ARITHMETIC AND ZARISKI-DENSE SUBGROUPS: weak commensurability, eigenvalue rigidity, and applications to locally symmetric spaces

> Andrei S. Rapinchuk University of Virginia

KIAS (Seoul) April, 2019

Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

,

Definition.

Definition.

A subgroup $G \subset GL_n(\mathbb{C})$ is algebraic if it can be defined by

a set of polynomial conditions,

Definition.

A subgroup $G \subset GL_n(\mathbb{C})$ is algebraic if it can be defined by a set of *polynomial conditions*, i.e., there exists a family of polynomials

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

Definition.

A subgroup $G \subset GL_n(\mathbb{C})$ is algebraic if it can be defined by a set of *polynomial conditions*, i.e., there exists a family of polynomials

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

such that

$$G = \{ X = (x_{ij}) \in \operatorname{GL}_n(\mathbb{C}) \mid f_\alpha(X) = 0 \text{ for all } \alpha \in J \}.$$

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

we let

$$V(f_{\alpha} , \alpha \in J) = \{ X \in \operatorname{GL}_n(\mathbb{C}) \mid f_{\alpha}(X) = 0 \text{ for all } \alpha \in J \}.$$

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

we let

$$V(f_{\alpha}, \alpha \in J) = \{ X \in \operatorname{GL}_n(\mathbb{C}) \mid f_{\alpha}(X) = 0 \text{ for all } \alpha \in J \}.$$

Zariski topology on $\operatorname{GL}_n(\mathbb{C})$ = topology for which $V(f_{\alpha}, \alpha \in J)$'s

form family of all closed sets.

$$f_{\alpha}(x_{11},\ldots,x_{nn}) \in \mathbb{C}[x_{11},\ldots,x_{nn}] \quad (\alpha \in J)$$

we let

$$V(f_{\alpha}, \alpha \in J) = \{ X \in \operatorname{GL}_n(\mathbb{C}) \mid f_{\alpha}(X) = 0 \text{ for all } \alpha \in J \}.$$

Zariski topology on $GL_n(\mathbb{C})$ = topology for which $V(f_{\alpha}, \alpha \in J)$'s

form family of all *closed* sets.

Thus, algebraic groups = Zariski-closed subgroups of $GL_n(\mathbb{C})$.

is an algebraic group.

is an algebraic group.

We are more interested in reverse situation:

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$ (Zariski-dense subgroups)

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$ (Zariski-dense subgroups)

Definition.

Let $G \subset \operatorname{GL}_n(\mathbb{C})$ and $H \subset \operatorname{GL}_m(\mathbb{C})$ be algebraic groups.

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$ (Zariski-dense subgroups)

Definition.

Let $G \subset \operatorname{GL}_n(\mathbb{C})$ and $H \subset \operatorname{GL}_m(\mathbb{C})$ be algebraic groups.

A morphism φ : $G \rightarrow H$ is a group homomorphism that admits a "polynomial" representation,

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$ (Zariski-dense subgroups)

Definition.

Let $G \subset \operatorname{GL}_n(\mathbb{C})$ and $H \subset \operatorname{GL}_m(\mathbb{C})$ be algebraic groups. A morphism $\varphi: G \to H$ is a group homomorphism that admits a "polynomial" representation, i.e. there exist $f_{k\ell} \in \mathbb{C}\left[x_{11}, \dots, x_{nn}, \frac{1}{\det(x_{ii})}\right], \ k, \ell = 1, \dots, m,$

is an algebraic group.

We are more interested in reverse situation: for a given algebraic group *G*, we will consider its subgroups $\Gamma \subset G$ such that $\overline{\Gamma} = G$ (Zariski-dense subgroups)

Definition.

Let $G \subset \operatorname{GL}_n(\mathbb{C})$ and $H \subset \operatorname{GL}_m(\mathbb{C})$ be algebraic groups. A morphism $\varphi: G \to H$ is a group homomorphism that admits a "polynomial" representation, i.e. there exist $f_{k\ell} \in \mathbb{C}\left[x_{11}, \ldots, x_{nn}, \frac{1}{\det(x_{ij})}\right], \ k, \ell = 1, \ldots, m,$ such that $\varphi(X) = (f_{k\ell}(X))$ for all $X = (x_{ij}) \in G$.

• $G = SL_n(\mathbb{C})$ is given by det(X) - 1 = 0 where $X = (x_{ij})$.

• $G = \operatorname{Sp}_{2m}(\mathbb{C})$ is given by ${}^{t}XEX = E$, where

(3) $G = O_n(q)$, q a nondegenerate quadratic form.

$$G = SO_n(q).$$

• $G = SL_n(\mathbb{C})$ is given by det(X) - 1 = 0 where $X = (x_{ij})$.

• $G = \operatorname{Sp}_{2m}(\mathbb{C})$ is given by ${}^{t}XEX = E$, where

(3) $G = O_n(q)$, q a nondegenerate quadratic form.

$$G = SO_n(q).$$

9
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

•
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where
 $E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$

(i) $G = O_n(q)$, q a nondegenerate quadratic form.

$$G = SO_n(q).$$

()
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

2
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where

$$E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$$

(which amounts to a polynomial system)

(i) $G = O_n(q)$, q a nondegenerate quadratic form.

$$G = SO_n(q).$$

()
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

2
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where
 $E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$

(which amounts to a polynomial system)

3
$$G = O_n(q)$$
, q a nondegenerate quadratic form.

$$G = SO_n(q).$$

Q
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

2
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where

$$E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$$

(which amounts to a polynomial system)

③ $G = O_n(q)$, q a nondegenerate quadratic form.

Defined by ${}^{t}XQX = Q$, Q matrix of q in standard basis.

$$G = SO_n(q).$$

Q
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

2
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where
 $E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$

(which amounts to a polynomial system)

③ $G = O_n(q)$, *q* a nondegenerate quadratic form.

Defined by ${}^{t}XQX = Q$, *Q* matrix of *q* in standard basis.

•
$$G = SO_n(q)$$
.

()
$$G = SL_n(\mathbb{C})$$
 is given by $det(X) - 1 = 0$ where $X = (x_{ij})$.

2
$$G = \operatorname{Sp}_{2m}(\mathbb{C})$$
 is given by ${}^{t}XEX = E$, where
 $E = \begin{pmatrix} O & I_m \\ -I_m & O \end{pmatrix}$

(which amounts to a polynomial system)

③ $G = O_n(q)$, *q* a nondegenerate quadratic form.

Defined by ${}^{t}XQX = Q$, *Q* matrix of *q* in standard basis.

• $G = SO_n(q)$. Defined by ${}^tXQX = Q$ and det(X) - 1 = 0.

Basic definitions

Examples of morphisms of algebraic groups

Basic definitions

Examples of morphisms of algebraic groups

Morphisms into $GL_1 = G_m$ are called *characters*.

Morphisms into $GL_1 = G_m$ are called *characters*.

3 Consider
$$G = \left\{ \left(\begin{array}{cc} x & -y \\ y & x \end{array} \right) \in \operatorname{GL}_2(\mathbb{C}) \right\}.$$

Morphisms into $GL_1 = G_m$ are called *characters*.

• Consider
$$G = \left\{ \left(\begin{array}{cc} x & -y \\ y & x \end{array} \right) \in \operatorname{GL}_2(\mathbb{C}) \right\}.$$

One checks that *G* is an algebraic group,

Morphisms into $GL_1 = G_m$ are called *characters*.

• Consider
$$G = \left\{ \left(\begin{array}{cc} x & -y \\ y & x \end{array} \right) \in \operatorname{GL}_2(\mathbb{C}) \right\}.$$

One checks that G is an algebraic group, and that

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \mapsto x + iy \text{ where } i^2 = -1$$

Morphisms into $GL_1 = G_m$ are called *characters*.

3 Consider
$$G = \left\{ \left(\begin{array}{cc} x & -y \\ y & x \end{array} \right) \in \operatorname{GL}_2(\mathbb{C}) \right\}.$$

One checks that G is an algebraic group, and that

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \mapsto x + iy \text{ where } i^2 = -1$$

is a character of G.

Basic definitions

Examples of morphisms of algebraic groups, cont'd

\bigcirc Adjoint representation Ad_G

3 Adjoint representation Ad_G

For $G = GL_n(\mathbb{C})$, it is simply defined by conjugation action on $M_n(\mathbb{C})$:

$$\operatorname{Ad}:\operatorname{GL}_n(\mathbb{C}) \to \operatorname{Aut}(M_n(\mathbb{C})) = \operatorname{GL}_{n^2}(\mathbb{C}), \ g \mapsto i_g$$

where $i_g(Y) = gYg^{-1}$ for $Y \in M_n(\mathbb{C})$.

3 Adjoint representation Ad_G

For $G = GL_n(\mathbb{C})$, it is simply defined by conjugation action on $M_n(\mathbb{C})$:

$$\operatorname{Ad}:\operatorname{GL}_n(\mathbb{C}) \to \operatorname{Aut}(M_n(\mathbb{C})) = \operatorname{GL}_{n^2}(\mathbb{C}), \ g \mapsto i_g$$

where
$$i_g(Y) = gYg^{-1}$$
 for $Y \in M_n(\mathbb{C})$.

(Note that functions representing Ad involve $(det(X))^{-1}$.)

3 Adjoint representation Ad_G

For $G = GL_n(\mathbb{C})$, it is simply defined by conjugation action on $M_n(\mathbb{C})$:

$$\operatorname{Ad}:\operatorname{GL}_n(\mathbb{C}) \to \operatorname{Aut}(M_n(\mathbb{C})) = \operatorname{GL}_{n^2}(\mathbb{C}), \ g \mapsto i_g$$

where
$$i_g(Y) = gYg^{-1}$$
 for $Y \in M_n(\mathbb{C})$.

(Note that functions representing Ad involve $(det(X))^{-1}$.)

• For an arbitrary algebraic group $G \subset GL_n(\mathbb{C})$ one defines its Lie algebra $\mathfrak{g} \subset M_n(\mathbb{C})$:

3 Adjoint representation Ad_G

For $G = GL_n(\mathbb{C})$, it is simply defined by conjugation action on $M_n(\mathbb{C})$:

$$\operatorname{Ad}:\operatorname{GL}_n(\mathbb{C}) \to \operatorname{Aut}(M_n(\mathbb{C})) = \operatorname{GL}_{n^2}(\mathbb{C}), \ g \mapsto i_g$$

where
$$i_g(Y) = gYg^{-1}$$
 for $Y \in M_n(\mathbb{C})$.

(Note that functions representing Ad involve $(det(X))^{-1}$.)

• For an arbitrary algebraic group $G \subset \operatorname{GL}_n(\mathbb{C})$ one defines its Lie algebra $\mathfrak{g} \subset M_n(\mathbb{C})$:

Analytically: G can be considered as a complex Lie group, and then we take its Lie algebra in this (analytic) context.

Basic definitions

Examples of morphisms of algebraic groups, cont'd

Algebraically: If $f_{\alpha}(x_{11}, \ldots, x_{nn})$ ($\alpha \in J$) generate ideal of polynomial functions that *vanish* on G, then

Algebraically: If $f_{\alpha}(x_{11}, ..., x_{nn})$ ($\alpha \in J$) generate ideal of polynomial functions that *vanish* on *G*, then

$$\mathfrak{g} = \{ X \in M_n(\mathbb{C}) \mid f_\alpha(I_n + \varepsilon X) = 0 \text{ for all } \alpha \in J \}$$

where $\varepsilon^2 = 0$.

