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Definition.

A subgroup G ⊂ GLn(C) is algebraic if it can be defined by

a set of polynomial conditions

,

i.e., there exists a family of

polynomials

fα(x11, . . . , xnn) ∈ C[x11, . . . , xnn] (α ∈ J)

such that

G = { X = (xij) ∈ GLn(C) | fα(X) = 0 for all α ∈ J }.
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More generally, for a family of polynomials

fα(x11, . . . , xnn) ∈ C[x11, . . . , xnn] (α ∈ J)

we let

V(fα , α ∈ J) = { X ∈ GLn(C) | fα(X) = 0 for all α ∈ J }.

Zariski topology on GLn(C) = topology for which

V(fα , α ∈ J)’s

form family of all closed sets.

Thus, algebraic groups = Zariski-closed subgroups of GLn(C).
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Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

So, for any subgroup Γ ⊂ GLn(C), its Zariski-closure

G = Γ

is an algebraic group.

We are more interested in reverse situation:

for a given
algebraic group G, we will consider its subgroups Γ ⊂ G
such that Γ = G (Zariski-dense subgroups)

Definition.
Let G ⊂ GLn(C) and H ⊂ GLm(C) be algebraic groups.

A morphism ϕ : G→ H is a group homomorphism that

admits a “polynomial” representation, i.e. there exist

fk` ∈ C

[
x11, . . . , xnn,

1
det(xij)

]
, k, ` = 1, . . . , m,

such that ϕ(X) = (fk`(X)) for all X = (xij) ∈ G.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

Example of algebraic groups

1 G = SLn(C) is given by det(X)− 1 = 0 where X = (xij).

2 G = Sp2m(C) is given by tXEX = E, where

E =

(
O Im
−Im O

)

(which amounts to a polynomial system)

3 G = On(q), q a nondegenerate quadratic form.

Defined by tXQX = Q, Q matrix of q in standard basis.

4 G = SOn(q).

Defined by tXQX = Q and det(X)− 1 = 0.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

Examples of morphisms of algebraic groups

1 ϕ : GLn(C) → GL1(C), X 7→ det(X).

Morphisms into GL1 = Gm are called characters.

2 Consider G =

{ (
x −y
y x

)
∈ GL2(C)

}
.

One checks that G is an algebraic group,

and that(
x −y
y x

)
7→ x + iy where i2 = −1

is a character of G.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 8 / 62
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Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

Examples of morphisms of algebraic groups, cont’d

3 Adjoint representation AdG

For G = GLn(C), it is simply defined by conjugation action
on Mn(C):

Ad : GLn(C) → Aut(Mn(C)) = GLn2(C), g 7→ ig

where ig(Y) = gYg−1 for Y ∈ Mn(C).

(Note that functions representing Ad involve (det(X))−1.)

• For an arbitrary algebraic group G ⊂ GLn(C) one defines its Lie
algebra g ⊂ Mn(C):

Analytically: G can be considered as a complex Lie group, and
then we take its Lie algebra in this (analytic) context.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Basic definitions

Examples of morphisms of algebraic groups, cont’d

Algebraically: If fα(x11, . . . , xnn) (α ∈ J) generate ideal of

polynomial functions that vanish on G, then

g = { X ∈ Mn(C) | fα (In + εX) = 0 for all α ∈ J }

where ε2 = 0.

One shows that g is invariant under ig for g ∈ G, and then

defines adjoint representation by

AdG : G → GL(g), g 7→ ig|g.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Field of definition

Typically, we will deal with algebraic groups that can be defined

by polynomials with coefficients in a “nice” subfield of C (like Q

or a number field = finite extension of Q).

Definition.
Let F ⊂ C be a subfield.

(1) If G ⊂ GLn(C) can be defined by fα = 0 (α ∈ J) with

fα ∈ F[x11, . . . , xnn],

then G is F-defined or an F-group.

