Towards the eigenvalue rigidity of Zariski-dense subgroups

Andrei S. Rapinchuk University of Virginia (USA)

Seoul August 2014

- results on isospectral and length-commensurable locally symmetric spaces (joint with G. Prasad);
- problems in the theory of algebraic groups this work has led to;
- new (conjectural) form of rigidity: eigenvalue rigidity.

- results on isospectral and length-commensurable locally symmetric spaces (joint with G. Prasad);
- problems in the theory of algebraic groups this work has led to;
- new (conjectural) form of rigidity: eigenvalue rigidity.

- results on isospectral and length-commensurable locally symmetric spaces (joint with G. Prasad);
- problems in the theory of algebraic groups this work has led to;
- new (conjectural) form of rigidity: *eigenvalue rigidity*.

- results on isospectral and length-commensurable locally symmetric spaces (joint with G. Prasad);
- problems in the theory of algebraic groups this work has led to;
- new (conjectural) form of rigidity: eigenvalue rigidity.

- results on isospectral and length-commensurable locally symmetric spaces (joint with G. Prasad);
- problems in the theory of algebraic groups this work has led to;
- new (conjectural) form of rigidity: eigenvalue rigidity.

Classical rigidity

For i = 1, 2, let G_i be a semi-simple Lie group,

let $\Gamma_i \subset \mathcal{G}_i$ be a lattice (or some other "large" subgroup)

For i = 1, 2, let G_i be a semi-simple Lie group,

let $\Gamma_i \subset \mathcal{G}_i$ be a lattice (or some other "large" subgroup)

Then (under appropriate assumptions):

a homo/isomorphism $\phi: \Gamma_1 \longrightarrow \Gamma_2$ (virtually) *extends* to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ For i = 1, 2, let G_i be a semi-simple Lie group,

let $\Gamma_i \subset \mathcal{G}_i$ be a lattice (or some other "large" subgroup)

Then (under appropriate assumptions):

a homo/isomorphism $\phi: \Gamma_1 \longrightarrow \Gamma_2$ (virtually) *extends* to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$

$$\begin{array}{ccc} \mathcal{G}_1 & \mathcal{G}_2 \\ \cup & \cup \\ \Gamma_1 & \stackrel{\phi}{\longrightarrow} & \Gamma_2 \end{array}$$

For i = 1, 2, let G_i be a semi-simple Lie group,

let $\Gamma_i \subset \mathcal{G}_i$ be a lattice (or some other "large" subgroup)

Then (under appropriate assumptions):

a homo/isomorphism $\phi: \Gamma_1 \longrightarrow \Gamma_2$ (virtually) *extends* to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$

$$egin{array}{ccc} \mathcal{G}_1 & \stackrel{ ilde{\phi}}{\longrightarrow} & \mathcal{G}_2 \ \cup & & \cup \ \Gamma_1 & \stackrel{\phi}{\longrightarrow} & \Gamma_2 \end{array}$$

• $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \quad (n \ge 3),$

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \quad (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \quad (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \ (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

• $K = \mathbb{Q}$ (hence $\mathcal{O} = \mathbb{Z}$), and

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \ (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

- $K = \mathbb{Q}$ (hence $\mathcal{O} = \mathbb{Z}$), and
- $G \simeq SL_n$ over \mathbb{Q} .

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \quad (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

- $K = \mathbb{Q}$ (hence $\mathcal{O} = \mathbb{Z}$), and
- $G \simeq SL_n$ over \mathbb{Q} .

Thus,

structure of a (higher rank) arithmetic group determines

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \ (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

- $K = \mathbb{Q}$ (hence $\mathcal{O} = \mathbb{Z}$), and
- $G \simeq SL_n$ over \mathbb{Q} .

Thus,

structure of a (higher rank) arithmetic group *determines field of definition* &

- $\Gamma_1 = \operatorname{SL}_n(\mathbb{Z}) \ (n \ge 3),$
- $\Gamma_2 = G(\mathcal{O})$, *G* is an *absolutely almost simple* algebraic group over a *number field K* with ring of integers \mathcal{O} .

If Γ_1 and Γ_2 are virtually isomorphic, then

- $K = \mathbb{Q}$ (hence $\mathcal{O} = \mathbb{Z}$), and
- $G \simeq SL_n$ over \mathbb{Q} .

Thus,

structure of a (higher rank) arithmetic group *determines field of definition* & *ambient algebraic group* over this field. • Structural approach to rigidity does **not** extend to *arbitrary Zariski-dense subgroups*

as these may, for example, be free groups.

• Structural approach to rigidity does **not** extend to *arbitrary Zariski-dense subgroups*

as these may, for example, be free groups.

• However, one should be able to recover such data as *field of definition & ambient algebraic group* from *any* Zariski-dense subgroup • Structural approach to rigidity does **not** extend to *arbitrary Zariski-dense subgroups*

as these may, for example, be free groups.

 However, one should be able to recover such data as field of definition & ambient algebraic group
 from any Zariski-dense subgroup if instead of structural information • Structural approach to rigidity does **not** extend to *arbitrary* Zariski-dense subgroups

as these may, for example, be free groups.

