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Classical rigidity

For i = 1, 2, let Gi be a semi-simple Lie group,

let Γi ⊂ Gi be a lattice (or some other
“large” subgroup)

Then (under appropriate assumptions):

a homo/isomorphism φ : Γ1 −→ Γ2 (virtually) extends to
a homo/isomorphism of Lie groups φ̃ : G1 −→ G2

G1

φ̃−→

G2⋃ ⋃
Γ1

φ−→ Γ2
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Consequence: let

• Γ1 = SLn(Z) (n > 3),

• Γ2 = G(O), G is an absolutely almost simple algebraic group

over a number field K with ring of integers O.

If Γ1 and Γ2 are virtually isomorphic, then

• K = Q (hence O = Z), and

• G ' SLn over Q.

Thus,
structure of a (higher rank) arithmetic group determines

field of definition & ambient algebraic group over this field.
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• Structural approach to rigidity does not extend to

arbitrary Zariski-dense subgroups

as these may, for example, be free groups.

• However, one should be able to recover such data as

field of definition & ambient algebraic group

from any Zariski-dense subgroup if instead of

structural information

one uses information about the eigenvalues of elements.

•We call this phenomenon the eigenvalue rigidity.
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• How do we match the eigenvalues of
elements of two Zariski-dense subgroups?

Note that the subgroups may be represented by matrices

of different sizes,

hence their elements may have different numbers

of eigenvalues.

• Why do we care about the eigenvalues?
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Weak commensurability

1 Weak commensurability
Definition
Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups
Results
Geometric applications

4 Algebraic groups with the same maximal tori
Division algebras with the same maximal subfields
Groups with reductive reduction
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Weak commensurability Definition

Let F be a field of characteristic zero.

Definition.
(1) Let γ1 ∈ GLn1(F) and γ2 ∈ GLn2(F) be semi-simple matrices,

let

λ1, . . . , λn1 and µ1, . . . , µn2 (∈ F)

be their eigenvalues.

Then γ1 and γ2 are weakly commensurable

if ∃ a1, . . . , an1 , b1, . . . , bn2 ∈ Z such that

λa1
1 · · · λ

an1
n1 = µb1

1 · · · µ
bn2
n2 6= 1.
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Weak commensurability Definition

Let G1 ⊂ GLn1 and G2 ⊂ GLn2 be reductive F-groups,

Γ1 ⊂ G1(F) and Γ2 ⊂ G2(F) be Zariski-dense subgroups.

(2) Γ1 and Γ2 are weakly commensurable if

every semi-simple γ1 ∈ Γ1 of infinite order

is weakly commensurable to

some semi-simple γ2 ∈ Γ2 of infinite order,

and vice versa.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 11 / 49
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Weak commensurability Definition

Equivalent reformulation:

Semi-simple γ1 ∈ G1(F) and γ2 ∈ G2(F) are
weakly commensurable

⇔ ∃ F-rational representations

ρ1 : G1 −→ GLm1 and ρ2 : G2 −→ GLm2

such that ρ1(γ1) and ρ2(γ2) have a nontrivial common
eigenvalue.

Remarks. 1. Weak commensurability is independent of matrix
realizations of Gi’s.

2. Weak commensurability is inconsequential for individual matrices,

but has remarkably strong consequences for Zariski-dense, and

especially arithmetic, subgroups.

Why the notion of weak commensurability?

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 12 / 49
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Weak commensurability Geometric motivation

1 Weak commensurability
Definition
Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups
Results
Geometric applications

4 Algebraic groups with the same maximal tori
Division algebras with the same maximal subfields
Groups with reductive reduction
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Weak commensurability Geometric motivation

Let M be a Riemannian manifold.

• E(M) = spectrum of Laplace - Beltrami operator

(eigenvalues with multiplicities)

• L(M) = (weak) length spectrum

(lengths of closed geodesics w/o multiplicities)

• M1 and M2 are commensurable if they have a common

finite-sheeted cover:

M
↙ ↘

M1 M2
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Weak commensurability Geometric motivation

Question: Are M1 and M2 necessarily isometric / commensurable if

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) L(M1) = L(M2), i.e. M1 and M2 are iso-length-spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are

length-commensurable.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 15 / 49



Weak commensurability Geometric motivation

Question: Are M1 and M2 necessarily isometric / commensurable if

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) L(M1) = L(M2), i.e. M1 and M2 are iso-length-spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are

length-commensurable.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 15 / 49



Weak commensurability Geometric motivation

Question: Are M1 and M2 necessarily isometric / commensurable if

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) L(M1) = L(M2), i.e. M1 and M2 are iso-length-spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are

length-commensurable.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 15 / 49



