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Abstract

This article is a survey of conjectures and results on reductive algebraic groups having
good reduction at a suitable set of discrete valuations of the base field. Until recently,
this subject has received relatively little attention, but now it appears to be developing
into one of the central topics in the emerging arithmetic theory of (linear) algebraic
groups over higher-dimensional fields. The focus of this article is on the Main
Conjecture (Conjecture 5.7) asserting the finiteness of the number of isomorphism
classes of forms of a given reductive group over a finitely generated field that have
good reduction at a divisorial set of places of the field. Various connections between
this conjecture and other problems in the theory of algebraic groups (such as the
analysis of the global-to-local map in Galois cohomology and the genus problem) are
discussed in detail. The article also includes a brief review of the required facts about
discrete valuations, forms of algebraic groups, and Galois cohomology.

1 Introduction
Over the past six decades, the analysis of various properties of linear algebraic groups
over local and global fields, the origins of which can be traced to the works of Lagrange
and Gauss, has developed into a well-established theory known as the arithmetic theory
of algebraic groups (cf. [94]). While this subject remains an area of active research, there
is growing interest in the arithmetic properties of linear algebraic groups over fields of
an arithmetic nature that are not global (such as function fields of curves over various
classes of fields, including p-adic fields and number fields). These recent developments
rely on a symbiosis of methods from the theory of algebraic groups on the one hand, and
arithmetic geometry on the other. At this stage, it is too early to give a comprehensive
account of these new trends, so the goal of the present article is to discuss one important,
and somewhat surprising, instance of the propagation of the ideas of arithmetic geometry
into the theory of algebraic groups. Curiously, reduction techniques that have been used
in the analysis of diophantine equations since antiquity, and the notion of good reduction,
which is central to modern arithmetic geometry, were utilized in the classical arithmetic
theory of algebraic groups in a rather limited way (see the discussion in Sect. 5).
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A key novelty in the current work is that the consideration of algebraic groups having
good reduction at an appropriate set of discrete valuations of the base field has moved to
the forefront. In fact, one of the important conjectures in the area states that under suit-
able assumptions, the number of isomorphism classes of such absolutely almost simple
groups having a given type should be finite (see Conjecture 5.7 for the precise statement).
Philosophically, this conjecture can be viewed as an analogue of Shafarevich’s conjecture,
proved by Faltings [38], on the finiteness of the number of isomorphism classes of abelian
varieties defined over a given number field and having good reduction outside a fixed
finite set of places of the field. More importantly, just like the work of Faltings is now the
centerpiece of finiteness results in arithmetic geometry, this conjecture and related ones
are likely to become the cornerstone for various finiteness properties involving linear alge-
braic groups over higher-dimensional fields. Here we just mention that these conjectures
deal with such classical aspects of the theory as the local-global principle (formulated in
terms of properties of the global-to-local map in Galois cohomology—cf. [118] and the
recent survey [87]) as well as ways of extending the theoremon the finiteness of class num-
bers for groups over number fields to more general situations. It should also be pointed
out that, if proven, the finiteness conjecture for groups with good reduction would have
numerous applications: we will discuss the genus problem for absolutely almost simple
algebraic groups and weakly commensurable Zariski-dense subgroups of these that play a
crucial role in the analysis of length-commensurable locally symmetric spaces, particularly
those that are not arithmetically defined (such as, for example, nonarithmetic Riemann
surfaces). We hope that this new direction of research in the theory of algebraic groups,
which brings together various topics from a number of areas and has rather unexpected
applications, will be of interest to a broad audience.
The structure of the article is as follows. In Sect. 2, we give a brief overview of the use of

reduction techniques and the notion of good reduction in arithmetic geometry, focusing,
in particular, on the (weak)Mordell theorem and Shafarevich’s theorem on elliptic curves
with good reduction that eventually culminated in the work of Faltings. Next, in Sect. 3,
we consider some motivating examples that naturally lead to the formal definition of
good reduction for reductive groups. Since the formulation of our Main Conjecture relies
on the notion of forms of a given (reductive) algebraic group, we recall this in Sect. 4,
along with the required facts about Galois cohomology. In Sect. 5, we first review previous
work on the analysis of groups with good reduction, which focused exclusively on the
case where the base field is the fraction field of a Dedekind domain and the relevant set
of places consists of the discrete valuations of the field associated with maximal ideals
of the ring. We then formulate the Main Conjecture (Conjecture 5.7) for groups having
good reduction at a divisorial set of places of a finitely generated field. In Sect. 6, we
discuss several other finiteness conjectures in this setting, which deal with the properness
of the global-to-local map in Galois cohomology and finiteness conditions on the class
set of an algebraic group. Available results on these conjectures are presented in Sect. 7.
We should point out that recently, all the finiteness properties discussed in this article
were established for algebraic tori [106]. On the other hand, results for absolutely almost
simple groups are more modest (see, in particular, [20–22]), and a great deal of work here
still lies ahead. In Sect. 8, we apply these results to the genus problem, which focuses on
understanding absolutely almost simple algebraic groups that have the same isomorphism
classes of maximal tori over the field of definition (cf. [21,22]). In Sect. 9, we discuss some
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applications to Zariski-dense subgroups of absolutely almost simple groups related to the
idea of eigenvalue rigidity; the latter is based on the notion of weak commensurability and
grew out of the investigation of isospectral and length commensurable locally symmetric
spaces (cf. [96,104]). Finally, for completeness, in Sect. 10, we discuss two aspects of the
arithmetic theory of algebraic groups over higher-dimensional fields that are not directly
related to the Main Conjecture, but which play an important role: strong approximation
and rigidity.

2 Good reduction in arithmetic geometry
In order to provide some historical and philosophical context for the recent developments
in the study of algebraic groups with good reduction, in this section, we give a brief
overview of the use of reduction techniques and the notion of good reduction in arithmetic
geometry.
To begin with, reduction techniques are among the most basic and oldest tools in

number theory. Indeed, it has been known since antiquity that they can be used to show
that certain algebraic equations do not have integral or rational solutions (in other words,
the corresponding algebraic varieties have no integral or rational points). For example,
consider the equation

x2 − 7y2 = −1

and suppose that (x0, y0) is an integral solution. Reducing this equation modulo 7, we
obtain

x20 ≡ −1(mod 7).

However, there is no class modulo 7 that satisfies this condition as otherwise the multi-
plicative group (Z/7Z)×, which has order 6, would contain an element of order 4. This
means that the original equation has no integral solutions.
At the beginning of the twentieth century, it was realized that beyond simply detecting

the absence (and sometimes also the presence) of rational points, reduction techniques
can be used to analyze the structure of the solution set, i.e., the set of rational points of
the corresponding variety over a given field. One of the earliest, and perhaps most telling,
examples of this arose in the study of elliptic curves. For simplicity, suppose that K is
a field of characteristic �= 2, 3. We recall that an elliptic curve E over K is given by an
equation of the form

y2 = f (x), (1)

where f (x) = x3 + ax + b is a cubic polynomial over K without multiple roots. More
precisely, E is the corresponding projective curve that is obtained by adding one point at
infinity. It is well known (see, for example, [125, Ch. 1]) that the set of K -rational points
E(K ) has the structure of an abelian group (with the group operation defined geometrically
by the chord-tangent law). One of the cornerstone results in the arithmetic of elliptic
curves is that whenK is a number field (or, more generally, a finitely generated field), then
the group E(K ) is finitely generated. This statement, known as theMordell-Weil Theorem,
is actually true for any abelian variety (cf. [71, Ch. VI]). The proof for elliptic curves over
the field K = Q of rational numbers was given by Louis Mordell [80] in 1922. One of
the key steps, which is now usually referred to as the Weak Mordell Theorem, is to show
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that the quotient E(K )/2E(K ) is finite (in fact, E(K )/nE(K ) is finite for any n ≥ 1); the
argument here relies heavily on reduction.
For the purposes of this discussion, let us assume that the coefficients a and b of f (x) in

(1) are integers, and let p > 3 be a prime. Reducing modulo p, we obtain the equation

y2 = f̄ (x), with f̄ (x) = x3 + āx + b̄

over the finite field Fp with p elements, where ā and b̄ denote the images of a and b in
Fp, respectively. If f̄ does not have multiple roots, the reduced equation still defines an
elliptic curve, in which case we say that Eq. (1) has good reduction at p. On the other
hand, if f̄ has multiple roots, we say that (1) has bad reduction at p. In this case, after
reduction modulo p, the original elliptic curve degenerates into a singular rational curve.
We note that the primes of bad reduction are precisely those that divide the discriminant
�(f ) = −4a3 − 27b2 of f , and therefore form a finite set. Furthermore, we say that an
elliptic curve E has a good reduction at a prime p > 3 if (after a possibleQ-defined change
of coordinates) it can be given by an Eq. (1) that has good reduction at p.1 For example,
the equation y2 = x3 − 625x has bad reduction at p = 5, but the elliptic curve it defines is
isomorphic to the elliptic curve given by y2 = x3 − x, which has good reduction at p = 5.
Otherwise, we say that E has bad reduction at p (we refer the reader to [124, Ch. VII] for
a systematic account of these issues).
We will now sketch a proof of the Weak Mordell Theorem. Fix an elliptic curve E over

Q and let

S = {2, 3} ∪ {p | E has bad reduction at p}.
(as noted above, S is a finite set of primes). Furthermore, for a point R ∈ E(Q̄), where Q̄
is a fixed algebraic closure of Q, we let Q(R) denote the residue field of R, which is Q if R
is the point at infinity, and the field generated by the coordinates of R for all other points.
We now consider the isogeny

π : E → E, P �→ 2P.