Algebraically: If $f_{\alpha}(x_{11}, ..., x_{nn})$ ($\alpha \in J$) generate ideal of polynomial functions that *vanish* on *G*, then

$$\mathfrak{g} = \{ X \in M_n(\mathbb{C}) \mid f_\alpha (I_n + \varepsilon X) = 0 \text{ for all } \alpha \in J \}$$

where $\varepsilon^2 = 0$.

One shows that \mathfrak{g} is invariant under i_g for $g \in G$, and then defines adjoint representation by

Algebraically: If $f_{\alpha}(x_{11}, ..., x_{nn})$ ($\alpha \in J$) generate ideal of polynomial functions that *vanish* on *G*, then

$$\mathfrak{g} = \{ X \in M_n(\mathbb{C}) \mid f_\alpha (I_n + \varepsilon X) = 0 \text{ for all } \alpha \in J \}$$

where $\varepsilon^2 = 0$.

One shows that \mathfrak{g} is invariant under i_g for $g \in G$, and then defines adjoint representation by

$$\operatorname{Ad}_G: G \to \operatorname{GL}(\mathfrak{g}), g \mapsto i_g | \mathfrak{g}.$$

D Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

Definition.

Let $F \subset \mathbb{C}$ be a subfield.

Definition.

Let $F \subset \mathbb{C}$ be a subfield.

(1) If $G \subset \operatorname{GL}_n(\mathbb{C})$ can be defined by $f_{\alpha} = 0 \ (\alpha \in J)$ with $f_{\alpha} \in F[x_{11}, \dots, x_{nn}],$

then G is F-defined or an F-group.

Definition.

Let $F \subset \mathbb{C}$ be a subfield.

(1) If $G \subset \operatorname{GL}_n(\mathbb{C})$ can be defined by $f_{\alpha} = 0 \ (\alpha \in J)$ with $f_{\alpha} \in F[x_{11}, \dots, x_{nn}],$

then G is F-defined or an F-group.

(2) A morphism of *F*-groups $\varphi: G \to H$ is *F*-defined if it can be given by functions from

$$F\left[x_{11},\ldots,x_{nn},\ \frac{1}{\det(x_{ij})}\right]$$

- SL_n and Sp_{2m} are defined over \mathbb{Q} .
- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ **C** that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g ↦ det(g), is defined over Q.

•
$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

③ SL_{*n*} and Sp_{2m} are defined over \mathbb{Q} .

- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ ℂ that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g ↦ det(g), is defined over Q.

•
$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

- **③** SL_{*n*} and Sp_{2m} are defined over \mathbb{Q} .
- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ C that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g ↦ det(g), is defined over Q.

•
$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

- **③** SL_{*n*} and Sp_{2m} are defined over \mathbb{Q} .
- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ C that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g → det(g), is defined over Q.

•
$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

- **③** SL_{*n*} and Sp_{2m} are defined over \mathbb{Q} .
- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ C that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g → det(g), is defined over Q.

•
$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

- **③** SL_{*n*} and Sp_{2m} are defined over \mathbb{Q} .
- ② $O_n(q)$ and $SO_n(q)$ are defined over any *F* ⊂ C that contains coefficients of *q*.
- Obterminant morphism GL_n → GL₁, g → det(g), is defined over Q.

•
$$G = \left\{ \left(\begin{array}{cc} x & -y \\ y & x \end{array} \right) \in \operatorname{GL}_2(\mathbb{C}) \right\}$$
 is defined over \mathbb{Q} .

Determinant restricts to character

$$\left(\begin{array}{cc} x & -y \\ y & x \end{array}\right) \ \mapsto \ x^2 + y^2$$

- If G is F-defined, then Ad_G is F-defined

- **(**) If G is F-defined, then Ad_G is F-defined (in a suitable basis of \mathfrak{g})

- **o** If G is F-defined, then Ad_G is F-defined (in a suitable basis of \mathfrak{g})
- **(**) Let q_1 and q_2 be two nondegenerate *n*-dimensional quadratic forms over Q.

- **o** If G is F-defined, then Ad_G is F-defined (in a suitable basis of \mathfrak{g})
- **(**) Let q_1 and q_2 be two nondegenerate *n*-dimensional quadratic forms over Q. They are *equivalent* over \mathbb{C} , i.e. $\exists T \in GL_n(\mathbb{C})$ such that ${}^{t}TO_{1}T = O_{2}.$

Another character $\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \mapsto x + iy$ is **not** defined over \mathbb{Q} (or \mathbb{R}) but over $\mathbb{Q}(i)$.

- If G is F-defined, then Ad_G is F-defined (in a suitable basis of g)
- Let q_1 and q_2 be two nondegenerate *n*-dimensional quadratic forms over \mathbb{Q} . They are *equivalent* over \mathbb{C} , i.e. $\exists T \in \operatorname{GL}_n(\mathbb{C})$ such that

$${}^{t}TQ_{1}T = Q_{2}.$$

Then $g \mapsto T^{-1}gT$ yields C-isomorphisms

 $O_n(q_1) \rightarrow O_n(q_2)$ and $SO_n(q_1) \rightarrow SO_n(q_2)$.

Another character $\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \mapsto x + iy$ is **not** defined over \mathbb{Q} (or \mathbb{R}) but over $\mathbb{Q}(i)$.

- **o** If G is F-defined, then Ad_G is F-defined (in a suitable basis of \mathfrak{g})
- **(**) Let q_1 and q_2 be two nondegenerate *n*-dimensional quadratic forms over Q. They are *equivalent* over \mathbb{C} , i.e. $\exists T \in GL_n(\mathbb{C})$ such that

$$^{t}TQ_{1}T = Q_{2}.$$

Then $g \mapsto T^{-1}gT$ yields C-isomorphisms

$$O_n(q_1) \rightarrow O_n(q_2)$$
 and $SO_n(q_1) \rightarrow SO_n(q_2)$.

However, there may or may not be Q-isomorphism! Andrei Rapinchuk (University of Virginia)

KIAS (Seoul) April, 2019 14 / 62

Modification:

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group),

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group), **but** not necessarily \mathbb{Q} -isomorphic.

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group), **but** not necessarily Q-isomorphic. This leads to *different* arithmetic subgroups inside a given real Lie group,

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group), **but** not necessarily \mathbb{Q} -isomorphic. This leads to *different* arithmetic subgroups inside a given real Lie group, and **our objective** is to find the right one

using additional info (e.g., geometric).

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group), **but** not necessarily \mathbb{Q} -isomorphic. This leads to *different* arithmetic subgroups inside a given real Lie group, and **our objective** is to find the right one using additional info (e.g., *geometric*).

For *F*-defined $G \subset \operatorname{GL}_n(\mathbb{C})$, one defines group of *F*-points: $G(F) = G \cap \operatorname{GL}_n(F).$

Then $SO_n(q_1)$ and $SO_n(q_2)$ are \mathbb{R} -isomorphic (i.e., essentially copies of same Lie group), **but** not necessarily \mathbb{Q} -isomorphic. This leads to *different* arithmetic subgroups inside a given real Lie group, and **our objective** is to find the right one using additional info (e.g., *geometric*).

For *F*-defined $G \subset GL_n(\mathbb{C})$, one defines group of *F*-points:

$$G(F) = G \cap \operatorname{GL}_n(F).$$

Note: for *F*-morphism $\varphi : G \to H$, we have $\varphi(G(F)) \subset H(F)$.

So, if $\varphi: G \to H$ is *F*-isomorphism, then $\varphi(G(F)) = H(F)$.

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group $G \subset GL_n(\mathbb{C})$, the groups of \mathbb{Z} -points is: $G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group $G \subset \operatorname{GL}_n(\mathbb{C})$, the groups of \mathbb{Z} -points is: $G(\mathbb{Z}) = G \cap \operatorname{GL}_n(\mathbb{Z}).$

Unfortunately, $G(\mathbb{Z})$ is **not** invariant under Q-isomorphisms.

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group $G \subset GL_n(\mathbb{C})$, the groups of \mathbb{Z} -points is: $G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$

Unfortunately, $G(\mathbb{Z})$ is **not** invariant under Q-isomorphisms.

E.g., take $G = GL_n(\mathbb{C})$ so that $G(\mathbb{Z}) = GL_n(\mathbb{Z})$.

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group $G \subset GL_n(\mathbb{C})$, the groups of \mathbb{Z} -points is: $G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$

Unfortunately, $G(\mathbb{Z})$ is **not** invariant under Q-isomorphisms.

E.g., take $G = GL_n(\mathbb{C})$ so that $G(\mathbb{Z}) = GL_n(\mathbb{Z})$.

For
$$g \in GL_n(\mathbb{Q})$$
 we generally have
 $g GL_n(\mathbb{Z}) g^{-1} \neq GL_n(\mathbb{Z}).$

Note: if $\varphi: G \to H$ is *F*-morphism, which is *bijective*, then $\varphi^{-1}: H \to G$ is also *F*-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group $G \subset GL_n(\mathbb{C})$, the groups of \mathbb{Z} -points is: $G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$

Unfortunately, $G(\mathbb{Z})$ is **not** invariant under Q-isomorphisms.

16 / 62

E.g., take $G = GL_n(\mathbb{C})$ so that $G(\mathbb{Z}) = GL_n(\mathbb{Z})$.

For $g \in GL_n(\mathbb{Q})$ we generally have $g \operatorname{GL}_n(\mathbb{Z}) g^{-1} \neq \operatorname{GL}_n(\mathbb{Z}).$

Recall: Two subgroups Δ_1 and Δ_2 of an abstract group Γ are *commensurable* if $\Delta_1 \cap \Delta_2$ is of finite index in each subgroup.

Recall: Two subgroups Δ_1 and Δ_2 of an abstract group Γ are *commensurable* if $\Delta_1 \cap \Delta_2$ is of finite index in each subgroup.

Proposition

Let $\varphi: G \to H$ be a Q-isomorphism of algebraic Q-groups. Then $\varphi(G(\mathbb{Z}))$ is commensurable with $H(\mathbb{Z})$.

Recall: Two subgroups Δ_1 and Δ_2 of an abstract group Γ are *commensurable* if $\Delta_1 \cap \Delta_2$ is of finite index in each subgroup.

Proposition

Let $\varphi: G \to H$ be a Q-isomorphism of algebraic Q-groups. Then $\varphi(G(\mathbb{Z}))$ is commensurable with $H(\mathbb{Z})$.

Note: conclusion remains valid for any *surjective* φ , but proof requires *reduction theory*.

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group.

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group. A subgroup $\Gamma \subset G$ is arithmetic if it is commensurable with $G(\mathbb{Z})$.

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group. A subgroup $\Gamma \subset G$ is arithmetic if it is commensurable with $G(\mathbb{Z})$.

Class of arithmetic groups is invariant under Q-isomorphisms

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group. A subgroup $\Gamma \subset G$ is arithmetic if it is commensurable with $G(\mathbb{Z})$.

Class of arithmetic groups is invariant under Q-isomorphisms (in particular does not depend on choice of Q-basis).

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group. A subgroup $\Gamma \subset G$ is arithmetic if it is commensurable with $G(\mathbb{Z})$.

Class of arithmetic groups is invariant under Q-isomorphisms (in particular does not depend on choice of Q-basis).

• For our purposes, we will need to generalize notion of arithmetic group for *real* algebraic/Lie groups *without* canonical Q-structure (i.e., a realization as Q-group).

Let $G \subset GL_n(\mathbb{C})$ be an algebraic Q-group. A subgroup $\Gamma \subset G$ is arithmetic if it is commensurable with $G(\mathbb{Z})$.

Class of arithmetic groups is invariant under Q-isomorphisms (in particular does not depend on choice of Q-basis).

- For our purposes, we will need to generalize notion of arithmetic group for *real* algebraic/Lie groups *without* canonical Q-structure (i.e., a realization as Q-group).
- In order to formulate basic results about (usual) arithmetic groups, we need to review important classes of algebraic groups.

Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

Let *G* be an algebraic group.

Let *G* be an algebraic group.

 G° = connected component of identity for Zariski topology.

- Let G be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in *G*.

- Let G be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in G.
- If G is F-defined, then so is G° .

- Let G be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in *G*.
- If G is F-defined, then so is G° .
- Many questions can be reduced to connected groups.

- Let *G* be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in *G*.
- If G is F-defined, then so is G° .

• Structure theory for connected groups involves following classes of groups:

- Let *G* be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in *G*.
- If G is F-defined, then so is G° .

• Structure theory for connected groups involves following classes of groups:

(a) Unipotent groups. $U \subset GL_n(\mathbb{C})$ is unipotent

- Let *G* be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in G.
- If G is F-defined, then so is G° .

• Structure theory for connected groups involves following classes of groups:

(a) Unipotent groups. $U \subset GL_n(\mathbb{C})$ is unipotent if every element $u \in U$ is *unipotent*,

- Let *G* be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in G.
- If G is F-defined, then so is G° .

• Structure theory for connected groups involves following classes of groups:

(a) Unipotent groups. $U \subset GL_n(\mathbb{C})$ is unipotent if every element $u \in U$ is *unipotent*, i.e. satisfies

$$(u-I_n)^n=O_n,$$

- Let *G* be an algebraic group.
- G° = connected component of identity for Zariski topology.
- G° is a closed normal subgroup of finite index in G.
- If G is F-defined, then so is G° .

• Structure theory for connected groups involves following classes of groups:

(a) Unipotent groups. $U \subset GL_n(\mathbb{C})$ is unipotent if every element $u \in U$ is *unipotent*, i.e. satisfies

$$(u-I_n)^n=O_n,$$

(equivalently, all eigenvalues of u are equal to 1).

Then there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Ug$ is contained in

 \mathbb{U}_n = group of upper unitriangular matrices.

• If U is defined over F then such g can be found in $GL_n(F)$.

- If U is defined over F then such g can be found in $GL_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)

- If *U* is defined over *F* then such *g* can be found in $GL_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)
- (b) Algebraic tori. $T \subset \operatorname{GL}_n(\mathbb{C})$ is diagonalizable

- If *U* is defined over *F* then such *g* can be found in $GL_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)
- (b) Algebraic tori. $T \subset GL_n(\mathbb{C})$ is diagonalizable if there exists $g \in GL_n(\mathbb{C})$

- If U is defined over F then such g can be found in $GL_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)
- (b) Algebraic tori. $T \subset GL_n(\mathbb{C})$ is diagonalizable if there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Tg$ is contained in

 \mathbb{D}_n = group of diagonal matrices

Then there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Ug$ is contained in \mathbb{U}_n = group of upper unitriangular matrices.

- If U is defined over F then such g can be found in $GL_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)
- (b) Algebraic tori. $T \subset GL_n(\mathbb{C})$ is diagonalizable if there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Tg$ is contained in

 \mathbb{D}_n = group of diagonal matrices

(then *T* consists of *semi-simple* elements).

Then there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Ug$ is contained in \mathbb{U}_n = group of upper unitriangular matrices.

- If U is defined over F then such g can be found in $\operatorname{GL}_n(F)$.
- Unipotent groups are nilpotent and automatically connected (in char. 0!)
- (b) Algebraic tori. $T \subset GL_n(\mathbb{C})$ is diagonalizable if there exists $g \in GL_n(\mathbb{C})$ such that $g^{-1}Tg$ is contained in

 \mathbb{D}_n = group of diagonal matrices

(then *T* consists of *semi-simple* elements).

A connected diagonalizable group is an algebraic torus.

Andrei Rapinchuk (University of Virginia)

However, if T is defined over F,

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

If this is possible

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

If this is possible (equivalently, there is an *F*-isomorphism $T \simeq \mathbb{D}_m$),

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

If this is possible (equivalently, there is an *F*-isomorphism $T \simeq \mathbb{D}_m$), then *T* is split over *F*.

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

If this is possible (equivalently, there is an *F*-isomorphism $T \simeq \mathbb{D}_m$), then *T* is split over *F*.

• T is F-split \Leftrightarrow all characters of T are F-defined.

However, if *T* is defined over *F*, then conjugating matrix *g* may or may not be chosen in $GL_n(F)$.

If this is possible (equivalently, there is an *F*-isomorphism $T \simeq \mathbb{D}_m$), then *T* is split over *F*.

• T is F-split \Leftrightarrow all characters of T are F-defined.

In general, for *T* of rank *m* all characters form an abelian group X(T) isomorphic to \mathbb{Z}^m .

The absolute Galois group of *F* acts on X(T) (by acting on coefficients of polynomials).

The absolute Galois group of F acts on X(T) (by acting on coefficients of polynomials).

T is F-split \Leftrightarrow this action is *trivial*.

The absolute Galois group of F acts on X(T) (by acting on coefficients of polynomials).

T is F-split \Leftrightarrow this action is *trivial*.

Other extreme: X(T) contains no nonzero Galois-fixed elt's.

The absolute Galois group of *F* acts on X(T) (by acting on coefficients of polynomials).

T is *F*-split \Leftrightarrow this action is *trivial*.

Other extreme: X(T) contains no nonzero Galois-fixed elt's. Then *T* is *F*-anisotropic. The absolute Galois group of F acts on X(T) (by acting on coefficients of polynomials).

T is F-split \Leftrightarrow this action is *trivial*.

Other extreme: X(T) contains no nonzero Galois-fixed elt's. Then *T* is *F*-anisotropic.

T is F-anisotropic \Leftrightarrow T does not contain any F-split subtori.

The absolute Galois group of F acts on X(T) (by acting on coefficients of polynomials).

T is F-split \Leftrightarrow this action is *trivial*.

Other extreme: X(T) contains no nonzero Galois-fixed elt's. Then *T* is *F*-anisotropic.

T is F-anisotropic \Leftrightarrow T does not contain any F-split subtori.

• Any F-torus T has F-subtori T_s (split) and T_a (anisotropic) such that

$$T = T_s T_a$$
 and $T_s \cap T_a$ finite.

The absolute Galois group of *F* acts on X(T) (by acting on coefficients of polynomials).

T is *F*-split \Leftrightarrow this action is *trivial*.

Other extreme: X(T) contains no nonzero Galois-fixed elt's. Then *T* is *F*-anisotropic.

T is *F*-anisotropic \Leftrightarrow *T* does not contain any *F*-split subtori.

• Any *F*-torus *T* has *F*-subtori T_s (split) and T_a (anisotropic) such that

 $T = T_s T_a$ and $T_s \cap T_a$ finite.

• dim $T_s = \mathbf{rk}_F T$ (*F*-rank of *T*).

$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \text{ is defined over } F = \mathbb{R} \text{ (even } \mathbb{Q}),$$

and is a torus.

Andrei Rapinchuk (University of Virginia)

$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \text{ is defined over } F = \mathbb{R} \text{ (even } \mathbb{Q}\text{),}$$
and is a torus.

Indeed, for
$$g = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
 we have
 $g^{-1}\begin{pmatrix} x & -y \\ y & x \end{pmatrix} g = \begin{pmatrix} x+iy & 0 \\ 0 & x-iy \end{pmatrix} \Rightarrow g^{-1}Gg = \mathbb{D}_2.$

$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \text{ is defined over } F = \mathbb{R} \text{ (even } \mathbb{Q}\text{),}$$
and is a torus.

Indeed, for
$$g = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
 we have
 $g^{-1}\begin{pmatrix} x & -y \\ y & x \end{pmatrix} g = \begin{pmatrix} x+iy & 0 \\ 0 & x-iy \end{pmatrix} \Rightarrow g^{-1}Gg = \mathbb{D}_2.$

Since there are $x \in G(\mathbb{R})$ with *complex* eigenvalues, there is **no** $h \in \operatorname{GL}_2(\mathbb{R})$ such that $h^{-1}Gh = \mathbb{D}_2$

$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \text{ is defined over } F = \mathbb{R} \text{ (even } \mathbb{Q}),$$
and is a torus.

Indeed, for
$$g = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
 we have
 $g^{-1}\begin{pmatrix} x & -y \\ y & x \end{pmatrix} g = \begin{pmatrix} x+iy & 0 \\ 0 & x-iy \end{pmatrix} \Rightarrow g^{-1}Gg = \mathbb{D}_2.$

Since there are $x \in G(\mathbb{R})$ with *complex* eigenvalues, there is **no** $h \in \operatorname{GL}_2(\mathbb{R})$ such that $h^{-1}Gh = \mathbb{D}_2 \Rightarrow G$ is **not** \mathbb{R} -split.

$$G = \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C}) \right\} \text{ is defined over } F = \mathbb{R} \text{ (even } \mathbb{Q}),$$
and is a torus.

Indeed, for
$$g = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
 we have
 $g^{-1}\begin{pmatrix} x & -y \\ y & x \end{pmatrix} g = \begin{pmatrix} x+iy & 0 \\ 0 & x-iy \end{pmatrix} \Rightarrow g^{-1}Gg = \mathbb{D}_2.$

Since there are $x \in G(\mathbb{R})$ with *complex* eigenvalues, there is **no** $h \in GL_2(\mathbb{R})$ such that $h^{-1}Gh = \mathbb{D}_2 \Rightarrow G$ is **not** \mathbb{R} -split.

Using characters: We have following characters

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \stackrel{\chi_1}{\mapsto} x + iy \quad \text{and} \quad \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \stackrel{\chi_2}{\mapsto} x - iy$$

(which actually form a basis of $X(T) \simeq \mathbb{Z}^2$).

Andrei Rapinchuk (University of Virginia)

Since χ_1 and χ_2 are *permuted* by complex conjugation, Galois action is *nontrivial*

On the other hand, $\chi = \chi_1 + \chi_2$ is *fixed* by complex conjugation

On the other hand, $\chi = \chi_1 + \chi_2$ is *fixed* by complex conjugation (note that $\chi(x) = \det(x), x \in G$)

On the other hand, $\chi = \chi_1 + \chi_2$ is *fixed* by complex conjugation (note that $\chi(x) = \det(x), x \in G$) \Rightarrow *G* is **not** anisotropic either.

On the other hand, $\chi = \chi_1 + \chi_2$ is *fixed* by complex conjugation (note that $\chi(x) = \det(x), x \in G$) \Rightarrow *G* is **not** anisotropic either.

In fact,
$$G_s = \left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \right\}$$
 and $G_a = G \cap SL_2(\mathbb{C})$
(note that $G_s \cap G_a = \{\pm 1\}$).

On the other hand, $\chi = \chi_1 + \chi_2$ is *fixed* by complex conjugation (note that $\chi(x) = \det(x), x \in G$) \Rightarrow *G* is **not** anisotropic either.

In fact,
$$G_s = \left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \right\}$$
 and $G_a = G \cap SL_2(\mathbb{C})$
(note that $G_s \cap G_a = \{\pm 1\}$).

• So, $\operatorname{rk} G = 2$ (absolute rank) and $\operatorname{rk}_{\mathbb{R}} G = 1$ (\mathbb{R} -rank).

(c) Simple groups.

(c) Simple groups. An algebraic group *G* is *simple* (more precisely, *absolutely almost simple*)

• Such G is connected and has finite center Z(G).

- Such G is connected and has finite center Z(G).
- Quotient G/Z(G) (which can be realized as an algebraic group) has no proper normal subgroups.

- Such G is connected and has finite center Z(G).
- Quotient G/Z(G) (which can be realized as an algebraic group) has no proper normal subgroups.

Examples.

