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Abstract. We will present a survey of our recent results on length
commensurable and isospectral locally symmetric spaces. The geomet-
ric questions discussed below led us to a new notion of “weak com-
mensurabilty” of two Zariski-dense subgroups. We have shown that for
arithmetic groups, weak commensurabilty has surprisingly strong con-
sequences. Our proofs make use of p-adic techniques and results from
algebraic and transcendental number theory. For the current publica-
tion, some revisions have been made to the original article presented
at the ICCM 2007 to reflect the results obtained in the last couple of
years.

Introduction

The aim of this article is to give a brief survey of the results obtained
in the series of papers [19]–[25]. These papers deal with a variety of
problems, but have a common feature: they all rely in a very essential
way on number-theoretic techniques (including p-adic techniques), and use
results from algebraic and transcendental number theory. The fact that
number-theoretic techniques turned out to be crucial for tackling certain
problems originating in the theory of (real) Lie groups and differential ge-
ometry was very exciting. We hope that these techniques will become
an integral part of the repertoire of mathematicians working in these
areas.

To keep the size of this article within a reasonable limit, we will focus
primarily on the paper [23] and its sequel [24, 25], and only briefly men-
tion the results of [19]–[22] as well as some other related results in the
last section. The work in [23], which was originally motivated by questions
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in differential geometry dealing with length-commensurable and isospectral
locally symmetric spaces (cf. §1), led us to define a new relationship between
Zariski-dense subgroups of semi-simple algebraic groups which we call weak
commensurability (cf. §2). The results of [23, 24] give an almost complete
characterization of weakly commensurable arithmetic groups, but there re-
main quite a few natural questions (some of which are mentioned below)
for general Zariski-dense subgroups. We hope that the notion of weak com-
mensurability will be useful in investigation of (discrete) subgroups of Lie
groups, geometry and ergodic theory.

1. Length-commensurable and isospectral manifolds

Let M be a Riemannian manifold. In differential geometry, one asso-
ciates to M the following sets of data: the length spectrum L(M) (the set
of lengths of all closed geodesics with multiplicities), the weak length spec-
trum L(M) (the set of lengths of all closed geodesics without multiplicities),
the spectrum of the Laplace operator E(M) (the set of eigenvalues of the
Laplacian ΔM with multiplicities). The fundamental question is to what
extent do L(M), L(M) and E(M) determine M? In analyzing this question,
the following terminology will be used: two Riemannian manifolds M1 and
M2 are said to be isospectral if E(M1) = E(M2), and iso-length-spectral if
L(M1) = L(M2).

First, it should be pointed out that the conditions like isospectrality,
iso-length-spectrality are related to each other. For example, for compact
hyperbolic 2-manifolds M1 and M2, we have L(M1) = L(M2) if and only if
E(M1) = E(M2) (cf. [12]), and two hyperbolic 3-manifolds are isospectral if
and only if they have the same complex-length spectrum (for its definition
see the footnote later in this section), cf. [6] or [8]. Furthermore, for compact
locally symmetric spaces M1 and M2 of nonpositive curvature, if E(M1) =
E(M2), then L(M1) = L(M2) (see [23], Theorem 10.1). (Notice that all
these results rely on some kind of trace formula.)

Second, neither of L(M), L(M) or E(M) determines M up to isom-
etry. In fact, in 1980, Vignéras [31] constructed examples of isospectral,
but nonisometric, hyperbolic 2 and 3-manifolds. This construction relied on
arithmetic properties of orders in a quaternion algebra D. More precisely,
her crucial observation was that it is possible to choose D so that it contains
orders O1 and O2 with the property that the corresponding groups O(1)

1 and
O(1)

2 , of elements with reduced norm one, are not conjugate, but their clo-
sures in the completions are conjugate, for all nonarchimedean places of the
center. Five years later, Sunada [29] gave a very general, and purely group-
theoretic, method for constructing isospectral, but nonisometric, manifolds.
His construction goes as follows: Let M be a Riemannian manifold with the
fundamental group Γ := π1(M). Assume that Γ has a finite quotient G with
the following property: there are nonconjugate subgroups H1, H2 of G such
that |C ∩ H1| = |C ∩ H2| for all conjugacy classes C of G. Let Mi be the
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finite-sheeted cover of M corresponding to the pull-back of Hi in Γ. Then
(under appropriate assumptions), M1 and M2 are nonisometric isospectral
(or iso-length-spectral) manifolds.

Since its inception, Sunada’s method and its variants have been used
to construct examples of nonisometric manifolds with same invariants. In
particular, Alan Reid [28] constructed examples of nonisometric iso-length-
spectral hyperbolic 3-manifolds, and recently, in a joint paper [10], Leninger,
McReynolds, Neumann and Reid gave examples of hyperbolic manifolds with
the same weak length spectrum, but different volumes. These, and other,
examples demonstrate that it is not possible to characterize Riemannian
manifolds (even hyperbolic ones) up to isometry by their spectrum or length
spectrum. On the other hand, it is worth noting that the manifolds furnished
by Vignéras, and the ones obtained using Sunada’s method are always com-
mensurable, i.e., have a common finite-sheeted cover. This suggests that the
following is perhaps a more reasonable question.

Question 1. Let M1 and M2 be two (hyperbolic) manifolds (of finite
volume or even compact). Suppose L(M1) = L(M2). Are M1 and M2
necessarily commensurable?

(Of course, the same question can be asked for other classes of manifolds,
e.g. for general locally symmetric spaces of finite volume.)

The answer even to this modified question turns out to be “no” in gen-
eral: Lubotzky, Samuels and Vishne [11] have given examples of isospectral
(hence, with same weak length spectrum) compact locally symmetric spaces
that are not commensurable. At the same time, some positive results have
emerged. Namely, Reid [28] and Chinburg, Hamilton, Long and Reid [7]
have given a positive answer to Question 1 for arithmetically defined hyper-
bolic 2- and 3-manifolds, respectively. Our results in [23] provide an almost
complete answer to Question 1 for arithmetically defined locally symmetric
spaces of arbitrary absolutely simple Lie groups. In fact, in [23] we analyze
when two locally symmetric spaces are commensurable given that they sat-
isfy a much weaker condition than iso-length-spectrality, which we termed
length-commensurability. We observe that not only does the use of this
condition produce stronger results, but the condition itself is more suitable
for analyzing Question 1 as it allows one to replace the manifolds under
consideration with commensurable manifolds.