Since π has degree 4, it follows that for any P ∈ E(Q) and any R ∈ π−1(P), the field
extension Q(R)/Q is of degree ≤ 4. Moreover, using the fact that E has good reduction
at any prime p /∈ S, one shows that the extension Q(R)/Q is unramified at p (this part of
the argument can be carried out either through the analysis of formal groups or Hensel’s
lemma). We now recall that according to the classical Hermite–Minkowski theorem, Q
has only finitely many extensions of a bounded degree that are unramified at all primes
outside of a fixed finite set of primes (cf. [83, Ch. III, Theorem 2.13]). Applying this to
the set S, we see that among the fields Q(R), where R ∈ π−1(P) and P runs through
E(Q), there are only finitely many distinct ones. Consequently, the field Q(π−1(E(Q))),
which is the compositum of all suchQ(R), is a finite extension ofQ.One then derives the
required finiteness of the quotient E(Q)/2E(Q) by combining the Kummer sequence with
the inflation-restriction sequence in Galois cohomology. The reader who wishes to fill in
the details of this sketch can consult [124, Ch. VII and VIII] for a comprehensive account
of the theory of elliptic curves over local and global fields.

1More formally, let vp denote the (normalized) p-adic valuation onQ and let Z(p) be the corresponding valuation ring.
The elliptic curve E is said to have good reduction at p if there exists an abelian scheme E(p) over the valuation ring
Z(p) with generic fiber E (the scheme E(p) is then unique, which leads to a well-defined notion of reduction modulo p).
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Now, while this argument certainly demonstrates the utility of considering the places
of good reduction of an elliptic curve, it still does not fully reveal their effect on the curve
itself. In his 1962 ICM talk [121], Shafarevich pointed out that if S is a finite set of rational
primes, then there are only finitely many isomorphism classes of elliptic curves over Q
having good reduction at all primes p /∈ S (in fact, he stated his theorem for an arbitrary
number field K and a finite set of places S). For the sake of completeness, we sketch an
elegant proof of this theorem that appears in Serre’s book [116, IV-7] and which Serre
attributes to Tate. The argument is based on Siegel’s theorem from diophantine geometry
and goes as follows. Let A be the localization of Z with respect to the multiplicative set
generated by S, which we can assume contains 2 and 3. First, using unique factorization in
A, one shows that a given elliptic curve E having good reduction at all p /∈ S is isomorphic
to an elliptic curve given by (1), where the coefficients a and b of the polynomial f belong
to A and the discriminant �(f ) belongs to the unit group A×. Next, if we have two elliptic
curves with discriminants �1,�2 ∈ A×, and �2 = �1u12 for some u ∈ A×, then one
curve can be replaced by an isomorphic one, whose equation is still of the form (1), so
that the discriminants actually become equal. Since the quotient A×/A×12 is finite, it is
enough to show that the polynomials f with a, b ∈ A and a fixed value �0 ∈ A× of the
discriminant form a finite set. But the equation �(f ) = �0 can be written in the form
−27b2 = 4a3 + �0, which itself defines an elliptic curve, hence has only finitely many
solutions in A by Siegel’s Theorem (cf. [71, Ch. VII, §§1-2]).
The preceding argument is obviously very specific to elliptic curves, but Shafarevich felt

that his theoremwas an instance of a farmore general phenomenon, which prompted him
to formulate the following finiteness conjecture for abelian varieties (which are higher-
dimensional analogues of elliptic curves):
Let K be a number field and S be a finite set of primes of K . Then for every g ≥ 1, there
exist only finitely many K -isomorphism classes of abelian varieties of dimension g having
good reduction at all primes p /∈ S.
This conjecture was proved by Faltings [38] in 1982 as a culmination of research in

diophantine geometry on finiteness properties over the course of several decades. Its
numerous implications include theMordell conjecture (a smoothprojective curveof genus
≥ 2 over a number fieldK has only finitelymanyK -rational points) as well as Shafarevich’s
conjecture for curves (for any g ≥ 2, there are only finitely many isomorphism classes of
smooth projective curves over K of genus g having good reduction at all p /∈ S). We refer
the reader to the survey [34] for an account of these developments as well as a discussion
of other instances of the analysis of good reduction for various classes of “objects” over
number fields. It will come as no surprise to the reader that, to this day, this subject
remains one of the major themes in arithmetic geometry.

3 Reductive algebraic groups with good reduction
Having discussed the notion of good reduction in arithmetic geometry in the previous
section, we will now transition to looking at good reduction in the context of linear
algebraic groups. We begin this section with a series of examples that highlight several
important points that arise in the consideration of reductions of algebraic groups. With
these motivations in place, we will then formally define what it means for a reductive
group to have good reduction with respect to a discrete valuation of the base field.
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We refer the reader to Borel’s book [10] for a detailed account of the theory of linear
algebraic groups. For our purposes, we recall that a linear algebraic group is a subgroup
G ⊂ GLn(�) that is defined by polynomial equations over� in terms of thematrix entries
(where� is some algebraically closed field). Moreover, if K is a subfield of� and the ideal
of all polynomial functions over � that vanish on G is generated by polynomials with
coefficients in K , we say that G is K -defined or is an algebraic K -group. We note that if
char � = 0, then G is K -defined if and only if it can be defined by polynomial equations
with coefficients in K (cf. [10, AG, 12.2]). For simplicity, we will consider examples over
K = Q, but these can be easily generalized.

Example 3.1 Intuitively, the reduction of the general linear group G = GLn modulo a
prime p should be the group GLn over the field Fp = Z/pZ. To justify this fact formally,
one uses the following considerations. We observe that G can be viewed as a Z-group
scheme Spec A, where

A = Z

[
x11, . . . , xnn,

1
det(xij)

]

in the sense that for any commutative ring R, one can identify the group GLn(R) with
HomZ-alg(A, R), and this identification is natural in R. For any prime p, we can reduce A
modulo p:

Ap := A ⊗Z Fp = Fp

[
x11, . . . , xnn,

1
det(xij)

]
.

Then it is easy to see that Ap represents GLn over the category of Fp-algebras, i.e., for any
such algebra R, there is an identification of GLn(R) with HomFp-alg(Ap, R) that is natural
in R. Thus, we can say that theQ-group GLn has a Z-structure given by the algebra A, and
that the reduction modulo p of the latter represents the group GLn over Fp.

In particular, the 1-dimensional split torus Gm = GL1 is represented by Z[x, x−1]; the
reduction of this Z-algebra modulo p is Fp[x, x−1], which represents the 1-dimensional
split torus over Fp. More generally, the reduction modulo p of the d-dimensional split
torus Gd

m, which is represented by the Laurent polynomial ring

Z[x1, . . . , xd , x−1
1 , . . . , x−1

d ],

is the d-dimensional split torus over Fp.

Example 3.2 TheQ-groupG = SLn is defined insideGLn by the single equation det(xij)−
1 = 0. Its reductionmodulo p gives an equation of a similar shape over Fp, suggesting that
the reduction modulo p should be SLn over Fp. Again, to justify this formally, we view G
as an affine group scheme over Z represented by the Hopf Z-algebra

Z[x11, . . . , xnn]/(det(xij) − 1).

The reduction of this algebra modulo p is Fp[x11, . . . , xnn]/(det(xij)−1), which represents
SLn as a group scheme over Fp.

Example 3.3 Let G be the special orthogonal group SOn(q), where q = x21 + · · · + x2n ∈
Z[x1, . . . , xn] and n ≥ 3. Then the reduction of G modulo any prime p > 2 is again the
special orthogonal group SOn(q̄) of the quadratic form q̄ = x21 + · · · + x2n over Fp.
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The common feature in these three examples is, in essence, that reduction modulo p
yields an algebraic group of the same type. To be more precise, the groups in Example
3.1, i.e., GLn and the split tori, are (connected and) reductive, and so are their reductions
modulo all primes p (in this context, connectedness is always understood in terms of
the Zariski topology). The groups in Examples 3.2 and 3.3 are (connected and) semi-
simple, and all of their reductions are again semi-simple.2 On the other hand, the next
two examples exhibit a different type of behavior.

Example 3.4 Let p > 2 be a prime and consider the quadratic extension L = Q(√p).
Recall that the norm of an element z = a + b√p ∈ L is given by NL/Q(z) = a2 − pb2.
There exists an algebraic Q-group G whose group of Q-points G(Q) consists precisely of
the elements z ∈ L× with NL/Q(z) = 1. Explicitly, for any Q-algebra R, the group G(R)

consists of matrices of the form
(
a pb
b a

)
, with a, b ∈ R, having determinant 1. In other

words, G is defined by the following equations on a (2 × 2)-matrix X = (xij):

x11 = x22, x12 = px21, x211 − px221 = 1. (2)

We note that the matrix
(√p −√p

1 1

)
conjugates G (over Q) into the group of diag-

onal matrices
(
u 0
0 v

)
with determinant 1, which means that structurally, G is a 1-

dimensional (Q-anisotropic) torus, usually denoted R(1)
L/Q

(Gm) and called the norm torus
associated with the extension L/Q.

Now, considering the closed subscheme of the Z-scheme GL2 given by (2) and reducing
the defining equations modulo p, we obtain the equations

x11 = x22, x12 = 0, x211 = 1.

The solutions to these equations are matrices of the form ±
(
1 0
u 1

)
. Thus, the reduced

equations define an algebraic group over Fp which is disconnected and whose connected
component is a 1-dimensional unipotent group! At the same time, reducing the equations
(2) modulo any prime q > 2 different from p, we still get a 1-dimensional torus.

Example 3.5 We now consider a noncommutative version of Example 3.4. Let p > 2
be a prime and D be the quaternion algebra over Q corresponding to the pair (−1, p).
Explicitly, D is a 4-dimensional vector space over Q with basis 1, i, j, k and the following
multiplication table:

i2 = −1, j2 = p, k = ij = −ji.

