D over k, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra D^{\prime} over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if D is not of exponent 2 .
(Indeed, $\left[D^{\mathrm{op}}\right] \in \operatorname{gen}(D)$ and $\left[D^{\mathrm{op}}\right] \neq[D]$.)
- gen (D) can be infinite.
(For quaternions - J.S. Meyer (2014), for algebras of prime degree $p>2$ - S.V. Tikhonov (2016).)

Construction yields examples over fields that are infinitely generated
(in fact, HUGE)

Construction

- Start with nonisomorphic quaternion algebras D_{1} and D_{2} over $K(\operatorname{char} K \neq 2)$ having a common maximal subfield.

Construction

- Start with nonisomorphic quaternion algebras D_{1} and D_{2} over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$)

Construction

- Start with nonisomorphic quaternion algebras D_{1} and D_{2} over $K(\operatorname{char} K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$)
- If D_{1} and D_{2} already have same maximal subfields, we are done.

Otherwise, pick $K\left(\sqrt{d_{1}}\right) \hookrightarrow D_{1}$ such that $K\left(\sqrt{d_{1}}\right) \nrightarrow D_{2}$.

Construction

- Start with nonisomorphic quaternion algebras D_{1} and D_{2} over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$)
- If D_{1} and D_{2} already have same maximal subfields, we are done.

Otherwise, pick $K\left(\sqrt{d_{1}}\right) \hookrightarrow D_{1}$ such that $K\left(\sqrt{d_{1}}\right) \nLeftarrow D_{2}$.
(E.g., $\mathbf{Q}(\sqrt{11}) \hookrightarrow D_{1}$ but $\mathbf{Q}(\sqrt{11}) \nrightarrow D_{2}$.)

- Find K_{1} / K such that

- Find K_{1} / K such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$; (3) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.
- Find K_{1} / K such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.
- Find K_{1} / K such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For K_{1} one can take the function field of a quadric.

- Find K_{1} / K such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For K_{1} one can take the function field of a quadric.

In our example, K_{1} is function field of

$$
-x_{1}^{2}+7 x_{2}^{2}+7 x_{3}^{2}=11 x_{4}^{2}
$$

- Find K_{1} / K such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For K_{1} one can take the function field of a quadric.

In our example, K_{1} is function field of

$$
-x_{1}^{2}+7 x_{2}^{2}+7 x_{3}^{2}=11 x_{4}^{2}
$$

Then (2) is obvious, and (1) follows from the fact that

$$
x_{0}^{2}+x_{1}^{2}-21 x_{2}^{2}-21 x_{3}^{2}
$$

remains anisotropic over K_{1}.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.
- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nLeftarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nLeftarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $D_{1} \otimes_{K} \mathcal{K} \not 千 D_{2} \otimes_{K} \mathcal{K}$ and have same maximal subfields.
- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $D_{1} \otimes_{K} \mathcal{K} \nsucceq D_{2} \otimes_{K} \mathcal{K}$ and have same maximal subfields.

For infinite genus, one starts with $D_{p}=\left(\frac{-1, p}{\mathbb{Q}}\right), p \equiv 3(\bmod 4)$.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) ~ \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct K_{2} / K_{1} similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $D_{1} \otimes_{K} \mathcal{K} \not \not D_{2} \otimes_{K} \mathcal{K}$ and have same maximal subfields.

For infinite genus, one starts with $D_{p}=\left(\frac{-1, p}{\mathbb{Q}}\right), p \equiv 3(\bmod 4)$.

Note that \mathcal{K} is infinitely generated.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus $\operatorname{gen}(D)$ is finite.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus $\operatorname{gen}(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Brauer group.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen (D) is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Braver group.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen (D) is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Braver group.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_{1} and D_{2} are central division K-algebras of degree n having same maximal subfields,

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus $\operatorname{gen}(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Braver group.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.
If D_{1} and D_{2} are central division K-algebras of degree n having same maximal subfields, then either both algebras are ramified at v or both are unramified.

Theorem $11\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen (D) is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Braver group.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.
If D_{1} and D_{2} are central division K-algebras of degree n having same maximal subfields, then either both algebras are ramified at v or both are unramified.
(When n is divisible by char $K^{(v)}$, we need some additional assumptions)

- Recall that a c.s.a. A over K (or its class $[A] \in \operatorname{Br}(K)$) is unramified at v if
- Recall that a c.s.a. A over K (or its class $[A] \in \operatorname{Br}(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A} / \mathcal{O}_{v}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

- Recall that a c.s.a. A over K (or its class $[A] \in \operatorname{Br}(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A} / \mathcal{O}_{v}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

If $\left(n, \operatorname{char} K^{(v)}\right)=1$ or $K^{(v)}$ is perfect, there is a residue map

$$
r_{v}:{ }_{n} \operatorname{Br}(K) \longrightarrow H^{1}\left(\mathcal{G}^{(v)}, \mathbb{Z} / n \mathbb{Z}\right),
$$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

- Recall that a c.s. a. A over K (or its class $[A] \in \operatorname{Br}(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A} / \mathcal{O}_{v}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

If $\left(n, \operatorname{char} K^{(v)}\right)=1$ or $K^{(v)}$ is perfect, there is a residue map

$$
r_{v}:{ }_{n} \operatorname{Br}(K) \longrightarrow H^{1}\left(\mathcal{G}^{(v)}, \mathbb{Z} / n \mathbb{Z}\right),
$$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