- $G = \operatorname{SL}_n(\mathbb{C})$
- $G = \operatorname{Sp}_{2m}(\mathbb{C})$
- **(3** $G = SO_n(q)$, q a nondegenerate quadratic form, $n \neq 2, 4$

(c) Simple groups. An algebraic group G is *simple* (more precisely, *absolutely almost simple*) if it is noncommutative and has no proper *connected* normal subgroups.

- Such G is connected and has finite center Z(G).
- Quotient G/Z(G) (which can be realized as an algebraic group) has no proper normal subgroups.

Examples.

- $G = \operatorname{SL}_n(\mathbb{C})$
- $G = \operatorname{Sp}_{2m}(\mathbb{C})$
- **(3** $G = SO_n(q)$, q a nondegenerate quadratic form, $n \neq 2, 4$

(c) Simple groups. An algebraic group *G* is *simple* (more precisely, *absolutely almost simple*) if it is noncommutative and has no proper *connected* normal subgroups.

- Such G is connected and has finite center Z(G).
- Quotient G/Z(G) (which can be realized as an algebraic group) has no proper normal subgroups.

Examples.

- $G = \operatorname{SL}_n(\mathbb{C})$
- $G = \operatorname{Sp}_{2m}(\mathbb{C})$
- (i) $G = SO_n(q)$, q a nondegenerate quadratic form, $n \neq 2, 4$

(c) Simple groups. An algebraic group *G* is *simple* (more precisely, *absolutely almost simple*) if it is noncommutative and has no proper *connected* normal subgroups.

- Such G is connected and has finite center Z(G).
- Quotient G/Z(G) (which can be realized as an algebraic group) has no proper normal subgroups.

Examples.

- $G = \operatorname{SL}_n(\mathbb{C})$
- $G = \operatorname{Sp}_{2m}(\mathbb{C})$
- **③** $G = SO_n(q)$, q a nondegenerate quadratic form, $n \neq 2, 4$

(d) Semi-simple groups.

(d) Semi-simple groups. *G* is *semi-simple*

(d) Semi-simple groups. *G* is *semi-simple* if has *simple* subgroups G_1, \ldots, G_r

 $G_1 \times \cdots \times G_r \longrightarrow G$

 $G_1 \times \cdots \times G_r \longrightarrow G$

is a surjective group homomorphism with finite kernel

 $G_1 \times \cdots \times G_r \longrightarrow G$

is a surjective group homomorphism with finite kernel (i.e., an *isogeny*).

 $G_1 \times \cdots \times G_r \longrightarrow G$

is a surjective group homomorphism with finite kernel (i.e., an *isogeny*).

We say that G is almost direct product of the G_i 's.

 $G_1 \times \cdots \times G_r \longrightarrow G$

is a surjective group homomorphism with finite kernel (i.e., an *isogeny*).

We say that G is almost direct product of the G_i 's.

G is semi-simple \Leftrightarrow *G* is connected and has no nontrivial connected solvable normal subgroups.

 $G_1 \times \cdots \times G_r \longrightarrow G$

is a surjective group homomorphism with finite kernel (i.e., an *isogeny*).

We say that G is almost direct product of the G_i 's.

G is semi-simple \Leftrightarrow *G* is connected and has no nontrivial connected solvable normal subgroups.

• Complex semi-simple algebraic groups are (almost) classified by their *root systems*.

To attach a root system to *G*, we fix a *maximal torus* $T \subset G$.

To attach a root system to *G*, we fix a *maximal torus* $T \subset G$. Then $Ad_G(T) \subset GL(\mathfrak{g})$ is diagonalizable, To attach a root system to *G*, we fix a *maximal torus* $T \subset G$. Then $Ad_G(T) \subset GL(\mathfrak{g})$ is diagonalizable, so

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(igoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

To attach a root system to *G*, we fix a *maximal torus* $T \subset G$. Then $Ad_G(T) \subset GL(\mathfrak{g})$ is diagonalizable, so

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(igoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of T,

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(igoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of *T*, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

To attach a root system to *G*, we fix a *maximal torus* $T \subset G$. Then $Ad_G(T) \subset GL(\mathfrak{g})$ is diagonalizable, so

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(\bigoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of *T*, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

Then dim $\mathfrak{g}_{\alpha} \leq 1$, and (finite) set $\Phi = \Phi(G, T)$ of $\alpha \in X(T)$ for which $\mathfrak{g}_{\alpha} \neq 0$, is a reduced root system in $V = X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(\bigoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of T, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

Then dim $\mathfrak{g}_{\alpha} \leq 1$, and (finite) set $\Phi = \Phi(G, T)$ of $\alpha \in X(T)$ for which $g_{\alpha} \neq 0$, is a reduced root system in $V = X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

• Since any two maximal tori in G are conjugate,

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(\bigoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of *T*, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

Then dim $\mathfrak{g}_{\alpha} \leq 1$, and (finite) set $\Phi = \Phi(G, T)$ of $\alpha \in X(T)$ for which $g_{\alpha} \neq 0$, is a reduced root system in $V = X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

• Since any two maximal tori in *G* are *conjugate*, dim $T = \operatorname{rk} G$ ((absolute) rank of G)

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(\bigoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of *T*, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

Then dim $\mathfrak{g}_{\alpha} \leq 1$, and (finite) set $\Phi = \Phi(G, T)$ of $\alpha \in X(T)$ for which $\mathfrak{g}_{\alpha} \neq 0$, is a reduced root system in $V = X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

• Since any two maximal tori in G are conjugate, dim $T = \operatorname{rk} G$ ((absolute) rank of G) and root system Φ

$$\mathfrak{g}=\mathfrak{t}\bigoplus\left(\bigoplus_{lpha
eq 0}\mathfrak{g}_{lpha}
ight)$$
,

where t is Lie algebra of *T*, and for $\alpha \in X(T)$, $\alpha \neq 0$,

$$\mathfrak{g}_{\alpha} = \{ v \in \mathfrak{g} \mid \operatorname{Ad}_{G}(t)v = \alpha(t)v \text{ for all } t \in T \}.$$

Then dim $\mathfrak{g}_{\alpha} \leq 1$, and (finite) set $\Phi = \Phi(G, T)$ of $\alpha \in X(T)$ for which $\mathfrak{g}_{\alpha} \neq 0$, is a reduced root system in $V = X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

• Since any two maximal tori in G are conjugate, dim $T = \operatorname{rk} G$ ((absolute) rank of G) and root system Φ are independent of choice of T.

Definition.

An isogeny $\pi: G_1 \to G_2$ of two connected algebraic groups is

surjective morphism with finite kernel. а

Definition.

An isogeny $\pi: G_1 \to G_2$ of two connected algebraic groups is a surjective morphism with finite kernel.

If *G* is semi-simple, then *Z*(*G*) is finite, and $Ad_G: G \to GL(\mathfrak{g})$ gives an isogeny $\pi: G \to \overline{G}$ onto image $\overline{G} = G/Z(G)$.

Definition.

An isogeny $\pi: G_1 \to G_2$ of two connected algebraic groups is a surjective morphism with finite kernel.

If *G* is semi-simple, then *Z*(*G*) is finite, and $Ad_G: G \to GL(\mathfrak{g})$ gives an isogeny $\pi: G \to \overline{G}$ onto image $\overline{G} = G/Z(G)$.

Note that \overline{G} has trivial center, i.e. is adjoint.

Definition.

An isogeny $\pi: G_1 \to G_2$ of two connected algebraic groups is a surjective morphism with finite kernel.

If *G* is semi-simple, then Z(G) is finite, and $Ad_G: G \to GL(\mathfrak{g})$ gives an isogeny $\pi: G \to \overline{G}$ onto image $\overline{G} = G/Z(G)$.

Note that \overline{G} has trivial center, i.e. is adjoint.

• If semi-simple G_1 and G_2 have *isomorphic* root systems

Definition.

An isogeny $\pi: G_1 \to G_2$ of two connected algebraic groups is a surjective morphism with finite kernel.

If *G* is semi-simple, then *Z*(*G*) is finite, and $\operatorname{Ad}_G: G \to \operatorname{GL}(\mathfrak{g})$ gives an isogeny $\pi: G \to \overline{G}$ onto image $\overline{G} = G/Z(G)$.

Note that \overline{G} has trivial center, i.e. is adjoint.

• If semi-simple G_1 and G_2 have *isomorphic* root systems then $\overline{G}_1 \simeq \overline{G}_2$.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

• Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

Irreducible components of Φ are in bijection with simple factors G_1, \ldots, G_r of G.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

Irreducible components of Φ are in bijection with simple factors G_1, \ldots, G_r of G.

In particular, *G* is simple $\Leftrightarrow \Phi$ is irreducible.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

Irreducible components of Φ are in bijection with simple factors G_1, \ldots, G_r of G.

In particular, *G* is simple $\Leftrightarrow \Phi$ is irreducible.

Thus, simple (complex) group are classified up to isogeny by

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

Irreducible components of Φ are in bijection with simple factors G_1, \ldots, G_r of G.

In particular, *G* is simple $\Leftrightarrow \Phi$ is irreducible.

Thus, simple (complex) group are classified up to isogeny by *reduced irreducible* root systems:

Definition.

G is simply connected if every isogeny $\pi: H \to G$ with *H* connected, is trivial.

- Every semi-simple group *G* has a simply connected cover $\theta \colon \widetilde{G} \to G$.
- If semi-simple G_1 and G_2 have isomorphic root systems then $\widetilde{G}_1 \simeq \widetilde{G}_2$.

Irreducible components of Φ are in bijection with simple factors G_1, \ldots, G_r of G.

In particular, *G* is simple $\Leftrightarrow \Phi$ is irreducible.

Thus, simple (complex) group are classified up to isogeny by *reduced irreducible* root systems: A_n, \ldots, G_2 .

Assume that a semi-simple group *G* is defined over $F \subset \mathbb{C}$.

Assume that a semi-simple group *G* is defined over $F \subset \mathbb{C}$.

• G contains a maximal torus T defined over F.

Assume that a semi-simple group *G* is defined over $F \subset \mathbb{C}$.

• G contains a maximal torus T defined over F.

Then Galois group of *F* acts on X(T) leaving Φ invariant.

Let *S* be a maximal F-split torus of *G*.

Let *S* be a maximal F-split torus of *G*.

Any two such tori are conjugate by an element of G(F)

Let *S* be a maximal F-split torus of *G*.

Any two such tori are conjugate by an element of $G(F) \Rightarrow \dim S = \operatorname{rk}_F G$ (*F*-rank of *G*) is well-defined.

Let *S* be a maximal F-split torus of *G*.

Any two such tori are conjugate by an element of $G(F) \Rightarrow$ dim $S = \operatorname{rk}_F G$ (*F*-rank of *G*) is well-defined.

• If $\operatorname{rk}_F G = \operatorname{rk} G$, then *G* contains a maximal torus which is *F*-split. Then *G* is also said to be *F*-split.

Let *S* be a maximal F-split torus of *G*.

Any two such tori are conjugate by an element of $G(F) \Rightarrow$ dim $S = \operatorname{rk}_F G$ (*F*-rank of *G*) is well-defined.

- If $\operatorname{rk}_F G = \operatorname{rk} G$, then *G* contains a maximal torus which is *F*-split. Then *G* is also said to be *F*-split.
- If $rk_F G = 0$ then *G* is said to be *F*-anisotropic.

• If $rk_F G > 0$ then G is F-isotropic

Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

• If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.
- (e) Structure of connected groups.

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

• *G* has a *maximal unipotent normal subgroup* $U \subset G$ (called the unipotent radical of *G*),

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

• *G* has a *maximal unipotent normal subgroup* $U \subset G$ (called the unipotent radical of *G*), and there exists a subgroup $H \subset G$ (Levi subgroup) such that G = HU (semi-direct product).