We recall that the reduced norm of a quaternion z = a + bi + cj + dk ∈ D is given by
NrdD/Q(z) = a2 + b2 − pc2 − pd2. Again, there is a Q-defined algebraic group G, which
is usually denoted SL1,D, whose group of Q-points is

2We recall that one defines the unipotent radical of a connected algebraic groupG to be the largest connected unipotent
normal subgroup, and one says that G is reductive if its unipotent radical is trivial. For example, all tori (i.e., connected
diagonalizable algebraic groups) are reductive. An algebraic group is (absolutely almost) simple if it does not contain
any proper connected normal subgroups, and semi- simple if it admits a surjective morphism from a direct product of
simple groups. We refer the reader to [10] and [32] for the details.
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G(Q) = {z ∈ D× | NrdD/Q(z) = 1}.
Using the regular representation of D, we can represent G explicitly by matrices of the
form⎛

⎜⎜⎜⎝
a −b pc −pd
b a pd −pc
c d a −b
d −c b a

⎞
⎟⎟⎟⎠ such that a2 + b2 − pc2 − pd2 = 1. (3)

One can easily find a matrix over Q(
√−1) or Q(√p) that conjugates G into matrices of

the form
(
A O
O A

)
, with A ∈ SL2, which means that over these extensions (and hence

over Q̄), this group is isomorphic to SL2. In other words, SL1,D is aQ-form of SL2, hence,
in particular, a simple algebraic group (see Sect. 4 for amore detailed discussion of forms).

Taking the obvious linear equations defining thematrices (3) and reducing themmodulo
p, we obtain a system that defines the following group

⎛
⎜⎜⎜⎝

a −b 0 0
b a 0 0
c d a −b
d −c b a

⎞
⎟⎟⎟⎠ with a2 + b2 = 1.

The matrices of the form
(
I2 O
∗ I2

)
in this group form a connected unipotent normal

subgroup, which shows that the reduction in this case is not a reductive group.
We see that the reductive Q-groups in Examples 3.1–3.3 admit a structure of a group

scheme over Z (or, more generally, over Z(p)—the localization of Z at the prime ideal (p)),
which is described by a system of polynomial equations with coefficients in the respective
ring such that the reductions of these equations modulo p still define a reductive group.
On the other hand, in Examples 3.4 and 3.5, we have situations where a reductive group
is given by a system of polynomials with coefficients in Z (or Z(p)) such that the reduced
system no longer defines a reductive group.
So, in analogy with the case of elliptic curves, we are naturally led to the following

definition forQ-groups: we say that a reductiveQ-group G has good reduction at a prime
p if it can be defined by a system of polynomial equations with coefficients in Z(p)

3 such
that the reduction of the system modulo p still defines a reductive group; otherwise we
say that G has bad reduction at p. Thus, the groups in Examples 3.1–3.3 do have good
reduction at the specified primes. On the other hand, with some additional work, one can
show that for any prime p > 2, the group in Example 3.4 has bad reduction at p and good
reduction at every odd prime q �= p, and the group in Example 3.5 has bad reduction at p
whenever p ≡ 3 (mod 4). (We note that for p ≡ 1 (mod 4), the group SL1,D in Example
3.5 is in fact isomorphic to SL2, hence has good reduction at p. So, a group defined by a
systemwhose reduction is not reductive may still have good reduction at p since it may be
possible to describe the group by another system whose reduction does yield a reductive
group.)

3In more technical terms, this system defines a scheme over Z(p) with generic fiber G.



A. S. Rapinchuk, I. A. Rapinchuk Res Math Sci            (2020) 7:28 Page 9 of 66    28 

Now, for (reductive) linear algebraic groupsdefinedover general fields, one considers the
notion of good reductionwith respect to discrete valuations.We recall that a (normalized)
discrete valuation on a field K is a surjective map v : K× → Z such that

(a) v(ab) = v(a) + v(b);
(b) v(a + b) ≥ min(v(a), v(b)) whenever a + b �= 0.

Then

O(v) := {a ∈ K× | v(a) � 0} ∪ {0}
is a subring of K called the valuation ring of v. It is a local ring with the maximal ideal

p(v) = {a ∈ K× | v(a) > 0} ∪ {0},
which is called the valuation ideal of v. An element π ∈ K× with v(π ) = 1 is called
a uniformizer. It is easy to see that π generates p(v), and in fact every nonzero ideal of
O(v) is of the form (πk ) for some k ≥ 0. In other words, O(v) is a discrete valuation ring
(DVR)—we refer the reader to [4, Ch. 9] or [15, Ch. VI, §3, n◦ 6] for a discussion of various
equivalent definitions of a DVR. Next, the quotientO(v)/p(v) is called the residue field of
v, and will be denoted by K (v). Furthermore, the function | · |v : K → R defined by

|a|v = ρv(a) for a ∈ K× and |0|v = 0,

where ρ is a fixed real number with 0 < ρ < 1, is a (non-archimedean or ultrametric)
absolute value on K . We will write Kv for the completion of K with respect to the metric
associated with | · |v . One shows that v naturally extends to a discrete valuation on Kv ; for
ease of notation, we will denote this extension simply by v. The corresponding valuation
ring and valuation ideal in Kv will be denoted Ov and pv , respectively; we note that the
quotientOv/pv coincides with the residue field K (v) defined above. We also set Uv = O×

v
to be the group of units inOv .

Example 3.6 Here are several useful examples of discrete valuations.
(a) To every rational prime p, there corresponds the (normalized) p-adic valuation vp onQ
defined as follows: if a ∈ Q

× is of the form a = pα · m
n

withm and n relatively prime to p,
then v(a) = α. The corresponding valuation ring is the localizationZ(p) considered earlier,
and the residue field is Fp. Furthermore, the completion is the field of p-adic numbersQp,
and the valuation ring of Qp is the ring of p-adic integers Zp.
(b) Let K = k(x) be the field of rational functions in one variable over a field k , and let
p(x) ∈ k[x] be a (monic) irreducible polynomial. Then the same construction as in part
(a) enables us to associate to p(x) a discrete valuation vp(x) on K . There is one additional
discrete valuation on K given by

v∞
(
f
g

)
= deg(g) − deg(f ), where f, g ∈ k[x].

Note that all of these valuations are trivial on the field of constants k (i.e., v(a) = 0 for
all a ∈ k), and cumulatively they constitute all valuations of K with this property. These
valuations are often called “geometric” since they naturally correspond to the closed points
of the projective line P1

k .
(c) Let againK = k(x), but now assume that we are given a discrete valuation v0 of k . Then
v0 can be extended to a discrete valuation v on K by first extending it to the polynomial
ring k[x] using the formula
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for f (x) = anxn + · · · + a0, v(f (x)) := min
i=0,...,n

v(ai),

and then extending v to K by multiplicativity

v
(
f (x)
g(x)

)
= v(f (x)) − v(g(x)).

This extension is often called “Gaussian” (see [15, Ch. VI, §10, n◦ 1] for further details). In
particular, we can start with the p-adic valuation vp on Q and then, using this procedure,
extend it to a valuation v on Q(x).

We are now ready to give a formal definition of good reduction for reductive groups.
It requires language from the theory of reductive group schemes, for which we refer the
reader to [31] or [36] (see also [35] or [144] for general introductions to group schemes).
However, it turns out that in a number of particular cases, some of which will be discussed
below, good reduction can be characterized in very concrete terms. We note that, in a
broad sense, the theory of affine groups schemes shifts attention from concrete matrix
groups to the Hopf algebras that represent these groups and on which one can consider
various “integral” structures. For our purposes, this change in perspective provides an
indispensable framework for discussing the reduction of algebraic groups (as we have
already seen in Examples 3.1 and 3.2).
In our discussion, we will use the following standard notation: given an affine scheme

X = Spec A, where A is a commutative algebra over a commutative ring R, and a ring
extension R ⊂ R′, we will denote by X ×R R′ the affine scheme Spec (A ⊗R R′) over R′

(usually referred to as “base change”).

Definition 3.7 Let K be a field equipped with a discrete valuation v (with corresponding
completion Kv and valuation ringOv ⊂ Kv), and letG be a connected reductive K -group.
We say that G has good reduction at v if there exists a reductive group scheme G overOv
with generic fiber G ×Ov Kv isomorphic to G ×K Kv .

We recall that a smoothOv-group schemeG is called reductive if for every x ∈ Spec(Ov),
the geometric fiber G×Ov κ(x) (where κ(x) is an algebraic closure of the residue field κ(x))
is a (connected) reductive algebraic group over κ(x).We also note that the Ov-scheme G
with generic fiber G ×K Kv is unique (cf. [84, Théorème 5.1] for semi-simple groups as
well as [50, §6] for the general case); in particular, this means that the reduction (or special
fiber)

G(v) := G ×Ov K (v)

is well defined. Furthermore, when G is an absolutely almost simple K -group, the reduc-
tion G(v) has the same Cartan-Killing type as G (see [36, Exp. XXII, Proposition 2.8]).
It should be observed that the definition of good reduction is sometimes given in terms
of reductive O(v)-schemes instead of Ov-schemes. This makes essentially no difference,
but the above definition is more convenient for our purposes, particularly for discussing
connections of good reduction with local-global principles (see Sect. 6).
We conclude this sectionwith several examples of semi-simple groups with good reduc-

tion that will be sufficient for understanding the rest of the article.

Example 3.8 (a) An absolutely almost simple simply connected K -split groupG has good
reduction at any v. This follows from the Chevalley construction, which provides a Z-
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structure for G, described in detail in [9]. (This generalizes the above discussion of SLn in
Example 3.2.)
(b) The algebraic K -group G = SL1,A associated with the group of elements of reduced
norm 1 in a central simple K -algebra A (which generalizes the group SL1,D considered
in Example 3.5) has good reduction at v if and only if A ⊗K Kv comes from an Azumaya
algebraA overOv (which means, in particular, that the reduction A ⊗Ov K (v) is a central
simple algebra over the residue field K (v)). Another way of putting this is to say that A is
unramified at v—see the discussion at the beginning of Sect. 7.2.
(c) Assuming that char K (v) �= 2, the spinor group G = Spinn(q) of a nondegenerate
quadratic form q in n > 2 variables over K has good reduction at v if and only if, over Kv ,
the form q is equivalent to a quadratic form

λ(a1x21 + · · · + anx2n) with λ ∈ K×
v and ai ∈ Uv for all i = 1, . . . , n.