(2) A morphism of F-groups ϕ : G→ H is F-defined if it can be

given by functions from

F

[
x11, . . . , xnn,

1
det(xij)

]
.
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Examples

1 SLn and Sp2m are defined over Q.

2 On(q) and SOn(q) are defined over any F ⊂ C that

contains coefficients of q.

3 Determinant morphism GLn → GL1, g 7→ det(g), is defined

over Q.

4 G =

{ (
x −y
y x

)
∈ GL2(C)

}
is defined over Q.

Determinant restricts to character(
x −y
y x

)
7→ x2 + y2

which is Q-defined.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Field of definition

Examples, cont’d

Another character
(

x −y
y x

)
7→ x + iy

is not defined over Q (or R) but over Q(i).

5 If G is F-defined, then AdG is F-defined

(in a suitable basis of g)

6 Let q1 and q2 be two nondegenerate n-dimensional
quadratic forms over Q.

They are equivalent over C, i.e. ∃ T ∈ GLn(C) such that
tTQ1T = Q2.

Then g 7→ T−1gT yields C-isomorphisms

On(q1) → On(q2) and SOn(q1) → SOn(q2).

However, there may or may not be Q-isomorphism!
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Algebraic groups and their arithmetic and Zariski-dense subgroups Field of definition

Modification:

One can pick quadratic forms q1 and q2 over Q

so that they are equivalent over R.

Then SOn(q1) and SOn(q2) are R-isomorphic (i.e., essentially

copies of same Lie group),

but not necessarily Q-isomorphic.

This leads to different arithmetic subgroups inside a given

real Lie group, and our objective is to find the right one

using additional info (e.g., geometric).

For F-defined G ⊂ GLn(C), one defines group of F-points:

G(F) = G
⋂

GLn(F).

Note: for F-morphism ϕ : G→ H, we have ϕ(G(F)) ⊂ H(F).
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Algebraic groups and their arithmetic and Zariski-dense subgroups Field of definition

So, if ϕ : G→ H is F-isomorphism, then ϕ(G(F)) = H(F).

Note: if ϕ : G→ H is F-morphism, which is bijective, then
ϕ−1 : H→ G is also F-morphism. (Recall char F = 0.)

One can also consider groups of points over rings.

For Q-group G ⊂ GLn(C), the groups of Z-points is:

G(Z) = G
⋂

GLn(Z).

Unfortunately, G(Z) is not invariant under Q-isomorphisms.

E.g., take G = GLn(C) so that G(Z) = GLn(Z).

For g ∈ GLn(Q) we generally have

g GLn(Z) g−1 6= GLn(Z).

(The group of integral points depends on basis in Qn.)
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E.g., take G = GLn(C) so that G(Z) = GLn(Z).

For g ∈ GLn(Q) we generally have

g GLn(Z) g−1 6= GLn(Z).

(The group of integral points depends on basis in Qn.)
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On the other hand, g GLn(Z) g−1 is commensurable to GLn(Z),

for any g ∈ GLn(Q).

Recall: Two subgroups ∆1 and ∆2 of an abstract group Γ are

commensurable if ∆1 ∩ ∆2 is of finite index in each subgroup.

Proposition

Let ϕ : G→ H be a Q-isomorphism of algebraic Q-groups. Then

ϕ(G(Z)) is commensurable with H(Z).

Note: conclusion remains valid for any surjective ϕ, but proof
requires reduction theory.
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Definition.

Let G ⊂ GLn(C) be an algebraic Q-group.

A subgroup Γ ⊂ G

is arithmetic if it is commensurable with G(Z).

Class of arithmetic groups is invariant under Q-isomorphisms

(in particular does not depend on choice of Q-basis).

• For our purposes, we will need to generalize notion of
arithmetic group for real algebraic/Lie groups without
canonical Q-structure (i.e., a realization as Q-group).