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

- *G* has a *maximal unipotent normal subgroup* $U \subset G$ (called the unipotent radical of *G*), and there exists a subgroup $H \subset G$ (Levi subgroup) such that G = HU (semi-direct product).
- If G is defined over F, then U is defined over F,

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

- *G* has a *maximal unipotent normal subgroup* $U \subset G$ (called the unipotent radical of *G*), and there exists a subgroup $H \subset G$ (Levi subgroup) such that G = HU (semi-direct product).
- If *G* is defined over *F*, then *U* is defined over *F*, and *H* can be chosen to be defined over *F* (char *F* = 0!)

- If $\operatorname{rk}_F G > 0$ then *G* is *F*-isotropic \Leftrightarrow *G*(*F*) contains nontrivial unipotents (char *F* = 0!)
- If $F = \mathbb{R}$ then *G* is *F*-anisotropic \Leftrightarrow *G*(*F*) is compact.

- *G* has a *maximal unipotent normal subgroup* $U \subset G$ (called the unipotent radical of *G*), and there exists a subgroup $H \subset G$ (Levi subgroup) such that G = HU (semi-direct product).
- If *G* is defined over *F*, then *U* is defined over *F*, and *H* can be chosen to be defined over *F* (char F = 0!)
- Unipotent radical of H is trivial, i.e. H is reductive.

Let *G* be *reductive*.

Let G be reductive.

Then

connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny*;

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny*;

• If G is defined over F, then so are D and Z.

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny;*

• If G is defined over F, then so are D and Z.

Thus,

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G, G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny;*

• If G is defined over F, then so are D and Z.

Thus, any connected group can be obtained,

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny*;

• If G is defined over F, then so are D and Z.

Thus, *any connected group* can be obtained, by taking isogenies and semi-direct products over the field of definition,

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G, G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny*;

• If G is defined over F, then so are D and Z.

Thus, *any connected group* can be obtained, by taking isogenies and semi-direct products over the field of definition, from following *three classes of groups*:

- connected center Z = Z(G)° is a torus, and commutator subgroup D = [G,G] is a semi-simple group;
- G = DZ and $D \cap Z$ is finite, i.e. product map

 $D \times Z \to G$

is an *isogeny*;

• If G is defined over F, then so are D and Z.

Thus, *any connected group* can be obtained, by taking isogenies and semi-direct products over the field of definition, from following *three classes of groups*:

unipotent groups, tori, and semi-simple groups.

Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$.

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$. As a consequence, one gets information about $G(\mathbb{R})/G(\mathbb{Z})$ as well as $G(\mathbb{Z})$ itself.

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$. As a consequence, one gets information about $G(\mathbb{R})/G(\mathbb{Z})$ as well as $G(\mathbb{Z})$ itself.

Theorem

Let G be a semi-simple Q-group. Then

Theorem (Borel's Density Theorem)

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$. As a consequence, one gets information about $G(\mathbb{R})/G(\mathbb{Z})$ as well as $G(\mathbb{Z})$ itself.

Theorem

Let G be a semi-simple Q-group. Then (1) $G(\mathbb{R})/G(\mathbb{Z})$ has finite invariant measure

Theorem (Borel's Density Theorem)

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$. As a consequence, one gets information about $G(\mathbb{R})/G(\mathbb{Z})$ as well as $G(\mathbb{Z})$ itself.

Theorem

Let G be a semi-simple Q-group. Then

(1) $G(\mathbb{R})/G(\mathbb{Z})$ has finite invariant measure (i.e. $G(\mathbb{Z})$ is a lattice in $G(\mathbb{R})$);

Theorem (Borel's Density Theorem)

Let G is a simple algebraic Q-group. If $G(\mathbb{R})$ is noncompact, then $G(\mathbb{Z})$ is Zariski-dense in G.

Note: If $G(\mathbb{R})$ is *compact* then $G(\mathbb{Z})$, being *discrete*, is finite, hence cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for $G(\mathbb{Z})$ in $G(\mathbb{R})$. As a consequence, one gets information about $G(\mathbb{R})/G(\mathbb{Z})$ as well as $G(\mathbb{Z})$ itself.

Theorem

Let G be a semi-simple Q-group. Then

(1) $G(\mathbb{R})/G(\mathbb{Z})$ has finite invariant measure (i.e. $G(\mathbb{Z})$ is a lattice in $G(\mathbb{R})$);

(2) $G(\mathbb{R})/G(\mathbb{Z})$ is compact \Leftrightarrow G is Q-anisotropic.

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Let G be an algebraic \mathbb{Q} -group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

Let G be an algebraic \mathbb{Q} -group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question: What arithmetic groups of simple groups are boundedly generated?

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

An abstract group Γ is said to have bounded generation

Let G be an algebraic \mathbb{Q} -group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

An abstract group Γ is said to have bounded generation if there exist $\gamma_1, \ldots, \gamma_d \in \Gamma$

Let G be an algebraic Q-group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

An abstract group Γ is said to have bounded generation if there exist $\gamma_1, \ldots, \gamma_d \in \Gamma$ such that

$$\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle,$$

Let G be an algebraic \mathbb{Q} -group. Then every arithmetic subgroup of G is a group with finitely many generators and relators.

Usually, one is interested in a *presentation* of a given arithmetic group having some *special properties*.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

An abstract group Γ is said to have bounded generation if there exist $\gamma_1, \ldots, \gamma_d \in \Gamma$ such that

$$\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle,$$

where $\langle \gamma_i \rangle$ is the cyclic group generated by γ_i .

Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

description of arithmetic lattices

description of arithmetic lattices

in Lie groups of the form $\mathcal{G} = G(\mathbb{R})$ where *G* is a simple real algebraic group

description of arithmetic lattices

in Lie groups of the form $\mathcal{G} = G(\mathbb{R})$ where *G* is a simple real algebraic group that generalizes description of *arithmetic Fuchsian* groups $\Gamma \subset SL_2(\mathbb{R})$.

description of arithmetic lattices

in Lie groups of the form $\mathcal{G} = G(\mathbb{R})$ where *G* is a simple real algebraic group that generalizes description of *arithmetic Fuchsian* groups $\Gamma \subset SL_2(\mathbb{R})$.

To give such Γ (up to commensurability) one needs to specify:

description of arithmetic lattices

in Lie groups of the form $\mathcal{G} = G(\mathbb{R})$ where *G* is a simple real algebraic group that generalizes description of *arithmetic Fuchsian* groups $\Gamma \subset SL_2(\mathbb{R})$.

To give such Γ (up to commensurability) one needs to specify: • a number field $K \subset \mathbb{R}$:

description of arithmetic lattices

in Lie groups of the form $\mathcal{G} = G(\mathbb{R})$ where *G* is a simple real algebraic group that generalizes description of *arithmetic Fuchsian* groups $\Gamma \subset SL_2(\mathbb{R})$.

- To give such Γ (up to commensurability) one needs to specify:
- a number field $K \subset \mathbb{R}$;
- a quaternion algebra D over K such that $D \otimes_K \mathbb{R} \simeq M_2(\mathbb{R})$ (+ more conditions).

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$,

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$, i.e. *G* is \mathbb{R}/K -form of SL₂.

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$, i.e. *G* is \mathbb{R}/K -form of SL_2 .

Definition.

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$, i.e. *G* is \mathbb{R}/K -form of SL₂.

Definition.

Let F/K be a field extension, and G be an F-group.

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$, i.e. *G* is \mathbb{R}/K -form of SL₂.

Definition.

Let F/K be a field extension, and G be an F-group. A K-group G' is F/K-form of G

Let $G = SL_1(D)$, algebraic *K*-group associated with quaternions having norm 1.

Then $G \times_K \mathbb{R} \simeq SL_2$, i.e. *G* is \mathbb{R}/K -form of SL_2 .

Definition.

Let F/K be a field extension, and G be an F-group. A K-group G' is F/K-form of G if $G' \times_K F \simeq G$ as F-groups.

Andrei Rapinchuk (University of Virginia)

1. Let *A* be a *central simple K*-algebra such that $A \otimes_K F \simeq M_n(F)$.

1. Let *A* be a *central simple K*-algebra such that $A \otimes_K F \simeq M_n(F)$.

Then $G' = SL_{1,A}$ is F/K-form of SL_n .

1. Let *A* be a *central simple K*-algebra such that $A \otimes_K F \simeq M_n(F).$

Then $G' = SL_{1,A}$ is F/K-form of SL_n .

(If $F = \overline{K}$ then one can take *any* central simple *A* of degree *n*.)

1. Let A be a *central simple* K-algebra such that $A \otimes_K F \simeq M_n(F).$

Then $G' = SL_{1,A}$ is F/K-form of SL_n .

(If $F = \overline{K}$ then one can take *any* central simple *A* of degree *n*.)

2. Let $G = SO_n(q)$ where q is a nondegenerate quadratic form over F of dimension n.

Examples.

1. Let *A* be a *central simple K*-algebra such that $A \otimes_K F \simeq M_n(F).$

Then $G' = SL_{1,A}$ is F/K-form of SL_n .

(If $F = \overline{K}$ then one can take *any* central simple *A* of degree *n*.)

2. Let G = SO_n(q) where q is a nondegenerate quadratic form over F of dimension n.
For any quadratic form q' over K that is *F*-equivalent to q, G' = SO_n(q')

is F/K-form of G.

Examples.

1. Let *A* be a *central simple K*-algebra such that $A \otimes_K F \simeq M_n(F).$

Then $G' = SL_{1,A}$ is F/K-form of SL_n .

(If $F = \overline{K}$ then one can take *any* central simple *A* of degree *n*.)

2. Let G = SO_n(q) where q is a nondegenerate quadratic form over F of dimension n.
For any quadratic form q' over K that is *F*-equivalent to q,

 $G' = SO_n(q')$

is F/K-form of G.

(Again, if $F = \overline{K}$ then q' can be *any n*-dimensional form over *K*.)

Since *arithmetic groups* were introduced for Q-defined algebraic groups,

• Take \mathbb{R}/\mathbb{Q} -form G' of G so that there is \mathbb{R} -isomorphism $\varphi \colon G' \to G$,

which induces an isomorphism $G'(\mathbb{R}) \simeq G(\mathbb{R})$;

• Take \mathbb{R}/\mathbb{Q} -form G' of G so that there is \mathbb{R} -isomorphism $\varphi \colon G' \to G$,

which induces an isomorphism $G'(\mathbb{R}) \simeq G(\mathbb{R})$;

• Consider subgroups of $\mathcal{G} = G(\mathbb{R})$ commensurable with $\varphi(G'(\mathbb{Z})).$

• Take \mathbb{R}/\mathbb{Q} -form G' of G so that there is \mathbb{R} -isomorphism $\varphi \colon G' \to G$,

which induces an isomorphism $G'(\mathbb{R}) \simeq G(\mathbb{R})$;

• Consider subgroups of $\mathcal{G} = G(\mathbb{R})$ commensurable with $\varphi(G'(\mathbb{Z})).$

Note that there is **no** canonical way to fix φ , so "definition" should say:

• Take \mathbb{R}/\mathbb{Q} -form G' of G so that there is \mathbb{R} -isomorphism $\varphi \colon G' \to G$,

which induces an isomorphism $G'(\mathbb{R}) \simeq G(\mathbb{R})$;

• Consider subgroups of $\mathcal{G} = G(\mathbb{R})$ commensurable with $\varphi(G'(\mathbb{Z})).$

Note that there is **no** canonical way to fix φ , so "definition" should say:

a subgroup $\Gamma \subset \mathcal{G}$ is arithmetic if there is \mathbb{R}/\mathbb{Q} -form G' of G and \mathbb{R} -isomorphism $\varphi \colon G' \to G$ such that Γ is commensurable with $\varphi(G'(\mathbb{Z}))$.