4 Forms with good reduction and Galois cohomology
The purpose of this section is to recall some key points concerning forms of algebraic
groups and (nonabelian) Galois cohomology. These are needed, on the one hand, in order
to formulate an appropriate analogue of Shafarevich’s conjecture for reductive algebraic
groups (see Question 4.3 and Conjecture 5.7), and, on the other hand, are indispensable
for the discussion of local-global principles in Sect. 6.

4.1 F/K -forms

As we saw in Sect. 2, Shafarevich’s conjecture asserts that the number of K -isomorphism
classes of abelian varieties of a given dimension over a number field K that have good
reduction outside a given finite set of places ofK is finite. So, as a straightforward analogue
of this conjecture for reductive linear algebraic groups, one can consider the following:

Let K be a field equipped with a set V of discrete valuations. What are the reductive
algebraic groups of a given dimension that have good reduction at all v ∈ V ? More
specifically, what are the situations in which the number of K -isomorphism classes of
such groups is finite?

Of course, to make these questions meaningful, one needs to specialize K and V , which
we will do in Sect. 5. However, we would first like to point out that in the case of reductive
algebraic groups, considering reductive algebraic groups of a given dimension is far less
natural than considering abelian varieties of the same dimension. Indeed, in a very coarse
sense, all complex abelian varieties of dimension d “look the same”: they are all analytically
isomorphic to complex toriCd/	,where 	 ⊂ C

d is a lattice of rank 2d (see, for example,
[82, Chapter 1]). At the same time, the “fine” structure and classification of these varieties
are highly involved as these varieties have nontrivialmoduli spaces, which leads to infinite
continuous families of nonisomorphic varieties. As a simple example, we recall that the
isomorphism class of a complex elliptic curve is uniquely determined by its j-invariant,
which can be any complex number (in fact, isomorphism classes of elliptic curves are
classified by the j-invariant over arbitrary algebraically closed fields—see [124, Ch. III,
Proposition 1.4]).
On the contrary, reductive algebraic groups of the same dimensionmay look completely

different. For example, the absolutely almost simple group SL2 is 3-dimensional, as is
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the torus (Gm)3, which is a reductive group that is not semi-simple. Furthermore, the
absolutely almost simple simply connected group of type B3, which can be realized as the
spinor group Spin7, has the same dimension as the product of 7 copies of SL2, which is a
semi-simple but not absolutely almost simple group. A fundamental result in the structure
theory of reductive groups is that over an algebraically (or separably) closed field, for each
integer d ≥ 1, there are only finitelymany isomorphism classes of (connected) reductive
groups of dimension d (thus, there are no nontrivial moduli spaces for such groups—see,
for example, [31,Theorem1.3.15] for theprecise statement). So, in the analysis of finiteness
phenomena for reductive groups, it makes sense to focus on those classes of groups that
become isomorphic over a separable closure of the base field; themain issue then becomes
the passage from an isomorphism over the separable closure to an isomorphism over the
base field (so-called Galois descent). This brings us to the following.

Definition 4.1 Let G be a linear algebraic group over a field K , and let F/K be a field
extension. An algebraic K -group G′ is called an F/K -form of G if there exists an F-
isomorphism

G ×K F � G′ ×K F

(where G ×K F denote the algebraic F-group obtained by base change from K to F ).

Although we will restrict ourselves primarily to forms of algebraic groups in the present
article, we should point out that the consideration of forms of various other “algebraic
objects” comes up naturally in many different contexts—we refer the reader to [118, Ch.
III, §1] for a general discussion of forms as well as a number of concrete examples. For
our purposes, we will be interested mostly in K sep/K -forms of a linear algebraic group
G, where K sep is a fixed separable closure of K ; these will often be referred to simply as
K -forms of G.4

Let us now look at several illustrative examples of forms of algebraic groups, which will
suffice for understanding most of the article.

Example 4.2 We let K be a field and fix a separable closure K sep of K .

(a) Let T = (Gm)d be a d-dimensional K -split torus. Any other d-dimensional K -torus
T ′ splits over K sep, i.e., we have a K sep-isomorphism

T ′ ×K K sep � T ×K K sep.

This means that all d-dimensional K -tori are K -forms of T .
(b) Similarly, let G be an absolutely almost simple simply connected split algebraic group
over K , and letG′ be any absolutely almost simple simply connected K -group of the same
(Killing-Cartan) type as G. Again, G′ splits over K sep, hence there is a K sep-isomorphism

G ×K K sep � G′ ×K K sep. (4)

4For comparison, we would like to point out the following finiteness theorem for the forms of abelian varieties (cf.
[89, §3, Finiteness theorem for forms]): Let X be an abelian variety over a field K , and let F/K be a finite separable
extension. Then the set of K -isomorphism classes of abelian K -varieties X ′ such that there exists an F-isomorphism
X ×K F � X ′ ×K F is finite. On the contrary, for a semi-simple linear algebraic K -group G, and a finite separable
extension F/K , the set of K -isomorphism classes of F/K -forms G′ of G is infinite in many cases, even when K is a
number field (see, however, the discussion of fields of type (F) in Sect. 5.2). So, the problem of classifying forms of
(semi-simple) linear algebraic groups with special properties, which is central to the current article, comprises some
challenges that do not arise in the context of abelian varieties.
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This means that G′ is a K -form of G. Thus, every absolutely almost simple simply con-
nected K -group is a K -form of an absolutely almost simple simply connected split K -
group. For later use, let us also mention the following variant of this statement. First, we
recall that a K -group G is said to be K -quasi-split (or simply quasi-split if there is no risk
of confusion) if it contains a Borel subgroup defined over K . Then one shows that every
absolutely almost simple simply connected K -group is an inner form of an absolutely
almost simple simply connected K -quasi-split group (see Example 4.5 below for a brief
discussion of these matters).
(c) Let A be a central simple K -algebra of degree n, and let G = SL1,A be the algebraic
K -group associated with the group of elements of reduced norm 1 in A. Since A ⊗K K sep

is isomorphic to the matrix algebra Mn(K sep), the groupG×K K sep is K sep-isomorphic to
SLn. In other words, G is a K -form of SLn. In fact, it is an inner form, and all inner forms
are obtained this way—see [94, Ch. II, §2.3.4] for the details.
(d) Assume that char K �= 2. Let q be a nondegenerate quadratic form in n variables over
K , and letG = Spinn(q) be the corresponding spinor group (which is an absolutely almost
simple simply connected K -group for n ≥ 3, n �= 4). Then any other nondegenerate
quadratic form q′ over K in n variable is equivalent to q over K sep, implying that for
G′ = Spinn(q′), there is a K sep-isomorphism similar to (4). Thus,G′ is a K -form ofG. If n
is odd, then the groups G′ = Spinn(q′) account for all K -forms of G. For n even however,
there may be other K -forms of G defined in terms of the (universal covers of) the unitary
groups of (skew-)hermitian forms over noncommutative central division K -algebras with
an involution of the first kind (such as, for example, quaternion algebras). For the details
on this, as well as a discussion of the K -forms of other groups of classical types, we refer
the reader to [94, Ch. II, §2.3.4].
Wewill close this subsectionwith the following adjusted version of our original question

concerning reductive groups with good reduction.

Question 4.3 Let K be a field equipped with a set V of discrete valuations. What are
the K-forms (or even just inner K-forms) of a given reductive algebraic K-group G that
have good reduction at all v ∈ V? More specifically, in what situations is the number of
K-isomorphism classes of such K-forms finite?

(In fact, it follows from Example 4.1(b) that whenG is an absolutely almost simple simply
connected algebraic K -group, we can assume that it is quasi-split over K ).
We will return to this question in Sect. 5. First, however, we would like to review some

of the main points of (nonabelian) Galois cohomology and its connection to forms of
algebraic groups.

4.2 A brief review of Galois cohomology

Since Galois cohomology will play a significant role in subsequent sections, we will now
quickly review some of the basic notions, focusing particularly on nonabelian aspects (for
further details, the reader can consult various sources, including [94, Ch. 2] and [118, Ch.
I, §5]).
First, suppose a group
 acts by automorphisms on another groupA (whichmay be non-

commutative).We then define the 0-th (noncommutative) cohomology byH0(
, A) = A


(the subgroup of 
-fixed elements). Furthermore, a (noncommutative) 1-cocycle is a map
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f : 
 → A satisfying

f (στ ) = f (σ ) · σ (f (τ )) for all σ , τ ∈ 
.

It should be noted that while the set Z1(
, A) of 1-cocycles is of course an abelian group
when A is abelian, it may fail to be a group in the general case; instead, it will be treated
simply as apointed set, whose distinguished element is the trivial cocyle.Next, two cocycles
f, g ∈ Z1(
, A) are said to be equivalent if there exists an element a ∈ A such that

g(σ ) = a−1 · f (σ ) · σ (a) for all σ ∈ 
.

