
Towards the eigenvalue rigidity of Zariski-dense
subgroups

Andrei S. Rapinchuk

Abstract. We discuss the notion of weak commensurability of Zariski-dense subgroups of semi-simple
algebraic groups over fields of characteristic zero, which enables one to match in a convenient way
the eigenvalues of semi-simple elements of these subgroups. The analysis of weakly commensurable
arithmetic groups has led to a resolution of some long-standing problems about isospectral locally
symmetric spaces. This work has also initiated a number of questions in the theory of algebraic groups
dealing with the characterization of absolutely almost simple simply connected algebraic groups having
the same isomorphism classes of maximal tori over the field of definition. The recent results in this
direction provide evidence to support a new conjectural form of rigidity for arbitrary Zariski-dense
subgroups in absolutely almost simple algebraic groups over fields of characteristic zero based on the
eigenvalue information (“eigenvalue rigidity”).
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1. Introduction

The purpose of my talk is two-fold. First, I would like to report on the results obtained in
a series of papers written in collaboration with G. Prasad and other co-authors. In these
papers, we introduced the notion of weak commensurability of Zariski-dense subgroups of
semi-simple algebraic groups, determined the consequences of the weak commensurability
of two S-arithmetic subgroups of absolutely almost simple algebraic groups over a field
of characteristic zero, and applied these results to the analysis of length-commensurable
isospectral locally symmetric spaces. Second, I would like to outline a variety of problems
and results in the theory of algebraic groups and related areas that this work has led to. These
problems have to do with the understanding of finite-dimensional division algebras having
the same maximal subfields, and more generally, with the characterization of absolutely
almost simple algebraic groups having the same isomorphism classes of maximal tori over
the field of definition. The results in this new direction obtained in the last several years
point to a new version of the rigidity phenomenon, some aspects of which apply not only in
the classical case of lattices but in fact to arbitrary Zariski-dense subgroups. Its distinctive
feature is that it is formulated in terms of the eigenvalues of semi-simple elements of a given
Zariski-dense subgroup, which led us to call it eigenvalue rigidity. Its investigation is very
much a work in progress, so along with available results, we will discuss several conjectures.
Overall, the possibility of having some form of rigidity for arbitrary Zariski-dense subgroups
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(which may well be free) looks quite exciting, and I would like to begin with a discussion of
what kinds of results one can or cannot expect in this generality.

In the theory of algebraic/Lie groups, the term “rigidity” in a very general sense is used
to describe a situation where, given a semi-simple algebraic group G over a field F , the
structure of a “large” subgroup Γ of G(F ) determines the group G as well as the “loca-
tion” of Γ inside G(F ). More concretely, when F is a non-discrete locally compact field,
then under appropriate assumptions, any abstract isomorphism Γ1 → Γ2 between two lat-
tices Γ1,Γ2 ⊂ G(F ) extends to a rational automorphism of G (strong rigidity), or even
any abstract representation Γ → GLn(F ) (virtually) extends to a rational representation
G → GLn (superrigidity). This implies, for example, that the entire geometry of a com-
pact hyperbolic manifold of dimension > 3 (including its volume, the Laplace spectrum, the
lengths of closed geodesics, etc.) is determined by the structure of its fundamental group.
Among the algebraic consequences of structural rigidity, the following is most relevant for
our discussion.

Let Γ = SLn(Z), where n > 3, and suppose we are given an absolutely almost simple
simply connected algebraic group G over a number field K with ring of integers O. If Γ is
(virtually) isomorphic to G(O) as an abstract group, then K = Q (and hence O = Z), and
G ' SLn as algebraic groups over Q. Thus, the structure of a higher rank arithmetic group
uniquely determines the field of definition and the ambient group as an algebraic group over
this field. The results we will present suggest that one should be able to recover this data (in
a somewhat weaker form) not just from a higher rank arithmetic group, but in fact from any
finitely generated Zariski-dense subgroup if in place of structural information one uses in-
formation about the eigenvalues of elements, expressed in terms of weak commensurability.
More precisely, we will see that in this set-up the field of definition can still be recovered
uniquely (cf. Theorem 3.2), while the ambient algebraic group over this field is conjecturally
determined up to finitely many possibilities (cf. Conjecture 6.1). The finiteness is known to
hold when the field of definition is a number field, and is supported in the general case by, for
example, results on division algebras having the same maximal subfields (cf. 6.5). Moreover,
in many situations, S-arithmetic groups are unique (up to commensurability) in their weak
commensurability class (cf. Theorem 6.3(1)), and thus are eigenvalue rigid in a strong sense.
Just like structural rigidity, eigenvalue rigidity has geometric applications to isospectral lo-
cally symmetric spaces (see 2.2 and 4.4). There are other aspects of eigenvalue rigidity
dealing with questions of whether various properties of Zariski-dense subgroups (such as
discreteness, co-compactness, arithmeticity) can be characterized in terms of the eigenvalue
information (see 4.3), but here we will focus almost exclusively on the question of to what
extent the latter determines the ambient algebraic group. As we already mentioned, it is
precisely shifting the focus from the structure to eigenvalues that makes results of this kind
possible for arbitrary Zariski-dense subgroups.

Before discussing the results, we need to explain how we match the eigenvalues of el-
ements of two Zariski-dense subgroups, and on the other hand, why we care about these
eigenvalues.

2. Weak commensurability

The following definition, introduced in [40], provides a way of matching the eigenvalues of
matrices of different sizes.
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Definition 2.1. Let F be an infinite field.

(1) Let γ1 ∈ GLn1(F ) and γ2 ∈ GLn2(F ) be semi-simple matrices, and let

λ1, . . . , λn1
and µ1, . . . , µn2

be their eigenvalues (in a fixed algebraic closure F ). We say that γ1 and γ2 are weakly
commensurable if there exist a1, . . . , an1

, b1, . . . , bn2
∈ Z such that

λa11 · · ·λ
an1
n1 = µb11 · · ·µ

bn2
n2 6= 1.

(2) Let G1 ⊂ GLn1
and G2 ⊂ GLn2

be reductive algebraic groups defined over F . Two
Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are called weakly commensu-
rable if every semi-simple element γ1 ∈ Γ1 of infinite order is weakly commensurable
to some semi-simple element γ2 ∈ Γ2 of infinite order, and vice versa.

It should be noted that the definition of weak commensurability can be stated in sev-
eral different ways. First, in the above notations, semi-simple elements γ1 ∈ G1(F ) and
γ2 ∈ G2(F ) are weakly commensurable if and only if there exist maximal F -tori Ti of Gi
for i = 1, 2 such that γi ∈ Ti(F ) and for some characters χi ∈ X(Ti) (defined over F ) we
have

χ1(γ1) = χ2(γ2) 6= 1.

This reformulation shows that the notion of weak commensurability (of γ1 and γ2) does not
depend on the choice of matrix realizations of G1 and G2, and is also more convenient for
technical arguments.

Second, semi-simple elements γ1 ∈ G1(F ) and γ2 ∈ G2(F ) are weakly commensurable
if and only if there exist F -rational representations

ρ1 : G1 −→ GLm1
and ρ2 : G2 −→ GLm2

such that ρ1(γ1) and ρ2(γ2) have a nontrivial common eigenvalue (these representations can
vary from one element to another).