Weak commensurability Geometric motivation

Question: Are M1 and M2 necessarily isometric / commensurable if

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) L(M1) = L(M2), i.e. M1 and M2 are iso-length-spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are

length-commensurable.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 15 / 49



Weak commensurability Geometric motivation

Question: Are M1 and M2 necessarily isometric / commensurable if

(1) E(M1) = E(M2), i.e. M1 and M2 are isospectral;

Can one hear the shape of a drum? (M. Kac)

(2) L(M1) = L(M2), i.e. M1 and M2 are iso-length-spectral;

(3) Q · L(M1) = Q · L(M2), i.e. M1 and M2 are

length-commensurable.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 15 / 49



Weak commensurability Geometric motivation

• There exist examples of isospectral and iso-length spectral
manifolds that are not isometric.

• Constructions were proposed by M.-F. Vignéras and

T. Sunada.

• Both constructions produce commensurable manifolds.

• There are noncommensurable isospectral manifolds

(Lubotzky et al.);

nevertheless one expects to prove the commensurability of
isospectral and iso-length spectral manifolds in many situations.

• Prior to our work, this was done only for arithmetically
defined Riemann surfaces (A. Reid) and hyperbolic 3-manifolds
(A. Reid et al.).
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Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

Prasad & A.R. proved commensurability of many arithmetically

defined isospectral and iso-length spectral locally symmetric

spaces.

Tool: connecting isospectrality to weak commensurability.

Notations
G - absolutely simple real algebraic group, G = G(R)

K - maximal compact subgroup, X = K\G (symmetric space)

For a discrete torsion-free subgroup Γ ⊂ G, let XΓ = X/Γ
(locally symmetric space)

XΓ is arithmetically defined if Γ is arithmetic.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 17 / 49



Weak commensurability Geometric motivation

• For compact locally symmetric spaces:

(1) (isospectrality) ⇒ (2) (iso-length spectrality)

(proof uses the trace formula)

• E(M), L(M) change when M is replaced by

a commensurable manifold

⇒ Conditions (1) & (2) are not invariant under passing to
a commensurable manifold.

So, we proposed length-commensurability:

(3) Q · L(M1) = Q · L(M2)

Q · L(M) - rational length spectrum
(invariant of commensurability class)
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Weak commensurability Geometric motivation

Thus, for compact locally symmetric spaces:

(1) ⇒ (2) ⇒ (3)

Theorem

Let XΓ1 and XΓ2 be locally symmetric spaces having finite

volume, of absolutely simple real algebraic groups G1 and G2.

If XΓ1 and XΓ2 are length-commensurable, then Γ1 and Γ2 are

weakly commensurable.

The proof relies on results and conjectures from transcendental

number theory.
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Weak commensurability Geometric motivation

• XΓ1 and XΓ2 are commensurable iff Γ1 and Γ2 are

commensurable up to an isomorphism between G1 and G2.

• For geometric applications:

When does weak commensurability of Γ1 and Γ2 imply their
commensurability?

• This is the case for many arithmetic Γ1 and Γ2 (below)

• Remarkably, weak commensurability has strong consequences

for arbitrary Zariski-dense subgroups

(leading to the concept of eigenvalue rigidity ...)
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First signs of eigenvalue rigidity

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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First signs of eigenvalue rigidity

Let

• F – a field of characteristic zero

• G1 and G2 – absolutely almost simple algebraic F-groups

• Γi ⊂ Gi(F) – finitely generated Zariski-dense subgroup, i = 1, 2

Theorem 1

If Γ1 and Γ2 are weakly commensurable, then either G1 and G2

have same Killing-Cartan type, or one of them is of type B` and

the other of type C` (` > 3).
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First signs of eigenvalue rigidity

For a Zariski-dense subgroup Γ ⊂ G(F), let

KΓ = subfield of F generated by tr (Ad γ), γ ∈ Γ

(trace field).

E.B. Vinberg: K = KΓ is the minimal field of definition of Ad Γ

Algebraic hull: G := Zariski-closure of Ad Γ in GL(g), where

g is the Lie algebra of G

• G is a K-defined algebraic group (in fact, an F/K-form of G)

• G is an important characteristic of Γ; it determines Γ if

it is arithmetic
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First signs of eigenvalue rigidity

Theorem 2

If Γ1 and Γ2 are weakly commensurable, then KΓ1 = KΓ2 .

Finiteness conjecture.