- Then $x \in{ }_{n} \operatorname{Br}(K)$ is unramified at $v \Leftrightarrow r_{v}(x)=0$.
- Recall that a c.s.a. A over K (or its class $[A] \in \operatorname{Br}(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A} / \mathcal{O}_{v}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

If $\left(n, \operatorname{char} K^{(v)}\right)=1$ or $K^{(v)}$ is perfect, there is a residue map

$$
r_{v}:{ }_{n} \operatorname{Br}(K) \longrightarrow H^{1}\left(\mathcal{G}^{(v)}, \mathbb{Z} / n \mathbb{Z}\right),
$$

where $\mathcal{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

- Then $x \in{ }_{n} \operatorname{Br}(K)$ is unramified at $v \Leftrightarrow r_{v}(x)=0$.

Given a set V of discrete valuations of K, one defines corresponding unramified Brauer group:

$$
\operatorname{Br}(K)_{V}=\{x \in \operatorname{Br}(K) \mid x \text { unramified at all } v \in V\} .
$$

- To prove Theorem 1 (Stability Theorem) we use: if $K=k(x)$ and $V=$ set of geometric places, then

$$
{ }_{n} \operatorname{Br}(K)_{V}={ }_{n} \operatorname{Br}(k)
$$

when $(n$, char $k)=1$ (Faddeev)

- To prove Theorem 1 (Stability Theorem) we use: if $K=k(x)$ and $V=$ set of geometric places, then

$$
{ }_{n} \operatorname{Br}(K)_{V}={ }_{n} \operatorname{Br}(k)
$$

when $(n$, char $k)=1$ (Faddeev)

- There are two proofs of Theorem 2. Both show that a finitely generated field K can be equipped with set V of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
- To prove Theorem 1 (Stability Theorem) we use: if $K=k(x)$ and $V=$ set of geometric places, then

$$
{ }_{n} \operatorname{Br}(K)_{V}={ }_{n} \operatorname{Br}(k)
$$

when $(n$, char $k)=1$ (Faddeev)

- There are two proofs of Theorem 2. Both show that a finitely generated field K can be equipped with set V of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
- More recent argument works in all characteristics, but gives no estimate of size of $\operatorname{gen}(D)$.
- Earlier argument works when $(n$, char $K)=1$, gives finiteness of ${ }_{n} \operatorname{Br}(K)_{V}$ and estimate
$\operatorname{gen}(D)\left|\leqslant\left|{ }_{n} \operatorname{Br}(K)_{V}\right| \cdot \varphi(n)^{r}\right.$
where r is number of $v \in V$ that ramify
- To prove Theorem 1 (Stability Theorem) we use: if $K=k(x)$ and $V=$ set of geometric places, then

$$
{ }_{n} \operatorname{Br}(K)_{V}={ }_{n} \operatorname{Br}(k)
$$

when $(n$, char $k)=1$ (Faddeev)

- There are two proofs of Theorem 2. Both show that a finitely generated field K can be equipped with set V of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
- More recent argument works in all characteristics, but gives no estimate of size of $\operatorname{gen}(D)$.
- Earlier argument works when $(n$, char $K)=1$, gives finiteness of ${ }_{n} \operatorname{Br}(K)_{V}$ and estimate

Where r is number of $v \in V$ that ramify

- To prove Theorem 1 (Stability Theorem) we use: if $K=k(x)$ and $V=$ set of geometric places, then

$$
{ }_{n} \operatorname{Br}(K)_{V}={ }_{n} \operatorname{Br}(k)
$$

when $(n$, char $k)=1$ (Faddeev)

- There are two proofs of Theorem 2. Both show that a finitely generated field K can be equipped with set V of discrete valuations so that one can make some finiteness statements about unramified Brauer group.
- More recent argument works in all characteristics, but gives no estimate of size of $\operatorname{gen}(D)$.
- Earlier argument works when (n, char K) $=1$, gives finiteness of ${ }_{n} \operatorname{Br}(K)_{V}$ and estimate

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant{ }_{n} \operatorname{Br}(K)_{V} \mid \cdot \varphi(n)^{r}
$$

where r is number of $v \in V$ that ramify in D.

Question. Does there exist a quaternion division algebra D over $K=k(C)$, where C is a smooth geometrically integral curve over a number field k, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

Question. Does there exist a quaternion division algebra D over $K=k(C)$, where C is a smooth geometrically integral curve over a number field k, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

- The answer is not known for any finitely generated K.

Question. Does there exist a quaternion division algebra D over $K=k(C)$, where C is a smooth geometrically integral curve over a number field k, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

- The answer is not known for any finitely generated K.
- One can construct examples where ${ }_{2} \operatorname{Br}(K)_{V}$ is "large."
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let G_{1} and G_{2} be semi-simple groups over a field K.
- To define the genus of an algebraic group, we replace maximal subfield with maximal tori in the definition of genus of division algebra.
- Let G_{1} and G_{2} be semi-simple groups over a field K. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal K-torus T_{1} of G_{1} is K-isomorphic to a maximal K-torus T_{2} of G_{2}, and vice versa.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let G_{1} and G_{2} be semi-simple groups over a field K. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal K-torus T_{1} of G_{1} is K-isomorphic to a maximal K-torus T_{2} of G_{2}, and vice versa.
- Let G be an absolutely almost simple K-group.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let G_{1} and G_{2} be semi-simple groups over a field K. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal K-torus T_{1} of G_{1} is K-isomorphic to a maximal K-torus T_{2} of G_{2}, and vice versa.
- Let G be an absolutely almost simple K-group. $\operatorname{gen}_{K}(G)=$ set of isomorphism classes of K-forms G^{\prime} of G having same K-isomorphism classes of maximal K-tori.