Informally speaking, weak commensurability appears to be a rather natural way (and
perhaps even the only natural way) of matching the eigenvalues of (semi-simple) elements
of two algebraic groups that does not depend on the choice of their matrix realizations. On
the other hand, it is easy to construct examples of very different (certainly non-conjugate)
matrices that are weakly commensurable, so one needs to discuss the utility of this notion.
As we will see later, while being inconsequential for individual matrices and “small” (e.g.,
cyclic) subgroups, weak commensurability has remarkably strong consequences for “large”
subgroups (viz., Zariski-dense and particularly S-arithmetic subgroups). Now, however, we
would like to point out that the main motivation for the notion of weak commensurability in
our work came from the famous problem in differential geometry about isospectral Rieman-
nian manifolds best known as M.Kac’s [30] question Can one hear the shape of a drum?

2.2. Geometric motivation. Let M be a Riemannian manifold. In differential geometry
one considers the following sets of data associated with M :

• E(M) - spectrum of the Beltrami-Laplace operator;
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• L(M) - (weak) length spectrum, i.e. the collection of lengths of all closed geodesics
in M .

Then one asks whether two Riemannian manifolds M1 and M2 are necessarily isometric if

(1) E(M1) = E(M2) (i.e., M1 and M2 are isospectral);

(2) L(M1) = L(M2) (i.e., M1 and M2 are iso-length spectral)?

When asking a question of this kind, one of course needs to specialize the class of manifolds
being considered, and in our work we focused on locally symmetric spaces of semi-simple
groups having nonpositive curvature (recall that these are endowed with the standard Rie-
mannian structure coming from the Killing form); this class includes such geometrically
important spaces as hyperbolic manifolds and, in particular, Riemann surfaces. It is impor-
tant to point out that for compact locally symmetric spaces, questions (1) and (2) are related,
viz.

E(M1) = E(M2) ⇒ L(M1) = L(M2), (S)

but both have a negative answer. Counter-examples for (arithmetically defined) Riemann
surfaces were given by Vigneras [53], and then a more general group-theoretic construction
was offered by Sunada [50]. Both constructions always produce pairs of commensurable
locally symmetric spaces. We recall that Riemannian manifolds M1 and M2 are called
commensurable if they admit a common finite-sheeted cover M , i.e. if there is a diagram:

M
θ1

}}

θ2

!!

M1 M2

in which M is a Riemannian manifold and θ1, θ2 are finite-sheeted locally isometric cover-
ing maps. This suggests that one should probably settle for a weaker version of the ques-
tion, viz. whether M1 and M2 are necessarily commensurable given the fact that they are
isospectral or iso-length-spectral. While this modified question still has a negative answer
in the general case [35], our work, based on the analysis of weakly commensurable groups,
shows that the answer is in the affirmative for many (arithmetically defined) locally symmet-
ric spaces - cf. Theorem 4.5 (previously such results were available only for arithmetically
defined Riemann surfaces [47] and hyperbolic 3-manifolds [12]). In fact, our results give the
commensurability of pairs of locally symmetric spaces that satisfy the following condition:

(3) Q · L(M1) = Q · L(M2).

This condition, called length commensurability, is conceivably much weaker than conditions
(1) and (2), but surprisingly in most situations it has many of the same consequences. Its real
advantage over (1) and (2) is that it is invariant under passing to commensurable manifolds.

The main point here is that the length-commensurability of finite volume locally sym-
metric spaces implies the weak commensurability of their fundamental groups. To give a
precise statement, we need to fix some notations. Let G be an absolutely simple adjoint real
algebraic group, let G = G(R) be the group of R-points, considered as a real Lie group, and
let X = K\G, where K is a maximal compact subgroup of G, be the associated symmetric
space endowed with the Riemannian metric coming from the Killing form on the Lie algebra
of G. Furthermore, given a torsion-free discrete subgroup Γ of G, we let XΓ = X/Γ denote



Eigenvalue rigidity 251

the corresponding locally symmetric space; we say that XΓ is arithmetically defined if the
subgroup Γ is arithmetic1. Finally, given two simple real algebraic groups Gi (i = 1, 2), we
will denote the symmetric spaces of the groups Gi = Gi(R) by Xi, and the locally symmetric
spaces obtained as quotients by torsion-free discrete subgroups Γi of Gi by XΓi .

Theorem 2.3 ([43], Corollary 2.8). Let XΓ1
and XΓ2

be two locally symmetric spaces having
finite volume, of absolutely simple real algebraic groups G1 and G2. If XΓ1

and XΓ2
are

length-commensurable, then Γ1 and Γ2 are weakly commensurable.

While this result is straightforward for Riemann surfaces (see [43, 2.1]), its proof in the
general case relies on the formula for the length of a closed geodesic cγ in XΓ corresponding
to a nontrivial semi-simple element γ ∈ Γ as a function of the logarithms of eigenvalues
of γ in the adjoint representation - see [40, Proposition 8.5(ii)] (note that this formula also
explains why we care about the eigenvalues of semi-simple elements of discrete subgroups).
So, to prove the weak commensurability of Γ1 and Γ2, we need to sort out the logarithms
appearing in this formula, which requires transcendental number theory. More precisely, for
rank one locally symmetric spaces of dimension > 2, we use the famous result of Gel’fond
and Schneider that settled Hilbert’s seventh problem - cf. [4]. In all other cases, our argument
assumes the truth of Schanuel’s conjecture (cf. [3]). This means that while all of our results
on weak commensurability are, of course, unconditional, their geometric consequences are
conditional (at least for locally symmetric spaces of rank > 1).

Since the locally symmetric spaces XΓ1 and XΓ2 are commensurable if and only if the
subgroups Γ1 and Γ2 are commensurable as groups up to an isomorphism between G1 and
G2 (see 3.4 below for the details of this notion), we see that in order to prove the commen-
surability of length-commensurable (in particular, isospectral or iso-length spectral) locally
symmetric space, we need to answer the following question:

(C) When does the weak commensurability of Γ1 and Γ2 imply their commensurability?

3. First signs of eigenvalue rigidity

Before providing a rather definitive answer to Question (C) for S-arithmetic subgroups (see
§4), we would like to present a few results demonstrating that weak commensurability cap-
tures some important characteristics in the case of arbitrary Zariski-dense subgroups. So,
let G1 and G2 be absolutely almost simple algebraic groups over a field F of characteristic
zero, and let Γi ⊂ Gi(F ) be a finitely generated Zariski-dense subgroup for i = 1, 2.

Theorem 3.1 ([40], Theorem 1). If Γ1 and Γ2 are weakly commensurable, then either G1

and G2 are of the same Killing-Cartan type, or one of them is of type B` and the other of
type C` for some ` > 3.

This result is already interesting because, in principle, Γ1 and Γ2 may very well be free
groups, hence carry no structural information about the ambient algebraic groups. Note
that what we really prove is that G1 and G2 have the same order of the Weyl group - it

1We recall that combining the celebrated results of Margulis [36] on the arithmeticity of higher rank irreducible
lattices and of Corlette [15] and Gromov-Shoen [27], one obtains that a finite volume locally symmetric space XΓ

of a simple real algebraic group is automatically arithmetically defined unless X is either the real hyperbolic space
Hn or the complex hyperbolic space Hn

C .
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is known that this number uniquely determines the Killing-Cartan type of the group except
for the ambiguity involving types B` and C`. As shown by Theorem 4.2 below, Zariski-
dense, and even S-arthmetic, subgroups in groups of types B` and C` can indeed be weakly
commensurable.