Definition. Two Riemannian manifolds M1 and M2 are said to be
length-commensurable if Q · L(M1) = Q · L(M2).

Now, we are in a position to formulate precisely the question which is
central to [23].

Question 2. Suppose M1 and M2 are length-commensurable. Are they
commensurable?
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In [23], we have been able to answer this question for arithmetically
defined locally symmetric spaces of absolutely simple Lie groups. The precise
formulations will be given in §3, after introducing appropriate definitions.
The following theorem, however, is fully representative of these results.

Theorem. Let M1 and M2 be two arithmetically defined hyperbolic
d-manifolds.

(1) Assume that d is either even or ≡ 3(mod 4), d �= 7. If M1 and M2
are not commensurable, then, after a possible interchange of M1 and M2,
there exists λ1 ∈ L(M1) such that for any λ2 ∈ L(M2), the ratio λ1/λ2 is
transcendental. In particular, M1 and M2 are not length-commensurable.

(2) For any dimension d ≡ 1(mod 4), there exist length-commensurable, but
not commensurable, arithmetically defined hyperbolic d-manifolds.

We have proved similar results for arithmetically defined locally sym-
metric spaces of absolutely simple real Lie groups of all types; see [23].
For example, for hyperbolic spaces modeled on Hamiltonian quaternions we
have an assertion similar to (1) (i.e., Question 2 has an affirmative answer);
but for complex hyperbolic spaces we have an assertion similar to (2) (i.e.,
Question 2 has a negative answer).

The key ingredient of our approach is the new notion of weak commen-
surability of Zariski-dense subgroups of an algebraic group, and the rela-
tionship between the length-commensurability of locally symmetric spaces
and the weak commensurability of their fundamental groups. To motivate
the definition of weak commensurability, we consider the following simple
example.

Let H = {x + iy | y > 0} be the upper half-plane with the standard
hyperbolic metric ds2 = y−2(dx2 + dy2). Then t �→ iet is a geodesic in H,
whose piece c̃ connecting i to ai, where a > 1, has length �(c̃) = log a. Now,
let Γ ⊂ SL2(R) be a discrete torsion-free subgroup, and π : H → H/Γ be the
canonical projection. If c := π(c̃) is a closed geodesic in H/Γ (traced once),
then it is not difficult to see that for λ =

√
a, the element

γ =
(

λ 0
0 λ−1

)
lies in Γ. Then the length �(c) of c equals log a = 2 log λ. This shows
that the lengths of closed geodesics in the hyperbolic 2-manifold H/Γ are
(multiples of) the logarithms of the eigenvalues of semi-simple elements of
the fundamental group Γ (cf. §3 below, and Proposition 8.2 in [23] for a
general statement that applies to arbitrary locally symmetric spaces)1. Fur-
thermore, let ci for i = 1, 2, be closed geodesics in H/Γ that in the above
notation correspond to semi-simple elements γi ∈ Γ having the eigenvalue

1In the above construction if we replace SL2(R) with SL2(C), then the collection of
(principal values) of the logarithms of the eigenvalues of semi-simple elements is known
as the complex length spectrum of the corresponding hyperbolic 3-manifold.
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λi > 1. Then
�(c1)/�(c2) = m/n ⇔ λn

1 = λm
2 .

Notice that the condition on the right-hand side can be reformulated as
follows: If Ti is a torus of SL2 such that γi ∈ Ti(R), then there exist χi ∈
X(Ti) with

χ1(γ1) = χ2(γ2) �= 1.

The above discussion suggests the following.
Definition. Let G1 and G2 be two semi-simple algebraic groups defined

over a field F. Semi-simple elements γi ∈ Gi(F ), where i = 1, 2, are weakly
commensurable if there exist maximal F -tori Ti of Gi such that γi ∈ Ti(F ),
and for some characters χi of Ti (defined over an algebraic closure F of F ),
we have

χ1(γ1) = χ2(γ2) �= 1.

As we have seen, weak commensurability adequately reflects length-
commensu-rability of hyperbolic 2-manifolds. In fact, it remains relevant
for length-commensu-rability of arbitrary locally symmetric spaces. This is
easy to see for rank one spaces but is less obvious for higher rank spaces -
cf. §3 below, and [23], §8.

2. Weakly commensurable arithmetic subgroups

We observe that for G1 and G2 different from SL2, weak commensura-
bility of γi ∈ Gi(F ), where i = 1, 2, may not relate these elements to each
other in a significant way (in particular, the F -tori Ti of Gi used in the pre-
ceding definition may be very different). So, to get meaningful consequences
of weak commensurability, one needs to extend this notion from individual
elements to “large” (in particular, Zariski-dense) subgroups.

Definition. (Zariski-dense) subgroups Γi of Gi(F ), for i = 1, 2, are
weakly commensurable if every semi-simple element γ1 ∈ Γ1 of infinite order
is weakly commensurable to some semi-simple element γ2 ∈ Γ2 of infinite
order, and vice versa.

It was discovered in [23] that weak commensurability has some impor-
tant consequences even for completely general finitely generated Zariski-
dense subgroups. For simplicity, we will assume henceforth that all our
fields are of characteristic zero.

Theorem A. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero. Assume that
for i = 1, 2, there exist finitely generated Zariski-dense subgroups Γi of Gi(F )
which are weakly commensurable. Then either G1 and G2 are of the same
Killing-Cartan type, or one of them is of type Bn and the other is of type Cn.
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(We notice that split groups G1 and G2 of types Bn and Cn respectively
indeed contain weakly commensurable arithmetic subgroups, cf. Example 6.7
in [23].)