Question $\mathbf{1}^{\prime}$. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question 2'. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.
(1) $\operatorname{gen}_{K}(G)$ is finite;

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If G is not of type $A_{n}, D_{2 n+1}$ or E_{6}, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If G is not of type $A_{n}, D_{2 n+1}$ or E_{6}, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Conjecture. (1) For $K=k(x), k$ a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leqslant 2$, we have $\left|\operatorname{gen}_{K}(G)\right|=1$;

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element? Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Theorem 12 (G. Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If G is not of type $A_{n}, D_{2 n+1}$ or E_{6}, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Conjecture. (1) For $K=k(x), k$ a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leqslant 2$, we have $\left|\operatorname{gen}_{K}(G)\right|=1$;
(2) If G is an absolutely almost simple group over a finitely generated field K of "good" characteristic then $\operatorname{gen}_{K}(G)$ is finite.

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.
- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.

Theorem $13\left(C+R^{2}\right)$

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.

Theorem $13\left(C+R^{2}\right)$

(1) Let D be a central division algebra of exponent 2 over $K=k\left(x_{1}, \ldots, x_{r}\right)$ where k is a number field or a finite field of characteristic $\neq 2$. Then for $G=\operatorname{SL}_{m, D}(m \geqslant 1)$ we have $\left|\operatorname{gen}_{K}(G)\right|=1$.

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.

Theorem $13\left(\mathrm{C}+\mathrm{R}^{2}\right)$

(1) Let D be a central division algebra of exponent 2 over $K=k\left(x_{1}, \ldots, x_{r}\right)$ where k is a number field or a finite field of characteristic $\neq 2$. Then for $G=\operatorname{SL}_{m, D}(m \geqslant 1)$ we have $\left|\operatorname{gen}_{K}(G)\right|=1$.
(2) Let $G=\mathrm{SL}_{m, D}$, where D is a central division algebra over a finitely generated field K. Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Theorem $14\left(C+R^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k,

Theorem $14\left(C+R^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or

Theorem $14\left(C+R^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over quadratic extension L / K.

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ a hermitian form over quadratic extension L / K.

Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over quadratic extension L / K. Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $15\left(C+R^{2}\right)$

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ a hermitian form over quadratic extension L / K.

Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $15\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let G be a simple algebraic group of type G_{2}.

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ a hermitian form over quadratic extension L / K.

Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $15\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let G be a simple algebraic group of type G_{2}.
(1) If $K=k(x)$, where k is a number field, then $\left|\operatorname{gen}_{K}(G)\right|=1$;

Theorem $14\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let $K=k(C)$ where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over K and n is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over quadratic extension L / K.

Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem $15\left(\mathrm{C}+\mathrm{R}^{2}\right)$

Let G be a simple algebraic group of type G_{2}.
(1) If $K=k(x)$, where k is a number field, then $\left|\operatorname{gen}_{K}(G)\right|=1$;
(2) If $K=k\left(x_{1}, \ldots, x_{r}\right)$ or $k(C)$, where k is a number field, then $\operatorname{gen}_{K}(G)$ is finite.

Generally speaking, these (and other similar) results were obtained by extending strategy used for division algebras.

Generally speaking, these (and other similar) results were obtained by extending strategy used for division algebras.

What is a substitute for notion of unramified algebra?

Generally speaking, these (and other similar) results were obtained by extending strategy used for division algebras.

What is a substitute for notion of unramified algebra?

This brings us to groups with good reduction.
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Let G be an absolutely almost simple algebraic K-group

Let G be an absolutely almost simple algebraic K-group (typically, simply connected or adjoint)

Let G be an absolutely almost simple algebraic K-group (typically, simply connected or adjoint)

- G has good reduction at a discrete valuation v of K

Let G be an absolutely almost simple algebraic K-group (typically, simply connected or adjoint)

- G has good reduction at a discrete valuation v of K if there exists a reductive group scheme \mathcal{G} over valuation ring
$\mathcal{O}_{v} \subset K_{v}$ of completion such that
(1) generic fiber $\mathcal{G} \otimes \mathcal{O}_{v} K_{v}$ is isomorphic to $G \otimes_{K} K_{v}$;

Let G be an absolutely almost simple algebraic K-group (typically, simply connected or adjoint)

- G has good reduction at a discrete valuation v of K if there exists a reductive group scheme \mathcal{G} over valuation ring
$\mathcal{O}_{v} \subset K_{v}$ of completion such that
(1) generic fiber $\mathcal{G} \otimes_{\mathcal{O}_{v}} K_{v}$ is isomorphic to $G \otimes_{K} K_{v}$;
(2) special fiber (reduction) $\underline{G}^{(v)}=\mathcal{G} \otimes \otimes_{\mathcal{O}_{v}} K^{(v)} \quad\left(K^{(v)}\right.$ residue field) is a connected simple group of same type as G.