Now, given a Zariski-dense subgroup Γ ⊂ G(F ), whereG is a semi-simple F -group, we
let KΓ denote the trace field of Γ, i.e. the subfield of F generated by the traces tr(Ad γ) of
all elements γ ∈ Γ in the adjoint representation on the corresponding Lie algebra g = L(G).
By a result of Vinberg [51], the field K = KΓ is the minimal field of definition of Ad Γ.
This means that K is the minimal subfield of F such that all transformations in Ad Γ can
be simultaneously represented by matrices over K in a suitable basis of g. If such a basis is
chosen, then the Zariski closure of Ad Γ in GL(g) is a semi-simple algebraic K-group G. It
is an F/K-form of the adjoint group G, and we will call it the algebraic hull of Ad Γ.

Theorem 3.2 ([40], Theorem 2). Keep the notations and conventions introduced prior to
Theorem 3.1. If Γ1 and Γ2 are weakly commensurable, then KΓ1 = KΓ2 .

Now let K be the common trace field of two weakly commensurable Zariski-dense sub-
groups Γ1 and Γ2 as above, and let Gi be the algebraic hull of Ad Γi for i = 1, 2. We denote
by Li the minimal Galois extension of K over which Gi becomes an inner form of a split
group.

Proposition 3.3 (cf. [44], Lemma 5.2). In the above notations, L1 = L2.

(We would like to mention the following useful consequence of this proposition: Let G1

and G2 be absolutely almost simple groups over a field F of characteristic zero, and let Ei
be the minimal Galois extension of F over which Gi becomes an inner form. If there exist
finitely generated Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) that are weakly
commensurable, then E1 = E2. Indeed, Ei = FLi in the above notations.)

3.4. S-arithmetic subgroups. We will now specialize to the case of S-arithmetic sub-
groups. We recall that if G is an absolutely almost simple algebraic group over a field F
of characteristic zero, then Zariski-dense S-arithmetic subgroups of G(F ) can be described
in terms of triples (G,K, S), where K is a number field contained in F , G is a F/K-form of
the adjoint group G, and S is a finite set of places of K containing all archimedean ones; the
subgroups corresponding to such triples are called (G,K, S)-arithmetic. We refer to [40, §1]
and [43, 3.3] for the details of this description, and only indicate here that for a (G,K, S)-
arithmetic Zariski-dense subgroup Γ, the field K coincides with the trace field KΓ, and the
group G with the algebraic hull of Ad Γ.

Furthermore, given two absolutely almost simple F -groups G1 and G2, we say that the
subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are commensurable up to an F -isomorphism
between the adjoint groups G1 and G2 if there exists an F -isomorphism σ : G1 → G2 such
that the subgroups σ(π1(Γ1)) and π2(Γ2) are commensurable as subgroups of G2(F ) in the
usual sense (i.e., their intersection is of finite index in each of them), where πi : Gi → Gi is
the canonical isogeny for i = 1, 2. (This notion of commensurability is precisely what we
need for geometric applications, cf. §2.)

The following result shows that the description of S-arithmetic subgroups of absolutely
almost simple groups in terms of triples is very convenient in the analysis of their commen-
surability.
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Theorem 3.5. Let G1 and G2 be absolutely almost simple algebraic groups defined over
a field F of characteristic zero, and for i = 1, 2, let Γi be a Zariski-dense (Gi,Ki, Si)-
arithmetic subgroup of Gi(F ). Then

(1) Γ1 and Γ2 are commensurable up to an F -isomorphism between G1 and G2 if and
only if K1 = K2, S1 = S2, and G1 and G2 are K-isomorphic;

(2) if Γ1 and Γ2 are weakly commensurable, then K1 = K2 and S1 = S2.

Thus, the study of the commensurability classes of weakly commensurable Zariski-dense
S-arithmetic subgroups is equivalent to the study ofK-forms G involved in their description.
This leads to a complete resolution of question (C) for S-arithmetic subgroups that we will
present in the next section.

4. Results for S-arithmetic groups and geometric consequences

The following two theorems summarize the main results dealing with the weak commensu-
rability of S-arithmetic subgroups.

Theorem 4.1 (cf. Prasad-Rapinchuk [40, 43]). Let G1 and G2 be absolutely almost simple
algebraic groups over a field F of characteristic zero, and let Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F )
be Zarsiki-dense S-arithmetic subgroups.

(1) Assume that G1 and G2 are of the same Killing-Cartan type, which is different from
An, D2n+1 (n > 1), and E6. If Γ1 and Γ2 are weakly commensurable, then they are
commensurable.

(2) In all cases, S-arithmetic subgroups Γ2 ⊂ G2(F ) weakly commensurable to a given
S-arithmetic subgroup Γ1 ⊂ G1(F ) form finitely many commensurability classes.

(3) If Γ1 and Γ2 as above are weakly commensurable, then Γ1 contains unipotent elements
if and only if Γ2 does.

(4) (arithmeticity theorem) Let now F be a locally compact field of characteristic zero,
and Γ1 ⊂ G2(F ) be an S-arithmetic lattice. If Γ2 ⊂ G2(F ) is a lattice weakly
commensurable to Γ1, then Γ2 is also S-arithmetic.

(In this theorem, “commensurability” means “commensurability up to anF -isomorphism
between G1 and G2” as defined in 3.4.)

An interesting feature of this theorem is that for groups of type Dn, the answer to Ques-
tion (C) is different depending on whether n is even or odd. Assertion (1) for type D2n with
n > 2 was originally proved in [41]. The case of type D4 (including triality forms) was
handled by Garibaldi [21] by a different method which applies to all groups of type D2n. On
the other hand, for each of the exceptional types An (n > 1), D2n+1 (n > 1), and E6 one
can construct weakly commensurable, but not commensurable, Zariski-dense S-arithmetic
subgroups (see [40, §9])2.

According to Theorem 3.1, to complete the investigation of weak commensurability for
S-arithmetic subgroups, it remains to consider the case where one group is of type B` and
the other of type C` for some ` > 3.

2Note that these are precisely the types for which the multiplication by (−1) considered as an automorphism of
the corresponding root system is not in the Weyl group.
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Theorem 4.2 (Garibaldi-Rapinchuk [22]). Let G1 and G2 be absolutely almost simple al-
gebraic groups over a field F of characteristic zero having Killing-Cartan types B` and
C` (` > 3), respectively, and let Γi be a Zariski-dense (Gi,K, S)-arithmetic subgroup of
Gi(F ). Then Γ1 and Γ2 are weakly commensurable if and only if G1 and G2 are twins, i.e.

• G1 and G2 are both split over all nonarchimedean places of K;

• G1 and G2 are simultaneously either split or anisotropic over all archimedean
valuations of K.

In §5, we will review some of the techniques involved in the proof of Theorems 4.1 and
4.2. But from a very general perspective, the essence of the argument is to obtain information
about the algebraic hull G of an S-arithmetic group Γ that is weakly commensurable to a
given S-arithmetic group – recall that according to Theorem 3.5, G uniquely determines Γ
up to commensurability. So, to establish assertion (1) of Theorem 4.1, we prove that the
algebraic hull G is itself unique when the type if different from An, D2n+1 (n > 1), and
E6. Furthermore, for assertion (2), we prove that there are only finitely many possibilities
for the G’s. In §§6-7 we will indicate that the latter property is expected to hold not only
for S-arithmetic, but in fact for arbitrary finitely generated Zariski-dense subgroups (see
Conjecture 6.2). This phenomenon, if confirmed, would be a rather strong form of eigenvalue
rigidity. We will now, however, briefly discuss a few other questions that one can ask in the
context of weak commensurability.