• In order to formulate basic results about (usual) arithmetic

groups, we need to review important classes of algebraic

groups.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

Let G be an algebraic group.

G◦ = connected component of identity for Zariski topology.

• G◦ is a closed normal subgroup of finite index in G.

• If G is F-defined, then so is G◦.

Many questions can be reduced to connected groups.

• Structure theory for connected groups involves following
classes of groups:

(a) Unipotent groups. U ⊂ GLn(C) is unipotent if every
element u ∈ U is unipotent,

i.e. satisfies

(u− In)n = On,

(equivalently, all eigenvalues of u are equal to 1).
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Then there exists g ∈ GLn(C) such that g−1Ug is contained in

Un = group of upper unitriangular matrices.

• If U is defined over F then such g can be found

in GLn(F).

• Unipotent groups are nilpotent and automatically connected

(in char. 0!)

(b) Algebraic tori. T ⊂ GLn(C) is diagonalizable

if there exists

g ∈ GLn(C)

such that g−1Tg is contained in

Dn = group of diagonal matrices

(then T consists of semi-simple elements).

A connected diagonalizable group is an algebraic torus.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

Over C, every algebraic torus T is isomorphic to Dm where

m = dim T (often called rank of T).

However, if T is defined over F,

then conjugating matrix g

may or may not be chosen in GLn(F).

If this is possible

(equivalently, there is an F-isomorphism

T ' Dm), then T is split over F.

• T is F-split ⇔ all characters of T are F-defined.

In general, for T of rank m all characters form an abelian

group X(T) isomorphic to Zm.
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The absolute Galois group of F acts on X(T) (by acting on

coefficients of polynomials).

T is F-split ⇔ this action is trivial.

Other extreme: X(T) contains no nonzero Galois-fixed elt’s.

Then T is F-anisotropic.

T is F-anisotropic ⇔ T does not contain any F-split subtori.

• Any F-torus T has F-subtori Ts (split) and Ta (anisotropic)
such that

T = TsTa and Ts ∩ Ta finite.

• dim Ts = rkF T (F-rank of T).
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Example

G =

{(
x −y
y x

)
∈ GL2(C)

}
is defined over F = R (even Q),

and is a torus.

Indeed, for g =

(
1 1
−i i

)
we have

g−1
(

x −y
y x

)
g =

(
x + iy 0

0 x− iy

)
⇒ g−1 G g = D2.

Since there are x ∈ G(R) with complex eigenvalues, there is
no h ∈ GL2(R) such that h−1 G h = D2

⇒ G is not R-split.

Using characters: We have following characters(
x −y
y x

)
χ17→ x + iy and

(
x −y
y x

)
χ27→ x− iy

(which actually form a basis of X(T) ' Z2).
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Since χ1 and χ2 are permuted by complex conjugation, Galois

action is nontrivial

⇒ G is not split over R.

On the other hand, χ = χ1 + χ2 is fixed by complex conjugation

(note that χ(x) = det(x), x ∈ G) ⇒ G is not anisotropic either.

In fact, Gs =

{(
x 0
0 x

)}
and Ga = G∩ SL2(C)

(note that Gs
⋂

Ga = {±1}).

• So, rk G = 2 (absolute rank) and rkR G = 1 (R-rank).
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(c) Simple groups. An algebraic group G is simple (more

precisely, absolutely almost simple)

if it is noncommutative and

has no proper connected normal subgroups.

• Such G is connected and has finite center Z(G).

• Quotient G/Z(G) (which can be realized as an algebraic group)
has no proper normal subgroups.

Examples.

1 G = SLn(C)

2 G = Sp2m(C)

3 G = SOn(q), q a nondegenerate quadratic form, n 6= 2, 4
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(d) Semi-simple groups.

G is semi-simple

if has simple
subgroups G1, . . . , Gr such that product map

G1 × · · · ×Gr −→ G

is a surjective group homomorphism with finite kernel
(i.e., an isogeny).