To formulate our next result, we need one additional notation: given
a subgroup Γ of G(F ), where G is an absolutely almost simple algebraic
F -group, we let KΓ denote the subfield of F generated by the traces TrAdγ
for all γ ∈ Γ, where Ad denotes the adjoint representation of G. We recall
that according to a result of Vinberg [32], for a Zariski-dense subgroup Γ
of G, the field KΓ is precisely the field of definition of Ad Γ, i.e., it is the
minimal subfield K of F such that all elements of Ad Γ can be represented
simultaneously by matrices with entries in K, in a certain basis of the Lie
algebra g of G.

Theorem B. Let G1 and G2 be two connected absolutely almost simple
groups defined over a field F of characteristic zero. For i = 1, 2, let Γi be a
finitely generated Zariski-dense subgroup of Gi(F ). If Γ1 and Γ2 are weakly
commensurable, then KΓ1 = KΓ2 .

Much stronger results are available for the case of arithmetic subgroups.
To formulate these, we need to describe the terminology we use regard-
ing arithmetic subgroups. Let G be a connected absolutely almost simple
algebraic group defined over a field F of characteristic zero, G be its adjoint
group, and π : G → G be the natural isogeny. Suppose we are given:

• a number field K with an embedding K ↪→ F ;
• an algebraic K-group G such that for the F -group F G obtained

from it by extension of scalars K ↪→ F, there is an F -isomorphism
F G

ι� G (i.e., G is an F/K-form of G);
• a (finite) subset S of places of K that contains all the archimedean

places but does not contain any nonarchimedean places where G is
anisotropic.

In this situation, we have the natural embedding G(K) ↪→ G(F ) induced
by ι, and then a subgroup Γ of G(F ) is called (G, K, S)-arithmetic if π(Γ)
is commensurable with σ(ι(G(OK(S)))) for some F -automorphism σ of G,
where OK(S) is the ring of S-integers in K. Notice that in this definition
we do fix an embedding of K into F (in other words, isomorphic, but dis-
tinct, subfields of F are treated as different fields), but we do not fix an
F -isomorphism ι, so by varying it we generate a class of subgroups invariant
under F -automorphisms of G. For this reason, by “commensurability” we
will mean “commensurability up to an F -isomorphism of the corresponding
adjoint groups.” More precisely, given connected absolutely almost simple
F -groups Gi for i = 1, 2, and the isogenies πi : Gi → Gi onto the corre-
sponding adjoint groups, two subgroups Γi of Gi(F ) are commensurable up
to an F -isomorphism between G1 and G2 if there exists an F -isomorphism
σ : G1 → G2 such that σ(π1(Γ1)) and π2(Γ2) are commensurable in the usual
sense, i.e., their intersection has finite index in both of them.
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The groups G1 and G2 in Theorems C–G are assumed to be connected
and absolutely almost simple.

Theorem C. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero. If Zariski-dense
(Gi, Ki, Si)-arithmetic subgroups Γi of Gi(F ) are weakly commensurable for
i = 1, 2, then K1 = K2 and S1 = S2.

One shows that Γ1 and Γ2 as in Theorem C are commensurable up to
an F -isomorphism between G1 and G2 if and only if K1 = K2, S1 = S2 and
G1 � G2 over K := K1 = K2 (cf. Proposition 2.5 in [23]). So, according to
Theorem C, the weak commensurability of Γ1 and Γ2 implies that the first
two of these three conditions do hold true. In general, however, G1 and G2
do not have to be K-isomorphic. Our next theorem describes the situations
where it can be asserted that G1 and G2 are K-isomorphic.

Theorem D. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero, of the same
type different from An, D2n+1, with n > 1, D4 and E6. If for i = 1, 2, Gi(F )
contain Zariski-dense weakly commensurable (Gi, K, S)-arithmetic subgroups
Γi, then G1 � G2 over K, and hence Γ1 and Γ2 are commensurable up to an
F -isomorphism between G1 and G2.

In earlier versions of [23] as well as in the original version of this article
presented at the ICCM 2007, the case of groups of type D2n in Theorem
D was left open. This case was later settled in [24] using techniques of
[23] in conjunction with new results on embeddings of fields with involutive
automorphisms into simple algebras with involutions.

In the general case, we have the following finiteness result.

Theorem E. Let G1 and G2 be two connected absolutely almost simple
groups defined over a field F of characteristic zero. Let Γ1 be a Zariski-dense
(G1, K, S)-arithmetic subgroup of G1(F ). Then the set of K-isomorphism
classes of K-forms G2 of G2 such that G2(F ) contains a Zariski-dense
(G2, K, S)-arithmetic subgroup weakly commensurable to Γ1, is finite. In
other words, the set of all Zariski-dense (K, S)-arithmetic subgroups of G2(F )
which are weakly commensurable to a given Zariski-dense (K, S)-arithmetic
subgroup of G1(F ), is a union of finitely many commensurability classes.

Note that for the types An, D2n+1 (n > 1) and E6 excluded in Theo-
rem D, the number of commensurability classes in Theorem E may not be
bounded by an absolute constant depending, say, on G, K and S, viz. as one
varies Γ1 (or, equivalently, G1), this number changes and typically grows to
infinity. To explain what happens for groups of these types, let us consider
the following example.

Fix any n > 1 and pick four nonarchimedean places v1, v2, v3, v4 ∈ V K .
Next, consider central division K-algebras D1 and D2 of degree d = n+1 > 2
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with local invariants (∈ Q/Z):

n(1)
v =

⎧⎨
⎩

0 , v �= vi, i � 4
1/d , v = v1 or v2

−1/d , v = v3 or v4

and

n(2)
v =

⎧⎨
⎩

0 , v �= vi, i � 4
1/d , v = v1 or v3

−1/d , v = v2 or v4.