One easily checks that this gives an equivalence relation on Z1(
, A), and we define
H1(
, A) to be the quotient ofZ1(
, A) by this relation. Again, in the general case,H1(
, A)
will be viewed as a pointed set whose distinguished element is the equivalence class of the
trivial cocycle.
As in the classical (abelian) situation, to every short exact sequence

1 → A −→ B −→ C → 1 (5)

of 
-groups and 
-homomorphisms (i.e., group homomorphisms commuting with the

-action), one can associate a long exact sequence

1 → H0(
, A) −→ H0(
, B) −→ H0(
, C)

−→ H1(
, A) −→ H1(
, B) −→ H1(
, C) (6)

of cohomology sets—the exactness of the second half of the sequence is understood in
terms of pointed sets, where the kernel is defined as the pre-image of the distinguished
element. (Unfortunately, in general, this sequence cannot be extended beyond degree 1
since Hi(
, A) is undefined for i ≥ 2 if A is noncommutative; however, as described in
[118, Ch. I, §5, Proposition 43], if A is a central subgroup of B, then there is a natural map
H1(G,C) → H2(G,A) that extends (6)).
We also note that the standard functoriality properties of cohomology remain valid in

the noncommutative situation. More precisely, let A be a 
-group and B be a �-group,
and suppose we are given group homomorphisms

f : B → A and ϕ : 
 → � such that f (ϕ(σ )(b)) = σ (f (b)) for all b ∈ B, σ ∈ 
.

(7)

Then there is a map of pointed setsH1(�, B) → H1(
, A), which, on the level of cocycles,
is defined as follows: the image of g ∈ Z1(�, B) is g∗ ∈ Z1(
, A) given by

g∗(σ ) = f (g(ϕ(σ ))) for all σ ∈ 
.

In particular, given a 
-group A, for any subgroup � ⊂ 
, we can apply this construction
by taking f to be the identity map A → A and ϕ to be the natural embedding (in which
case (7) obviously holds) to define the restriction map H1(
, A) → H1(�, A). Next, given
a normal subgroup � � 
, we can consider A� as a group with the natural action of
� = 
/�. We can then apply the above construction by taking f to be the natural
embedding A� ↪→ A and ϕ to be the canonical map � → �/�, to obtain the inflation
map H1(
/�, A�) → H1(
, A).
In order to transition to the Galois cohomology of algebraic groups, we need to special-

ize the preceding definitions to one situation involving topological groups.More precisely,
we will now assume that 
 is a profinite group (i.e., a compact and totally disconnected
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topological group) that acts continuously on a discrete groupA (the continuity assumption
amounts to the requirement that for each a ∈ A, its stabilizer 
(a) is an open subgroup
of 
). We then consider continuous 1-cocycles f : 
 → A. Since we will deal exclusively
with continuous cocycles in this context, we will keep the notation Z1(
, A) for the set of
all continuous 1-cocycles. It is easy to see that an abstract cocycle that is equivalent to a
continuous cocycle is itself continuous, and we again defineH1(
, A) to be the pointed set
of equivalence classes of continuous 1-cocycles. The basic properties of abstract noncom-
mutative cohomology remain valid in this setting. In particular, to every exact sequence
(5) of discrete groups with continuous 
-action and 
-homomorphisms, there corre-
sponds the long exact sequence (6) of (continuous) cohomology. Furthermore, for every
closed subgroup � ⊂ 
 and any discrete group A with a continuous 
-action, we have
the restriction map H1(
, A) → H1(�, A), and for every closed normal subgroup � � 
,
we have the inflation map H1(
/�, A�) → H1(
, A).
Let us nowbriefly indicate how the continuous cohomology of profinite groups is related

to the cohomology of finite groups (see, for example, [122, Ch. II] for the details). For a
profinite group 
, we letN denote the family of all open normal subgroupsN ⊂ 
. Then
we have the identification


 � lim←− 
/N,

where the inverse limit is taken over all N ∈ N with respect to the canonical homomor-
phisms 
/N1 → 
/N2 for N1, N2 ∈ N with N1 ⊂ N2. Then for any discrete group A
with a continuous 
-action, H1(
, A) defined as above in terms of continuous cocycles is
naturally identified with the direct limit

lim−→ H1(
/N,AN ),

taken over allN ∈ N with respect to the inflationmapsH1(
/N2, AN2 ) → H1(
/N1, AN1 )
for N1 ⊂ N2.
We will apply this general set-up only in situations where the profinite group 
 is the

Galois group Gal(L/K ) of a (possibly infinite) Galois extension L/K ; in fact, the most
important case for us will be where 
 = Gal(K sep/K ) is the Galois group of a separable
closure ofK , i.e., theabsoluteGalois group ofK . Then a discrete groupAwith a continuous
Gal(L/K )-action will be called a Galois L/K-module (note that, as above, we allow A
to be noncommutative). The cohomology set H1(Gal(L/K ), A) will be denoted simply
by H1(L/K,A), which will be shortened to H1(K,A) if L = K sep. For any subextension
K ⊂ M ⊂ L, theGalois groupGal(L/M) is a closed subgroupofGal(L/K ), so for anyGalois
L/K -moduleA, we have the restriction mapH1(L/K,A) → H1(L/M,A). In particular, for
any subextension M of K sep, we have the restriction map H1(K,A) → H1(M,A) (where
A is a Galois K -module, i.e., a K sep/K -module).
Here is another important example of a restrictionmap. LetK be a field equipped with a

(discrete) valuation v, and let Kv be the corresponding completion. It is well known (cf. [2,
Ch. VII, Proposition 1.2]) that the absolute Galois group Gal(K sep

v /Kv) can be identified
with the decomposition group D(v̄) of a fixed extension v̄ of v to K sep, which is a closed
subgroup of Gal(K sep/K ). This gives rise to the restriction map H1(K,A) → H1(Kv, A).
Moreover, in a certainobvious sense, thismap is independent of the choiceof the extension
v̄ (see [77, Ch. VII, Remark 2.4] for the details); in particular, its kernel is well defined.
Now, given an algebraicK -groupG, for any Galois extension L/K , the group of L-points

G(L) is naturally a Galois L/K -module. We then have the corresponding cohomology set
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H1(L/K,G(L)), which is usually denotedH1(L/K,G); when L = K sep, we will simply write
H1(K,G). If K is equipped with a (discrete) valuation v, then composing the restriction
map discussed above with themap induced by the natural embeddingG(K ) ↪→ G(Kv), we
obtain a map H1(K,G) → H1(Kv, G). By abuse of terminology, we will refer to this map,
which will play an important role in Sect. 6, also as a restriction map.

4.3 Forms and Galois cohomology

To wrap up this section, we will now briefly review the description of F/K -forms in terms
of Galois cohomology. As before, we will focus mostly on forms of algebraic groups, but
in fact the description remains valid in many other situations, and we will mention some
relevant examples. For further details, the reader can consult [67, Ch. VII], [94, Ch. 2], or
[118, Ch. III, §1], among other sources.
Let G be an algebraic K -group and F/K be a Galois extension. Note that although the

groupAF of F-defined automorphisms ofG (or rather ofG×K F ) may not naturally be the
group of F-points of an algebraic K -group, it is always a Galois F/K -module. Next, let G′

be an F/K -form of G. By definition, there exists an F-defined isomorphism t : G → G′.
Since the groups G and G′ are defined over K , the Galois group Gal(F/K ) acts on the set
of F-isomorphisms between G and G′. So, for every σ ∈ Gal(F/K ), we can consider the
isomorphism σ (t) : G → G′. Then

f (σ ) := t−1 ◦ σ (t)

belongs to AF , and the mapping (σ �→ f (σ )) defines a 1-cocycle in Z1(F/K,AF ), which we
will denote simply by f .Moreover, one shows that the equivalence class of f is independent
of the choice of the isomorphism t. Then it turns out that sending G′ to the equivalence
class of f in H1(F/K,AF ) defines a bijection between the set of K -isomorphism classes of
F/K -forms of G and H1(F/K,AF ). In particular, there is a natural bijection between the
set of K -isomorphism classes of K -forms of G and H1(K,AK sep ).
Here are several explicit examples of this classification.

Example 4.4 Let T = (Gm)n be an n-dimensional K -split torus. Then the corresponding
automorphism group AK sep is GLn(Z) equipped with the trivial action of Gal(K sep/K ).
Since, according to Example 4.2(a), any n-dimensional K -torus is a K -form of T , we
see that the K -isomorphism classes of n-dimensional K -tori are in bijection with the
equivalence classes (in this case, conjugacy classes) of continuous homomorphisms
f : Gal(K sep/K ) → GLn(Z). Let us now take an n-dimensional K -torus T ′ and consider
the corresponding homomorphism f . Then N := ker f is an open normal subgroup of
Gal(K sep/K ), so the corresponding fixed subfield L = (K sep)N is a finite Galois extension
of K with Galois group G = Gal(K sep/K )/N . In fact, L is theminimal splitting field of T ′,
i.e., theminimalGalois extension ofK overwhichT ′ becomes isomorphic to the split torus
T and it is uniquely determined by this property. We conclude that the K -isomorphism
classes of n-dimensional tori with the minimal splitting field L correspond bijectively to
equivalence classes of n-dimensional faithful representations G → GLn(Z).

Example 4.5 Let G be an absolutely almost simple simply connected K -group. Then the
automorphism group AK sep fits into an exact sequence

1 → IK sep −→ AK sep −→ SK sep → 1 (8)
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of Galois K -modules, where IK sep is the group of inner automorphisms, which can be
identified with the group of K sep-points G(K sep) of the corresponding adjoint group G,
and SK sep is the group of symmetries of theDynkin diagramofG (see [94, Ch. 2, §2.1.13] for
the details). Next, let G′ be another absolutely almost simple simply connected algebraic
group of the same type as G. Then both G and G′ become split, hence isomorphic, over
K sep. Thus, G′ is a K -form of G, implying that H1(K,AK sep ) in this case classifies the
K -isomorphism classes of all absolutely almost simple simply connected K -groups of
the same type as G. Associated to (8), we have the following exact sequence of Galois
cohomology

H1(K, IK sep ) α−→ H1(K,AK sep ) β−→ H1(K, SK sep ).