We say that G is almost direct product of the Gi’s.

G is semi-simple ⇔ G is connected and has no nontrivial
connected solvable normal subgroups.

• Complex semi-simple algebraic groups are (almost) classified
by their root systems.
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To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable,

so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T,

and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable,

so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T,

and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T,

and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T,

and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G)

and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.

Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

To attach a root system to G, we fix a maximal torus T ⊂ G.

Then AdG(T) ⊂ GL(g) is diagonalizable, so

g = t
⊕ (⊕

α 6=0

gα

)
,

where t is Lie algebra of T, and for α ∈ X(T), α 6= 0,

gα = { v ∈ g | AdG(t)v = α(t)v for all t ∈ T }.

Then dim gα 6 1, and (finite) set Φ = Φ(G, T) of α ∈ X(T) for

which gα 6= 0, is a reduced root system in V = X(T)⊗Z R.

• Since any two maximal tori in G are conjugate,

dim T = rk G ((absolute) rank of G) and root system Φ

are independent of choice of T.
Andrei Rapinchuk (University of Virginia) KIAS (Seoul) April, 2019 28 / 62



Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

• Φ defines G up to isogeny.

Definition.

An isogeny π : G1 → G2 of two connected algebraic groups is

a surjective morphism with finite kernel.

If G is semi-simple, then Z(G) is finite, and AdG : G→ GL(g)

gives an isogeny π : G→ G onto image G = G/Z(G).

Note that G has trivial center, i.e. is adjoint.

• If semi-simple G1 and G2 have isomorphic root systems

then G1 ' G2.
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Definition.

G is simply connected if every isogeny π : H→ G with H
connected, is trivial.

• Every semi-simple group G has a simply connected cover
θ : G̃→ G.

• If semi-simple G1 and G2 have isomorphic root systems

then G̃1 ' G̃2.

Irreducible components of Φ are in bijection with simple

factors G1, . . . , Gr of G.

In particular, G is simple ⇔ Φ is irreducible.

Thus, simple (complex) group are classified up to isogeny by

reduced irreducible root systems: An, . . . ,G2.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Algebraic groups: important classes and structure theory

Assume that a semi-simple group G is defined over F ⊂ C.

• G contains a maximal torus T defined over F.

Then Galois group of F acts on X(T) leaving Φ invariant.

Let S be a maximal F-split torus of G.

Any two such tori are conjugate by an element of G(F)

⇒
dim S = rkF G (F-rank of G) is well-defined.

• If rkF G = rk G, then G contains a maximal torus which
is F-split. Then G is also said to be F-split.

• If rkF G = 0 then G is said to be F-anisotropic.
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• If rkF G > 0 then G is F-isotropic

⇔
G(F) contains nontrivial unipotents (char F = 0!)

• If F = R then G is F-anisotropic ⇔ G(F) is compact.

(e) Structure of connected groups.

Let G be a connected

algebraic group.

• G has a maximal unipotent normal subgroup U ⊂ G (called

the unipotent radical of G),

and there exists a subgroup

H ⊂ G (Levi subgroup) such that G = HU (semi-direct

product).

• If G is defined over F, then U is defined over F,

and
H can be chosen to be defined over F (char F = 0!)

• Unipotent radical of H is trivial, i.e. H is reductive.
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Let G be reductive.

Then

• connected center Z = Z(G)◦ is a torus, and commutator

subgroup D = [G, G] is a semi-simple group;

• G = DZ and D∩ Z is finite, i.e. product map

D× Z→ G

is an isogeny;

• If G is defined over F, then so are D and Z.

Thus,

any connected group can be obtained, by taking

isogenies and semi-direct products over the field of definition,

from following three classes of groups:

unipotent groups, tori, and semi-simple groups.
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Theorem (Borel’s Density Theorem)

Let G is a simple algebraic Q-group. If G(R) is noncompact,
then G(Z) is Zariski-dense in G.