Then the algebras D1 and D2 are neither isomorphic nor anti-isomorphic,
implying that the algebraic groups G1 = SL1,D1 and G2 = SL1,D2 (which
are anisotropic inner forms of type An) are not K-isomorphic. On the other
hand, D1 and D2 have exactly the same maximal subfields, which means
that G1 and G2 have the same maximal K-tori. It follows that for any S,
the corresponding S-arithmetic subgroups are weakly commensurable, but
not commensurable. Furthermore, by increasing the number of places in this
construction, one can construct an arbitrarily large number of central divi-
sion K-algebras of degree d with the above properties. Then the associated
S-arithmetic groups will all be weakly commensurable, but will constitute
an arbitrarily large number of commensurability classes.

In [23], Example 6.6, we described how a similar construction can be
given for some outer form of type An (i.e., for special unitary groups). The
construction relies on a local-global principle for embeddings of fields with
an involutive automorphism into simple algebras with involutions which in
full generality was recently established in [24], §4 (previously, it was known
only in the case where d = n + 1 is odd, cf. Proposition A.2 in [18]). It is
easiest to implement this construction for d odd (which is the case considered
in loc. cit.) as then the corresponding special unitary group is automatically
quasi-split at every nonarchimedean place where it remains an outer form,
but the case of d even can also be worked out.

However, construction of nonisomorphic K-groups with the same K-tori
was not known for types D2n+1 (n > 1) and E6. We have given a construc-
tion, using Galois cohomology, which works uniformly for types An, D2n+1
(n > 1) and E6 (cf. [23], §9). Towards this end, we established a new local-
global principle for the existence of an embedding of a given K-torus as a
maximal torus in a given absolutely simple simply connected K-group. This
construction, of course, allows one to produce examples of noncommensu-
rable weakly commensurable S-arithmetic subgroups in groups of types An,
D2n+1 (n > 1) and E6, and in fact, show that the number of commensura-
bility classes is unbounded. This construction may also be useful elsewhere,
for example, in the Langlands program. The triality forms 3,6D4 remain to
be studied.
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Even though the definition of weak commensurability involves only semi-
simple elements, it detects the presence of unipotent elements; in fact it
detects K-rank.

Theorem F. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a field F of characteristic zero. For i = 1, 2, let
Γi be a Zariski-dense (Gi, K, S)-arithmetic subgroup of Gi(F ). Assume that
Γ1 and Γ2 are weakly commensurable. Then rkK G1 = rkK G2 (in particular,
if G1 is K-isotropic, then so is G2). If G1 and G2 are of the same type, then
the Tits indices of G1/K and G2/K, and for every place v of K, the Tits
indices of G1/Kv and G2/Kv, are isomorphic.

The above results provide an almost complete picture of weak commen-
surability among S-arithmetic subgroups. In view of the connection of weak
commensurability with length-commensurability of locally symmetric spaces
(cf. §3), one would like to extend these results to not necessarily arithmetic
Zariski-dense subgroups. We conclude this section with an arithmeticity
theorem in which only one subgroup is assumed to be arithmetic, and a
discussion of some open questions.

Theorem G. Let G1 and G2 be two connected absolutely almost simple
algebraic groups defined over a nondiscrete locally compact field F of char-
acteristic zero, and for i = 1, 2, let Γi be a Zariski-dense lattice in Gi(F ).
Assume that Γ1 is a (K, S)-arithmetic subgroup of G1(F ). If Γ1 and Γ2 are
weakly commensurable, then Γ2 is a (K, S)-arithmetic subgroup of G2(F ).

Remarks: (i) The assumption that both Γ1 and Γ2 are lattices cannot
be omitted. For example, let Γ ⊂ SL2(Z) be a torsion-free subgroup of finite
index, and Γn be the subgroup generated by the n-th powers of elements in
Γ. Then Γn is weakly commensurable with Γ for all n. On the other hand,
[Γ : Γn] = ∞ for all sufficiently large n, and then Γn is not arithmetic. The
same remark applies to all hyperbolic groups. However, we do not know
what happens in the higher rank situation.
(ii) The case of lattices in products of real and p-adic groups has not been
fully investigated.
(iii) Yet another interesting question is whether or not the discreteness of one
of the two weakly commensurable finitely generated Zariski-dense subgroups
Γi ⊂ Gi(F ), where i = 1, 2, implies the discreteness of the other. The
affirmative answer was given in [23], Proposition 5.6, for the case where G1
and G2 are absolutely almost simple and F is nonarchimedean. For general
semi-simple real groups, the question remains open.

Further analysis of weak commensurability of general Zariski-dense sub-
groups of G(F ) for an arbitrary field F would require information about
classification of forms of G over general fields, which is not yet available.
For example, even the following basic question seems to be open.
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Question 3. Let D1 and D2 be two quaternion division algebras over a
field K. Assume that D1 and D2 have the same maximal subfields. Are they
isomorphic?

M. Rost has informed us that over large fields (like those used in the
proof of the Merkurjev-Suslin theorem) the answer can be “no” (apparently,
the same observation was independently made by A. Wadsworth and some
others). Recently, Garibaldi and Saltman [9] have shown that if the unram-
ified Brauer group Bru(K) is trivial, then the answer to Question 3 is in
the affirmative. This result (and its variants) yield an affirmative answer
for K = k(x1, . . . , xr), a purely transcendental extension of a number field
k. However, for general finitely generated fields (and the fields that arise
in the investigation of weakly commensurable finitely generated subgroups
are finitely generated), the answer is unknown. Furthermore, if the answer
turns out to be negative in general, we would like to know if the number of
isomorphism classes of quaternion algebras over a given finitely generated
field, and containing the same maximal subfields, is finite (this may be use-
ful for extending the finiteness result of Theorem E to some nonarithmetic
subgroups such as the fundamental groups of general compact Riemann sur-
faces). Of course, one can ask similar questions for other types of algebraic
groups.

3. Length-commensurable locally symmetric spaces

Let G be a connected semi-simple algebraic R-group, G = G(R). We
let K denote a maximal compact subgroup of G, and let X = K\G be the
corresponding symmetric space of G. For a discrete torsion-free subgroup Γ
of G, we let XΓ denote the locally symmetric space X/Γ with the fundamental
group Γ. We say that XΓ is arithmetically defined if Γ is arithmetic (with S
the set of archimedean places of K) in the sense specified in §2.