Let
• G1 and G2 be absolutely simple algebraic F-groups, char F = 0;
• Γ1 ⊂ G1(F) be a finitely generated Zariski-dense subgroup, KΓ1 = K.

Then there exists a finite collection G
(1)
2 , . . . , G(r)

2 of F/K-forms
of G2 such that if

Γ2 ⊂ G2(F) is a finitely generated Zariski-dense subgroup
weakly commensurable to Γ1,

then Γ2 can be conjugated into some G
(i)
2 (K) (⊂ G2(F)).

(Additionally, one expects that r = 1 in certain situations ...)
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First signs of eigenvalue rigidity

0
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First signs of eigenvalue rigidity

Example. Let A be a central simple K-algebra, G = PSL1,A.

Fix a f. g. Zariski-dense subgroup Γ ⊂ G(K) with KΓ = K.

FINITENESS CONJECTURE⇒ There are only finitely many c.s.a. A′

such that for G′ = PSL1,A′ ,

∃ f.g. Zariski-dense subgroup Γ′ ⊂ G′(K)

weakly commensurable to Γ.

• Similar consequences for orthogonal groups of quadratic

forms etc.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 25 / 49



First signs of eigenvalue rigidity

Example. Let A be a central simple K-algebra, G = PSL1,A.

Fix a f. g. Zariski-dense subgroup Γ ⊂ G(K) with KΓ = K.

FINITENESS CONJECTURE⇒ There are only finitely many c.s.a. A′

such that for G′ = PSL1,A′ ,

∃ f.g. Zariski-dense subgroup Γ′ ⊂ G′(K)

weakly commensurable to Γ.

• Similar consequences for orthogonal groups of quadratic

forms etc.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 25 / 49



First signs of eigenvalue rigidity

Example. Let A be a central simple K-algebra, G = PSL1,A.

Fix a f. g. Zariski-dense subgroup Γ ⊂ G(K) with KΓ = K.

FINITENESS CONJECTURE⇒ There are only finitely many c.s.a. A′

such that for G′ = PSL1,A′ ,

∃ f.g. Zariski-dense subgroup Γ′ ⊂ G′(K)

weakly commensurable to Γ.

• Similar consequences for orthogonal groups of quadratic

forms etc.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 25 / 49



First signs of eigenvalue rigidity

Example. Let A be a central simple K-algebra, G = PSL1,A.

Fix a f. g. Zariski-dense subgroup Γ ⊂ G(K) with KΓ = K.

FINITENESS CONJECTURE⇒ There are only finitely many c.s.a. A′

such that for G′ = PSL1,A′ ,

∃ f.g. Zariski-dense subgroup Γ′ ⊂ G′(K)

weakly commensurable to Γ.

• Similar consequences for orthogonal groups of quadratic

forms etc.

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 25 / 49



First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K

(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple

real Lie groups

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 26 / 49



First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K

(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple

real Lie groups

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 26 / 49



First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K

(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple

real Lie groups

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 26 / 49



First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K

(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple

real Lie groups

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 26 / 49



First signs of eigenvalue rigidity

The finiteness conjecture is known in the following cases:

• K a number field (although Γ1 does not have to be arithmetic)

• G1 is an inner form of type A` over K

(so, previous example is already a theorem ...)

Note that these two cases cover all lattices in simple

real Lie groups

General case is work in progress ...

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 26 / 49



Arithmetic groups

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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Arithmetic groups Results
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Arithmetic groups Results

Theorem 3 (G. Prasad, A.R.)

Let

• G1 and G2 be absolutely almost simple F-groups, char F = 0;

• Γi ⊂ Gi(F) be a Zariski-dense S-arithmetic subgroup, i = 1, 2.

(1) Assume G1 and G2 are of same type, different from
An, D2n+1 (n > 1), and E6.

If Γ1 and Γ2 are weakly commensurable, then they are
commensurable.

(2) In all cases, S-arithmetic Γ2 ⊂ G2(F) weakly commensurable

to a given S-arithmetic Γ1 ⊂ G1(F), form finitely many

commensurability classes.
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Arithmetic groups Results

(cont.)

(3) If Γ1 and Γ2 are weakly commensurable, then

Γ1 contains nontrivial unipotents ⇔ Γ2 does.

(4) (arithmeticity theorem) Let now F be a locally compact field,

and let Γ1 ⊂ G1(F) be an S-arithmetic lattice.

If Γ2 ⊂ G2(F) is a lattice weakly commensurable to Γ1, then

Γ2 is also S-arithmetic.
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Arithmetic groups Results

Theorem 4 (R. Garibaldi, A.R.)