 However, one should be able to recover such data as field of definition & ambient algebraic group from any Zariski-dense subgroup if instead of structural information one uses information about the eigenvalues of elements. • Structural approach to rigidity does **not** extend to *arbitrary Zariski-dense subgroups*

as these may, for example, be free groups.

 However, one should be able to recover such data as field of definition & ambient algebraic group
 from any Zariski-dense subgroup if instead of structural information
 one uses information about the eigenvalues of elements.

• We call this phenomenon the *eigenvalue rigidity*. Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014

6 / 49

Note that the subgroups may be represented by matrices of *different sizes*,

Note that the subgroups may be represented by matrices of *different sizes*,

hence their elements may have *different numbers* of eigenvalues.

Note that the subgroups may be represented by matrices of *different sizes*,

hence their elements may have *different numbers* of eigenvalues.

• Why do we care about the eigenvalues?

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity

3 Arithmetic groups

- Results
- Geometric applications

Algebraic groups with the same maximal tori

- Division algebras with the same maximal subfields
- Groups with reductive reduction

- Geometric motivation
- 2 First signs of eigenvalue rigidity

3 Arithmetic groups

- Results
- Geometric applications

Algebraic groups with the same maximal tori

- Division algebras with the same maximal subfields
- Groups with reductive reduction

Let *F* be a field of characteristic zero.

Let *F* be a field of characteristic zero.

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in \overline{F})$

be their eigenvalues.

Let *F* be a field of characteristic zero.

Definition.

(1) Let $\gamma_1 \in GL_{n_1}(F)$ and $\gamma_2 \in GL_{n_2}(F)$ be *semi-simple* matrices, let

$$\lambda_1,\ldots,\lambda_{n_1}$$
 and μ_1,\ldots,μ_{n_2} $(\in \overline{F})$

be their eigenvalues. Then γ_1 and γ_2 are *weakly commensurable* if $\exists a_1, \ldots, a_{n_1}$, $b_1, \ldots, b_{n_2} \in \mathbb{Z}$ such that $\lambda_1^{a_1} \cdots \lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1} \cdots \mu_{n_2}^{b_{n_2}} \neq 1.$ Let $G_1 \subset GL_{n_1}$ and $G_2 \subset GL_{n_2}$ be reductive *F*-groups, $\Gamma_1 \subset G_1(F)$ and $\Gamma_2 \subset G_2(F)$ be Zariski-dense subgroups. Let $G_1 \subset GL_{n_1}$ and $G_2 \subset GL_{n_2}$ be reductive *F*-groups, $\Gamma_1 \subset G_1(F)$ and $\Gamma_2 \subset G_2(F)$ be Zariski-dense subgroups.

(2) Γ₁ and Γ₂ are *weakly commensurable* if *every* semi-simple γ₁ ∈ Γ₁ of infinite order is weakly commensurable to *some* semi-simple γ₂ ∈ Γ₂ of infinite order, and vice versa.

Equivalent reformulation:

Equivalent reformulation:

 \Leftrightarrow

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ are weakly commensurable

Andrei Rapinchuk (University of Virginia)

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ are

weakly commensurable

 $\Leftrightarrow \exists$ *F*-rational representations

 $\rho_1: G_1 \longrightarrow \operatorname{GL}_{m_1}$ and $\rho_2: G_2 \longrightarrow \operatorname{GL}_{m_2}$

such that $\rho_1(\gamma_1)$ and $\rho_2(\gamma_2)$ have a *nontrivial* common eigenvalue.

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ are

weakly commensurable

 $\Leftrightarrow \exists$ *F*-rational representations

 $\rho_1: G_1 \longrightarrow \operatorname{GL}_{m_1}$ and $\rho_2: G_2 \longrightarrow \operatorname{GL}_{m_2}$

such that $\rho_1(\gamma_1)$ and $\rho_2(\gamma_2)$ have a *nontrivial* common eigenvalue.

Remarks. 1. Weak commensurability is *independent* of matrix realizations of G_i 's.

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ are weakly commensurable $\Leftrightarrow \exists F$ -rational representations $\rho_1 \colon G_1 \longrightarrow \operatorname{GL}_{m_1}$ and $\rho_2 \colon G_2 \longrightarrow \operatorname{GL}_{m_2}$ such that $\rho_1(\gamma_1)$ and $\rho_2(\gamma_2)$ have a *nontrivial* common eigenvalue.

Remarks. 1. Weak commensurability is *independent* of matrix realizations of G_i 's.

 Weak commensurability is inconsequential for *individual matrices*, but has remarkably strong consequences for *Zariski-dense*, and especially *arithmetic*, *subgroups*.

Semi-simple $\gamma_1 \in G_1(F)$ and $\gamma_2 \in G_2(F)$ are weakly commensurable $\Leftrightarrow \exists F$ -rational representations

 $\rho_1: G_1 \longrightarrow \operatorname{GL}_{m_1}$ and $\rho_2: G_2 \longrightarrow \operatorname{GL}_{m_2}$

such that $\rho_1(\gamma_1)$ and $\rho_2(\gamma_2)$ have a *nontrivial* common eigenvalue.