Let G be an absolutely almost simple algebraic K-group (typically, simply connected or adjoint)

- G has good reduction at a discrete valuation v of K if there exists a reductive group scheme \mathcal{G} over valuation ring
$\mathcal{O}_{v} \subset K_{v}$ of completion such that
(1) generic fiber $\mathcal{G} \otimes_{\mathcal{O}_{v}} K_{v}$ is isomorphic to $G \otimes_{K} K_{v}$;
(2) special fiber (reduction) $\underline{G}^{(v)}=\mathcal{G} \otimes_{\mathcal{O}_{v}} K^{(v)} \quad\left(K^{(v)}\right.$ residue field) is a connected simple group of same type as G.

Examples.

Examples.

0 . If G is K-split then G has a good reduction at any v,

Examples.

0 . If G is K-split then G has a good reduction at any v, given by Chevalley construction.

Examples.

0 . If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G=\mathrm{SL}_{1, A}$ has good reduction at v if there exists an Azumaya algebra \mathcal{A} over \mathcal{O}_{v} such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

Examples.

0 . If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G=\mathrm{SL}_{1, A}$ has good reduction at v if there exists an Azumaya algebra \mathcal{A} over \mathcal{O}_{v} such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(in other words, A is unramified at v).

Examples.

0 . If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G=\mathrm{SL}_{1, A}$ has good reduction at v if there exists an Azumaya algebra \mathcal{A} over \mathcal{O}_{v} such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(in other words, A is unramified at v).
2. $G=\operatorname{Spin}_{n}(q)$ has good reduction at v

Examples.

0 . If G is K-split then G has a good reduction at any v, given by Chevalley construction.

1. $G=\mathrm{SL}_{1, A}$ has good reduction at v if there exists an Azumaya algebra \mathcal{A} over \mathcal{O}_{v} such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(in other words, A is unramified at v).
2. $G=\operatorname{Spin}_{n}(q)$ has good reduction at v if

$$
q \sim \lambda\left(a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}\right) \quad \text { with } \quad \lambda \in K_{v}^{\times}, a_{i} \in \mathcal{O}_{v}^{\times}
$$

(assuming that char $K^{(v)} \neq 2$).

General problem: Let V be a set of discrete valuations of K.

General problem: Let V be a set of discrete valuations of K.

What can one say about those \bar{K} / K-forms of G that have good reduction at all $v \in V$?

General problem: Let V be a set of discrete valuations of K.

What can one say about those \bar{K} / K-forms of G that have good reduction at all $v \in V$?

To make this problem meaningful one needs to specify K, V and/or G.

General problem: Let V be a set of discrete valuations of K.

What can one say about those \bar{K} / K-forms of G that have good reduction at all $v \in V$?

To make this problem meaningful one needs to specify K, V and/or G.

Most popular case: K field of fractions of Dedekind ring R, and V consists of places associated with maximal ideals of R.

Basic case $R=\mathbb{Z}$:
 B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Basic case $R=\mathbb{Z}$:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q}. Then G has good reduction at all primes p if and only if G is split over all Q_{p}.

```
Basic case }R=\mathbb{Z}\mathrm{ :
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.
```


Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q}. Then G has good reduction at all primes p if and only if G is split over all Q_{p}.

Then nonsplit groups with good reduction can be constructed explicitly and in some cases even classified.

Basic case $R=\mathbb{Z}$:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q}. Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_{p}.

Then nonsplit groups with good reduction can be constructed explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and assume that V contains almost all places of K. Then number of K-forms of G that have good reduction at all $v \in V$ is finite.

Case $R=k[x], K=k(x)$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible $\}$.

Case $R=k[x], K=k(x)$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible $\}$.

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. If G^{\prime} is a K-form of $G_{0} \otimes_{k} K$ that has good reduction at all $v \in V$ then $G^{\prime}=G_{0}^{\prime} \otimes_{k} K$ for some k-form G_{0}^{\prime} of G_{0}.

Case $R=k[x], K=k(x)$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible $\}$.

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. If G^{\prime} is a K-form of $G_{0} \otimes_{k} K$ that has good reduction at all $v \in V$ then $G^{\prime}=G_{0}^{\prime} \otimes_{k} K$ for some k-form G_{0}^{\prime} of G_{0}.

Case $R=k\left[x, x^{-1}\right]$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible, $\left.\neq x\right\}$.

Case $R=k[x], K=k(x)$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible $\}$.

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. If G^{\prime} is a K-form of $G_{0} \otimes_{k} K$ that has good reduction at all $v \in V$ then $G^{\prime}=G_{0}^{\prime} \otimes_{k} K$ for some k-form G_{0}^{\prime} of G_{0}.

Case $R=k\left[x, x^{-1}\right]$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible, $\left.\neq x\right\}$.

Theorem (Chernousov-Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. Then K-forms of $G_{0} \otimes_{k} K$ that have good reduction at all $v \in V$ are in bijection with $H^{1}\left(k((x)), G_{0}\right)$.

Case $R=k[x], K=k(x)$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible $\}$.

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. If G^{\prime} is a K-form of $G_{0} \otimes_{k} K$ that has good reduction at all $v \in V$ then $G^{\prime}=G_{0}^{\prime} \otimes_{k} K$ for some k-form G_{0}^{\prime} of G_{0}.