Then the K -forms of G that correspond to the cohomology classes in the image of α are
called inner, while all other forms are called outer (note that α may not be injective!).
For concreteness, let us take G = SLn. Then the corresponding adjoint group is G =

PGLn, and it follows from the Skolem–Noether theorem that the elements ofH1(K,G) are
in one-to-one correspondence with the isomorphism classes of central simple K -algebras
of degree n. Then if a cohomology class ξ ∈ H1(K,G) corresponds to an algebra A, the
image α(ξ ) corresponds to the norm 1 group SL1,A introduced in Example 4.1(c). We
note that the norm 1 groups corresponding to an algebra A and its opposite algebra Aopp

are K -isomorphic, which means that the corresponding cohomology classes in H1(K,G),
which are generally distinct, have the same image under α!
Next, if G is K -split, then it is known that the Galois action on SK sep is trivial (so, the

elements ofH1(K, SK sep ) correspond to conjugacy classes of continuous homomorphisms
Gal(K sep/K ) → SK sep ), and the sequence (8) has a Gal(K sep/K )-equivariant splitting.
Let ι : H1(K, SK sep ) → H1(K,AK sep ) be the corresponding splitting for β . Then for ξ ∈
H1(K, SK sep ), the image ι(ξ ) corresponds to a quasi-split group G(ξ ) (see, for example,
[126, Lemma 16.4.8]), and the inner forms of G(ξ ) correspond precisely to the elements
of the fiber β−1(ξ ). Thus, every form is an inner form of some quasi-split group (note that
the quasi-split group is unique up to isomorphism).
Continuing with the assumption thatG is K -split, let us consider a K -formG′ ofG. Let

c(G′) ∈ H1(K,AK sep ) be the corresponding cohomology class and let d(G′) ∈ H1(K, SK sep )
be the image of c(G′) under β . Then d(G′) is represented by a continuous homomorphism
Gal(K sep/K ) → SK sep called the ∗-action associatedwithG′ (cf. [136]). Thus,G′ is an inner
form of the split groupG if and only if the ∗-action is trivial. Furthermore, ifH denotes the
kernel of the ∗-action, then the fixed field L = (K sep)H is the (uniquely defined) minimal
Galois extension of K over whichG′ becomes an inner form of the split groupG. We also
note that ifG′ is K -quasi-split, then L is the minimal Galois extension of K over whichG′

splits. We refer the reader to [96, Lemma 4.1] for a detailed discussion of these matters.

In our final example, we will briefly demonstrate how the above method for classifying
the K -forms of algebraic groups can be used to classify (the isomorphism classes of) some
other objects.

Example 4.6 Fix a nondegenerate quadratic form inn variables over a fieldK of character-
istic �= 2, and letG = On(q) be the corresponding orthogonal group. It is well known that
any other nondegenerate quadratic form q′ in n variables over K becomes equivalent to q
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over K sep. Thus, ifQ andQ′ are the matrices of q and q′, then there exists X ∈ GLn(K sep)
such that Q = XtQ′X . For each σ ∈ Gal(K sep/K ), the element

f (σ ) := X−1 · σ (X)

belongs to G(K sep), and the mapping (σ �→ f (σ )) defines a 1-cocycle f : Gal(K sep/K ) →
G(K sep). One then shows that associating to q′ the cohomology class of f sets up a bijection
between the set of equivalence classes of nondegenerate quadratic forms in n variables
over K and H1(K,G). In fact, this easily follows from the fact that H1(K,GLn) = 1 (the
noncommutative version ofHilbert’s Theorem90). Furthermore, forH = SOn(q), the ele-
ments ofH1(K,H ) correspond to the equivalence classes of nondegenerate n-dimensional
quadratic forms that have the same discriminant as q (see [94, Ch. 2, §2.2.2] for the details).

5 The finiteness conjecture for reductive groups with good reduction
Having reviewed thenecessarymaterial onGalois cohomology,wenow return toQuestion
4.3, our central question concerning forms with good reduction. In our discussion, we will
deal with two natural choices for the field K and the set of discrete valuations V of K : we
will first consider the case where K is the field of fractions of a Dedekind ring R and V is
the set of discrete valuations associated with the maximal ideals of R, after which we will
turn to finitely generated fields K equipped with a divisorial set of places V .

5.1 The Dedekind case

Early interest in this case can be traced back to thework of G.Harder [54] and J.-L. Colliot-
Thélène and J.-J. Sansuc [28]. For example, the cohomology set introduced in [54, Lemma
4.1.3] (basically) yields, as a particular case, the set ofK -isomorphism classes ofK -forms of
a given semi-simple group that have good reduction at all the relevant valuations. In [28],
the authors define and analyze similar unramified cohomology sets in connection with
the study of torsors under reductive group schemes over low-dimensional base schemes.
The basic case where K = Q and R = Z, and hence V is the set of all p-adic valuations of
Q, was considered by B.H. Gross [49] and B. Conrad [30]. One of the key observations in
[49] is the following.

Theorem 5.1 ([49, Proposition 1.1]) Let G be an absolutely almost simple simply con-
nected algebraic group over Q. Then G has a good reduction at all primes p if and only if
G is split over all Qp.

Note that the fact that an absolutely almost simple simply connected split groupG over
Q has good reduction at all primes is a particular case of Example 3.8(a). (For compari-
son, we recall that there are no abelian varieties over Q that have good reduction at all
primes—see [1] and [40].) As we will see below, the proof of Theorem 5.1 yields the fact
that the Q-forms G′ of the Q-split group G that have good reduction at all primes are
necessarily inner. Furthermore, using deeper results on Galois cohomology, such as the
Hasse principle for adjoint semi-simple groups over number fields (see [94, §6.5], and par-
ticularly Theorem 6.22 therein), one concludes that such forms are uniquely determined
by their isomorphism class over R, opening thereby a way to their classification up to
Q-isomorphism (and of course implying the finiteness of the number of such classes). In
fact, this analysis is taken much further in [49] and [30] by explicitly constructing such
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nonsplit forms for certain types in terms of Z-lattices and even considering the problem
of the classification of such lattices. We note that the choice of a Z-lattice determines the
structure of a group scheme over Z on the corresponding Q-algebraic group, so the clas-
sification of such lattices really amounts to the classification of forms with good reduction
at all primes up to Z-isomorphism rather than just Q-isomorphism, which of course is a
much harder problem (to get a sense of the difficulty, the reader may want to consider
the problem of classifying unimodular integral quadratic forms up to equivalence versus
rational equivalence—cf. [117, Ch. V]). It turns out that in some cases, the required lattices
can in fact be classified, but in other cases one shows using the mass formula that such
lattices are so numerous that no reasonable classification appears possible.
We will now briefly sketch a proof of Theorem 5.1, mainly to indicate the ingredients

that go into the argument. One of the key facts that is used is the following very explicit
local description of groups with good reduction in the situation at hand (we refer the
reader to Example 4.5 for the relevant terminology). Namely, suppose G is an absolutely
almost simple simply connected algebraic group over a fieldK that is a finite extension of
Qp. ThenG has good reduction if and only if it is quasi-split overK and theminimal Galois
extensionL ofK over which it becomes an inner form of the split group is unramified over
K—cf. [31, Corollary 5.2.14]. Now, letG be an absolutely almost simple simply connected
Q-group that has good reduction at all primes, and let L be the minimal Galois extension
of Q over which G becomes an inner form of the split group. Applying the above local
description of groups with good reduction, we conclude that L/Q is unramified at all
primes. On the other hand, a well-known consequence of Minkowski’s estimate for the
discriminant of a number field is that Q does not have nontrivial extensions with this
property. Thus, L = Q. It follows that for every prime p, the group G is quasi-split over
Qp and at the same time is an inner form overQp, implying that it actually splits overQp.
Note that since L = Q, our argument also shows thatG is an inner form of the split group
over Q.
We should point out that Theorem 5.1 easily extends to any number field K and any

set V of discrete valuations of K if we limit ourselves to absolutely almost simple simply
connected algebraic groups of those types for which the Dynkin diagram does not have
nontrivial symmetries (recall that these types are A1, B�, C�, E7, E8, F4, andG2). However, if
we consider groups of other types over a number field that has an everywhere unramified
quadratic extension, the above argument and the result itself become invalid even ifwe take
V to be the set of all nonarchimedean valuations ofK . Nevertheless, we have the following
finiteness result (cf. [60]—we refer the reader to this paper for analogues of Shafarevich’s
conjecture for several classes of varieties). In the statement below, we denote by VK

f the
set of all nonarchimedean places of a number field K .

Proposition 5.2 Let G be an absolutely almost simple simply connected algebraic group
over a number field K , and let V ⊂ VK

f be a set of discrete valuations of K such that
V K
f \V is finite. Then the number of K-isomorphism classes of K-forms of G that have good

reduction at all v ∈ V is finite.

Proof First, we recall that according to the Hermite–Minkowski theorem, for every inte-
ger d ≥ 1, the number field K has only finitely many extensions of degree ≤ d that are
unramified at all v ∈ V . Now let S be the group of symmetries of the Dynkin diagram
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of G. Then the Hermite–Minkowski theorem implies that there are only finitely many
continuous homomorphisms

ω : Gal(K sep/K ) → S

such that the fixedfieldL(ω) = (K sep)kerω of kerω is unramified at all v ∈ V . Letω1, . . . ,ωr
be representatives of the conjugacy classes (in S) of such homomorphisms, which we view
as elements of H1(K, S). As we discussed in Example 4.5, for each i = 1, . . . , r, there is
a quasi-split K -form Gi of G for which L(ωi) is the minimal Galois extension of K over
which Gi becomes split. Suppose now that G′ is a K -form of G that has good reduction
at all v ∈ V , and let L be the minimal Galois extension of K over which G′ becomes an
inner form of the split group. Then, as discussed in Example 4.5, L is the fixed subfield
of the kernel of the natural homomorphism ω : Gal(K sep/K ) → S given by the ∗-action.
Besides, it follows from [31, Corollary 5.2.14] that L/K is unramified at all v ∈ V . By our
construction, this means that ω coincides with one of the ωi, in which case G′ is an inner
formofGi. Thus, it is enough to prove, for each i = 1, . . . , r, the finiteness of the number of
isomorphism classes of those K -forms of G that have good reduction at all v ∈ V and are
inner forms ofGi. By definition (see Example 4.5), any suchG′ corresponds to an element
ξ ∈ H1(K,Gi). Furthermore, as we already saw in our discussion of Theorem 5.1, for
each v ∈ V , the group G′ becomes quasi-split over Kv , hence Kv-isomorphic to Gi. In the
language of Galois cohomology, this means that ξ lies in the kernel of the restriction map
H1(K,Gi) → H1(Kv, Gi). Since this is true for all v ∈ V , we conclude that ξ is contained
in the kernel of the product map

θGi,V : H1(K,Gi) −→
∏
v∈V

H1(Kv, Gi).