Remarks. 1. Weak commensurability is *independent* of matrix realizations of G_i 's.

 Weak commensurability is inconsequential for *individual matrices*, but has remarkably strong consequences for *Zariski-dense*, and especially *arithmetic*, *subgroups*.

Why the notion of weak commensurability?

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity

3 Arithmetic groups

- Results
- Geometric applications

Algebraic groups with the same maximal tori

- Division algebras with the same maximal subfields
- Groups with reductive reduction

• $\mathcal{E}(M) = spectrum$ of Laplace - Beltrami operator

(eigenvalues with multiplicities)

• $\mathcal{E}(M) = spectrum$ of Laplace - Beltrami operator

(eigenvalues with multiplicities)

• L(M) =(weak) length spectrum

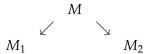
(lengths of closed geodesics w/o multiplicities)

• $\mathcal{E}(M) = spectrum \text{ of } Laplace - Beltrami \text{ operator}$

(eigenvalues with multiplicities)

 L(M) = (weak) length spectrum (lengths of closed geodesics w/o multiplicities)

• M_1 and M_2 are commensurable if they have a common *finite-sheeted* cover:



Question: Are M₁ and M₂ necessarily isometric / commensurable if

Question: Are M₁ and M₂ necessarily isometric / commensurable if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

Question: Are M_1 and M_2 necessarily isometric / commensurable if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

(2) $L(M_1) = L(M_2)$, i.e. M_1 and M_2 are *iso-length-spectral*;

Question: Are M_1 and M_2 necessarily isometric / commensurable if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

(2) $L(M_1) = L(M_2)$, i.e. M_1 and M_2 are iso-length-spectral;

(3) $\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2)$, i.e. M_1 and M_2 are *length-commensurable*.

Question: Are M_1 and M_2 necessarily isometric / commensurable if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) $L(M_1) = L(M_2)$, i.e. M_1 and M_2 are *iso-length-spectral*;

(3) $\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2)$, i.e. M_1 and M_2 are *length-commensurable*.

• There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.

- There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.
- Constructions were proposed by M.-F. Vignéras and

T. Sunada.

- There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.
- Constructions were proposed by M.-F. Vignéras and

T. Sunada.

• Both constructions produce commensurable manifolds.

- There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.
- Constructions were proposed by M.-F. Vignéras and T. Sunada.
- Both constructions produce commensurable manifolds.
- There are *noncommensurable isospectral* manifolds
 - (Lubotzky et al.);

- There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.
- Constructions were proposed by M.-F. Vignéras and T. Sunada.
- Both constructions produce commensurable manifolds.
- There are noncommensurable isospectral manifolds

(Lubotzky et al.);

nevertheless one *expects* to prove the commensurability of isospectral and iso-length spectral manifolds in *many* situations.

- There exist examples of isospectral and iso-length spectral manifolds that are **not** isometric.
- Constructions were proposed by M.-F. Vignéras and T. Sunada.
- Both constructions produce commensurable manifolds.
- There are noncommensurable isospectral manifolds

```
(Lubotzky et al.);
```

nevertheless one *expects* to prove the commensurability of isospectral and iso-length spectral manifolds in *many* situations.

• Prior to our work, this was done only for arithmetically defined Riemann surfaces (A. Reid) and hyperbolic 3-manifolds (A. Reid et al.).

Tool: connecting isospectrality to weak commensurability.

Tool: connecting isospectrality to weak commensurability.

Notations

G - absolutely simple real algebraic group, $\mathcal{G} = G(\mathbb{R})$

Tool: connecting isospectrality to weak commensurability.

Notations

G - absolutely simple real algebraic group, $\mathcal{G} = G(\mathbb{R})$

 \mathcal{K} - maximal compact subgroup, $\mathfrak{X} = \mathcal{K} \setminus \mathcal{G}$ (symmetric space)

Tool: connecting isospectrality to weak commensurability.

Notations

G - absolutely simple real algebraic group, $\mathcal{G} = G(\mathbb{R})$

 \mathcal{K} - maximal compact subgroup, $\mathfrak{X} = \mathcal{K} \setminus \mathcal{G}$ (symmetric space)

For a discrete torsion-free subgroup $\Gamma \subset \mathcal{G}$, let $\mathfrak{X}_{\Gamma} = \mathfrak{X}/\Gamma$ (locally symmetric space)

Tool: connecting isospectrality to weak commensurability.