4.3. Some other aspects of eigenvalue rigidity. First, it is easy to construct examples
showing that a Zariski-dense subgroup weakly commensurable to a rank-one arithmetic
subgroup need not be arithmetic (see [40, Remark 5.5]); in other words, assertion (4) of
Theorem 4.1 fails if we drop the assumption that Γ2 is a lattice. So, it would be extremely
interesting to determine if a Zariski-dense subgroup weakly commensurable to a higher rank
S-arithmetic subgroup is itself S-arithmetic (see Problem 10.1 in [43] and the subsequent
discussion). This can potentially provide a new characterization of higher rank S-arithmetic
subgroups involving weak commensurability (i.e., ultimately the eigenvalue information).

Second, one can ask if weak commensurability can be used to characterize the discrete-
ness of Zariski-dense subgroups. More precisely, let G1 and G2 be connected absolutely
almost simple algebraic groups over a nondiscrete locally compact field F , and let Γi be a
finitely generated Zariski-dense subgroup of Gi(F ) for i = 1, 2. Assume that Γ1 and Γ2 are
weakly commensurable. Does the discreteness of Γ1 imply the discreteness of Γ2? (Problem
10.2 in [43]). An affirmative answer to this question was given in [40, Proposition 5.6] for
the case where F is a nonarchimedean local field, but the case F = R or C remains open.

Third, one can also ask if weak commensurability preserves cocompactness of lattices.
Namely, let again G1 and G2 be connected absolutely almost simple algebraic groups over
F = R or C, and let Γi ⊂ Gi(F ) be a lattice for i = 1, 2. Assume that Γ1 and Γ2

are weakly commensurable. Does the compactness of G1(F )/Γ1 imply the compactness of
G2(F )/Γ2? (Problem 10.3 in [43]). (We note that if G is a semi-simple algebraic group
over a nonarchimedean local field F of characteristic zero, then any lattice Γ ⊂ G(F ) is
automatically cocompact, and the problem in this case becomes vacuous.) We recall that
the cocompactness of a lattice in a semi-simple real Lie group is equivalent to the absence
of nontrivial unipotent elements in it, see [45, Corollary 11.13]. So, the above question is
equivalent to the question of whether for two weakly commensurable lattices, the existence
of nontrivial unipotent elements in one of them implies their existence in the other. The
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combination of parts (3) and (4) of Theorem 4.1 provides an affirmative answer if one of
the lattices is arithmetic. On the other hand, in this form the question itself is meaningful
for arbitrary Zariski-dense subgroups (not necessarily discrete or of finite covolume), but no
other cases have been considered so far.

4.4. Geometric applications. Combining Theorem 2.3, which reduced the length - com-
mensurability of locally symmetric spaces to the weak commensurability of their funda-
mental groups, with the analysis of weak commensurability in Theorem 4.1, we obtain the
following geometric result.

Theorem 4.5 ([40], Theorem 8.16). Let G1 and G2 be connected absolutely simple real
algebraic groups, and set Gi = Gi(R), for i = 1, 2. Then the set of arithmetically defined
locally symmetric spaces XΓ2 of G2, which are length-commensurable to a given arithmeti-
cally defined locally symmetric space XΓ1

of G1, is a union of finitely many commensurability
classes. It in fact consists of a single commensurability class if G1 and G2 have the same
type different from An, D2n+1, with n > 1, or E6.

This statement applies in various concrete geometric situations. For example, here is
what it yields for hyperbolic manifolds.

Corollary 4.6. Let M1 and M2 be arithmetically defined real hyperbolic d-manifolds where
d is either even or is ≡ 3(mod 4) and d > 3. If M1 and M2 are length-commensurable (in
particular, compact and isospectral), then they are commensurable.

Previously, this was known only for d = 2 [47] and d = 3 [12]. Length-commensurability
implies commensurability also for all quaternionic hyperbolic manifolds. On the other hand,
in the case of real hyperbolic manifolds of dimension ≡ 1(mod 4) or of complex hyperbolic
manifolds, one can construct examples of arithmetically defined length-commensurable, but
not commensurable spaces. Furthermore, using Theorem 3.1 (and Proposition 3.3 to handle
the isomorphism A3 = D3), one proves that an arithmetically defined complex hyperbolic
space cannot be length-commensurable to either a real or a quaternionic arithmetically de-
fined hyperbolic space. Employing Theorem 4.2, one also proves that arithmetically defined
real and quaternionic hyperbolic spaces cannot be length-commensurable. (In fact, assum-
ing Schanuel’s conjecture in all cases, one can get rid of the arithmeticity assumption in
these two statement, see [42], particularly Remark 8.5, and the discussion after Theorem 4.8
below.)

Next, parts (3) and (4) of Theorem 4.1, in conjunction with Theorem 2.3, imply the fol-
lowing rather surprising result which has so far defied all attempts to find a purely geometric
proof.

Theorem 4.7 ([40], Theorem 8.19). Let XΓ1 and XΓ2 be locally symmetric spaces of finite
volume. Assume that one of the spaces is arithmetically defined. If the spaces are length-
commensurable, then the other space is also arithmetically defined, and the compactness of
one of the spaces implies the compactness of the other.

In fact, if one of the spaces is compact and the other is not, the length spectra L(XΓ1
) and

L(XΓ2
) are quite different - see [42, Theorem 5.9]. The question of whether the arithmeticity

assumption in this theorem can be dropped boils down to one of the problems we discussed
in 4.3.

Last but not least, implication (S) from 2.2 enables us to apply the above results to
isospectral compact locally symmetric spaces. We then obtain the following.
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Theorem 4.8 ([40], §10). Let XΓ1
and XΓ2

be compact locally symmetric spaces, and as-
sume that they are isospectral.

(1) If XΓ1
is arithmetically defined, then XΓ2

is also arithmetically defined.

(2) G1 = G2 =: G, hence XΓ1 and XΓ2 have the same universal cover.

(3) If at least one of the subgroups Γ1 and Γ2 is arithmetic, then unless G is of type An
(n > 1), D2n+1 (n > 1) and E6, the spaces XΓ1 and XΓ2 commensurable.

We note that part (2) was proved in [40] (with the help of a result of Sai-Kee Yeung
[55]) under the assumption that at least one of the groups Γ1 or Γ2 is arithmetic. Sup-
pose now that both Γ1 and Γ2 are nonarithmetic. Then each space Xi (i = 1, 2) is ei-
ther the real hyperbolic space Hni or the complex hyperbolic space Hni

C for some ni > 2,
and the corresponding real adjoint algebraic group Gi is, respectively, either PSO(ni, 1) or
PSU(ni, 1) in the standard notations. It follows from Theorem 3.1 that the isospectrality,
hence length-commensurability, of XΓ1

and XΓ2
implies that either G1 and G2 must be of

the same Cartan-Killing type, or one of them is of type B` and the other of type C` for some
` > 3. In our situation, this can happen only if either G1 = G2 or (after a possible switch)
G1 = PSO(5, 1) and G2 = PSU(3, 1) (of common type D3 = A3). In the latter case, XΓ1

is
5-dimensional, and XΓ2

is 6-dimensional. But according to Weyl’s Law (see, for example,
[24]) isospectral Riemannian manifolds are always of the same dimension. So, in this case
XΓ1

and XΓ2
cannot be isospectral3, leaving us with the only option G1 = G2, as required.

5. Generic elements. Isogeny Theorem

In this section, we would like to discuss two ingredients involved in the proofs of Theorems
4.1 and 4.2: the existence of generic elements in Zariski-dense subgroups and the Isogeny
Theorem.