Case $R=k\left[x, x^{-1}\right]$, and $V=\left\{v_{p(x)} \mid p(x) \in k[x]\right.$ irreducible, $\left.\neq x\right\}$.

Theorem (Chernousov-Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let G_{0} be a connected reductive group over k. Then K-forms of $G_{0} \otimes_{k} K$ that have good reduction at all $v \in V$ are in bijection with $H^{1}\left(k((x)), G_{0}\right)$.

This was used to prove conjugacy of Cartan subalgebras in some infinite-dimensional Lie algebras.

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem,

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type over \mathbb{Z}.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type over \mathbb{Z}. Then $v \in V$ correspond to prime divisors on X.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type over \mathbb{Z}. Then $v \in V$ correspond to prime divisors on X.

Algebraically: Choose an integrally closed \mathbb{Z}-subalgebra $A \subset K$ of finite type with fraction field K.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type over \mathbb{Z}. Then $v \in V$ correspond to prime divisors on X.

Algebraically: Choose an integrally closed \mathbb{Z}-subalgebra $A \subset K$ of finite type with fraction field K. Then $v \in V$ correspond to height one prime ideals of A.

Analysis of Finiteness conjecture for weakly commensurable groups has led us to consider higher-dimensional version of problem, never treated before.

Every finitely generated field K has an almost canonical set of discrete valuations V called divisorial.

Geometrically: Let X be a normal model for K of finite type over \mathbb{Z}. Then $v \in V$ correspond to prime divisors on X.

Algebraically: Choose an integrally closed \mathbb{Z}-subalgebra $A \subset K$ of finite type with fraction field K. Then $v \in V$ correspond to height one prime ideals of A.

- Two divisorial sets differ only in finitely many valuations.

Example.

Example. Let $K=\mathbb{Q}(x)$.

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding divisorial set is

$$
V=V_{0} \cup V_{1}
$$

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding divisorial set is

$$
V=V_{0} \cup V_{1}
$$

where

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding divisorial set is

$$
V=V_{0} \cup V_{1}
$$

where

- V_{0} consists of extensions of p-adic valuations ("constant" valuations), and

Example. Let $K=\mathbb{Q}(x)$. One can take $A=\mathbb{Z}[x]$.
Height one primes are principal ideals generated

- either by a rational prime $p \in \mathbb{Z}$,
- or by an irreducible content 1 polynomial $\pi(x) \in \mathbb{Z}[x]$.

So, corresponding divisorial set is

$$
V=V_{0} \cup V_{1}
$$

where

- V_{0} consists of extensions of p-adic valuations ("constant" valuations), and
- V_{1} of discrete valuations associated with irreducible polynomials in $\mathbb{Q}[x]$, i.e. with closed points of $\mathbf{A}_{\mathbb{Q}}^{1}$ ("geometric" valuations).

Finiteness Conjecture for Groups with Good Reduction

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)
True if

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)
True if

- K is a global field;
- G is an inner form of type A_{n};
- G is spinor group of a quadratic form, certain unitary group, or a group of type G_{2} over $K=k(C)$, function field of a curve over a global field k.

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)
True if

- K is a global field;
- G is an inner form of type A_{n};
- G is spinor group of a quadratic form, certain unitary group, or a group of type G_{2} over $K=k(C)$, function field of a curve over a global field k.

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)
True if

- K is a global field;
- G is an inner form of type A_{n};
- G is spinor group of a quadratic form, certain unitary group, or a group of type G_{2} over $K=k(C)$, function field of a curve over a global field k.

Finiteness Conjecture for Groups with Good Reduction

Let G be an absolutely simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of valuations of K.
Then the number of K-isomorphism classes of (inner) \bar{K} / K-forms of G that have good reduction at all $v \in V$ is finite.
(One may need to assume that char K is "good" for G)
True if

- K is a global field;
- G is an inner form of type A_{n};
- G is spinor group of a quadratic form, certain unitary group, or a group of type G_{2} over $K=k(C)$, function field of a curve over a global field k.
V.I. Chernousov, A.S. Rapinchuk, I.A. Rapinchuk, Spinor groups with good reduction, Compos. Math. 155(2019), no. 3, 484-527.
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
- Finiteness of genus
- Finiteness of genus

Theorem $16\left(C+R^{2}\right)$

- Finiteness of genus

Theorem $16\left(C+R^{2}\right)$
Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

- Finiteness of genus

Theorem $16\left(C+R^{2}\right)$
Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

- Finiteness of genus

Theorem $16\left(C+R^{2}\right)$
Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at v, and reduction $\underline{G}^{\prime(v)} \in \operatorname{gen}_{K^{(v)}}\left(\underline{G}^{(v)}\right)$.

Corollary.

Corollary.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K,

Corollary.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

Corollary.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

Corollary.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

Since $V \backslash S$ is also divisorial,

Corollary.

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K, and V be a divisorial set of places of K.

There exists a finite subset $S \subset V$ (depending on G) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

Since $V \backslash S$ is also divisorial, finiteness of $\operatorname{gen}_{K}(G)$ would follow from Finiteness Conjecture for Groups with Good Reduction.