Notations

G - absolutely simple real algebraic group, $\mathcal{G} = G(\mathbb{R})$

 \mathcal{K} - maximal compact subgroup, $\mathfrak{X} = \mathcal{K} \setminus \mathcal{G}$ (symmetric space)

For a discrete torsion-free subgroup $\Gamma \subset \mathcal{G}$, let $\mathfrak{X}_{\Gamma} = \mathfrak{X}/\Gamma$ (locally symmetric space)

 \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

• For compact locally symmetric spaces:

(1) (isospectrality) \Rightarrow (2) (iso-length spectrality)

(proof uses the trace formula)

• For compact locally symmetric spaces:

(1) (isospectrality) \Rightarrow (2) (iso-length spectrality)

(proof uses the trace formula)

• $\mathcal{E}(M)$, L(M) change when M is replaced by

a commensurable manifold

• For compact locally symmetric spaces:

(1) (isospectrality) \Rightarrow (2) (iso-length spectrality)

(proof uses the trace formula)

• $\mathcal{E}(M)$, L(M) change when M is replaced by a *commensurable* manifold

 \Rightarrow Conditions (1) & (2) are **not** invariant under passing to a commensurable manifold.

For compact locally symmetric spaces:
 (1) (isospectrality) ⇒ (2) (iso-length spectrality)

(proof uses the trace formula)

• $\mathcal{E}(M)$, L(M) change when M is replaced by a *commensurable* manifold

 \Rightarrow Conditions (1) & (2) are **not** invariant under passing to a commensurable manifold.

So, we proposed length-commensurability: (3) $\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2)$ • For compact locally symmetric spaces: (1) (isospectrality) \Rightarrow (2) (iso-length spectrality)

(proof uses the *trace formula*)

• $\mathcal{E}(M)$, L(M) change when M is replaced by a *commensurable* manifold

 \Rightarrow Conditions (1) & (2) are **not** invariant under passing to a commensurable manifold.

So, we proposed length-commensurability:

$$(3) \quad \mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2)$$

 $\mathbb{Q} \cdot L(M)$ - *rational* length spectrum

(invariant of commensurability class)

Thus, for compact locally symmetric spaces:

$$(1) \ \Rightarrow \ (2) \ \Rightarrow \ (3)$$

Thus, for compact locally symmetric spaces:

$$(1) \Rightarrow (2) \Rightarrow (3)$$

Theorem

Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be locally symmetric spaces having finite volume, of absolutely simple real algebraic groups G_1 and G_2 . If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are <u>length-commensurable</u>, then Γ_1 and Γ_2 are weakly commensurable.

Thus, for compact locally symmetric spaces:

$$(1) \Rightarrow (2) \Rightarrow (3)$$

Theorem

Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be locally symmetric spaces having finite volume, of absolutely simple real algebraic groups G_1 and G_2 . If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are <u>length-commensurable</u>, then Γ_1 and Γ_2 are weakly commensurable.

The proof relies on results and conjectures from *transcendental number theory.*

• \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable **iff** Γ_1 and Γ_2 are commensurable up to an isomorphism between G_1 and G_2 .

- \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable **iff** Γ_1 and Γ_2 are commensurable up to an isomorphism between G_1 and G_2 .
- For geometric applications:

When does weak commensurability of Γ_1 and Γ_2 imply their commensurability?

- \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable **iff** Γ_1 and Γ_2 are commensurable up to an isomorphism between G_1 and G_2 .
- For geometric applications:

When does weak commensurability of Γ_1 and Γ_2 imply their commensurability?

• This is the case for many *arithmetic* Γ_1 and Γ_2 (below)

- \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable **iff** Γ_1 and Γ_2 are commensurable up to an isomorphism between G_1 and G_2 .
- For geometric applications:

When does weak commensurability of Γ_1 and Γ_2 imply their commensurability?

- This is the case for many *arithmetic* Γ_1 and Γ_2 (below)
- Remarkably, weak commensurability has strong consequences for *arbitrary* Zariski-dense subgroups

- \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable **iff** Γ_1 and Γ_2 are commensurable up to an isomorphism between G_1 and G_2 .
- For geometric applications:

When does weak commensurability of Γ_1 and Γ_2 imply their commensurability?

- This is the case for many *arithmetic* Γ_1 and Γ_2 (below)
- Remarkably, weak commensurability has strong consequences for *arbitrary* Zariski-dense subgroups

(leading to the concept of eigenvalue rigidity ...)

- 1 Weak commensurability
 - Definition
 - Geometric motivation
- 2 First signs of eigenvalue rigidity
- 3 Arithmetic groups
 - Results
 - Geometric applications
- 4 Algebraic groups with the same maximal tori
 - Division algebras with the same maximal subfields
 - Groups with reductive reduction

• F – a field of characteristic zero

- F a field of characteristic zero
- \bullet G₁ and G₂ absolutely almost simple algebraic *F*-groups

- F a field of characteristic zero
- \bullet G₁ and G₂ absolutely almost simple algebraic F-groups
- $\Gamma_i \subset G_i(F)$ finitely generated Zariski-dense subgroup, i = 1, 2

- \bullet F a field of characteristic zero
- G_1 and G_2 absolutely almost simple algebraic *F*-groups
- $\Gamma_i \subset G_i(F)$ finitely generated Zariski-dense subgroup, i = 1, 2

Theorem 1 If Γ_1 and Γ_2 are weakly commensurable, **then** either G_1 and G_2 have same Killing-Cartan type, or one of them is of type B_ℓ and the other of type C_ℓ ($\ell \ge 3$).