Let

• G1 and G2 be absolutely almost simple F-groups of types
B` and C` (` > 3);

• Γi ⊂ Gi(F) be a Zariski-dense S-arithmetic subgroup with
algebraic hull Gi, i = 1, 2.

Then Γ1 and Γ2 are weakly commensurable iff G1 and G2 are
twins, i.e.

• G1 and G2 are both split over all nonarchimedean places of K;

• G1 and G2 are simultaneously either split or anisotropic over
all archimedean places.
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Arithmetic groups Geometric applications

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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Arithmetic groups Geometric applications

Theorem 5

Let (as above)

• XΓ1 be an arithmetically defined locally symmetric space,

• XΓ2 be a locally symmetric space of finite volume.

• If XΓ1 and XΓ2 are length-commensurable, then

(1) XΓ2 is arithmetically defined;

(2) XΓ1 is compact ⇔ XΓ2 is compact.

• The set of XΓ2 ’s length-commensurable to XΓ1 is a union of
finitely many commensurability classes.

It consists of single commensurability class G1 and G2 are of
same type different from An, D2n+1 (n > 1), or E6.
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Arithmetic groups Geometric applications

Corollary

Let M1 and M2 be arithmetically defined hyperbolic d-manifolds,
where d 6= 3 is even or ≡ 3(mod 4).

If M1 and M2 are length-commensurable, then they are
commensurable.

• Hyperbolic manifolds of different dimensions are not

length-commensurable.

(In fact, their length spectra are very different ...)

• A complex hyperbolic manifold cannot be length-

commensurable to a real or quaternionic hyperbolic

manifold, etc.
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Arithmetic groups Geometric applications

Theorem 6

Let XΓ1 and XΓ2 be compact isospectral locally symmetric spaces.

• If XΓ1 is arithmetically defined, then so is XΓ2 .

• G1 = G2 =: G, hence XΓ1 and XΓ2 have same universal cover.

• Assume that at least one of Γ1 and Γ2 is arithmetic.

If G is of type different from An, D2n+1 (n > 1), and E6,

then XΓ1 and XΓ2 are commensurable.
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Algebraic groups with the same maximal tori

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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Algebraic groups with the same maximal tori

• Investigation of weak commensurability is related to

understanding algebraic groups having same isomorphism/

isogeny classes of maximal tori.

Definition
Let G1 and G2 be absolutely almost simple K-groups.

G1 and G2 have same isomorphism/isogeny classes of
maximal tori if

for every maximal K-torus T1 of G1 there exists a maximal
K-torus T2 of G2

with K-defined isomorphism/isogeny T1 → T2,

and vice versa.
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Algebraic groups with the same maximal tori

• Results on weakly commensurable arithmetic groups ⇒

description of groups with same tori over number fields.

Definiton
Let G be an absolutely almost simple (simply connected)
K-group.

Genus genK(G) = set of K-isomorphism classes of K-forms G′

of G that have same maximal K-tori as G.

(I) When does genK(G) reduce to a single element?

(II) When is genK(G) finite?

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 38 / 49



Algebraic groups with the same maximal tori

• Results on weakly commensurable arithmetic groups ⇒

description of groups with same tori over number fields.

Definiton
Let G be an absolutely almost simple (simply connected)
K-group.

Genus genK(G) = set of K-isomorphism classes of K-forms G′

of G that have same maximal K-tori as G.

(I) When does genK(G) reduce to a single element?

(II) When is genK(G) finite?

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 38 / 49



Algebraic groups with the same maximal tori

• Results on weakly commensurable arithmetic groups ⇒

description of groups with same tori over number fields.

Definiton
Let G be an absolutely almost simple (simply connected)
K-group.

Genus genK(G) = set of K-isomorphism classes of K-forms G′

of G that have same maximal K-tori as G.

(I) When does genK(G) reduce to a single element?

(II) When is genK(G) finite?

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 38 / 49



Algebraic groups with the same maximal tori

• Results on weakly commensurable arithmetic groups ⇒

description of groups with same tori over number fields.

Definiton
Let G be an absolutely almost simple (simply connected)
K-group.

Genus genK(G) = set of K-isomorphism classes of K-forms G′

of G that have same maximal K-tori as G.

(I) When does genK(G) reduce to a single element?

(II) When is genK(G) finite?