Our goal now is to relate length-commensurability of locally symmetric
spaces to weak commensurability of their fundamental groups. We need to
recall some basic facts about closed geodesics on XΓ (cf. [22], or [23], §8).
The closed geodesics on XΓ correspond to semi-simple elements of Γ. For a
semi-simple element γ ∈ Γ, let cγ be the closed geodesic corresponding to γ.
Its length is given by the following formula (see [23], Proposition 8.5):

(3.1) �Γ(cγ)2 = (1/n2
γ)

(∑
(log |α(γ)|)2

)
,

where nγ is an integer, and the sum is over all roots α of G with respect
to a maximal R-torus T such that γ ∈ T (R). (We notice that for the upper
half-plane H = SO2\SL2(R) this metric differs from the standard hyperbolic
metric, considered in §1, by a factor of

√
2, which, of course, does not affect

length commensurability.)
For our purposes, we need to recast (3.1) using the notion of a positive

real character. Given a real torus T, a real character χ of T is called positive
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if χ(t) > 0 for all t ∈ T (R). We notice that for any character χ of T we have

|χ(t)|2 = χ(t) · χ(t) = (χ + χ)(t) = χ0(t),

where χ0 is a positive real character. Hence,

(3.2) �Γ(cγ)2 = (1/n2
γ)

p∑
i=1

si(log χ(i)(γ))2,

where si ∈ Q, and χ(i) are positive real characters.
The right-hand side of (3.2) is easiest to analyze when rkR G = 1, which

we will now assume. Let χ be a generator of the group of positive real
characters of a maximal R-torus T containing γ. Then

(3.3) �Γ(cγ) = (s/nγ) · | log χ(γ)|,
where s is the square root of an integer which is independent of γ and T
(because any two maximal R-tori of real rank one are conjugate to each
other by an element of G(R)).

Now, for i = 1, 2, let Gi be a connected semi-simple real group, Gi =
Gi(R), and Γi be a Zariski-dense discrete torsion-free subgroup of Gi. Set
XΓi = Xi/Γi, where Xi is the symmetric space of Gi. Then XΓ1 and XΓ2

are commensurable as Riemannian manifolds (i.e., have a common finite-
sheeted cover) if and only if Γ1 and Γ2 are commensurable up to
R-isomorphism between G1 and G2.

The relationship between the length-commensurability of XΓ1 and XΓ2 is
particularly easy to observe if G1 = G2 is a group of real rank one. Indeed,
if semi-simple elements γ1 ∈ Γ1 and γ2 ∈ Γ2 are not weakly commensurable,
then it follows from (3.3) that

(3.4) �Γ1(cγ1)/�Γ2(cγ2) = (nγ2/nγ1) ·
(

± log χ1(γ1)
log χ2(γ2)

)
/∈ Q.

Therefore, if Γ1 and Γ2 are not weakly commensurable, then XΓ1 and XΓ2 are
not length-commensurable. Thus, the connection noted in §1 for hyperbolic
2-manifolds remains valid for arbitrary locally symmetric spaces of rank
one. In fact, one can make a stronger statement assuming that Γ1 and Γ2
are arithmetic (or, more generally, can be conjugated into SLn(Q)), even
when G1 and G2 are non necessarily isomorphic groups of real rank one (in
which case the factors s in (3.3) for G1 and G2 may be different). Then
χi(γi) ∈ Q

× for i = 1, 2. But according to a theorem proved independently
by Gelfond and Schneider in 1934, if α and β are algebraic numbers such
that log α/log β is irrational, then it is transcendental over Q (cf. [4]). So, it
follows from (3.3) that if Γ1 and Γ2 are as above, and γ1 ∈ Γ1 and γ2 ∈ Γ2
are not weakly commensurable, then

�Γ1(cγ1)/�Γ2(cγ2)

is transcendental over Q.
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To relate length-commensurability of locally symmetric spaces of higher rank
with the notion of weak commensurability of their fundamental groups, we
need to invoke the Schanuel’s Conjecture from transcendental number theory
(cf. [4]).

Schanuel’s conjecture. If z1, . . . , zn ∈ C are linearly independent
over Q, then the transcendence degree over Q of the field generated by

z1, . . . , zn; ez1 , . . . , ezn

is � n.

What we need is the following corollary of Schanuel’s conjecture. Let
α1, . . . , αn be nonzero algebraic numbers, and set zi = log αi. Applying
Schanuel’s conjecture, we obtain that log α1, . . . , log αn are algebraically in-
dependent as soon as they are linearly independent (over Q), i.e., whenever
α1, . . . , αn are multiplicatively independent.

Before we proceed, we would like to point out that our results for locally
symmetric spaces of rank > 1 depend on the truth of Schanuel’s conjecture
(hence are conditional). Analyzing the right hand side of equation (3.2) with
the help of the above consequence of Schanuel’s conjecture, we show that
if both Γ1 and Γ2 can be conjugated into SLn(Q), for non-weakly commen-
surable γi ∈ Γi, �Γ1(cγ1) and �Γ2(cγ2) are algebraically independent over Q.
Thus, we obtain the following.

Proposition. For i = 1, 2, let Γi be a discrete torsion-free subgroup of
Gi = Gi(R), where G1 and G2 are semi-simple R-subgroups of SLn. Under
each of the following sets of assumptions

(i) G1 and G2 are of real rank 1, and either Γ1 and Γ2 can be conjugated
into SLn(Q), or G1 = G2;

(ii) Γ1 and Γ2 can be conjugated into SLn(Q), and Schanuel’s conjecture
holds,

the length-commensurability of XΓ1 and XΓ2 implies the weak commensura-
bility of Γ1 and Γ2.