BUT IT MISSES MANY LATTICES!

BUT IT MISSES MANY LATTICES!

Indeed, consider $q = x^2 + y^2 - z^2$, let $G = SO_3(q)$ and $\mathcal{G} = G(\mathbb{R})$.

BUT IT MISSES MANY LATTICES!

Indeed, consider $q = x^2 + y^2 - z^2$, let $G = SO_3(q)$ and $\mathcal{G} = G(\mathbb{R})$.

Then each of the rational quadratic forms

$$q_1 = x^2 + y^2 - 3z^2$$
 and $q_2 = x^2 + y^2 - 7z^2$,

being equivalent to q over \mathbb{R} , defines a family of arithmetic subgroups of \mathcal{G} .

But we can also consider $q_3 = x^2 + y^2 - \sqrt{2}z^2$.

Just as \mathbb{Z} is a *discrete* subring of \mathbb{R} ,

Just as \mathbb{Z} is a *discrete* subring of \mathbb{R} ,

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \right\}$$

embeds as a *discrete* subring in $\mathbb{R} \times \mathbb{R}$ by

But we can also consider $q_3 = x^2 + y^2 - \sqrt{2}z^2$.

Just as \mathbb{Z} is a *discrete* subring of \mathbb{R} ,

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \right\}$$

embeds as a *discrete* subring in $\mathbb{R} \times \mathbb{R}$ by

$$a+b\sqrt{2} \mapsto (a+b\sqrt{2}, a-b\sqrt{2}).$$

Just as \mathbb{Z} is a *discrete* subring of \mathbb{R} ,

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \right\}$$

embeds as a *discrete* subring in $\mathbb{R} \times \mathbb{R}$ by

$$a+b\sqrt{2} \mapsto (a+b\sqrt{2}, a-b\sqrt{2}).$$

So, $\Gamma = SO_3(q_3)(\mathbb{Z}[\sqrt{2}])$ embeds as a *discrete* subgroup in $\mathcal{H} = \mathcal{G}_3 \times \mathcal{G}'_3$

where $\mathcal{G}_3 = SO_3(q_3)(\mathbb{R}), \quad \mathcal{G}'_3 = SO_3(q'_3)(\mathbb{R}), \quad q'_3 = x^2 + y^2 + \sqrt{2}z^2.$

By *restriction of scalars,* one constructs a semi-simple \mathbb{Q} -group H such that

$$H(\mathbb{Z}) = \Gamma$$
 and $H(\mathbb{R}) = \mathcal{H}$.

By *restriction of scalars,* one constructs a semi-simple \mathbb{Q} -group H such that

$$H(\mathbb{Z}) = \Gamma$$
 and $H(\mathbb{R}) = \mathcal{H}$.

• It follows that Γ is a lattice in \mathcal{H} .

By *restriction of scalars,* one constructs a semi-simple \mathbb{Q} -group H such that

$$H(\mathbb{Z}) = \Gamma$$
 and $H(\mathbb{R}) = \mathcal{H}$.

• It follows that Γ is a lattice in \mathcal{H} .

But \mathcal{G}'_3 is *compact* \Rightarrow projection of Γ into $\mathcal{G}_3 \simeq \mathcal{G}$ is a lattice there.

By *restriction of scalars,* one constructs a semi-simple Q-group H such that

$$H(\mathbb{Z}) = \Gamma$$
 and $H(\mathbb{R}) = \mathcal{H}$.

• It follows that Γ is a lattice in \mathcal{H} .

But \mathcal{G}'_3 is *compact* \Rightarrow projection of Γ into $\mathcal{G}_3 \simeq \mathcal{G}$ is a lattice there.

This projection is image of embedding

 $\operatorname{SO}_3(q_3)(\mathbb{Z}[\sqrt{2}]) \hookrightarrow \operatorname{SO}_3(q_3)(\mathbb{R})$

induced by identity embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}$.

By *restriction of scalars,* one constructs a semi-simple Q-group H such that

$$H(\mathbb{Z}) = \Gamma$$
 and $H(\mathbb{R}) = \mathcal{H}$.

• It follows that Γ is a lattice in \mathcal{H} .

But \mathcal{G}'_3 is *compact* \Rightarrow projection of Γ into $\mathcal{G}_3 \simeq \mathcal{G}$ is a lattice there.

This projection is image of embedding

 $\operatorname{SO}_3(q_3)(\mathbb{Z}[\sqrt{2}]) \hookrightarrow \operatorname{SO}_3(q_3)(\mathbb{R})$

induced by identity embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}$.

So, a "reasonable definition" of an arithmetic group/lattice must include groups that arise from rings of algebraic integers other

than \mathbb{Z} .

Let *G* be a simple *adjoint* algebraic group over a field $F \ (\subset \mathbb{C})$

Let G be a simple adjoint algebraic group over a field

F ($\subset \mathbb{C}$) (in applications, F will be either \mathbb{R} or \mathbb{C}).

Let G be a simple *adjoint* algebraic group over a field $\Gamma_{i}(G,G)$ (in conditions Γ_{i} with the solution $P_{i}(G,G)$).

- $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).
- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist

Let *G* be a simple *adjoint* algebraic group over a field $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).

- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist
- a number field $K \subset F$ with ring of integers O, and

Let *G* be a simple *adjoint* algebraic group over a field $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).

- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist
- a number field $K \subset F$ with ring of integers O, and
- an F/K-form 9 of G

Let *G* be a simple *adjoint* algebraic group over a field $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).

- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist
- a number field $K \subset F$ with ring of integers O, and
- an F/K-form 9 of G

such that Γ is commensurable with $\varphi(\mathfrak{G}(\mathfrak{O}))$ for *some F*-isomorphism $\varphi: \mathfrak{G} \to G$.

Let *G* be a simple *adjoint* algebraic group over a field $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).

- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist
- a number field $K \subset F$ with ring of integers O, and
- an F/K-form 9 of G

such that Γ is commensurable with $\varphi(\mathfrak{G}(\mathfrak{O}))$ for *some F*-isomorphism $\varphi: \mathfrak{G} \to G$.

Such Γ is called (*K*, *G*)-arithmetic.

Let *G* be a simple *adjoint* algebraic group over a field $F (\subset \mathbb{C})$ (in applications, *F* will be either \mathbb{R} or \mathbb{C}).

- A subgroup $\Gamma \subset G(F)$ is arithmetic if there exist
- a number field $K \subset F$ with ring of integers O, and
- an F/K-form 9 of G

such that Γ is commensurable with $\varphi(\mathfrak{G}(\mathfrak{O}))$ for *some F*-isomorphism $\varphi: \mathfrak{G} \to G$.

Such Γ is called (*K*, *G*)-arithmetic.

If *G* is not adjoint and $\pi: G \to \overline{G}$ is *F*-isogeny onto adjoint group, then $\Gamma \subset G(F)$ is (K, \mathfrak{G}) -arithmetic if $\pi(\Gamma) \subset \overline{G}(F)$ is such.

When $F = \mathbb{R}$, all arithmetic lattices in classical sense (used by Margulis et al.)

When $F = \mathbb{R}$, all arithmetic lattices in classical sense (used by Margulis et al.) are arithmetic subgroups in our sense.

When $F = \mathbb{R}$, all arithmetic lattices in classical sense (used by Margulis et al.) are arithmetic subgroups in our sense.

Our arithmetic subgroup may not be discrete,

When $F = \mathbb{R}$, all arithmetic lattices in classical sense (used by Margulis et al.) are arithmetic subgroups in our sense.

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

(**However**, discreteness will play no role in our considerations focused on eigenvalues.)

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

(**However**, discreteness will play no role in our considerations focused on eigenvalues.)

Definition.

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

(**However**, discreteness will play no role in our considerations focused on eigenvalues.)

Definition.

Let G_1 and G_2 be two simple *adjoint F*-groups, and let $\Gamma_i \subset G_i(F)$ be a subgroup for i = 1, 2.

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

(**However**, discreteness will play no role in our considerations focused on eigenvalues.)

Definition.

Let G_1 and G_2 be two simple *adjoint F*-groups, and let $\Gamma_i \subset G_i(F)$ be a subgroup for i = 1, 2.

 Γ_1 and Γ_2 are commensurable up to *F*-isomorphism between G_1 and G_2

Our arithmetic subgroup may not be *discrete*, **but** discrete ones are arithmetic lattices in classical sense.

(**However**, discreteness will play no role in our considerations focused on eigenvalues.)

Definition.

Let G_1 and G_2 be two simple *adjoint F*-groups, and let $\Gamma_i \subset G_i(F)$ be a subgroup for i = 1, 2.

 Γ_1 and Γ_2 are commensurable up to *F*-isomorphism between G_1 and G_2 if there exists *F*-isomorphism

$$\varphi\colon G_1\to G_2$$

such that $\varphi(\Gamma_1)$ and Γ_2 are commensurable in usual sense.

If G_1 and G_2 are not necessarily adjoint,

onto corresponding adjoint groups,

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

Proposition (G.Prasad - A.R.)

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

Proposition (G.Prasad - A.R.)

Let G_1 and G_2 be simple algebraic F-groups,

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

Proposition (G.Prasad - A.R.)

Let G_1 and G_2 be simple algebraic F-groups, and let $\Gamma_i \subset G_i(F)$ be Zariski-dense (K_i, \mathcal{G}_i) -arithmetic subgroup of $G_i(F)$.

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

Proposition (G.Prasad - A.R.)

Let G_1 and G_2 be simple algebraic F-groups, and let $\Gamma_i \subset G_i(F)$ be Zariski-dense (K_i, \mathcal{G}_i) -arithmetic subgroup of $G_i(F)$.

Then Γ_1 and Γ_2 are commensurable up F-isomorphism between \overline{G}_1 and \overline{G}_2

onto corresponding adjoint groups, and say that subgroups $\Gamma_i \subset G_i(F)$ are commensurable up to *F*-isomorphism between \overline{G}_1 and \overline{G}_2 if $\pi_1(\Gamma_1)$ and $\pi_2(\Gamma_2)$ are such.

OUR GOAL: classify arithmetic subgroups up to this equivalence relation.

Proposition (G.Prasad - A.R.)

Let G_1 and G_2 be simple algebraic F-groups, and let $\Gamma_i \subset G_i(F)$ be Zariski-dense (K_i, \mathcal{G}_i) -arithmetic subgroup of $G_i(F)$.

Then Γ_1 and Γ_2 are commensurable up *F*-isomorphism between \overline{G}_1 and $\overline{G}_2 \Leftrightarrow K_1 = K_2 =: K$ and \mathfrak{G}_1 and \mathfrak{G}_2 are *K*-isomorphic.

$(\mathbb{Q}, SO_3(q_1))$, $(\mathbb{Q}, SO_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), SO_3(q_3))$

$$(\mathbb{Q}, \mathrm{SO}_3(q_1))$$
, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

$$(\mathbb{Q}, \mathrm{SO}_3(q_1))$$
 , $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

٠

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that

$$(\mathbb{Q}, \mathrm{SO}_3(q_1))$$
, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that K and in many case 9 can be recovered

٠

$$(\mathbb{Q}, \mathrm{SO}_3(q_1))$$
, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case \mathcal{G} can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ

٠

 $(\mathbb{Q}, \mathrm{SO}_3(q_1))$, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

 $(\mathbb{Q}, \mathrm{SO}_3(q_1))$, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

In fact,

 $(\mathbb{Q}, \mathrm{SO}_3(q_1))$, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

In fact, (the analogs of) K and G

 $(\mathbb{Q}, \mathrm{SO}_3(q_1))$, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

In fact, (the analogs of) K and G can be recovered (in somewhat weaker sense)

 $(\mathbb{Q}, \mathrm{SO}_3(q_1))$, $(\mathbb{Q}, \mathrm{SO}_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), \mathrm{SO}_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

In fact, (the analogs of) *K* and *G* can be recovered (in somewhat weaker sense) from eigenvalue information pertaining to an *arbitrary* finitely generated Zariski-dense subgroup.