5.1. Generic elements. First, we need to recall the notion of a generic K-torus. Let G be
a connected semi-simple algebraic group defined over an infinite field K. Fix a maximal
K-torus T of G, and, as usual, let Φ = Φ(G,T ) denote the corresponding root system,
and let W (G,T ) be its Weyl group. Furthermore, we let KT denote the (minimal) splitting
field of T in a fixed algebraic closure K of K. Then the natural action of the Galois group
Gal(KT /K) on the character group X(T ) of T induces an injective homomorphism

θT : Gal(KT /K)→ Aut(Φ(G,T )).

We say that T is generic (over K) if

θT (Gal(KT /K)) ⊃W (G,T ). (5.1)

For example, any maximal K-torus of G = SLn,K is of the form T = R
(1)
E/K(Gm,E) for

some n-dimensional commutative étale K-algebra E. Then such a torus is generic over K if
and only if E is a separable field extension of K and the Galois group of the normal closure
L of E over K is isomorphic to the symmetric group Sn.

3In fact, it follows from the remark made after Proposition 3.3 that in this case XΓ1
and XΓ2

cannot even be
length-commensurable as G1 is an inner form of a split group over R, and G2 is an outer form.
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Definition 5.2. Let G be a connected semi-simple algebraic group defined over a field K. A
regular semi-simple element g ∈ G(K) is called generic (over K) if the torus T = ZG(g)◦

is generic (over K) as defined above (note that T is a K-torus, cf. [7, 9.1]).

Generic elements play a crucial role in our work, but they have also been used in a
variety of other problems, including the study of the rigidity of actions (cf. [32, 37]) and the
Auslander problem [1].

Theorem 5.3 (cf. [39], Theorem 3). Let G be a connected absolutely almost simple alge-
braic group over a finitely generated field K of characteristic zero, and let Γ ⊂ G(K) be
a Zariski-dense subgroup. Then Γ contains a regular generic element (over K) of infinite
order.

Basically, our proof (which in fact applies to all connected semi-simple groups) shows
that given a finitely generated Zariski-dense subgroup Γ ⊂ G(K), one can produce a fi-
nite system of congruences (defined in terms of suitable valuations of K) such that the set
of elements γ ∈ Γ satisfying this system of congruences consists entirely of generic ele-
ments (and additionally this set is in fact a coset of a finite index subgroup in Γ, in particu-
lar, it is Zariski-dense in G). Recently, Gorodnik-Nevo [26], Jouve-Kowalski-Zywina [29],
and Lubotzky-Rosenzweig [34] have developed different quantitative ways of showing that
generic elements exist in abundance (in fact, these results demonstrate that “most” elements
in Γ are generic). More precisely, the result of [26] gives the asymptotics of the number of
generic elements of a given height in an arithmetic group, while the results of [34], general-
izing earlier results of [29], are formulated in terms of random walks on groups and apply to
arbitrary Zariski-dense subgroups in not necessarily connected semi-simple groups. These
papers introduce several new ideas and techniques, but at the same time employ some ele-
ments of the argument from [39]. We also note that the proof of Theorems 4.1 and 4.2 uses
not only Theorem 5.3 itself but also its different variants that provide generic elements with
additional properties, e.g. having prescribed local behavior.

5.4. The Isogeny Theorem and its consequences. An important step in the proofs of The-
orems 4.1 and 4.2 is the passage from the weak commensurability of two semi-simple ele-
ments to an isogeny, and in most cases even to an isomorphism, of the tori containing these
elements. This is done with the help of the following technical statement which we called the
Isogeny Theorem. After the theorem, we give a (less technical) corollary that, to a significant
degree, reduces the analysis of weak commensurability to the investigation of absolutely al-
most simple algebraic groups having the same isomorphism/isogeny classes of maximal tori
over the base field; this problem, together with some variations, will be discussed in the
concluding §§6-7. We recall that a K-torus T is called (K-)irreducible if it does not contain
any proper K-subtori; note that a maximal K-torus of an absolutely almost simple algebraic
K-group which is generic over K, is automatically K-irreducible.

Theorem 5.5 ([40], Theorem 4.2). Let G1 and G2 be two connected absolutely almost
simple algebraic groups defined over an infinite field K, and let Li be the minimal Galois
extension of K over which Gi becomes an inner form of a split group. Suppose that for
i = 1, 2, we are given a semi-simple element γi ∈ Gi(K) contained in a maximal K-torus
Ti of Gi. Assume that

(i) G1 and G2 are either of the same Killing-Cartan type, or one of them is of type Bn
and the other is of type Cn;
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(ii) γ1 has infinite order;

(iii) T1 is K-irreducible; and

(iv) γ1 and γ2 are weakly commensurable.

Then:

(1) there exists a K-isogeny π : T2 → T1 which carries γm2
2 to γm1

1 for some integers
m1,m2 > 1;

(2) if L1 = L2 =: L and θT1(Gal(LT1/L)) ⊃W (G1, T1), then

π∗ : X(T1)⊗Z Q→ X(T2)⊗Z Q

has the property that π∗(Q · Φ(G1, T1)) = Q · Φ(G2, T2). Moreover, if G1 and G2

are of the same Killing-Cartan type different from B2 = C2, F4 or G2, then a suitable
rational multiple of π∗ maps Φ(G1, T1) onto Φ(G2, T2), and if G1 is of type Bn and
G2 is of type Cn, with n > 2, then a suitable rational multiple λ of π∗ takes the long
roots in Φ(G1, T1) to the short roots in Φ(G2, T2), while 2λ takes the short roots in
Φ(G1, T1) to the long roots in Φ(G2, T2).

It follows that in the situations where π∗ can be, and has been, scaled so that π∗(Φ(G1, T1))

= Φ(G2, T2), it induces K-isomorphisms π̃ : T̃2 → T̃1 and π : T 2 → T 1 between the cor-
responding tori in the simply connected and adjoint groups G̃i and Gi, respectively, that
extend to K-isomorphisms G̃2 → G̃1 and G2 → G1.

Furthermore, if G1 and G2 are absolutely almost simple algebraic groups over a field K
of characteristic zero and Γ1 ⊂ G1(K) and Γ2 ⊂ G2(K) are weakly commensurable finitely
generated Zariski-dense subgroups, then we already know that either G1 and G2 have the
same type or one of them is of type B` and the other of type C` for some ` > 3 (Theorem 3.1),
and L1 = L2 (remark after Proposition 3.3). Thus, the important assumptions in Theorem
5.5 are satisfied automatically, and its application yields the following.

Corollary 5.6. In the above situation, every generic maximal K-torus T1 of G1 whose
intersection with Γ1 contains an element of infinite order, is K-isogenous, and if both G1

and G2 are either simply connected or adjoint of the same type different from B2 = C2, F4

and G2, evenK-isomorphic, to a generic maximalK-torus T2 ofG2 whose intersection with
Γ2 contains an element of infinite order, and vice versa.

If finitely generated Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are weakly
commensurable, then by Theorem 3.2, they have a common trace field KΓ1 = KΓ2 =: K,
which is finitely generated. Then Theorem 5.3 and its variants guarantee the existence in
Γ1 and Γ2 of elements that are generic over K and its suitable finite extensions, and satisfy
some additional conditions. Applying Theorem 5.5 and/or Corollary 5.6, we obtain that the
algebraic hulls G1 and G2 of Γ1 and Γ2, respectively, share large families of maximalK-tori.
In the case where Γ1 and Γ2 are S-arithmetic, this information about the common maximal
tori turns out to be sufficient to prove Theorems 4.1 and 4.2. In the final two sections we will
discuss the implementation of this approach for arbitrary Zariski-dense subgroups.
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6. Arbitrary Zariski-dense subgroups

As we already explained, the results for arithmetic groups were obtained by analyzing the
algebraic hulls of arithmetic groups which are weakly commensurable to a given one. While
general Zariski-dense subgroups are not determined up to commensurability by their alge-
braic hull (even if they are lattices, cf. [52]), the latter remains an important invariant. At the
same time, the results in the arithmetic case as well as some very recent results over general
fields concerning simple algebraic groups with the same maximal tori and division algebras
with the same maximal subfields, which we will discuss in the rest of this article, have led
us to believe that the algebraic hull itself is almost determined by the presence of a Zariski-
dense subgroup weakly commensurable to a given one in all situations. More precisely, we
would like to propose the following Finiteness Conjecture.