- Properness of global-to-local map in Galois cohomology
- Properness of global-to-local map in Galois cohomology Given an algebraic group G over a field K with a set of valuations V,
- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERRE (1964): If K is a number field and V consists of almost all valuations of K,

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G, V}$ is proper,

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERre (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G, V}$ is proper, i.e., preimage of any finite set is finite.

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{\mathrm{G}, V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\bar{G}, V}$

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{G, V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\bar{G}, V}$ for any semi-simple adjoint group \bar{G} over an arbitrary finitely generated field K

- Properness of global-to-local map in Galois cohomology

Given an algebraic group G over a field K with a set of valuations V, one considers global-to-local map

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Borel, SERRE (1964): If K is a number field and V consists of almost all valuations of K, then $\iota_{\mathrm{G}, V}$ is proper, i.e., preimage of any finite set is finite.

Finiteness Conjecture for Groups with Good Reduction would imply properness of $\iota_{\bar{G}, V}$ for any semi-simple adjoint group \bar{G} over an arbitrary finitely generated field K and any divisorial set V.

In particular, its kernel $\amalg(\bar{G})$ would be finite.

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;
- $\mathrm{SO}_{n}(q)$ over $K=k(C), k$ a number field;

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;
- $\mathrm{SO}_{n}(q)$ over $K=k(C), k$ a number field;
- G of type G_{2} over $K=k(C), k$ a number field.

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;
- $\mathrm{SO}_{n}(q)$ over $K=k(C), k$ a number field;
- G of type G_{2} over $K=k(C), k$ a number field.

We expect $\iota_{G, V}$ to be proper for any reductive G over a finitely generated field K and any divisorial V

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;
- $\mathrm{SO}_{n}(q)$ over $K=k(C), k$ a number field;
- G of type G_{2} over $K=k(C), k$ a number field.

We expect $l_{G, V}$ to be proper for any reductive G over a finitely generated field K and any divisorial V (possibly, under some restrictions on characteristic)

In particular, its kernel $\amalg(\bar{G})$ would be finite.

Our results confirm this in the following cases:

- PSL_{n} over a finitely generated field K, $(n, \operatorname{char} K)=1$;
- $\mathrm{SO}_{n}(q)$ over $K=k(C), k$ a number field;
- G of type G_{2} over $K=k(C), k$ a number field.

We expect $\iota_{G, V}$ to be proper for any reductive G over a finitely generated field K and any divisorial V (possibly, under some restrictions on characteristic)
I. RAPINCHUK, A.R. (2019): True for tori over finitely generated fields of characteristic zero.

- Finiteness Conjecture for Weakly Commensurable Subgroups
- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.
- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following. Theorem 17
- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero,

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K,

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G^{\prime}

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G^{\prime} with the property that there exists a finitely generated Zariski-dense subgroup $\Gamma^{\prime} \subset G^{\prime}(K)$ weakly commensurable to Γ,

- Finiteness Conjecture for Weakly Commensurable Subgroups This is derived just as finiteness of genus using the following.

Theorem 17

Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic zero, and let V be a divisorial set of places of K.

Given a Zariski-dense subgroup $\Gamma \subset G(K)$ with trace field K, there exists a finite subset $V(\Gamma) \subset V$ such that any absolutely almost simple algebraic K-group G^{\prime} with the property that there exists a finitely generated Zariski-dense subgroup $\Gamma^{\prime} \subset G^{\prime}(K)$ weakly commensurable to Γ, has good reduction at all $v \in V \backslash V(\Gamma)$.

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_{2}), one needs to prove finiteness of unramified cohomology in degrees >2, which is a difficult problem.

Challenges in analysis of Finiteness Conjecture for Groups with Good Reduction:

Challenges in analysis of Finiteness Conjecture for Groups with Good Reduction:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_{2}), one needs to prove finiteness of unramified cohomology in degrees >2, which is a difficult problem.

Challenges in analysis of Finiteness Conjecture for Groups with Good Reduction:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_{2}), one needs to prove finiteness of unramified cohomology in degrees >2, which is a difficult problem.
- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations

4 Groups with good reduction

- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems

$$
M=\mathbb{H} / \Gamma
$$

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

- Γ is finitely generated;
\square

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL_{2}.

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL_{2}.
(of course, these hold automatically if M is compact)

Let

$$
M=\mathbb{H} / \Gamma
$$

where $\mathbb{H}=\{x+i y \mid y>0\}$ and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ a discrete torsionfree subgroup.

Assume that

- Γ is finitely generated;
- Γ is Zariski-dense in PSL_{2}.
(of course, these hold automatically if M is compact)

Let A_{Γ} be the associated quaternion algebra.

Question.

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra remains the same for all Riemann surface that are lengthcommensurable to $M=\mathbb{H} / \Gamma$.

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra remains the same for all Riemann surface that are lengthcommensurable to $M=\mathbb{H} / \Gamma$.

What about non-arithmetic surfaces?

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra remains the same for all Riemann surface that are lengthcommensurable to $M=\mathbb{H} / \Gamma$.

What about non-arithmetic surfaces?
Replacing length-commensurability with much stronger relation of isospectrality we have:

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra remains the same for all Riemann surface that are lengthcommensurable to $M=\mathbb{H} / \Gamma$.