However, it is well known that over number fields, the map θGi,V is proper (i.e., the pre-
image of a finite set is finite), and hence, in particular, its kernelX(Gi, V ) is finite—see
[11, §5] and [12, §7] (in the next section we will discuss a conjectural extension of this
property to a more general situation). So, the number of possible ξ arising in this set-up
is finite, and the finiteness of the number of K -isomorphism classes of such K -forms G′

follows. ��
Another basic example of a Dedekind ring is the polynomial ring R = k[x] over a field k .

We let V denote the set of discrete valuations of the field of rational functions K = k(x)
associated with monic irreducible polynomials p(x) ∈ k[x] (see Example 3.6(b)). We then
have the following.

Theorem 5.3 (cf. [102, Theorem1.1] and [45])LetG0 be a (connected) semi-simple simply
connected algebraic group over a field k. If G′ is a K-form of the group G = G0 ×k K that
has good reduction at all v ∈ V and splits over ksep(x), then G′ = G′

0 ×k K for some k-form
G′
0 of G0.

The original result in [102] is more general and is formulated in terms of torsors (prin-
cipal homogeneous spaces): Let G0 be a connected reductive algebraic group over a field
k , and let π : B → A

1
k be a G0-torsor over the affine line A1

k = Spec k[x]. If π is trivialized
by the base change from k to ksep, then π is obtained by the base change A1

k → Spec k
from a G0-torsor π0 : B0 → Spec k . To derive Theorem 5.3 from this statement, one
argues as follows. Since, by our assumption, G′ splits over ksep(x), the homomorphism
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Gal(K sep/K ) → S to the group of symmetries of the Dynkin diagram that corresponds
to the ∗-action associated with G′ (see Example 4.5) factors through a homomorphism
Gal(ksep/k) → S. LetG�

0 be the quasi-split k-form ofG0 corresponding to this homomor-
phism, and set G� = G�

0 ×k K . Then G′ is an inner K -form of G�, so it corresponds to
a cohomology class ξ ∈ H1(K,G�) with values in the corresponding adjoint group. Since
G′ has good reduction at all v ∈ V , it follows that this cocycle gives rise to a torsor of G�

0
over A1

k ; in other words, ξ is the image of some ζ ∈ H1
ét (k[x], G

�

0) under the natural map

H1
ét (k[x], G

�

0) → H1(K,G�)

(where H1
ét (k[x], G

�

0) denotes the étale cohomology set over Spec(k[x]))—cf. [46, Corol-
lary A.8]. But since G′ splits over ksep, the cocycle ξ lies in the kernel of the restriction
map H1(K,G�) → H1(ksepK,G�). Then ζ lies in the kernel of the map H1

et (k[x], G
�

0) →
H1
et (ksep[x], G

�

0), hence by the result from [102] is the image of some ω ∈ H1(k, G�

0) under
the map H1(k, G�

0) → H1
ét (k[x], G

�

0). Then the k-form G′
0 of G0 corresponding to ω is as

required.
We note that the assumption that G′ splits over ksep(x) holds automatically when k

has characteristic zero. Indeed, in this case, the separable closure ksep coincides with the
algebraic closure k , so the field ksep(x) = k(x) has cohomological dimension≤ 1 by Tsen’s
theorem (cf. [118, Ch. II, §3]). Hence, applying Steinberg’s theorem, we conclude that G′

is quasi-split over k(x) (see [118, Ch. III, §2.3]). On the other hand, since G′ has good
reduction at all v ∈ V , theminimal Galois extension L/K over whichG′ becomes an inner
form of the split group is unramified at all v ∈ V . Using the Riemann–Hurwitz formula,
one concludes that kL = k(x), implying that G′ is actually split over k(x).
Yet another case where forms with good reduction have been considered in full involves

the ring of Laurent polynomials R = k[x, x−1]. Here, the set V consists of the discrete
valuations of K = k(x) corresponding to monic irreducible polynomials p(x) ∈ k[x], with
p(x) �= x.

Theorem 5.4 (cf. [16, Theorem 2.5]) Let G0 be a (connected) semi-simple simply con-
nected algebraic group over k. Assume that char k is prime to the order of the Weyl group
of G0. Then there is a natural bijection between the isomorphism classes of inner K-forms
G′ of the group G = G0 ×k K that have good reduction at all v ∈ V and the elements of
the Galois cohomology set H1(k((x)), G) of the corresponding adjoint group over the field of
Laurent series.

Again, this easily follows from the following more general result proved in [16]: Let G0
be a connected reductive group over a field k . Assume that the characteristic of k is good.5

Then there is a natural bijection between the isomorphism classes of G0-torsors over the
punctured affine line A×

k = A
1
k \ {0} and the elements of H1(k((x)), G). We refer the reader

to [16, §5] for the details concerning this result, and only mention here that it plays a
crucial role in the proof of the conjugacy of the analogues of Cartan subalgebras in certain
infinite-dimensional Lie algebras [17].

5As defined in [32, §5].
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5.2 The finiteness conjecture for function fields of curves

An important class of examples of Dedekind rings consists of the rings of regular functions
R = k[C], whereC is a smooth geometrically integral affine curve over a field k . In view of
the bijectionbetween themaximal ideals ofR and the closedpoints ofC , the corresponding
V is then the set of discrete valuations of the function field K = k(C) associated with the
closed points of C . Unfortunately, in most cases, no explicit description of the K -forms of
a given reductive K -group G that have good reduction at all v ∈ V , similar to Theorems
5.3 and 5.4, seems to be available. A more tractable problem in this setting appears to be
the qualitative question about the conditions that ensure the finiteness of the number of
isomorphism classes of such forms.We observe that ifG0 is a reductive algebraic k-group
and G = G0 ×k K is the base change of G0 to K , then for any k-form G′

0 of G0 the group
G′ = G′

0 ×k K is a K -form of G that has good reduction at all v ∈ V . So, even though
non-isomorphic k-formsmay become isomorphic after base change toK , in order to have
the affirmative answer to the above question in a sufficiently general situation, one needs
to assume that over k , the groups at hand have only finitely many non-isomorphic forms.
This basically amounts to a hypothesis on the finiteness of Galois cohomology.
In [118, Ch. III, §§4.1-4.3], Serre described a class of fields over which one does have the

required finiteness by introducing the following condition on a profinite group G:

(F) For every integer m ≥ 1, the group G has only finitely many open subgroups of index m

(such profinite groups are sometimes called “small”). He then defined a field K to be of
type (F) if it is perfect and its absolute Galois group Gal(K sep/K ) satisfies (F). The key
result is that if K is a field of type (F), then the setH1(K,G) is finite for any linear algebraic
K -group G (see [118, Ch. III, §4.3, Theorem 4]). Moreover, if K is of characteristic 0 and
of type (F), then any linear algebraic group has finitely many K -forms (see [118, Ch. III,
§4.3, Remark 1] and [12, §6]).
Recently, in [112], the second-named author proposed a generalization of condition

(F) that holds in some situations where (F) fails and is still sufficient to establish certain
finiteness results. For this, let K be a field, and m ≥ 1 be an integer prime to char K . We
say that K is of type (F′

m) if

(F′
m) For every finite separable extension L/K , the quotient L×/L×m of the multiplicative

group L×, is finite.

If K is of type (F), then it satisfies (F′
m) for all m prime to char K—we refer the reader to

[112] for a proof of this fact as well as a discussion of various examples of fields of type (F′
m)

and the associated finiteness results. It is reasonable to expect that given an absolutely
almost simple algebraic K -group G whose Weyl group has order w, the fact that char K
is prime to w and K satisfies condition (F′

p) for all prime divisors of w should imply the
finiteness of H1(K,G); however, this has not yet been established. Along these lines, we
would like to propose the following finiteness conjecture for forms with good reduction.

Conjecture 5.5 Let K = k(C) be the function field of a smooth geometrically integral
affine curve C over a field k, and let V be the set of discrete valuations associated with
the closed points of C. Consider an absolutely almost simple simply connected algebraic
K-group G, and let w be the order of the Weyl group of G. Assume that char k is prime
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to w and that the field k satisfies (F′
p) for all prime divisors p of w. Then the number of

isomorphism classes of K-forms G′ of G that have good reduction at all v ∈ V is finite.

As we will see in Sect. 7, for certain types, already condition (F′
2) for k implies the

finiteness of the number of isomorphism classes of forms with good reduction, which
suggest that the assumptions on k in the above conjecture could probably be weakened.