Note: If G(R) is compact then G(Z), being discrete, is finite, hence
cannot be Zariski-dense.

Reduction theory constructs a nice fundamental set for G(Z)

in G(R).

As a consequence, one gets information about
G(R)/G(Z) as well as G(Z) itself.

Theorem

Let G be a semi-simple Q-group. Then

(1) G(R)/G(Z) has finite invariant measure

(i.e. G(Z) is
a lattice in G(R));

(2) G(R)/G(Z) is compact ⇔ G is Q-anisotropic.
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Theorem

Let G be an algebraic Q-group. Then every arithmetic subgroup
of G is a group with finitely many generators and relators.

Usually, one is interested in a presentation of a given

arithmetic group having some special properties.

• Important specific question:

What arithmetic groups of simple groups are boundedly generated?

Definition.

An abstract group Γ is said to have bounded generation if
there exist γ1, . . . , γd ∈ Γ such that

Γ = 〈γ1〉 · · · 〈γd〉,
where 〈γi〉 is the cyclic group generated by γi.
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there exist γ1, . . . , γd ∈ Γ such that

Γ = 〈γ1〉 · · · 〈γd〉,

where 〈γi〉 is the cyclic group generated by γi.
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Proofs of our results on arithmetic locally symmetric spaces

rely on

description of arithmetic lattices

in Lie groups of the form G = G(R) where G is a simple

real algebraic group that generalizes description of arithmetic

Fuchsian groups Γ ⊂ SL2(R).

To give such Γ (up to commensurability) one needs to specify:

• a number field K ⊂ R;

• a quaternion algebra D over K such that D⊗K R ' M2(R)

(+ more conditions).
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Then Γ is commensurable with D(1)
O = group of quaternions

with norm 1 and coefficients in O, ring of integers in K.

Let G = SL1(D), algebraic K-group associated with quaternions

having norm 1.

Then G ×K R ' SL2,

i.e. G is R/K-form of SL2.

Definition.

Let F/K be a field extension, and G be an F-group.

A K-group G′ is F/K-form of G

if

G′ ×K F ' G

as F-groups.
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Examples.

1. Let A be a central simple K-algebra such that

A ⊗K F ' Mn(F).

Then G′ = SL1,A is F/K-form of SLn.

(If F = K then one can take any central simple A of degree n.)

2. Let G = SOn(q) where q is a nondegenerate quadratic

form over F of dimension n.

For any quadratic form q′ over K that is F-equivalent to q,

G′ = SOn(q′)

is F/K-form of G.

(Again, if F = K then q′ can be any n-dimensional form over K.)
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

Since arithmetic groups were introduced for Q-defined algebraic

groups,

it appears that arithmetic lattices in G = G(R) should

be introduced as those obtained through following procedure:

• Take R/Q-form G′ of G so that there is R-isomorphism

ϕ : G′ → G,

which induces an isomorphism G′(R) ' G(R);

• Consider subgroups of G = G(R) commensurable with
ϕ(G′(Z)).

Note that there is no canonical way to fix ϕ, so “definition”
should say:

a subgroup Γ ⊂ G is arithmetic if there is R/Q-form G′ of G and

R-isomorphism ϕ : G′ → G such that Γ is commensurable with ϕ(G′(Z)).
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This definition yields a class of subgroups of G invariant

under R-automorphisms of G, and generally goes in right

direction.

BUT IT MISSES MANY LATTICES!

Indeed, consider q = x2 + y2− z2, let G = SO3(q) and G = G(R).

Then each of the rational quadratic forms

q1 = x2 + y2 − 3z2 and q2 = x2 + y2 − 7z2,

being equivalent to q over R, defines a family of arithmetic

subgroups of G.
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But we can also consider q3 = x2 + y2 −
√

2z2.