What about non-arithmetic surfaces?
Replacing length-commensurability with much stronger relation of isospectrality we have:

Compact Riemann surfaces isospectral to a given one consist of finitely many isometry classes

Question. How does A_{Γ} vary in families of length-commensurable (compact) Riemann surfaces?

If Γ is arithmetic then the associated quaternion algebra remains the same for all Riemann surface that are lengthcommensurable to $M=\mathbb{H} / \Gamma$.

What about non-arithmetic surfaces?
Replacing length-commensurability with much stronger relation of isospectrality we have:

Compact Riemann surfaces isospectral to a given one consist of finitely many isometry classes \Rightarrow there are finitely many isomorphism classes of associated quaternion algebras.

Theorem 18

Theorem 18

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is discrete and Zariskidense.

Theorem 18

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras $A_{\Gamma_{i}}(i \in I)$ split into finitely many isomorphism classes over common center ($=$ trace field of all Γ_{i} 's).

Theorem 18

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras $A_{\Gamma_{i}}(i \in I)$ split into finitely many isomorphism classes over common center ($=$ trace field of all Γ_{i} 's).

Proof uses good reduction.

Theorem 18

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i \in I)$ be a family of length-commensurable Riemann surfaces, where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is discrete and Zariskidense. Then quaternion algebras $A_{\Gamma_{i}}(i \in I)$ split into finitely many isomorphism classes over common center ($=$ trace field of all Γ_{i} 's).

PROOF uses good reduction.

This is one of the first examples of application of techniques from arithmetic geometry to length-commensurable non-arithmetic Riemann surfaces.
(1) Results

- First signs of eigenvalue rigidity
- Weakly commensurable arithmetic groups
- Geometric applications
(2) Generic elements
(3) Division algebras with the same maximal subfields
- Algebraic and geometric motivations
- Genus of a division algebra
- Generalizations
(4) Groups with good reduction
- Basic definitions and examples
- Finiteness Conjecture for Groups with Good Reduction
- Implications of the Finiteness Conjecture for Groups with Good Reduction
- Application to Nonarithmetic Riemann Surfaces
(5) Some open problems
Arithmeticity. Is a finitely generated Zariski-dense subgroup weakly commensurable to an arithmetic group itself arithmetic?

Arithmeticity. Is a finitely generated Zariski-dense subgroup weakly commensurable to an arithmetic group itself arithmetic?

The answer is no in general.

Arithmeticity. Is a finitely generated Zariski-dense subgroup

 weakly commensurable to an arithmetic group itself arithmetic?The answer is no in general.
Example. Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$, and set

$$
u^{+}(a)=\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \text { and } u^{-}(b)=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)
$$

Arithmeticity. Is a finitely generated Zariski-dense subgroup

 weakly commensurable to an arithmetic group itself arithmetic?The answer is no in general.

Example. Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$, and set

$$
u^{+}(a)=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \text { and } u^{-}(b)=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)
$$

Then for $m \geqslant 3$, subgroup

$$
\Delta_{m}:=\left\langle u^{+}(m), u^{-}(m)\right\rangle
$$

is of infinite index in Γ, but is weakly commensurable to it.

Weak commensurability follows from inclusion

$$
\Gamma\left(m^{2}\right) \subset \bigcup_{g \in \mathrm{GL}_{2}(\mathrm{Q})} g \Delta_{m} g^{-1}
$$

where

$$
\Gamma\left(m^{2}\right)=\left\{x \in \Gamma \mid x \equiv I_{2}\left(\bmod m^{2}\right)\right\}
$$

is congruence subgroup of level m^{2} (proved by looking at traces).

Weak commensurability follows from inclusion

$$
\Gamma\left(m^{2}\right) \subset \bigcup_{g \in \mathrm{GL}_{2}(\mathrm{Q})} g \Delta_{m} g^{-1}
$$

where

$$
\Gamma\left(m^{2}\right)=\left\{x \in \Gamma \mid x \equiv I_{2}\left(\bmod m^{2}\right)\right\}
$$

is congruence subgroup of level m^{2} (proved by looking at traces).

A similar construction does not work for $\mathrm{SL}_{n}(\mathbb{Z}), n \geqslant 3$, as it always produces finite index subgroups.

Weak commensurability follows from inclusion

$$
\Gamma\left(m^{2}\right) \subset \bigcup_{g \in \mathrm{GL}_{2}(\mathrm{Q})} g \Delta_{m} g^{-1}
$$

where

$$
\Gamma\left(m^{2}\right)=\left\{x \in \Gamma \mid x \equiv I_{2}\left(\bmod m^{2}\right)\right\}
$$

is congruence subgroup of level m^{2} (proved by looking at traces).

A similar construction does not work for $\mathrm{SL}_{n}(\mathbb{Z}), n \geqslant 3$, as it always produces finite index subgroups.

So, we would like to propose the following

Problem 1. Let G_{1} and G_{2} be simple algebraic groups over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be an arithmetic subgroups of rank $\geqslant 2$.

Problem 1. Let G_{1} and G_{2} be simple algebraic groups over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be an arithmetic subgroups of rank $\geqslant 2$.

If $\Gamma_{2} \subset G_{2}(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_{1}, then is Γ_{2} necessarily arithmetic?

Problem 1. Let G_{1} and G_{2} be simple algebraic groups over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be an arithmetic subgroups of rank $\geqslant 2$.