We recall that if Γ is a lattice in G = G(R), where G is a connected ab-
solutely simple real algebraic group, not isogenous to SL2, then there exists
a real number field K such that G is defined over K and Γ ⊂ G(K), see [26],
Proposition 6.6. Thus, if G is not isogenous to SL2 and XΓ has finite vol-
ume, then Γ can always be conjugated into SLn(Q), and the corresponding
assumptions in the above proposition become redundant.

Henceforth, we will assume that G1 and G2 are connected and absolutely
simple. We will refer to the following situation as the exceptional case:

(E) One of the locally symmetric spaces, say, XΓ1 , is 2-dimensional
and the corresponding discrete subgroup Γ1 cannot be conjugated
into PGL2(Q), and the other space, XΓ2 , has dimension > 2.
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The following is an immediate consequence of the above proposition and
subsequent remarks.

Corollary. Let G1 and G2 be connected absolutely simple real alge-
braic groups, and let XΓi be a locally symmetric space of finite volume, of
Gi = Gi(R), for i = 1, 2. Assume that we are not in the exceptional case
(E). If XΓ1 and XΓ2 are length-commensurable, then Γ1 and Γ2 are weakly
commensurable.

Now, Theorems A and B immediately imply the following.

Theorem 1. Let G1 and G2 be connected absolutely simple real algebraic
groups, and let XΓi be a locally symmetric space of finite volume, of Gi, for
i = 1, 2. Assume that XΓ1 and XΓ2 are length-commensurable, and we are
not in the exceptional case (E). Then (i) either G1 and G2 are of the same
Killing-Cartan type, or one of them is of type Bn and the other is of type Cn,
(ii) KΓ1 = KΓ2 , where KΓi denotes the field generated by the traces Tr Ad γ
for γ ∈ Γi.

We now turn to arithmetically defined locally symmetric spaces.
Combining Theorems D and E with the above proposition, we obtain the
following.

Theorem 2. Let G1 and G2 be connected absolutely simple real algebraic
groups, and let Gi = Gi(R), for i = 1, 2. Then the set of arithmetically
defined locally symmetric spaces XΓ2 of G2, which are length-commensurable
to a given arithmetically defined locally symmetric space XΓ1 of G1, is a
union of finitely many commensurability classes. It in fact consists of a
single class if G1 and G2 have the same type different from An, D2n+1, with
n > 1, D4 and E6.

Next, Theorems F and G imply

Theorem 3. Let G1 and G2 be connected absolutely simple real alge-
braic groups, and let XΓ1 and XΓ2 be length-commensurable locally symmet-
ric spaces of G1 and G2 respectively, of finite volume. Assume that at least
one of the spaces is arithmetically defined and that we are not in the excep-
tional case (E). Then the other space is also arithmetically defined, and the
compactness of one of the spaces implies the compactness of the other.

We now recall that isospectral compact locally symmetric spaces have
same weak length spectrum ([23], Theorem 10.1). Using this fact in con-
junction with Theorems 2 and 3, we obtain the following results, which
apparently do not follow directly from the spectral theory.

Theorem 4. For i = 1, 2, let Gi be a connected absolutely simple adjoint
real algebraic group, and Γi be a discrete torsion-free subgroup of Gi such that
the corresponding locally symmetric space XΓi is compact. If XΓ1 and XΓ2

are isospectral, and Γ1 is arithmetic, then so is Γ2.
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Theorem 5. Notations and assumptions as in Theorem 4, assume that
XΓ1 and XΓ2 are isospectral, and at least one of the subgroups Γ1 and Γ2 is
arithmetic. Then G1 = G2 =: G. Moreover, unless G is of type An, D2n+1
(n > 1), D4 or E6, the spaces XΓ1 and XΓ2 are commensurable.

Finally, we want to address the question as to how different L(XΓ1)
and L(XΓ2) are, given that XΓ1 and XΓ2 are not length-commensurable.
Assuming Schanuel’s conjecture, we prove in [25] the following statement.

Theorem 6. Let G1 and G2 be absolutely simple real algebraic groups of
the same type different from An (n > 1), Dn (n � 4), and E6. Given discrete
torsion-free subgroups Γi of Gi for i = 1, 2, we let Li denote the subfield of
R generated by L(XΓi). If Γ1 and Γ2 are arithmetic, and XΓ1 and XΓ2 are
not length-commensurable, then L := L1L2 has infinite transcendence degree
over either L1 or L2.

It follows from Theorem 6 for the locally symmetric spaces XΓ1 and
XΓ2 considered therein, the fact that these are not length-commensurable
implies that after a possible interchange of the spaces, we will have L(XΓ1) �⊂
Q · Ω · L(XΓ2) for any finite set Ω of real numbers. In particular, XΓ1

and XΓ2 cannot be made length-commensurable by scaling the metric on
one of them. It would be interesting to determine if Theorem 6 and its
consequences mentioned above remain valid for all arithmetically defined
locally symmetric spaces.

(Using this opportunity, we would like to provide a list of some correc-
tions to [23]: (i) p. 115, l. 12 - replace π(Γ2) with π2(Γ2). (ii) In assertion
(2) of Theorem 4.2, replace the condition “if L1 = L2,” by “if L1 = L2 =: L,
and θT1(Gal(LT1/L)) ⊃ W(G1, T1),”. (iii) In footnote 9 on p. 142, replace
“(18)” with “(∗)”. (iv) In the proof of Proposition 5.6, after the proof
of Lemma 5.7, replace “G”, occurring without a subscript, with “G2” ev-
erywhere. (v) In the fourth line of the proof of Theorem 4 (in §6), re-
place “G” with “G1”, and in the next line, replace “obtained from G” by
“obtained from G”. (vi) In the sentence prior to the statement of Theorem
8.15 (p. 166), the reference to Theorem 7 is not needed.)