Conjecture 6.1. Let G1 and G2 be absolutely simple (adjoint) algebraic groups over a field
F of characteristic zero, and let Γ1 ⊂ G1(F ) be a finitely generated Zariski-dense subgroup
with trace field KΓ1

= K. Then there exists a finite collection G
(2)
1 , . . . ,G

(2)
r of F/K-forms

of G2 such that if Γ2 ⊂ G2(F ) is a finitely generated Zariski-dense subgroup that is weakly
commensurable to Γ1, then it is conjugate to a subgroup of one of the G(2)

i (K)’s (⊂ G2(F )).

We already know that two weakly commensurable finitely generated Zariski-dense sub-
groups have the same trace field (Theorem 3.2). The above conjecture takes this result much
farther by claiming that a finitely generated Zariski-dense subgroup weakly commensurable
to a given one can exist only in finitely many simple algebraic groups over this field. (For
example, ifG0 = SOn(q0), where q0 is a nondegenerate quadratic form of dimension n > 3,
n 6= 4, over a finitely generated field K of characteristic zero, and Γ0 ⊂ G0(K) is a finitely
generated Zariski-dense subgroup with trace field K, then according to the conjecture, there
should exists a finite collection q1, . . . , qr of nondegenerate n-dimensional quadratic forms
overK such that ifG(K) forG = SOn(q), with q a nondegenerate n-dimensional quadratic
form over K, contains a finitely generated Zariski-dense subgroup that is weakly commen-
surable to Γ0, then q must be similar to one of the qi’s, i = 1, . . . , r.)

Based on our results for S-arithmetic groups (cf., for example, Theorem 4.1(1)) and the
results concerning division algebras algebras of exponent two having the same maximal sub-
fields (see Corollary 6.8 and Theorem 7.10), one expects that in some situations one should
be able to show that actually r = 1, which informally means that the ambient algebraic
group is uniquely determined by the eigenvalue information of semi-simple elements in a
finitely generated Zariski-dense subgroup.

Conjecture 6.1 is known to be true if K is a number field even when Γ1 is not S-
arithmetic (cf. [44, Theorem 5.1]) and also over general fields when G1 is of type A1. We
recall that given a connected absolutely almost simple real algebraic subgroup of SLn such
that G = G(R) is noncompact and is not locally isomorphic to SL2(R) and a lattice Γ in G,
then there exists a number field K ⊂ R such that Γ can be conjugated into SLn(K), cf. [45,
7.67 and 7.68]. Combining these results, we conclude that Conjecture 6.1 is true when Γ1

is a lattice in the group of real points of an absolutely almost simple real algebraic group.
More evidence supporting this conjecture comes from the investigation of another natural
problem in the theory of algebraic group — namely, characterizing absolutely almost simple
algebraic K-groups having the same isomorphism/isogeny classes of maximal K-tori. The
connection between the two is based on the Isogeny Theorem 5.5 and Corollary 5.6. While
these two problems are not equivalent, their investigation usually involves many common
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elements. To comment on these common aspects, we will temporarily shift the focus to the
second problem. We will later see how the finiteness statements in the context of both prob-
lems fit into some more general conjectures about algebraic groups with reductive reduction
- see Conjectures 7.5 and 7.8.

6.2. Simple algebraic groups over number fields with the same maximal tori. The tools
used to prove Theorems 4.1 and 4.2 can be used to characterize absolutely almost simple al-
gebraic groups over number fields having the same isomorphism/isogeny classes of maximal
tori. We give the statements of these results below in order to demonstrate their complete
similarity to the corresponding results concerning weak commensurability.

Theorem 6.3 (cf. [40], Theorem 7.5).

(1) Let G1 and G2 be connected absolutely almost simple algebraic groups defined over
a number field K, and let Li be the smallest Galois extension of K over which Gi
becomes an inner form of a split group. If G1 and G2 have the same K-isogeny
classes of maximal K-tori, then either G1 and G2 are of the same Killing-Cartan
type, or one of them is of type Bn and the other is of type Cn, and moreover, L1 = L2.

(2) Fix an absolutely almost simpleK-groupG. Then the set of isomorphism classes of all
absolutely almost simpleK-groupsG′ having the sameK-isogeny classes of maximal
K-tori is finite.

(3) Fix an absolutely almost simple simply connected K-group G whose Killing-Cartan
type is different from An, D2n+1 (n > 1) or E6. Then any K-form G′ of G (in other
words, any absolutely almost simple simply connected K-group G′ of the same type
as G) that has the same K-isogeny classes of maximal K-tori as G, is isomorphic to
G.

The construction described in [40, §9] shows that the types excluded in (3) are honest
exceptions, i.e., for each of those types one can construct non-isomorphic absolutely almost
simple simply connected K-groups G1 and G2 of this type over a number field K that have
the same isomorphism classes of maximal K-tori.

The case whereG1 andG2 are of types B` and C`, respectively, is treated in the following
theorem.

Theorem 6.4 ([22], Theorem 1.4). Let G1 and G2 be absolutely almost simple algebraic
groups over a number field K of types B` and C`, respectively, for some ` > 3.

(1) The groups G1 and G2 have the same isogeny classes of maximal K-tori if and only
if they are twins.

(2) The groups G1 and G2 have the same isomorphism classes of maximal K-tori if and
only if they are twins, G1 is adjoint, and G2 is simply connected.

We note that some aspects of the general problem of characterizing absolutely almost
simple algebraic groups over local and global fields having the same isomorphism classes
of maximal tori were considered in [20] and [31]. Another direction of research, which
has already generated a number of results (cf. [5], [6] [21], [33], [41]) is the investigation
of local-global principles for embedding tori into absolutely almost simple algebraic groups
as maximal tori (in particular, for embedding of commutative étale algebras with involutive
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automorphisms into simple algebras with involution); some number-theoretic applications
of these results can be found, for example, in [17].

In order to get a better idea of what kind of results can be obtained over general fields, it
is helpful to consider first the related problem of characterizing finite-dimensional division
algebras having the same maximal subfields, which is somewhat reminiscent of Amitsur’s fa-
mous theorem about central simple algebras having the same generic splitting fields (cf. [2],
[25]).

6.5. Division algebras with the same maximal subfields. Let D1 and D2 be central divi-
sion algebras of the same degree n over a field K. We say that D1 and D2 have the same
maximal subfields if a degree n field extension L/K admits a K-embedding L ↪→ D1 if and
only if it admits a K-embedding L ↪→ D2. We also let Br(K) denote the Brauer group of
K, and for a (finite-dimensional) central simple K-algebra A, we let [A] ∈ Br(K) denote
the corresponding Brauer class.

Definition 6.6. LetD be a central divisionK-algebra of degree n. The genus ofD is defined
to be

gen(D) = { [D′] |D′is a central divisionK-algebra with the same maximal subfields as D}.