If $\Gamma_{2} \subset G_{2}(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_{1}, then is Γ_{2} necessarily arithmetic? Do we need finite generation?

Problem 1. Let G_{1} and G_{2} be simple algebraic groups over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be an arithmetic subgroups of rank $\geqslant 2$.

If $\Gamma_{2} \subset G_{2}(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_{1}, then is Γ_{2} necessarily arithmetic? Do we need finite generation?

It is not even known if a subgroup Δ of $\Gamma=\operatorname{SL}_{n}(\mathbb{Z}), n \geqslant 3$, weakly commensurable to Γ, necessarily has finite index.

Problem 1. Let G_{1} and G_{2} be simple algebraic groups over a field F of characteristic zero, and let $\Gamma_{1} \subset G_{1}(F)$ be an arithmetic subgroups of rank $\geqslant 2$.

If $\Gamma_{2} \subset G_{2}(F)$ is a (finitely generated) Zariski-dense subgroup weakly commensurable to Γ_{1}, then is Γ_{2} necessarily arithmetic? Do we need finite generation?

It is not even known if a subgroup Δ of $\Gamma=\operatorname{SL}_{n}(\mathbb{Z}), n \geqslant 3$, weakly commensurable to Γ, necessarily has finite index.

Problem can be stated for higher-rank S-arithmetic subgroups, but is wide-open even for $\mathrm{SL}_{2}(\mathbb{Z}[1 / p])$.

Problem 2. Let G_{1} and G_{2} be simple groups over $F=\mathbb{R}$ or \mathbb{C}, and let Γ_{i} be a (finitely generated) Zariski-dense subgroup of $G_{i}(F)$ for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Problem 2. Let G_{1} and G_{2} be simple groups over $F=\mathbb{R}$ or \mathbb{C}, and let Γ_{i} be a (finitely generated) Zariski-dense subgroup of $G_{i}(F)$ for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does discreteness of Γ_{1} imply discreteness of Γ_{2} ?

Problem 2. Let G_{1} and G_{2} be simple groups over $F=\mathbb{R}$ or \mathbb{C}, and let Γ_{i} be a (finitely generated) Zariski-dense subgroup of $G_{i}(F)$ for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does discreteness of Γ_{1} imply discreteness of Γ_{2} ?

The answer is 'yes' for a nonarchimedean locally compact field F, but archimedean case is open.

Problem 3. Let G_{1} and G_{2} be simple algebraic groups over $F=\mathbb{R}$ or \mathbb{C}, and let $\Gamma_{i} \subset G_{i}(F)$ be a lattice for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Problem 3. Let G_{1} and G_{2} be simple algebraic groups over $F=\mathbb{R}$ or \mathbb{C}, and let $\Gamma_{i} \subset G_{i}(F)$ be a lattice for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does compactness of $G_{1}(F) / \Gamma_{1}$ imply compactness of $G_{2}(F) / \Gamma_{2}$?

Problem 3. Let G_{1} and G_{2} be simple algebraic groups over $F=\mathbb{R}$ or \mathbb{C}, and let $\Gamma_{i} \subset G_{i}(F)$ be a lattice for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does compactness of $G_{1}(F) / \Gamma_{1}$ imply compactness of $G_{2}(F) / \Gamma_{2}$?

Geometric version: Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be length-commensurable locally symmetric spaces of finite volume.

Problem 3. Let G_{1} and G_{2} be simple algebraic groups over $F=\mathbb{R}$ or \mathbb{C}, and let $\Gamma_{i} \subset G_{i}(F)$ be a lattice for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does compactness of $G_{1}(F) / \Gamma_{1}$ imply compactness of $G_{2}(F) / \Gamma_{2}$?

Geometric version: Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be length-commensurable locally symmetric spaces of finite volume.

Does compactness of $\mathfrak{X}_{\Gamma_{1}}$ imply compactness of $\mathfrak{X}_{\Gamma_{2}}$?

Problem 3. Let G_{1} and G_{2} be simple algebraic groups over $F=\mathbb{R}$ or \mathbb{C}, and let $\Gamma_{i} \subset G_{i}(F)$ be a lattice for $i=1,2$. Assume that Γ_{1} and Γ_{2} are weakly commensurable.

Does compactness of $G_{1}(F) / \Gamma_{1}$ imply compactness of $G_{2}(F) / \Gamma_{2}$?

Geometric version: Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be length-commensurable locally symmetric spaces of finite volume.

Does compactness of $\mathfrak{X}_{\Gamma_{1}}$ imply compactness of $\mathfrak{X}_{\Gamma_{2}}$?

Recall: The answer is 'yes' if one space is arithmetically defined.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 5. For inner and outer forms of types $\mathrm{A}_{n}(n>1)$, $\mathrm{D}_{2 n+1}(n>1)$ and E_{6}, construct examples of isospectral compact arithmetically defined locally symmetric spaces that are not commensurable.

Problem 4. Develop notion of weak commensurability for Zariski-dense (and particularly arithmetic) subgroups of general semi-simple groups.

Problem 5. For inner and outer forms of types $\mathrm{A}_{n}(n>1)$, $\mathrm{D}_{2 n+1}(n>1)$ and E_{6}, construct examples of isospectral compact arithmetically defined locally symmetric spaces that are not commensurable.

Currently, such construction is available only for inner forms of type A_{n}.