4. Proofs: p-adic techniques

Given two arithmetic subgroups, or, more generally, two Zariski-dense
subgroups, the proofs of Theorems A–G ultimately rely on the possibility of
constructing semi-simple elements in one subgroup whose spectra are quite
different from the spectra of all semi-simple in the other subgroup unless
certain strong conditions, relating these subgroups, hold. The relevant exis-
tence results fit into a broader project of constructing elements with special
properties in a given Zariski-dense subgroup dealt with in our papers [19],
[21, 22]. The starting point of this project was the following question asked
independently by G.A. Margulis and R. Spatzier: Let Γ be a Zariski-dense
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subgroup of G(K), where G is a connected absolutely almost simple alge-
braic group defined over a finitely generated field K of characteristic zero.
Does there exist a regular semisimple γ ∈ Γ such that 〈γ〉 is Zariski-dense
in T := ZG(γ)◦? It should be pointed out that the existence of such an
element is by no means obvious. For example, if ε ∈ C× is any element of
infinite order, then the subgroup 〈ε〉 × 〈ε〉 ⊂ C× × C× is Zariski-dense, but
it contains no Zariski-dense cyclic subgroup. Elaborating on this observa-
tion, one can construct a Q-torus T such that T (Z) is Zariski-dense in T,
but no element of T (Z) generates a Zariski-dense subgroup of T. Something
similar may also happen in the semi-simple situation. Namely, let G be an
absolutely almost simple Q-group with rkR G = 1. Then if a Q-subtorus T of
G has a nontrivial decomposition into an almost direct product T = T1 · T2
over Q (and such a decomposition exists if T has a nontrivial Q-subtorus),
no element of T (Z) generates a Zariski-dense subgroup of T. The latter ex-
ample shows that the fact that a given torus contains a proper subtorus is
an obstruction to the existence of an element with the desired property. So,
in [19] we singled out tori which were called “irreducible”, and used them
to provide an affirmative answer to the question of Margulis and Spatzier.

Definition. A K-torus T is K-irreducible if it does not contain any
proper K-subtori.

The point is that if T is K-irreducible, then any t ∈ T (K) of infinite
order generates a Zariski-dense subgroup. So, to answer the above question
of Margulis and Spatzier in the affirmative, it would suffice to prove that
Γ contains a regular semi-simple element γ of infinite order such that the
torus T := ZG(γ)◦ is K-irreducible.

We will now outline a general procedure for constructing irreducible tori.
Let T be a K-torus, GT = Gal(KT /K), where KT is the splitting field of T.
Then T is K-irreducible if and only if GT acts irreducibly on X(T )⊗ZQ. Now,
if T is a maximal K-torus of G, then GT acts faithfully on the root system
Φ(G, T ), which allows us to identify GT with a subgroup of Aut(Φ(G, T )).
If under this identification GT contains the Weyl group W (G, T ), then T
is K-irreducible (provided that G is absolutely almost simple). Therefore,
it would be enough to find a γ ∈ Γ such that for T = ZG(γ)◦ as above,
GT ⊃ W (G, T ).

Our proof of the existence in [19] for S-arithmetic subgroups of G(K),
K a number field, used the so-called “generic tori”. It was shown by V.
E. Voskresenskii [33] that G has a maximal torus T defined over a purely
transcendental extension K = K(x1, . . . , xn) such that GT ⊃ W (G, T). Then,
using Hilbert’s Irreducibility Theorem, one can specialize parameters to get
(plenty of) maximal K-tori T of G such that GT ⊃ W (G, T ). In fact, we
can construct such tori with prescribed behavior at finitely many places of
K, using which it is easy to ensure that for the resulting torus T, the group
T (OK(S)) is infinite, and then any element γ ∈ T (OK(S)) of infinite order
has the desired property.
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Some time later, Margulis and G.A. Soifer asked us a different version
of the original question which arose in their joint work with H. Abels on
the Auslander problem: Let G be an absolutely almost simple real algebraic
group, Γ be a finitely generated Zariski-dense subgroup of G(R). Is there a
regular semi-simple element γ in Γ which generates a Zariski-dense subgroup
of T = ZG(γ)◦ and which is also R-regular? We recall that γ ∈ G(R) is R-
regular if the number of eigenvalues, counted with multiplicity, of modulus
1 of Ad γ is minimal possible (cf. [17]). It should be noted that even the
existence of an R-regular element without any additional requirement in an
arbitrary Zariski-dense subgroup Γ is a nontrivial matter: this was estab-
lished by Benoist and Labourie [5] using the multiplicative ergodic theorem,
and then by Prasad [16] by a direct argument; we will not, however, discuss
this aspect here. The real problem is that the above argument for the ex-
istence of a regular semisimle element in Γ which generates a Zariski-dense
subgroup of its centralizer does not extend to the case where Γ is not arith-
metic. More precisely, since Γ is finitely generated, we can choose a finitely
generated subfield K of R such that G is defined over K and Γ ⊂ G(K).
Then we can construct a maximal K-torus T of G which is irreducible over
K. However, it is not clear at all why T (K) should contain an element of
Γ of infinite order if the latter is not of “arithmetic type”. Nevertheless,
the answer to the question of Margulis and Soifer turned out to be in the
affirmative.

Theorem 7 ([21]). Let G be a connected semi-simple real algebraic
group. Then any Zariski-dense subsemigroup Γ of G(R) contains a regular
R-regular element γ such that the cyclic subgroup generated by it is a Zariski-
dense subgroup of the maximal torus T = ZG(γ)◦.

The proof of the theorem, which we will now sketch, used a rather
interesting technique involving p-adic embeddings. We begin by recalling
the following proposition.

Proposition ([21]). Let K be a finitely generated field of characteristic
zero, R ⊂ K be a finitely generated ring. Then there exists an infinite set of
primes Π such that for each p ∈ Π, there exists an embedding εp : K ↪→ Qp

with the property: εp(R) ⊂ Zp.