Two basic questions about the genus are:

(I) When does gen(D) reduce to a single element? (Then D is uniquely determined by
its maximal subfields.)

(II) What can one say about the size of gen(D) in the general case? In particular, when
is gen(D) finite?

We note that since the opposite algebra Dop has the same maximal subfields as D, the
genus gen(D) can reduce to one element only if D ' Dop, i.e. if [D] has exponent 2 in
Br(K). If K is a global field, then any central division algebra over K of exponent 2 is
a quaternion algebra and furthermore it follows from the theorem of Albert-Hasse-Brauer-
Noether (ABHN) that for any quaternion division K-algebra D we have |gen(D)| = 1.
Another consequence of (AHBN) is that gen(D) is finite for any central division algebra D
over a global field K (see [9, 3.6]).

On the other hand, a construction proposed by M. Rost, M. Schacher, A. Wadsworth,
and others (cf. [23, Example 2.1]), enables one to produce quaternion algebras over infinitely
generated fields with nontrivial, and even infinite (see [38]), genus. So, both questions be-
come nontrivial over fields more general than global fields, and the following two theorems,
obtained jointly with V. Chernousov and I. Rapinchuk [8], [9], [46], contain some recent
results in that direction.

The first theorem expands the variety of examples where the genus is trivial. We will say
that a field F satisfies property (∗) if for any central division F -algebra D of exponent 2, the
genus gen(D) reduces to a single element.

Theorem 6.7 (Stability theorem, [9, 46]). If a field k of characteristic 6= 2 satisfies (∗), then
so does the field of rational functions k(x).

(The stability property in characteristic 2 has not been investigated yet.)
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Corollary 6.8. Let k be either a finite field of characteristic 6= 2 or a number field, and let
K = k(x1, . . . , xt) be a finitely generated purely transcendental extension of k. Then for
any central division K-algebra of exponent 2, we have |gen(D)| = 1.

The second theorem establishes the finiteness of the genus over finitely generated fields.

Theorem 6.9. Let D be a central division algebra of degree n over a finitely generated field
K of characteristic not dividing n. Then the genus gen(D) is finite.

Both theorems are based on an analysis of the ramification properties of division algebras
in the genus. More precisely, given a discrete valuation v of K, we let OK,v and Kv denote
the corresponding valuation ring and residue field, respectively. Fix an integer n > 1 (which
will later be either the degree or the exponent of D), and suppose that V is a set of discrete
valuations of K that satisfy the following three conditions:

(A) For any a ∈ K×, the set V (a) := {v ∈ V | v(a) 6= 0} is finite;

(B) There exists a finite subset V ′ ⊂ V such that the field of fractions of

O =
⋂

v∈V \V ′

OK,v,

coincides with K;

(C) For any v ∈ V , the characteristic of the residue field Kv is prime to n.

(We note that if K is finitely generated, which will be the case in most of our applications,
then (B) automatically follows from (A).) Due to (C), we can define for each v ∈ V the
corresponding residue map

ρv : nBr(K) −→ Hom(G(v) , Z/nZ), (R)

where nBr(K) is the n-torsion in the Brauer group and G(v) is the absolute Galois group of
Kv (cf., for example, [48, §10] or [49, Ch.II, Appendix]). A class [A] ∈ nBr(K) (or a finite-
dimensional central simple K-algebra A representing this class) is said to be unramified at v
if ρv([A]) = 1, and ramified otherwise. We let RamV (A) denote the set of all v ∈ V where
A is ramified; one shows that this set is always finite. We also define the unramified part of
nBr(K) with respect to V to be

nBr(K)V =
⋂
v∈V

Ker ρv.

Then one shows [9, Theorem 2.2] that if nBr(K)V is finite, then for a central division algebra
K-algebra D of degree n one has

|gen(D)| 6 |nBr(K)V | · ϕ(n)r, with r = |RamV (D)|. (U)

Thus, to prove Theorem 6.9, one needs to show that for a finitely generated field K whose
characteristic is prime to a given integer n > 1, there exists a set V of discrete valuations
of K satisfying the above conditions (A)-(C) and such that the unramified Brauer group
nBr(K)V is finite. This was first done by an explicit construction based on an analysis of
the standard exact sequence for the Brauer group of a curve; this approach enables one to



Eigenvalue rigidity 263

give some explicit estimations on the size of the unramified Brauer group, hence of the genus,
cf. [9, §4], [10]. Subsequently, a more general argument was pointed out to us J.-L. Colliot-
Thélène (cf. [8]). More precisely, suppose our finitely generated field K is realized as the
field of rational functions on a regular integral scheme X of finite type over Spec A, where
A is either a finite field or the ring of S-integers in a number field for some finite set S of
its places, with n invertible in A, and let V be the set of discrete valuations of K associated
with the divisors on X . Then the finiteness of nBr(K)V follows from Deligne’s finiteness
theorem for the étale cohomology of constructible sheaves [16] and Gabber’s purity theorem
[19]. The proof of Theorem 6.7 relies on the fact that if V is the set of all geometric places
of the field of rational functions k(x) (i.e., those that are trivial on k), where k is a field of
characteristic 6= 2, then 2Br(k(x))V reduces to 2Br(k) (cf. [25, Corollary 6.4.6]).

7. The genus of a simple algebraic group. Groups with reductive reduction.

In this concluding section, we will describe the ongoing project (cf. [11]) of obtaining the
analogs of results from 6.5 for arbitrary absolutely almost simple algebraic groups, and con-
nect this activity back to the Finiteness Conjecture 6.1. First, we need to extend Definition
6.6.

Definition 7.1. Let G be an absolutely almost simple simply connected algebraic group
over a field K. The (K-)genus genK(G) (or simply gen(G) if this does not lead to any
confusion) of G is the collection of K-isomorphism classes of K-forms G′ of G that have
the same K-isomorphism classes of maximal K-tori as G.

One can alternatively define the genus using “K-isogeny classes” of maximal tori in
place of “K-isomorphism classes.” While the exact relationship between these notions of
genus has not been investigated, the Isogeny Theorem 5.5 and subsequent remarks strongly
suggest that they should lead to the same qualitative results in most cases. On the other hand,
A.S. Merkurjev proposed a different (in a way, more functorial) definition of the genus of
an absolutely almost simple algebraic K-group G as the set of K-isomorphism classes of
K-forms G′ of G that have the same isomorphism/isogeny classes of maximal tori not only
overK, but also over any field extension F/K. The results of Izboldin, Vishik and Karpenko
indicate a connection between this genus for the spinor group G = Spinn(q) of a quadratic
form q and the motive of the projective quadric q = 0 in the category of Chow motives, so it
makes sense to call this genus motivic (see [9, Remark 5.6] for more details). In this article,
however, we will only use the notion of genus given in Definition 7.1.

Building on Theorem 6.9, it is natural to make the following conjecture.

Conjecture 7.2. Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated field K of good characteristic4. Then genK(G) is finite.