Just as Z is a discrete subring of R,

Z
[√

2
]
= { a + b

√
2 | a, b ∈ Z }

embeds as a discrete subring in R×R by

a + b
√

2 7→
(

a + b
√

2 , a− b
√

2
)

.

So, Γ = SO3(q3)(Z[
√

2]) embeds as a discrete subgroup in

H = G3 × G ′3

where G3 = SO3(q3)(R), G ′3 = SO3(q′3)(R), q′3 = x2 + y2 +
√

2z2.
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Z
[√

2
]
= { a + b

√
2 | a, b ∈ Z }

embeds as a discrete subring in R×R by

a + b
√

2 7→
(

a + b
√

2 , a− b
√

2
)

.

So, Γ = SO3(q3)(Z[
√

2]) embeds as a discrete subgroup in

H = G3 × G ′3

where G3 = SO3(q3)(R), G ′3 = SO3(q′3)(R), q′3 = x2 + y2 +
√

2z2.
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By restriction of scalars, one constructs a semi-simple Q-group
H such that

H(Z) = Γ and H(R) = H.

• It follows that Γ is a lattice in H.

But G ′3 is compact ⇒ projection of Γ into G3 ' G is a lattice
there.

This projection is image of embedding

SO3(q3)(Z[
√

2]) ↪→ SO3(q3)(R)

induced by identity embedding Z[
√

2] ↪→ R.

So, a “reasonable definition” of an arithmetic group/lattice must

include groups that arise from rings of algebraic integers other

than Z.
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Definition.
Let G be a simple adjoint algebraic group over a field

F (⊂ C)

(in applications, F will be either R or C).

A subgroup Γ ⊂ G(F) is arithmetic if there exist

• a number field K ⊂ F with ring of integers O, and

• an F/K-form G of G

such that Γ is commensurable with ϕ(G(O)) for some

F-isomorphism ϕ : G→ G.

Such Γ is called (K,G)-arithmetic.

If G is not adjoint and π : G→ G is F-isogeny onto adjoint group,
then Γ ⊂ G(F) is (K,G)-arithmetic if π(Γ) ⊂ G(F) is such.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

When F = R, all arithmetic lattices in classical sense (used by
Margulis et al.)

are arithmetic subgroups in our sense.

Our arithmetic subgroup may not be discrete,

but discrete
ones are arithmetic lattices in classical sense.

(However, discreteness will play no role in our considerations
focused on eigenvalues.)

Definition.

Let G1 and G2 be two simple adjoint F-groups, and let
Γi ⊂ Gi(F) be a subgroup for i = 1, 2.

Γ1 and Γ2 are commensurable up to F-isomorphism between
G1 and G2

if there exists F-isomorphism

ϕ : G1 → G2

such that ϕ(Γ1) and Γ2 are commensurable in usual sense.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

If G1 and G2 are not necessarily adjoint, we consider isogenies

πi : Gi → Gi, i = 1, 2

onto corresponding adjoint groups, and say that subgroups Γi ⊂ Gi(F)

are commensurable up to F-isomorphism between G1 and G2 if

π1(Γ1) and π2(Γ2) are such.

OUR GOAL: classify arithmetic subgroups up to this
equivalence relation.

Proposition (G.Prasad - A.R.)

Let G1 and G2 be simple algebraic F-groups, and let Γi ⊂ Gi(F)

be Zariski-dense (Ki,Gi)-arithmetic subgroup of Gi(F).

Then Γ1 and Γ2 are commensurable up F-isomorphism between

G1 and G2 ⇔ K1 = K2 =: K and G1 and G2 are K-isomorphic.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

So,
(Q , SO3(q1)) , (Q , SO3(q2)) and (Q(

√
2) , SO3(q3))

define pairwise noncommensurable arithmetic subgroups
(lattices) of G = SO3(q)(R).

We will see that

K and in many case G can be recovered
from geometric information about locally symmetric space
associated with given arithmetic subgroup Γ such as Laplace
spectrum or lengths of closed geodesics

.