We will only show that Γ contains an element γ which is “irreducible”
over the field K chosen above, i.e., a regular semi-simple element whose
centralizer T is a K-irreducible maximal torus of G. For this, we fix a
matrix realization G ↪→ SLn and pick a finitely generated subring R of K so
that Γ ⊂ G(R) := G(K)∩SLn(R). We then choose a finitely generated field
extension K of K over which G splits, and fix a K-split maximal torus T0 of
G. We now let C1, . . . , Cr denote the nontrivial conjugacy classes in the Weyl
group W (G, T0). Using the above proposition, we pick r primes p1, . . . , pr

such that for each pi there is an embedding K ↪→ Qpi for which R ↪→ Zpi .
We then employ results on Galois cohomology of semi-simple groups over
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local fields to construct, for each i = 1, . . . , r, an open set Ωpi(Ci) ⊂ G(Qpi)
such that any ω ∈ Ωpi(Ci) is regular semi-simple of infinite order, and for
Tω = ZG(ω)◦, the Galois group GTω contains an element from the image of
Ci under the natural identification W (G, T0) � W (G, Tω). To conclude the
argument, we show that

r⋂
i=1

(Γ ∩ Ωpi(Ci)) �= ∅,

and any element γ of this intersection has the property that for T = ZG(γ)◦,
the inclusion GT ⊃ W (G, T ) holds, as required.

Theorem 7 was already used in [1]. Furthermore, its suitable generaliza-
tions were instrumental in settling a number of questions about Zariski-dense
subgroups of Lie groups posed by Y. Benoist, T.J. Hitchman and R. Spatzier
(cf. [22]). As we already mentioned, the elements constructed in Theorem 7
play a crucial role in the proof of Theorems A–G.

We conclude this article with a brief survey of other applications of p-
adic embeddings. To our knowledge, Platonov [14] was the first to use p-adic
embeddings in the context of algebraic groups. He proved the following.

Theorem 8 ([14]). If π : G̃ → G is a nontrivial isogeny of connected
semi-simple groups over a finitely generated field K of characteristic zero,
then π(G̃(K)) �= G(K).

It is enough to show that if π : T̃ → T is a nontrivial isogeny of K-tori,
then π(T̃ (K)) �= T (K). For this, we pick a finitely generated extension K of
K so that T̃ and T split over K, and every element of Ker π is K-rational.
Then, using the above proposition, one finds an embedding K ↪→ Qp for
some p. To conclude the argument, one shows that π(T̃ (K)) = T (K) would
imply π(T̃ (Qp)) = T (Qp), which is obviously false.

Another application is representation-theoretic rigidity of groups with
bounded generation (cf. [27], and [15], Appendix A.2). We recall that an
abstract group Γ has bounded generation if there are elements γ1, . . . , γd ∈ Γ
such that

Γ = 〈γ1〉 · · · 〈γd〉,
where 〈γi〉 is the cyclic subgroup generated by γi.

Theorem 9 ([27]). Let Γ be a group with bounded generation satisfying
the following condition

(∗) Γ′/[Γ′, Γ′] is finite for every subgroup Γ′ of Γ of finite index.

Then for any n � 1, there are only finitely many inequivalent completely
reducible representations ρ : Γ −→ GLn(C).

The proof is based on the following strengthening of the above proposi-
tion: given K and R as above, there exists an infinite set of primes Π such
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that for each p ∈ Π there are embeddings ε
(i)
p : K → Qp, where i = 1, 2, . . . ,

such that ε
(i)
p (R) ⊂ Zp for all i, and ε

(i)
p (R) ∩ ε

(j)
p (R) consists of alge-

braic numbers for all i �= j. The usual argument using representation
varieties show that it is enough to show that for any ρ : Γ −→ GLn(C),
the traces Tr ρ(γ) are algebraic numbers, for all γ ∈ Γ. For this we pick
a finitely generated subring R of C for which ρ(Γ) ⊂ GLn(R), and then
fix a prime p for which there are embeddings ε

(i)
p : R → Zp as above. Let

ρ(i) : Γ −→ GLn(Zp) be the representation obtained by composing ρ with
the embedding GLn(R) → GLn(Zp) induced by ε

(i)
p . One then observes that

bounded generation of Γ implies that for any subgroup Γ′ of Γ of finite
index, the pro-p completion Γ′

p of Γ′ is a p-adic analytic group. Moreover,
(∗) implies that the corresponding Lie algebra is a semi-direct product of a
semi-simple algebra and a nilpotent one such that the former acts on the
latter without fixed points. Using the fact that a semi-simple algebra has
only finitely many inequivalent representations in any dimension, one derives
that there are i �= j such that Tr ρ(i)(γ) = Tr ρ(j)(γ) for all γ in a suit-
able subgroup Γ′ of Γ of finite index. Then it follows from our construction
that the traces Tr ρ(γ) are algebraic for γ ∈ Γ′, and consequently all traces
Tr ρ(γ) for γ ∈ Γ, are algebraic, as required. (We notice that Theorem 9
was extended in [2] to representations of boundedly generated groups over
fields of positive characteristic.)

Finally, we would like to mention the following theorem which provides
a far-reaching generalization of the results of [3] and [13].

Theorem 10 ([20]). Let G be a connected reductive group over an infi-
nite field K. Then no noncentral subnormal subgroup of G(K) can be con-
tained in a finitely generated subgroup of G(K).

(In fact, a similar result is available in the situation where G(K) is
replaced by the group of points over a semi-local subring of K.) To avoid
technicalities, let us assume that G is absolutely almost simple, and let N
be a noncentral normal (rather than subnormal) subgroup of G(K). Assume
that N is contained in a finitely generated subgroup of G(K). Then, after
fixing a matrix realization G ⊂ SLn, one can pick a finitely generated subring
R of K so that N ⊂ G(R) := G(K)∩SLn(R). Let K be a finitely generated
field that contains R, and such that G is defined and split over K. Now,
choose an embedding εp : K ↪→ Qp so that εp(R) ⊂ Zp, and consider the
closures Δ = N and G = G(K) in G(Qp). Then Δ ⊂ G(Zp), hence it is
compact, and at the same time it is normal in G. On the other hand, G is
essentially G(Qp). However, G(Qp) does not have any noncentral compact
normal subgroups (in fact, the subgroup G(Qp)+ of G(Qp), generated by all
unipotents, is a normal subgroup of finite index which does not contain any
noncentral normal subgroups, cf. [30]). A contradiction.
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