This conjecture is true over global fields (Theorem 6.3) and also for inner forms of type
A` in the general case (see Theorem 7.6 below). While Conjecture 7.2 does not automatically
imply our main Conjecture 6.1, we will now outline an approach that can potentially lead

4For each type, the following characteristics are defined to be bad: type A` - all primes dividing (` + 1), and
also p = 2 for outer forms; types B`, C`, D` - p = 2, and also p = 3 for 3,6D4; for type E6 - p = 2, 3, 5; for types
E7, E8 - p = 2, 3, 5, 7; for types F4, G2 - p = 2, 3. All other characteristics for a given type are good.
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to the proof of both conjectures, and also have some other implications. The considerations
in 6.5 were based on an analysis of the ramification properties of central simple algebras at
discrete valuations of the center. An adequate replacement of the notion of an unramified
algebra for arbitrary absolutely almost simple groups is the notion of a group with reductive
reduction. Let G be a connected absolutely almost simple simply connected algebraic group
over a field K. Given a discrete valuation v of K, we let Kv denote the corresponding
completion with valuation ring Ov , valuation ideal pv , and residue field Kv = Ov/pv . One
says that G has reductive reduction at v if there exists a reductive group scheme G over Ov
with generic fiber G ⊗K Kv . Then the reduction G ⊗Ov Kv modulo pv will be denoted
G(v). A crucial point in the proof of the estimate (U) in 6.5, which reduces the finiteness
of the genus gen(D) to the finiteness of the unramified Brauer group, was the fact that if
D′ ∈ gen(D), and χ = ρv([D]), χ′ = ρv([D

′]), where ρv is the residue map at v (cf. (R)
in 6.5), then Ker χ = Ker χ′. In particular, if D is unramified at v then so is D′ (thus,
the property of being unramified is determined by maximal subfields). We have been able to
prove the following analog of the latter fact for arbitrary absolutely almost simple groups.

Theorem 7.3 ([11]). Assume that the residue field Kv is finitely generated and that G has
reductive reduction at v. Then any G′ ∈ genK(G) also has reductive reduction at v. Fur-
thermore, the reduction G′(v) lies in the genus genKv

(G(v)).

Assume now that the field K is equipped with a set V of discrete valuations that satisfies
the following two conditions

(A′) for any a ∈ K×, the set V (a) := {v ∈ V | v(a) 6= 0} is finite;

(B′) for any v ∈ V , the residue field K
(v)

is finitely generated.

Corollary 7.4. If K and V satisfy conditions (A′) and (B′), then for any absolutely almost
simple simply connected algebraic K-group G, there exists a finite subset V0 ⊂ V (depend-
ing on G) such that every G′ ∈ genK(G) has reductive reduction at all v ∈ V \ V0.

The other ingredient of the proof of the finiteness of gen(D) in 6.5 was the finiteness of
the unramified Brauer group n Br(K)V for a suitable set V of discrete valuations of K. One
can expect the following general statement to be valid for the same sets V of valuations as in
6.5. Let again X be a regular integral scheme of finite type over Spec A, where A is either
a finite field or the ring of S-integers in a number field for some finite set S of its places, let
K be the field of rational functions on X , and let V be the set of discrete valuations of K
associated with the prime divisors on X (obviously, V satisfies conditions (A′) and (B′)).

Conjecture 7.5. Let K and V be as above, and let G be an absolutely almost simple simply
connected algebraic K-group such that char K is good for G. Then for any finite subset
V0 ⊂ V , the set of K-isomorphism classes of (inner) K-forms G′ of G that have reductive
reduction at all v ∈ V \ V0, is finite.

Over a number field K, the assertion of Conjecture 7.5 is an easy consequence of the
finiteness results for Galois cohomology, cf. [49, Ch. III, 4.6]. (Interestingly, there are ab-
solutely almost simple nonsplit algebraic groups over Q that have reductive reduction at all
primes, see [28], [14], but there are no Q-defined abelian varieties with smooth reduction at
all primes [18].) At the time of this writing, our knowledge about the conjecture is limited
to the following two theorems.
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Theorem 7.6 (cf. [9], Theorem 5.3). Conjectures 7.2 and 7.5 (for inner forms) are true for
G = SL1,A where A is a central simple K-algebra.

Assume that char K 6= 2 and let µ2 = {±1}. Then for any discrete valuation v of K
such that char Kv 6= 2 and any i > 1, one can define the residue map in Galois cohomology

ρiv : Hi(K,µ2)→ Hi−1(Kv, µ2)

extending (R) in 6.5 to all dimensions (see, for example, [13, 3.3] or [25, 6.8] for the details).
Then for any set V of discrete valuations of K such that char Kv 6= 2 for all v ∈ V , one
defines the unramified part Hi(K,µ2)V to be

⋂
v∈V Ker ρiv (of course, H2(K,µ2)V =

2 Br(K)V ).

Theorem 7.7 ([11]). Let K be a finitely generated field of characteristic 6= 2, and let V
be a set of discrete valuations of K as in Conjecture 7.5 such that char Kv 6= 2 for all
v ∈ V . Assume that for any finite subset V0 ⊂ V , the unramified cohomology groups
Hi(K,µ2)V \V0

are finite for all i > 1. Then for any n > 5, the set of K-isomorphism
classes of the spinor groups Spinn(q), where q is a nondegenerate n-dimensional quadratic
form, that have reductive reduction at all v ∈ V , is finite.

Now, our Finiteness Conjecture 6.1 would be a consequence of Conjecture 7.5 and the
following.

Conjecture 7.8. Let K and V be as in Conjecture 7.5, and assume that char K = 0.
Furthermore, let G1 and G2 be absolutely almost simple algebraic groups defined over a
field F ⊃ K, and let Γ1 ⊂ G1(F ) be a Zariski-dense subgroup with trace field KΓ = K.
Then there exists a finite subset V0 ⊂ V (depending on Γ1) such that if Γ2 ⊂ G2(F ) is
weakly commensurable to Γ1, then the (simply connected cover of the) algebraic hull G2 of
Γ2 has reductive reduction at all v ∈ V \ V0.

At this point, Conjecture 7.8 has been established for groups of type A1 using the strong
approximation theorem of Weisfeiler [54]. It seems that the same method should also be
applicable in the general case.

The potential implications of Conjecture 7.5 reach beyond eigenvalue rigidity, e.g., it
would also imply the finiteness of the Tate-Shafarevich set in some situations. More pre-
cisely, let K and V be as in Conjecture 7.5, and let G be an absolutely almost simple simply
connected K-group. Consider the Tate-Shafarevich set

X(G) := Ker

(
H1(K,G) −→

∏
v∈V

H1(Kv, G)

)

for the corresponding adjoint group G. We can pick a finite subset V0 ⊂ V so that G has
reductive reduction at all v ∈ V \ V0. Now, let ξ ∈ X(G), and let G′ = ξG be the
corresponding twisted group. Then G′ ' G over Kv for all v ∈ V , and in particular, G′

has reductive reduction at all v ∈ V \ V0. Assuming Conjecture 7.5, we would have that the
groups ξG for ξ ∈X(G) form finitely many K-isomorphism classes; in other words, the

image of X(G) under the canonical mapH1(K,G)
λ−→ H1(K,AutG) is finite. But since

G ' IntG is of finite index in AutG, the map λ has finite fibers, so we obtain the finiteness
of X(G). In particular, Theorem 7.6 yields the following.
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Corollary 7.9. Let K and V be as in Conjecture 7.5, and let A be a central simple K-
algebra of degree n not divisible by char K. Then for G = PSL1,A, the Tate-Shafarevich
set X(G) is finite.

Finally, we would to point out that the techniques involved in Theorem 7.3 are instru-
mental not only for proving the finiteness of genK(G), but also for its quantitative analysis.
For example, they give yet another instance where a K-form is uniquely determined by its
maximal K-tori.

Theorem 7.10. Let K = k(x), where k is a global field of characteristic 6= 2. For any
K-group G of type G2, the genus genK(G) reduces to a single element.

One expects a similar statement to hold over such a field K also for groups of types B`,
C` (` > 2) and F4 (maybe under some additional assumptions).
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