In fact,

(the analogs of) K and G can be recovered (in

somewhat weaker sense) from eigenvalue information

pertaining to an arbitrary finitely generated Zariski-dense

subgroup.

This is part of eigenvalue rigidity.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

For arithmetic groups,

our analysis relies on classification of

simple algebraic groups over local and global fields and

results on Galois cohomology rather than any results on

structural rigidity.

For arbitrary Zariski-dense subgroups,

the field of definition K

can be any finitely generated field.

Arithmetic results on Galois cohomology etc.

are not available

in this generality.

As a substitute,

we initiated analysis of groups with good

reduction at a suitable set of discrete valuation of base field.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

Example: arithmetic subgroups of SL2(R)

MAIN FACT: Let F/K be a field extension.

All F/K-forms of

SL2 are SL1,D where D is a quaternion algebra over K such

that D⊗K F ' M2(F).

Assume char K 6= 2

(in application K ⊂ F ⊂ C)

Given a, b ∈ K×, one considers 4-dimensional K-vector space D

with basis

1, i, j, k

and multiplication table

i2 = a, j2 = b, k = ij = −ji etc.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

This multiplication makes D into a central associative

K-algebra, denoted
(

a, b
K

)
and called algebra of generalized

quaternions.

Algebra of (usual) Hamiltonian quaternions is H =

(
−1,−1

R

)
.

• D is either a division algebra or matrix algebra M2(K).

• D has an involution (quaternionic conjugation):

z = z0 + z1i + z2j + z3k 7→ z̄ = z0 − z1i− z2j− z3k.

• We define quaternion norm:

N(z) = zz̄ = z2
0 − az2

1 − bz2
2 + abz2

3.

Then N(z′z′′) = N(z′)N(z′) (also for z′, z′′ ∈ D⊗K F).
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

It follows (assuming K ⊂ C) that

G := { z = z0 + z1i + z2j + z3k ∈ D⊗F C | z2
0 − az2

1 − bz2
2 + abz2

3 = 1 }

is a group for quaternionic multiplication.

This group is given by a polynomial equation

but is not

embedded into matrices.

However, using regular representation one embeds D ↪→ M4(F)

and thereby realizes G = SL1,D as an F-subgroup of GL4.

(For computations, one still uses realization of G as hypersurface.)
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

It is well-known that D⊗K C ' M2(C).

Explicit embedding:

ι : D ↪→ M2(C), z = z0 + z1i + z2j + z3k 7→
(

z0 + z1i b(z2 + z3i)
z2 − z3i z0 − z1i

)
,

where one treats i as
√

a ∈ C.

Note that N(z) = det ι(z).

It follows that G ' SL2(C), i.e. G is a C/K-form of SL2.

More generally, if F/K is such that D⊗K F ' M2(F)

then

G ' SL2

already over F,

i.e., G is F/K-form of SL2.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

As we already mentioned, the converse is also true:

Every K-form of SL2 comes from a quaternion algebra D/K.

So, all arithmetic subgroups of SL2(R) are as follows:

• take a number field K ⊂ R and a quaternion algebra

D =

(
a, b
K

)
such that D⊗K R = M2(R).

Then for G = SL1,D there exists R-isomorphism

ϕ : G→ SL2.

• May assume that a, b ∈ O (ring of integers in K), then

A = O+Oi +Oj +Ok

is a subring of D (called an O-order in D).
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Algebraic groups and their arithmetic and Zariski-dense subgroups Arithmetic lattices in simple Lie groups

We define
G(O) = G∩A

(this is consistent with earlier definition for matrix realization of G

afforded by regular representation of D in basis 1, i, j, k).

Then a subgroup Γ ⊂ SL2(R) is (K,G)-arithmetic if ϕ can be

chosen so that Γ is commensurable with ϕ(G(O)).