 $(\mathbb{Q}, SO_3(q_1))$, $(\mathbb{Q}, SO_3(q_2))$ and $(\mathbb{Q}(\sqrt{2}), SO_3(q_3))$

define pairwise noncommensurable arithmetic subgroups (lattices) of $\mathcal{G} = SO_3(q)(\mathbb{R})$.

We will see that *K* and in many case G can be recovered from *geometric information* about locally symmetric space associated with given arithmetic subgroup Γ such as *Laplace spectrum* or *lengths of closed geodesics*.

In fact, (the analogs of) *K* and *G* can be recovered (in somewhat weaker sense) from eigenvalue information pertaining to an *arbitrary* finitely generated Zariski-dense subgroup.

This is part of eigenvalue rigidity.

For arithmetic groups,

For arithmetic groups, our analysis relies on *classification* of simple algebraic groups over local and global fields

For arithmetic groups, our analysis relies on *classification* of simple algebraic groups over local and global fields and *results on Galois cohomology*

For arbitrary Zariski-dense subgroups,

For arbitrary Zariski-dense subgroups, the field of definition K

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

Arithmetic results on Galois cohomology etc.

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

Arithmetic results on Galois cohomology etc. are not available in this generality.

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

Arithmetic results on Galois cohomology etc. are not available in this generality.

As a substitute,

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

Arithmetic results on Galois cohomology etc. are not available in this generality.

As a substitute, we initiated analysis of *groups with good reduction*

For arbitrary Zariski-dense subgroups, the *field of definition K* can be *any* finitely generated field.

Arithmetic results on Galois cohomology etc. are **not** available in this generality.

As a substitute, we initiated analysis of *groups with good reduction* at a suitable set of *discrete valuation* of base field.

MAIN FACT: Let F/K be a field extension.

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D}

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D} where *D* is a *quaternion algebra* over *K* such that $D \otimes_K F \simeq M_2(F)$.

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D} where *D* is a *quaternion algebra* over *K* such that $D \otimes_K F \simeq M_2(F)$.

Assume char $K \neq 2$

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D} where *D* is a *quaternion algebra* over *K* such that $D \otimes_K F \simeq M_2(F)$.

Assume char $K \neq 2$ (in application $K \subset F \subset \mathbb{C}$)

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D} where *D* is a *quaternion algebra* over *K* such that $D \otimes_K F \simeq M_2(F)$.

Assume char $K \neq 2$ (in application $K \subset F \subset \mathbb{C}$)

Given $a, b \in K^{\times}$, one considers 4-dimensional *K*-vector space *D* with basis

1, *i*, *j*, *k*

MAIN FACT: Let F/K be a field extension. All F/K-forms of SL₂ are SL_{1,D} where *D* is a *quaternion algebra* over *K* such that $D \otimes_K F \simeq M_2(F)$.

Assume char $K \neq 2$ (in application $K \subset F \subset \mathbb{C}$)

Given $a, b \in K^{\times}$, one considers 4-dimensional *K*-vector space *D* with basis

and multiplication table

$$i^2 = a, j^2 = b, k = ij = -ji$$
 etc.

Algebra of (usual) Hamiltonian quaternions is $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$.

Algebra of (usual) Hamiltonian quaternions is $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$.

• *D* is either a *division algebra* or *matrix algebra* $M_2(K)$.

Algebra of (usual) Hamiltonian quaternions is $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$.

- *D* is either a *division algebra* or *matrix algebra* $M_2(K)$.
- *D* has an involution (*quaternionic conjugation*):

$$z = z_0 + z_1 i + z_2 j + z_3 k \mapsto \bar{z} = z_0 - z_1 i - z_2 j - z_3 k.$$

Algebra of (usual) Hamiltonian quaternions is $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$.

- *D* is either a *division algebra* or *matrix algebra* $M_2(K)$.
- *D* has an involution (*quaternionic conjugation*):

$$z = z_0 + z_1 i + z_2 j + z_3 k \mapsto \bar{z} = z_0 - z_1 i - z_2 j - z_3 k.$$

• We define quaternion norm:

$$\mathbf{N}(z) = z\bar{z} = z_0^2 - az_1^2 - bz_2^2 + abz_3^2.$$

Algebra of (usual) Hamiltonian quaternions is $\mathbb{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$.

- *D* is either a *division algebra* or *matrix algebra* $M_2(K)$.
- *D* has an involution (*quaternionic conjugation*):

$$z = z_0 + z_1 i + z_2 j + z_3 k \mapsto \bar{z} = z_0 - z_1 i - z_2 j - z_3 k.$$

• We define quaternion norm:

$$\mathbf{N}(z) = z\bar{z} = z_0^2 - az_1^2 - bz_2^2 + abz_3^2.$$

Then N(z'z'') = N(z')N(z') (also for $z', z'' \in D \otimes_K F$).

 $G := \{ z = z_0 + z_1 i + z_2 j + z_3 k \in D \otimes_F \mathbb{C} \mid z_0^2 - az_1^2 - bz_2^2 + abz_3^2 = 1 \}$

is a group for quaternionic multiplication.

 $G := \{ z = z_0 + z_1 i + z_2 j + z_3 k \in D \otimes_F \mathbb{C} \mid z_0^2 - az_1^2 - bz_2^2 + abz_3^2 = 1 \}$

is a group for quaternionic multiplication.

This group is given by a polynomial equation

 $G := \{ z = z_0 + z_1 i + z_2 j + z_3 k \in D \otimes_F \mathbb{C} \mid z_0^2 - az_1^2 - bz_2^2 + abz_3^2 = 1 \}$

is a group for quaternionic multiplication.

This group is given by a *polynomial equation* **but** is not embedded into matrices.

 $G := \{ z = z_0 + z_1 i + z_2 j + z_3 k \in D \otimes_F \mathbb{C} \mid z_0^2 - az_1^2 - bz_2^2 + abz_3^2 = 1 \}$

is a group for quaternionic multiplication.

This group is given by a *polynomial equation* **but** is not embedded into matrices.

However, using *regular representation* one embeds $D \hookrightarrow M_4(F)$ and thereby realizes $G = SL_{1,D}$ as an *F*-subgroup of GL₄.

 $G := \{ z = z_0 + z_1 i + z_2 j + z_3 k \in D \otimes_F \mathbb{C} \mid z_0^2 - a z_1^2 - b z_2^2 + a b z_3^2 = 1 \}$

is a group for quaternionic multiplication.

This group is given by a *polynomial equation* **but** is not embedded into matrices.

However, using *regular representation* one embeds $D \hookrightarrow M_4(F)$ and thereby realizes $G = SL_{1,D}$ as an *F*-subgroup of GL₄.

(For computations, one still uses realization of *G* as hypersurface.)

It is well-known that $D \otimes_K \mathbb{C} \simeq M_2(\mathbb{C})$.

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \mapsto \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \left(\begin{array}{cc} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{array}\right),$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

Note that $N(z) = \det \iota(z)$.

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

Note that $N(z) = \det \iota(z)$.

It follows that $G \simeq SL_2(\mathbb{C})$, i.e. *G* is a \mathbb{C}/K -form of SL_2 .

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

Note that $N(z) = \det \iota(z)$.

It follows that $G \simeq SL_2(\mathbb{C})$, i.e. *G* is a \mathbb{C}/K -form of SL_2 .

More generally, if F/K is such that $D \otimes_K F \simeq M_2(F)$

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

Note that
$$N(z) = \det \iota(z)$$
.

It follows that $G \simeq SL_2(\mathbb{C})$, i.e. *G* is a \mathbb{C}/K -form of SL_2 .

More generally, if F/K is such that $D \otimes_K F \simeq M_2(F)$ then $G \simeq SL_2$

already over *F*,

$$\iota: D \hookrightarrow M_2(\mathbb{C}), \quad z = z_0 + z_1 i + z_2 j + z_3 k \ \mapsto \ \begin{pmatrix} z_0 + z_1 i & b(z_2 + z_3 i) \\ z_2 - z_3 i & z_0 - z_1 i \end{pmatrix},$$

where one treats *i* as $\sqrt{a} \in \mathbb{C}$.

Note that
$$N(z) = \det \iota(z)$$
.

It follows that $G \simeq SL_2(\mathbb{C})$, i.e. *G* is a \mathbb{C}/K -form of SL_2 .

More generally, if F/K is such that $D \otimes_K F \simeq M_2(F)$ then $G \simeq SL_2$

already over *F*, i.e., *G* is F/K-form of SL₂.

As we already mentioned, the converse is also true:

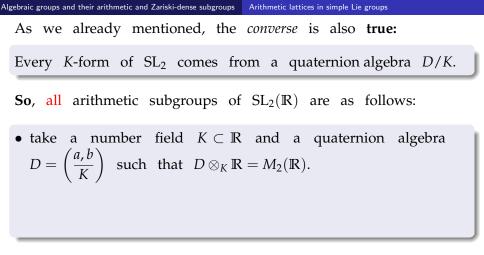
As we already mentioned, the *converse* is also true:

Every *K*-form of SL_2 comes from a quaternion algebra D/K.

As we already mentioned, the *converse* is also true:

Every *K*-form of SL_2 comes from a quaternion algebra D/K.

So, all arithmetic subgroups of $SL_2(\mathbb{R})$ are as follows:



As we already mentioned, the *converse* is also **true**:
Every *K*-form of SL₂ comes from a quaternion algebra
$$D/K$$
.
So, all arithmetic subgroups of SL₂(\mathbb{R}) are as follows:
• take a number field $K \subset \mathbb{R}$ and a quaternion algebra $D = \begin{pmatrix} a, b \\ \overline{K} \end{pmatrix}$ such that $D \otimes_K \mathbb{R} = M_2(\mathbb{R})$.
Then for $\mathfrak{G} = \mathrm{SL}_{1,D}$ there exists \mathbb{R} -isomorphism $\varphi: \mathfrak{G} \to \mathrm{SL}_2$.

Agebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups
As we already mentioned, the *converse* is also **true**:
Every *K*-form of SL₂ comes from a quaternion algebra
$$D/K$$
.
So, all arithmetic subgroups of SL₂(\mathbb{R}) are as follows:
• take a number field $K \subset \mathbb{R}$ and a quaternion algebra
 $D = \left(\frac{a,b}{K}\right)$ such that $D \otimes_K \mathbb{R} = M_2(\mathbb{R})$.
Then for $\mathcal{G} = SL_{1,D}$ there exists \mathbb{R} -isomorphism
 $\varphi: \mathcal{G} \to SL_2$.

• May assume that $a, b \in O$ (ring of integers in *K*), then

$$\mathcal{A} = \mathcal{O} + \mathcal{O}i + \mathcal{O}j + \mathcal{O}k$$

is a subring of D (called an O-order in D).

$$\mathfrak{G}(\mathfrak{O}) = \mathfrak{G} \cap \mathcal{A}$$

$$\mathfrak{G}(\mathfrak{O})=\mathfrak{G}\cap\mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

$$\mathfrak{G}(\mathfrak{O}) = \mathfrak{G} \cap \mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

Then a subgroup $\Gamma \subset SL_2(\mathbb{R})$ is (K, \mathfrak{G}) -arithmetic if φ can be chosen so that Γ is commensurable with $\varphi(\mathfrak{G}(\mathfrak{O}))$.

$$\mathfrak{G}(\mathfrak{O})=\mathfrak{G}\cap\mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

Then a subgroup $\Gamma \subset SL_2(\mathbb{R})$ is (K, \mathcal{G}) -arithmetic if φ can be chosen so that Γ is commensurable with $\varphi(\mathcal{G}(\mathcal{O}))$.