 K_{Γ} = subfield of *F* generated by tr (Ad γ), $\gamma \in \Gamma$

(trace field).

 K_{Γ} = subfield of *F* generated by tr (Ad γ), $\gamma \in \Gamma$ (*trace field*).

E.B. Vinberg: $K = K_{\Gamma}$ is the minimal field of definition of Ad Γ

 K_{Γ} = subfield of *F* generated by tr (Ad γ), $\gamma \in \Gamma$ (*trace field*).

E.B. Vinberg: $K = K_{\Gamma}$ is the minimal field of definition of Ad Γ

Algebraic hull: $\mathcal{G} := \text{Zariski-closure}$ of $\text{Ad} \Gamma$ in $\text{GL}(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of *G*

 K_{Γ} = subfield of *F* generated by tr (Ad γ), $\gamma \in \Gamma$ (*trace field*).

E.B. Vinberg: $K = K_{\Gamma}$ is the minimal field of definition of Ad Γ

Algebraic hull: $\mathcal{G} := \text{Zariski-closure}$ of $\text{Ad } \Gamma$ in $\text{GL}(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of G

• 9 is a *K*-defined algebraic group (in fact, an *F*/*K*-form of \overline{G})

 K_{Γ} = subfield of *F* generated by tr (Ad γ), $\gamma \in \Gamma$ (*trace field*).

E.B. Vinberg: $K = K_{\Gamma}$ is the minimal field of definition of Ad Γ

Algebraic hull: $\mathcal{G} := \text{Zariski-closure of } \text{Ad } \Gamma \text{ in } \text{GL}(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of *G*

• 9 is a *K*-defined algebraic group (in fact, an *F*/*K*-form of \overline{G})

• 9 is an important characteristic of Γ ; it determines Γ if

it is arithmetic

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

Finiteness conjecture.

Let

• G_1 and G_2 be absolutely simple algebraic F-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$.

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

Finiteness conjecture.

Let

• G_1 and G_2 be absolutely simple algebraic F-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathfrak{G}_2^{(1)}, \ldots, \mathfrak{G}_2^{(r)}$ of F/K-forms of G_2 such that **if**

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_1 ,

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

Finiteness conjecture.

Let

• G_1 and G_2 be absolutely simple algebraic F-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathcal{G}_2^{(1)}, \ldots, \mathcal{G}_2^{(r)}$ of F/K-forms of G_2 such that **if**

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_1 ,

then Γ_2 can be conjugated into some $\mathcal{G}_2^{(i)}(K) \ (\subset G_2(F))$.

If Γ_1 and Γ_2 are weakly commensurable, then $K_{\Gamma_1} = K_{\Gamma_2}$.

Finiteness conjecture.

Let

• G_1 and G_2 be absolutely simple algebraic F-groups, char F = 0; • $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup, $K_{\Gamma_1} = K$. Then there exists a finite collection $\mathfrak{G}_2^{(1)}, \ldots, \mathfrak{G}_2^{(r)}$ of F/K-forms of G_2 such that **if**

 $\Gamma_2 \subset G_2(F)$ is a finitely generated Zariski-dense subgroup weakly commensurable to Γ_1 ,

then Γ_2 can be conjugated into some $\mathfrak{G}_2^{(i)}(K) \ (\subset \mathfrak{G}_2(F))$.

(Additionally, one expects that r = 1 in certain situations ...)

24 / 49

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

FINITENESS CONJECTURE \Rightarrow There are only finitely many c.s.a. A' such that for $G' = PSL_{1,A'}$,

 \exists f.g. Zariski-dense subgroup $\Gamma' \subset G'(K)$

weakly commensurable to Γ .

Fix a f. g. Zariski-dense subgroup $\Gamma \subset G(K)$ with $K_{\Gamma} = K$.

FINITENESS CONJECTURE \Rightarrow There are only finitely many c.s.a. A' such that for $G' = PSL_{1,A'}$,

 \exists f.g. Zariski-dense subgroup $\Gamma' \subset G'(K)$

weakly commensurable to Γ .

• Similar consequences for orthogonal groups of quadratic

forms etc.

• *K* a number field (although Γ_1 does not have to be arithmetic)

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

- *K* a number field (although Γ_1 does not have to be arithmetic)
- G_1 is an inner form of type A_ℓ over K (so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple real Lie groups

General case is work in progress ...

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity

3 Arithmetic groups

- Results
- Geometric applications
- 4 Algebraic groups with the same maximal tori
 - Division algebras with the same maximal subfields
 - Groups with reductive reduction

- - Definition
 - Geometric motivation
- Arithmetic groups
 - Results
 - Geometric applications
- - Division algebras with the same maximal subfields
 - Groups with reductive reduction

Theorem 3 (G. Prasad, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups, char F = 0;
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup, i = 1, 2.