• Such subgroup is discrete (i.e., an arithmetic lattice)

⇔ for every nonidentity embedding ε : K ↪→ C we have

• ε(K) ⊂ R (in particular, K is totally real), and

• D⊗K,ε R is a division algebra.
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1 Algebraic groups and their arithmetic and Zariski-dense subgroups
Basic definitions
Field of definition
Algebraic groups: important classes and structure theory
Basic results about arithmetic groups
Arithmetic lattices in simple Lie groups
Zariski-dense subgroups
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Algebraic groups and their arithmetic and Zariski-dense subgroups Zariski-dense subgroups

Recall: an arithmetic subgroup of a simple Q-group is
Zariski-dense once it is infinite.

It is easy to construct examples of Zariski-dense subgroups
that are not arithmetic.

E.g., let

u+(a) =
(

1 a
0 1

)
and u−(b) =

(
1 0
b 1

)
.

Then:

u+(1) and u−(1) generate SL2(Z) which is arithmetic;

u+(2) and u−(2) generate a subgroup of index 12
SL2(Z), which is again arithmetic;

for m > 3, u+(m) and u−(m) generate a Zariski-dense
subgroup of infinite index in SL2(Z), which is not
arithmetic (thin)
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Algebraic groups and their arithmetic and Zariski-dense subgroups Zariski-dense subgroups

Note: a similar construction for SLn(Z), n > 3, always yields
a subgroup of finite index (hence doesn’t work!).

However, Tits gave a construction of free 2-generated Zariski-
dense subgroup in any semi-simple algebraic group over a
field of characteristic zero.

Theorem (Tits)

Let G be a (nontrivial) semi-simple over a field F of characteristic
zero, and let Γ ⊂ G(F) be a Zariski-dense subgroup.

Then Γ contains a countable free set Φ such that every pair of
elements of Φ generates a Zariski-dense subgroup.

Here a subset Φ ⊂ Γ is called free if inclusion Φ ↪→ Γ extends to

injective homomorphism of free group on Φ to Γ.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Zariski-dense subgroups

We can apply theorem to Γ = G(F) or Zariski-dense arithmetic

subgroup thereof.

• We conclude that Γ contains a countable family of rank 2

free subgroups such that any two have trivial intersection.

In most cases one can easily see (e.g., by looking at cohomo-

logical dimension) that these subgroups are not arithmetic.

We would like to extend definition of some attributes

(such

as K and G) from arithmetic groups to arbitrary Zariski-dense

subgroups.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Zariski-dense subgroups

Definition.
Let V be a vector space over a field F, and let Γ ⊂ GL(V)

be a subgroup.

• A subfield K ⊂ F is a field of definition for Γ

if there
exists a basis of V in which all elements of Γ are
represented by matrices with entries in K.

• A field of definition is minimal if it is contained in any
other field of definition.

Let G be semi-simple algebraic F-group, and Γ be a Zariski-
dense subgroup of G(F).

We let KΓ denote the trace field of Γ, i.e., subfield of F
generated by

Tr AdG(γ), γ ∈ Γ.
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Algebraic groups and their arithmetic and Zariski-dense subgroups Zariski-dense subgroups

Theorem (E.B. Vinberg)

KΓ is the minimal field of definition for AdG(Γ) ⊂ GL(g).

Thus, for K = KΓ, we can pick a basis in g in which

AdG(Γ) is represented by matrices with entries in K.

By taking Zariski-closure, we obtain a K-group G ⊂ GL(g)

such that

AdG(Γ) ⊂ G(K).

G = G(Γ) is called the algebraic hull of Γ (or AdG(Γ)).

Clearly, G is F/K-form of G.
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• If G is simple and Γ is (K,G)-arithmetic, then

KΓ = K and G(Γ) = G.

So, KΓ and G(Γ) are direct analogs of K and G for general

Zariski-dense subgroups.

These are important invariants of commensurability class of Γ

even though they do not determine this class uniquely in

the general case.
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