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 38 / 49



Algebraic groups with the same maximal tori Division algebras with the same maximal subfields

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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Algebraic groups with the same maximal tori Division algebras with the same maximal subfields

(Finite-dimensional) central division K-algebras D1 and D2

have same maximal subfields if

• they have same degree n,

• for a field extension P/K of degree n,

P ↪→ D1 ⇔ P ↪→ D2.

gen(D) = {[D′] ∈ Br(K) | D′ central division algebra with
same maximal subfields as D

}

Over a number field K:

• |gen(D)| = 1 for a quaternion algebra D;

• gen(D) is finite for any division algebra D.
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Algebraic groups with the same maximal tori Division algebras with the same maximal subfields

Theorem 7 (V. Chernousov, I. Rapinchuk, A.R.)

Let

• K = k(x1, . . . , xr), field of rational functions, where k is either
a number field, or a finite field of char 6= 2,

• D be a central division K-algebra of exponent 2.

Then |gen(D)| = 1.

Note that |gen(D)| = 1 is only possible when D is of

exponent 2.
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Algebraic groups with the same maximal tori Division algebras with the same maximal subfields

Theorem 8 (C + R2)

Let D be a central division algebra of degree n over a finitely
generated field K with char K - n.

Then gen(D) is finite.

Note that over infinitely generated fields, there are quaternion

algebras with nontrivial, and even infinite, genus

(Rost, Schacher, Wadsworth, Meyer ...)
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Algebraic groups with the same maximal tori Division algebras with the same maximal subfields

Both theorems rely on analysis of ramification.

In particular: if D is unramified w.r.t. a discrete valuation v of
K, then every D′ ∈ gen(D) is unramified at v.

So, finiteness of gen(D) reduces to finiteness of n-torsion of

a certain unramified Brauer group.
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Algebraic groups with the same maximal tori Groups with reductive reduction

1 Weak commensurability

Definition

Geometric motivation

2 First signs of eigenvalue rigidity

3 Arithmetic groups

Results

Geometric applications

4 Algebraic groups with the same maximal tori

Division algebras with the same maximal subfields

Groups with reductive reduction
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Algebraic groups with the same maximal tori Groups with reductive reduction

CONJECTURE 1.
Let G be an absolutely almost simple simply connected algebraic
group over a finitely generated field K of good characteristic.

Then genK(G) is finite.

Known for K a number field, and for inner forms of type

An in general.

In lieu of notion of unramified division algebra, one uses

notion of a group with reductive reduction.
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Algebraic groups with the same maximal tori Groups with reductive reduction

Let G be an absolutely almost simple simply connected

K-group.

Let v be a discrete valuation of K.

Kv - completion, Ov ⊂ Kv - valuation ring, Kv - residue field

Definition
G has reductive reduction at v if there exists a reductive
group scheme G over Ov with

G⊗Ov Kv = G⊗K Kv.

G(v) = G⊗Ov Kv
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Algebraic groups with the same maximal tori Groups with reductive reduction

Theorem 9 (C + R2)

Assume that

• Kv is finitely generated generated;
• G has reductive reduction at v.

Then any G′ ∈ genK(G) has reductive reduction at v.

Furthermore, G′(v) ∈ genKv
(G(v)).

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 47 / 49



Algebraic groups with the same maximal tori Groups with reductive reduction

Theorem 9 (C + R2)

Assume that

• Kv is finitely generated generated;
• G has reductive reduction at v.

Then any G′ ∈ genK(G) has reductive reduction at v.

Furthermore, G′(v) ∈ genKv
(G(v)).

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 47 / 49



Algebraic groups with the same maximal tori Groups with reductive reduction

Theorem 9 (C + R2)

Assume that

• Kv is finitely generated generated;
• G has reductive reduction at v.

Then any G′ ∈ genK(G) has reductive reduction at v.

Furthermore, G′(v) ∈ genKv
(G(v)).

Andrei Rapinchuk (University of Virginia) Eigenvalue rigidity Seoul August 2014 47 / 49



Algebraic groups with the same maximal tori Groups with reductive reduction

Let

• K be a finitely generated field,

• X be a model for K,
(regular integral scheme of finite type over Spec A, where A is

a finite field or ring of S-integers in a number field)

• V be set of discrete valuations of K corresponding to

prime divisors on X.

CONJECTURE 2
Assume that char K is good for G.

Then set of K-isomorphism classes of (inner) K-forms G′ of G
that have reductive reduction at all v ∈ V, is finite.
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Algebraic groups with the same maximal tori Groups with reductive reduction

Conjecture 2 would imply:

• Finiteness conjecture for weakly commensurable groups;

• finiteness of genK(G) (Conjecture 1);

• finiteness of Tate-Shafarevich set X(G) for adjoint group.

Conjecture 2 is known for inner forms of type A`.

There are also conditional results for spinor groups.
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