Theorem 3 (G. Prasad, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup, i = 1, 2.
- (1) Assume G_1 and G_2 are of same type, different from A_n , D_{2n+1} (n > 1), and E_6 .

If Γ_1 *and* Γ_2 *are* weakly commensurable, *then they are* commensurable.

Theorem 3 (G. Prasad, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups, char F = 0; • $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup, i = 1, 2.
- (1) Assume G_1 and G_2 are of same type, different from A_n , D_{2n+1} (n > 1), and E_6 .

If Γ_1 *and* Γ_2 *are* weakly commensurable, *then they are* commensurable.

(2) In **all** cases, S-arithmetic $\Gamma_2 \subset G_2(F)$ weakly commensurable to a given S-arithmetic $\Gamma_1 \subset G_1(F)$, form finitely many commensurability classes.

(cont.)

(3) If Γ_1 and Γ_2 are weakly commensurable, then

 Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.

(cont.)

(3) If Γ_1 and Γ_2 are weakly commensurable, then

- Γ_1 contains nontrivial unipotents \Leftrightarrow Γ_2 does.
- (4) (arithmeticity theorem) Let now F be a locally compact field, and let $\Gamma_1 \subset G_1(F)$ be an S-arithmetic lattice.
 - If $\Gamma_2 \subset G_2(F)$ is a lattice weakly commensurable to Γ_1 , then Γ_2 is also S-arithmetic.

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ $(\ell \ge 3);$
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup with algebraic hull \mathfrak{G}_i , i = 1, 2.

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup with algebraic hull \mathfrak{G}_i , i = 1, 2.

Then Γ_1 and Γ_2 are weakly commensurable **iff** \mathfrak{G}_1 and \mathfrak{G}_2 are twins, *i.e.*

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup with algebraic hull \mathfrak{G}_i , i = 1, 2.

Then Γ_1 and Γ_2 are weakly commensurable **iff** \mathcal{G}_1 and \mathcal{G}_2 are twins, *i.e.*

• G_1 and G_2 are both split over all nonarchimedean places of K;

Theorem 4 (R. Garibaldi, A.R.)

Let

- G_1 and G_2 be absolutely almost simple F-groups of types B_ℓ and C_ℓ ($\ell \ge 3$);
- $\Gamma_i \subset G_i(F)$ be a Zariski-dense S-arithmetic subgroup with algebraic hull \mathfrak{G}_i , i = 1, 2.

Then Γ_1 and Γ_2 are weakly commensurable **iff** \mathfrak{G}_1 and \mathfrak{G}_2 are twins, *i.e.*

G₁ and G₂ are both split over all nonarchimedean places of K;
G₁ and G₂ are simultaneously either split or anisotropic over all archimedean places.

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity
- 3 Arithmetic groups
 - Results
 - Geometric applications
- Algebraic groups with the same maximal tori
 - Division algebras with the same maximal subfields
 - Groups with reductive reduction

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If X_{Γ1} and X_{Γ2} are length-commensurable, then
 (1) X_{Γ2} is arithmetically defined;

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then
- (1) \mathfrak{X}_{Γ_2} is arithmetically defined;
- (2) \mathfrak{X}_{Γ_1} is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_2}$ is compact.

Let (as above)

- \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space,
- \mathfrak{X}_{Γ_2} be a locally symmetric space of finite volume.
- If \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are length-commensurable, then
- (1) \mathfrak{X}_{Γ_2} is arithmetically defined;
- (2) \mathfrak{X}_{Γ_1} is compact $\Leftrightarrow \mathfrak{X}_{\Gamma_2}$ is compact.
- The set of \mathfrak{X}_{Γ_2} 's length-commensurable to \mathfrak{X}_{Γ_1} is a union of *finitely many* commensurability classes.

It consists of single commensurability class G_1 and G_2 are of same type different from A_n , D_{2n+1} (n > 1), or E_6 .

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are length-commensurable, then they are commensurable.

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are length-commensurable, **then** they are commensurable.

• Hyperbolic manifolds of different dimensions are **not** length-commensurable.

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are length-commensurable, **then** they are commensurable.

• Hyperbolic manifolds of different dimensions are **not** length-commensurable.

(In fact, their length spectra are very different ...)

Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds, where $d \neq 3$ is even or $\equiv 3 \pmod{4}$. If M_1 and M_2 are length-commensurable, then they are

commensurable.

• Hyperbolic manifolds of different dimensions are **not** length-commensurable.

(In fact, their length spectra are very different ...)

• A *complex* hyperbolic manifold cannot be lengthcommensurable to a *real* or *quaternionic* hyperbolic manifold, etc.

Andrei Rapinchuk (University of Virginia)

Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be compact isospectral locally symmetric spaces.

- Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be compact isospectral locally symmetric spaces.
- If \mathfrak{X}_{Γ_1} is arithmetically defined, then so is \mathfrak{X}_{Γ_2} .

- Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be compact isospectral locally symmetric spaces.
- If \mathfrak{X}_{Γ_1} is arithmetically defined, then so is \mathfrak{X}_{Γ_2} .
- $G_1 = G_2 =: G$, hence \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have same universal cover.