• Such subgroup is *discrete* (i.e., an arithmetic lattice)

$$\mathfrak{G}(\mathfrak{O})=\mathfrak{G}\cap\mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

Then a subgroup $\Gamma \subset SL_2(\mathbb{R})$ is (K, \mathcal{G}) -arithmetic if φ can be chosen so that Γ is commensurable with $\varphi(\mathcal{G}(\mathcal{O}))$.

• Such subgroup is *discrete* (i.e., an arithmetic lattice)

 \Leftrightarrow for every *nonidentity embedding* $\epsilon: K \hookrightarrow \mathbb{C}$ we have

$$\mathfrak{G}(\mathfrak{O})=\mathfrak{G}\cap\mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

Then a subgroup $\Gamma \subset SL_2(\mathbb{R})$ is (K, \mathcal{G}) -arithmetic if φ can be chosen so that Γ is commensurable with $\varphi(\mathcal{G}(\mathcal{O}))$.

• Such subgroup is *discrete* (i.e., an arithmetic lattice)

 \Leftrightarrow for every *nonidentity embedding* $\epsilon : K \hookrightarrow \mathbb{C}$ we have

• $\epsilon(K) \subset \mathbb{R}$ (in particular, *K* is totally real), and

$$\mathfrak{G}(\mathfrak{O})=\mathfrak{G}\cap\mathcal{A}$$

(this is consistent with earlier definition for matrix realization of \mathcal{G} afforded by regular representation of *D* in basis 1, *i*, *j*, *k*).

Then a subgroup $\Gamma \subset SL_2(\mathbb{R})$ is (K, \mathcal{G}) -arithmetic if φ can be chosen so that Γ is commensurable with $\varphi(\mathcal{G}(\mathcal{O}))$.

- Such subgroup is *discrete* (i.e., an arithmetic lattice)
 - \Leftrightarrow for every *nonidentity embedding* $\epsilon : K \hookrightarrow \mathbb{C}$ we have
 - $\epsilon(K) \subset \mathbb{R}$ (in particular, *K* is totally real), and
 - $D \otimes_{K,\epsilon} \mathbb{R}$ is a division algebra.

Algebraic groups and their arithmetic and Zariski-dense subgroups

- Basic definitions
- Field of definition
- Algebraic groups: important classes and structure theory
- Basic results about arithmetic groups
- Arithmetic lattices in simple Lie groups
- Zariski-dense subgroups

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

E.g., let
$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ and } u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}.$$

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

E.g., let
$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ and } u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}.$$

Then:

- $u^+(1)$ and $u^-(1)$ generate $SL_2(\mathbb{Z})$ which is arithmetic;
- $u^+(2)$ and $u^-(2)$ generate a subgroup of index 12 $SL_2(\mathbb{Z})$, which is again arithmetic;
- for $m \ge 3$, $u^+(m)$ and $u^-(m)$ generate a Zariski-dense subgroup of infinite index in $SL_2(\mathbb{Z})$, which is not arithmetic (*thin*)

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

E.g., let
$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ and } u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$$

Then:

- $u^+(1)$ and $u^-(1)$ generate $SL_2(\mathbb{Z})$ which is arithmetic;
- $u^+(2)$ and $u^-(2)$ generate a subgroup of index 12 $SL_2(\mathbb{Z})$, which is again arithmetic;
- for $m \ge 3$, $u^+(m)$ and $u^-(m)$ generate a Zariski-dense subgroup of infinite index in $SL_2(\mathbb{Z})$, which is not arithmetic (*thin*)

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

let
$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 and $u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$.

Then:

E.g.,

- $u^+(1)$ and $u^-(1)$ generate $SL_2(\mathbb{Z})$ which is arithmetic;
- $u^+(2)$ and $u^-(2)$ generate a subgroup of index 12 $SL_2(\mathbb{Z})$, which is again arithmetic;
- for $m \ge 3$, $u^+(m)$ and $u^-(m)$ generate a Zariski-dense subgroup of infinite index in $SL_2(\mathbb{Z})$, which is not arithmetic (*thin*)

It is easy to construct examples of Zariski-dense subgroups that are not arithmetic.

let

$$u^+(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
 and $u^-(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$.

Then:

E.g.,

- $u^+(1)$ and $u^-(1)$ generate $SL_2(\mathbb{Z})$ which is arithmetic;
- $u^+(2)$ and $u^-(2)$ generate a subgroup of index 12 $SL_2(\mathbb{Z})$, which is again arithmetic;
- for $m \ge 3$, $u^+(m)$ and $u^-(m)$ generate a Zariski-dense subgroup of infinite index in $SL_2(\mathbb{Z})$, which is not arithmetic (*thin*)

However, Tits gave a construction of free 2-generated Zariskidense subgroup in *any* semi-simple algebraic group over a field of characteristic zero.

However, Tits gave a construction of free 2-generated Zariskidense subgroup in *any* semi-simple algebraic group over a field of characteristic zero.

Theorem (Tits)

Let G be a (nontrivial) semi-simple over a field F of characteristic zero, and let $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

However, Tits gave a construction of free 2-generated Zariskidense subgroup in *any* semi-simple algebraic group over a field of characteristic zero.

Theorem (Tits)

Let G be a (nontrivial) semi-simple over a field F of characteristic zero, and let $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Then Γ contains a countable free set Φ such that every pair of elements of Φ generates a Zariski-dense subgroup.

However, Tits gave a construction of free 2-generated Zariskidense subgroup in *any* semi-simple algebraic group over a field of characteristic zero.

Theorem (Tits)

Let G be a (nontrivial) semi-simple over a field F of characteristic zero, and let $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Then Γ contains a countable free set Φ such that every pair of elements of Φ generates a Zariski-dense subgroup.

Here a subset $\Phi \subset \Gamma$ is called *free* if inclusion $\Phi \hookrightarrow \Gamma$ extends to *injective* homomorphism of free group on Φ to Γ .

• We conclude that Γ contains a countable family of rank 2 free subgroups such that any two have *trivial* intersection.

• We conclude that Γ contains a countable family of rank 2 free subgroups such that any two have *trivial* intersection.

In most cases one can easily see (e.g., by looking at cohomological dimension) that these subgroups are not arithmetic.

• We conclude that Γ contains a countable family of rank 2 free subgroups such that any two have *trivial* intersection.

In most cases one can easily see (e.g., by looking at cohomological dimension) that these subgroups are not arithmetic.

We would like to extend definition of some attributes

• We conclude that Γ contains a countable family of rank 2 free subgroups such that any two have *trivial* intersection.

In most cases one can easily see (e.g., by looking at cohomological dimension) that these subgroups are not arithmetic.

We would like to extend definition of some attributes (such as K and G)

• We conclude that Γ contains a countable family of rank 2 free subgroups such that any two have *trivial* intersection.

In most cases one can easily see (e.g., by looking at cohomological dimension) that these subgroups are not arithmetic.

We would like to extend definition of some attributes (such as *K* and *G*) from *arithmetic groups* to *arbitrary Zariski-dense subgroups*.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ if there exists a basis of V in which all elements of Γ are represented by matrices with entries in K.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ if there exists a basis of V in which all elements of Γ are represented by matrices with entries in K.

• A field of definition is minimal if it is contained in any other field of definition.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ if there exists a basis of V in which all elements of Γ are represented by matrices with entries in K.

• A field of definition is minimal if it is contained in any other field of definition.

Let *G* be semi-simple algebraic *F*-group, and Γ be a Zariskidense subgroup of *G*(*F*).

Definition.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ if there exists a basis of V in which all elements of Γ are represented by matrices with entries in K.

• A field of definition is minimal if it is contained in any other field of definition.

Let *G* be semi-simple algebraic *F*-group, and Γ be a Zariskidense subgroup of *G*(*F*).

We let K_{Γ} denote the trace field of Γ ,

Definition.

Let *V* be a vector space over a field *F*, and let $\Gamma \subset GL(V)$ be a subgroup.

• A subfield $K \subset F$ is a field of definition for Γ if there exists a basis of V in which all elements of Γ are represented by matrices with entries in K.

• A field of definition is minimal if it is contained in any other field of definition.

Let *G* be semi-simple algebraic *F*-group, and Γ be a Zariskidense subgroup of *G*(*F*).

We let K_{Γ} denote the trace field of Γ , i.e., subfield of *F* generated by

Tr
$$\operatorname{Ad}_G(\gamma)$$
, $\gamma \in \Gamma$.

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

Thus, for *K* = *K*_Γ, we can pick a basis in \mathfrak{g} in which $Ad_G(\Gamma)$ is represented by matrices with entries in *K*.

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

Thus, for *K* = *K*_Γ, we can pick a basis in \mathfrak{g} in which $Ad_G(\Gamma)$ is represented by matrices with entries in *K*.

By taking Zariski-closure, we obtain a *K*-group $\mathfrak{G} \subset GL(\mathfrak{g})$ such that

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

Thus, for *K* = *K*_Γ, we can pick a basis in \mathfrak{g} in which $Ad_G(\Gamma)$ is represented by matrices with entries in *K*.

By taking Zariski-closure, we obtain a *K*-group $\mathfrak{G} \subset GL(\mathfrak{g})$ such that

 $\operatorname{Ad}_G(\Gamma) \subset \mathfrak{G}(K).$

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

Thus, for *K* = *K*_Γ, we can pick a basis in \mathfrak{g} in which $Ad_G(\Gamma)$ is represented by matrices with entries in *K*.

By taking Zariski-closure, we obtain a *K*-group $\mathcal{G} \subset GL(\mathfrak{g})$ such that

$$\operatorname{Ad}_G(\Gamma) \subset \mathfrak{G}(K).$$

 $\mathcal{G} = \mathcal{G}(\Gamma)$ is called the algebraic hull of Γ (or $\mathrm{Ad}_G(\Gamma)$).

 K_{Γ} is the minimal field of definition for $\operatorname{Ad}_{G}(\Gamma) \subset \operatorname{GL}(\mathfrak{g})$.

Thus, for *K* = *K*_Γ, we can pick a basis in \mathfrak{g} in which $Ad_G(\Gamma)$ is represented by matrices with entries in *K*.

By taking Zariski-closure, we obtain a *K*-group $\mathfrak{G} \subset GL(\mathfrak{g})$ such that

$$\operatorname{Ad}_G(\Gamma) \subset \mathfrak{G}(K).$$

 $\mathfrak{G} = \mathfrak{G}(\Gamma)$ is called the algebraic hull of Γ (or $\mathrm{Ad}_G(\Gamma)$).

Clearly,
$$\mathcal{G}$$
 is *F*/*K*-form of \overline{G} .

Andrei Rapinchuk (University of Virginia)

 $K_{\Gamma} = K$ and $\mathfrak{G}(\Gamma) = \mathfrak{G}$.

 $K_{\Gamma} = K$ and $\mathfrak{G}(\Gamma) = \mathfrak{G}$.

So, K_{Γ} and $\mathcal{G}(\Gamma)$ are *direct analogs* of *K* and \mathcal{G} for general Zariski-dense subgroups.

 $K_{\Gamma} = K$ and $\mathfrak{G}(\Gamma) = \mathfrak{G}$.

So, K_{Γ} and $\mathcal{G}(\Gamma)$ are *direct analogs* of *K* and \mathcal{G} for general Zariski-dense subgroups.

These are important invariants of *commensurability class* of Γ even though they do *not* determine this class uniquely in the general case.