- *Let* \mathfrak{X}_{Γ_1} *and* \mathfrak{X}_{Γ_2} *be compact isospectral locally symmetric spaces.*
- If \mathfrak{X}_{Γ_1} is arithmetically defined, then so is \mathfrak{X}_{Γ_2} .
- $G_1 = G_2 =: G$, hence \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} have same universal cover.
- Assume that at least one of Γ_1 and Γ_2 is arithmetic. If *G* is of type different from A_n , D_{2n+1} (n > 1), and E_6 , then \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable.

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity
- 3 Arithmetic groups
 - Results
 - Geometric applications

4 Algebraic groups with the same maximal tori

- Division algebras with the same maximal subfields
- Groups with reductive reduction

• Investigation of weak commensurability is related to understanding algebraic groups *having same isomorphism/ isogeny classes of maximal tori.* • Investigation of weak commensurability is related to understanding algebraic groups *having same isomorphism/ isogeny classes of maximal tori.*

Definition Let G_1 and G_2 be absolutely almost simple K-groups. G_1 and G_2 have same isomorphism/isogeny classes of maximal tori if for every maximal K-torus T_1 of G_1 there exists a maximal K-torus T_2 of G_2 with K-defined isomorphism/isogeny $T_1 \rightarrow T_2$, and vice versa.

Definiton

Let *G* be an absolutely almost simple (simply connected) *K*-group.

Genus $gen_K(G) =$ set of *K*-isomorphism classes of *K*-forms *G'* of *G* that have same maximal *K*-tori as *G*.

Definiton

Let *G* be an absolutely almost simple (simply connected) *K*-group.

Genus $gen_K(G) =$ set of *K*-isomorphism classes of *K*-forms *G'* of *G* that have same maximal *K*-tori as *G*.

(I) When does $gen_K(G)$ reduce to a single element?

Definiton

Let *G* be an absolutely almost simple (simply connected) *K*-group.

Genus $gen_K(G) =$ set of *K*-isomorphism classes of *K*-forms *G'* of *G* that have same maximal *K*-tori as *G*.

(I) When does $gen_K(G)$ reduce to a single element?

(II) When is $gen_K(G)$ finite?

Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity
- 3 Arithmetic groups
 - Results
 - Geometric applications
- Algebraic groups with the same maximal tori
 - Division algebras with the same maximal subfields
 - Groups with reductive reduction

- they have same degree n,
- for a field extension P/K of degree n,

$$P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2.$$

- they have same degree n,
- for a field extension P/K of degree n,

$$P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2.$$

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ central division algebra with} \}$ same maximal subfields as D

- they have same degree n,
- for a field extension P/K of degree n,

$$P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2.$$

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ central division algebra with} \}$ same maximal subfields as D

Over a *number field* K:

- they have same degree n,
- for a field extension P/K of degree n,

$$P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2.$$

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ central division algebra with} \}$ same maximal subfields as D

Over a *number field* K:

• $|\mathbf{gen}(D)| = 1$ for a quaternion algebra *D*;

- they have same degree n,
- for a field extension P/K of degree n,

$$P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2.$$

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ central division algebra with} \}$ same maximal subfields as D

Over a *number field* K:

• $|\mathbf{gen}(D)| = 1$ for a quaternion algebra *D*;

• gen(D) is finite for any division algebra D.

Theorem 7 (V. Chernousov, I. Rapinchuk, A.R.)

Let

- $K = k(x_1, ..., x_r)$, field of rational functions, where k is either a number field, or a finite field of char $\neq 2$,
- D be a central division K-algebra of exponent 2.

Theorem 7 (V. Chernousov, I. Rapinchuk, A.R.)

Let

- $K = k(x_1, ..., x_r)$, field of rational functions, where k is either a number field, or a finite field of char $\neq 2$,
- D be a central division K-algebra of exponent 2.

Then |gen(D)| = 1.

Theorem 7 (V. Chernousov, I. Rapinchuk, A.R.)

Let

- $K = k(x_1, ..., x_r)$, field of rational functions, where k is either a number field, or a finite field of char $\neq 2$,
- D be a central division K-algebra of exponent 2.

Then |gen(D)| = 1.

Note that |gen(D)| = 1 is *only possible* when D is of exponent 2.

Theorem 8 $(C + R^2)$

Let *D* be a central division algebra of degree *n* over a finitely generated field *K* with char $K \nmid n$.

Then gen(D) is finite.

Theorem 8 (C + R^2)

Let *D* be a central division algebra of degree *n* over a finitely generated field *K* with char $K \nmid n$. Then **gen**(*D*) is finite.

Note that over *infinitely generated* fields, there are quaternion algebras with *nontrivial*, and even *infinite*, genus (Rost, Schacher, Wadsworth, Meyer ...)

Both theorems rely on analysis of ramification.

Both theorems rely on analysis of ramification.

In particular: if D is unramified w.r.t. a discrete valuation v of K, then every $D' \in \text{gen}(D)$ is unramified at v.

Both theorems rely on analysis of ramification.

In particular: if D is unramified w.r.t. a discrete valuation v of K, then every $D' \in \mathbf{gen}(D)$ is unramified at v.

So, finiteness of gen(D) reduces to finiteness of *n*-torsion of a certain *unramified Brauer group*.

1) Weak commensurability

- Definition
- Geometric motivation
- 2 First signs of eigenvalue rigidity
- 3 Arithmetic groups
 - Results
 - Geometric applications

Algebraic groups with the same maximal tori

- Division algebras with the same maximal subfields
- Groups with reductive reduction

CONJECTURE 1.

Let *G* be an absolutely almost simple simply connected algebraic group over a finitely generated field *K* of good characteristic. **Then** $gen_K(G)$ is finite.

CONJECTURE 1.

Let *G* be an absolutely almost simple simply connected algebraic group over a finitely generated field *K* of good characteristic. **Then** $gen_K(G)$ is finite.

Known for *K* a number field, and for inner forms of type A_n in general.

CONJECTURE 1.

Let *G* be an absolutely almost simple simply connected algebraic group over a finitely generated field *K* of good characteristic. **Then** $gen_K(G)$ is finite.

Known for *K* a number field, and for inner forms of type A_n in general.

In lieu of notion of *unramified division algebra*, one uses notion of a group with *reductive reduction*.

Let v be a discrete valuation of K.

Let v be a discrete valuation of K.

 K_v - completion, $\mathcal{O}_v \subset K_v$ - valuation ring, \overline{K}_v - residue field

Let v be a discrete valuation of K.

 K_v - completion, $\mathcal{O}_v \subset K_v$ - valuation ring, \overline{K}_v - residue field

Definition

G has **reductive reduction** at v **if** there exists a *reductive group scheme* \mathcal{G} over \mathcal{O}_v with

$$\mathfrak{G}\otimes_{\mathcal{O}_v}K_v=G\otimes_K K_v.$$

Let v be a discrete valuation of K.

 K_v - completion, $\mathcal{O}_v \subset K_v$ - valuation ring, \overline{K}_v - residue field

Definition

G has **reductive reduction** at v **if** there exists a *reductive group scheme* \mathcal{G} over \mathcal{O}_v with

$$\mathfrak{G}\otimes_{\mathcal{O}_v}K_v=G\otimes_K K_v.$$

$$\underline{G}^{(v)} = \mathfrak{G} \otimes_{\mathcal{O}_v} \overline{K}_v$$

Theorem 9 (C + R^2)

Assume that

- \overline{K}_v is finitely generated generated;
- G has reductive reduction at v.

Theorem 9 (C + R^2)

Assume that

- \overline{K}_v is finitely generated generated;
- G has reductive reduction at v.

Then any $G' \in \operatorname{gen}_K(G)$ has reductive reduction at v.

Theorem 9 (C + R^2)

Assume that

- \overline{K}_v is finitely generated generated;
- G has reductive reduction at v.

Then any $G' \in \mathbf{gen}_K(G)$ has reductive reduction at v. Furthermore, $\underline{G'}^{(v)} \in \mathbf{gen}_{\overline{K}_v}(\underline{G}^{(v)})$.

Let

- *K* be a finitely generated field,
- X be a *model* for *K*, (regular integral scheme of finite type over Spec *A*, where *A* is a finite field or ring of *S*-integers in a number field)

Let

- *K* be a finitely generated field,
- X be a *model* for *K*, (regular integral scheme of finite type over Spec *A*, where *A* is a finite field or ring of *S*-integers in a number field)
- V be set of discrete valuations of K corresponding to *prime divisors* on X.

Let

- K be a finitely generated field,
- X be a *model* for *K*, (regular integral scheme of finite type over Spec *A*, where *A* is a finite field or ring of *S*-integers in a number field)
- V be set of discrete valuations of K corresponding to *prime divisors* on X.

CONJECTURE 2

Assume that char K is good for G.

Then set of K-isomorphism classes of (inner) K-forms G' of G that have reductive reduction at all $v \in V$, is finite.

• Finiteness conjecture for weakly commensurable groups;

- Finiteness conjecture for weakly commensurable groups;
- finiteness of $gen_K(G)$ (Conjecture 1);

- Finiteness conjecture for weakly commensurable groups;
- finiteness of $gen_K(G)$ (Conjecture 1);
- finiteness of Tate-Shafarevich set $III(\overline{G})$ for adjoint group.

- Finiteness conjecture for weakly commensurable groups;
- finiteness of $gen_K(G)$ (Conjecture 1);
- finiteness of Tate-Shafarevich set $III(\overline{G})$ for adjoint group.

Conjecture 2 is known for inner forms of type A_{ℓ} .

- Finiteness conjecture for weakly commensurable groups;
- finiteness of $gen_K(G)$ (Conjecture 1);
- finiteness of Tate-Shafarevich set $III(\overline{G})$ for adjoint group.

Conjecture 2 is known for inner forms of type A_{ℓ} .

There are also conditional results for spinor groups.