5.3 The finiteness conjecture for arbitrary finitely generated fields

We now turn to the main finiteness conjecture for forms with good reduction over arbi-
trary finitely generated fields (see Conjecture 5.7 below). Let us point out that, unlike the
Dedekind situation discussed in the previous subsections, formswith good reduction have
never been previously considered in the higher-dimensional setting.
Webeginwith a description of our general set-up. LetK be an arbitraryfinitely generated

field, i.e., a field that can be generated over its prime subfield by finitely many elements.
Then K possesses natural sets of discrete valuations called divisorial. More precisely, let
X be a model of K , i.e., a normal separated irreducible scheme of finite type over Z (if
charK = 0) or over a finite field (if charK > 0) such thatK is the field of rational functions
on X. It is well known that to every prime divisor Z of X, there corresponds a discrete
valuation vZ on K (cf. [33, 12.3], [56, Ch. II, §6]). Then

V (X) = {vZ | Z prime divisor of X}
is called the divisorial set of places of K corresponding to the model X. Any set of places
V of K of this form (for some model X) will be simply called divisorial. In terms of
commutative algebra, this construction amounts to finding a subringR ofK whose fraction
field is K and such that R is integrally closed (in K ) and a finitely generated Z-algebra (or
Fp-algebra). For any height one prime ideal p ⊂ R (i.e., a minimal nonzero prime ideal),
the localization Rp is a discrete valuation ring, hence gives rise to a discrete valuation
vp of K . Then V consists of these valuations vp corresponding to all height one prime
ideals of R. We note that given a divisorial set of places V associated with a model X, one
can consider an affine open subscheme U = Spec R of X. Then for the divisorial set V ′

associatedwithU, we haveV ′ ⊂ V andV \V ′ is finite. Thismeans that, inmost situations,
it is enough to consider divisorial set associated with affinemodels, where, as we have just
seen, they can be described in terms of height one prime ideals.
Furthermore, we observe that any two divisorial sets V1 and V2 associated with two

different models of K are commensurable, i.e., Vi \ (V1 ∩ V2) is finite for i = 1, 2 (this
makes a divisorial set of places almost canonical), and that for any finite subset S of a
divisorial set V , the set V \ S contains a divisorial set. For the sake of completeness, let us
briefly justify these properties. We first note that any divisorial set of places V of a finitely
generated field K satisfies the following condition
(A) For any a ∈ K×, the set V (a) := {v ∈ V | v(a) �= 0} is finite.
Now, in order to show that two divisorial sets V1 and V2 are commensurable, we can
assume, without loss of generality, that Vi is associated with a model Xi = Spec Ri,
where Ri is a finitely generated Z-algebra with fraction field K , for i = 1, 2. The finite
generation of Ri implies that there exist nonzero elements a1 ∈ R1 and a2 ∈ R2 such
that R2 ⊂ R1[1/a1] and R1 ⊂ R2[1/a2]. Then V1 \ V1(a1) ⊂ V2 and V2 \ V2(a2) \ V1.
Consequently,

V1 \ (V1 ∩ V2) ⊂ V1(a1) and V2 \ (V1 ∩ V2) ⊂ V2(a2),
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and the commensurability of V1 and V2 follows. Furthermore, given a divisorial set V
associated with X = Spec R and a finite subset S ⊂ V , using weak approximation for K
we can find a nonzero a ∈ R such that v(a) > 0 for all v ∈ S. Then the divisorial set Va
associated with Xa := Spec R[1/a] satisfies Va ⊂ V \ S, as required.

Example 5.6 The field of rational functions K = Q(x) is the fraction field of R = Z[x]
(which, of course, is an integrally closed finitely generatedZ-algebra). It is well known that
any height one prime ideal p of R is principal with a generator p of one of the following
two types: (a) p ∈ Z[x] is an irreducible polynomial with content 1; or (b) p ∈ Z is a
rational prime. In the first case, the associated discrete valuation of K coincides with the
one corresponding to the monic irreducible polynomial in Q[x] obtained by dividing p
by its leading coefficient (cf. Example 3.6). We will call such discrete valuations geometric
and denote the set of all these valuations by V0. In the second case, the associated discrete
valuation coincides with theGaussian extension of the p-adic valuation ofQ.Wewill refer
to such valuations as arithmetic and denote the set of all these valuations by V1. Thus, the
set of divisorial valuations of K associated with the model X = Spec R is V = V0 ∪ V1.

We are now in a position to formulate our central conjecture for forms with good
reduction over arbitrary finitely generated fields.

Conjecture 5.7 (Main Conjecture for forms with good reduction) Let G be a connected
reductive algebraic group over a finitely generated field K , and V be a divisorial set of
places of K . Then the set of K-isomorphism classes of (inner) K-forms G′ of G that have
good reduction at all v ∈ V is finite (at least when the characteristic of K is “good”).

(WhenG is an absolutely almost simple algebraic group, we say that charK = p is “good”
for G if either p = 0 or p > 0 and does not divide the order of the Weyl group of G. For
non-semisimple reductive groups, only characteristic 0 will be considered good.)
To conclude this section, we would now like tomake a few brief comments on the use of

theword “main” in the above designation. Aswewill see in Sect. 6, this conjecture has links
to several other finiteness conjectures for reductive algebraic groups over finitely gener-
ated fields. In fact, the Main Conjecture, on the one hand, automatically implies the truth
of some of these conjectures in certain cases (cf. the discussion following Conjecture 6.1),
and on the other hand, some of the other conjectures are likely to provide tools for attack-
ing the Main Conjecture. Second, the Main Conjecture has important applications to the
genusproblem (cf. Sect. 8) and to the analysis ofweakly commensurableZariski-dense sub-
groups of absolutely almost simple algebraic groups and the related concept of eigenvalue
rigidity (cf. Sect. 9). We observe that these developments go back to geometric problems
involving length-commensurable locally symmetric spaces [96] and can be viewed as a
rather inspiring example of the application of techniques from number theory and arith-
metic geometry to differential geometry. It should also be noted that we were led to the
Main Conjecture by our earlier work on these applications, which indicated the necessity
of considering the above statement in a higher-dimensional setting. To the best of our
knowledge, this point of view has never come up before in the context of algebraic groups.
As a final remark, we note that one can also consider the original conjecture of Sha-

farevich for abelian varieties (as well as some other classes of varieties) over higher-
dimensional fields. Let us first observe that, in the case of elliptic curves, the argument
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of Serre-Tate that we sketched at the end of Sect. 2 yields, with minimal changes, the
following statement:
If K is a finitely generated field of characteristic zero and V is a divisorial set of places of
K , then the set of K -isomorphism classes of elliptic curves over K that have good reduction
at all v ∈ V is finite.
Important results in this direction, particularly over function fields of characteristic p > 0,
are due to Parshin [88], Zarhin [147], Szpiro ([132] and [133]), and Moret-Bailly [81]. We
also refer to the reader to [142] for a survey of results in diophantine geometry in positive
characteristic.

6 Some other finiteness conjectures
While Conjecture 5.7 on forms of algebraic groups with good reduction appears to be
most important (and in line with results on abelian varieties), it should really be viewed
as part of a “package” of several conjectures on finiteness properties of linear algebraic
groups over higher-dimensional fields. One of these finiteness properties is related to
the local-global principle in this setting. We will begin with the general formulation of
the local-global principle in terms of Galois cohomology, and will then indicate how it
translates into statements about norms in finite separable extensions, finite-dimensional
simple algebras, and quadratic forms.
Let K be a field equipped with a set V of valuations (not necessarily discrete), and let

G be a linear algebraic K -group. We say that the (cohomological) local-global principle
holds for G with respect to V if the global-to-local map in Galois cohomology

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G),

given by the product of restrictionmaps, is injective. As we noted in Sect. 4.2, these Galois
cohomology sets do not, in general, have a natural group structure, and should instead
be viewed as pointed sets whose distinguished element is the cohomology class of the
trivial cocycle. For such a map θG,V , one defines the corresponding Tate–Shafarevich set
X(G,V ) to be the kernel ker θG,V , i.e., the preimage of the distinguished element. We
should emphasize that, as a reflection of the absence of a natural group structure, different
fibers of θG,V may have different sizes. In particular, while X(G,V ) is certainly trivial
(i.e., reduces to a single element) when θG,V is injective, in general, the injectivity of θG,V
is not a formal consequence of the triviality ofX(G,V ) and typically requires additional
considerations involving twisting (cf. [94, Ch. 1, §1.3.2], [118, Ch. I, §5]).
We now briefly recall how the cohomological local-global principle is interpreted in

several concrete situations. First, let L/K be a finite separable field extension, and let
T = R(1)

L/K (Gm) be the corresponding norm torus (see Example 3.4 for a special case of such
a torus and, e.g., [94, Ch. 2, §2.1.7] for a discussion of the general case). As a consequence
of Hilbert’s Theorem 90 and Shapiro’s Lemma, we have a natural isomorphism

H1(K, T ) � K×/NL/K (L×).

Therefore, the cohomological local-global principle for T is equivalent to the statement
(known as the local-global norm principle) that an element a ∈ K× is a norm in the
extension L/K (i.e., a belongs to the norm subgroup NL/K (L×) ⊂ K×) if and only if it is a
norm locally at all v ∈ V (i.e., a ∈ NL⊗KKv/Kv ((L ⊗K Kv)×) for all v ∈ V ).
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In slightly different terms, ifL/K hasdegreen, then thenormNL/K (x) of an elementx ∈ L
is given by a homogeneous polynomial ν(x1, . . . , xn) over K in terms of the coordinates
x1, . . . , xn of x with respect to a fixed basis of L/K . Then the norm principle asserts that
the equation

ν(x1, . . . , xn) = a

has a solution (x1, . . . , xn) ∈ Kn if and only it has a solution (xv1, . . . , xvn) ∈ Kn
v for every

v ∈ V . Among the first results on the local-global norm principle was the famous Hasse
Norm Theorem asserting that this principle indeed holds for all cyclic Galois extensions
of number fields when V is the set of all valuations of K , including the archimedean ones.
So, to recognize the pioneering role of this result in the subject, the local-global principle
is often referred to as the Hasse principle.
Next, it follows from Example 4.5 that the cohomological local-global principle for the

group G = PGLn is equivalent to the statement that two central simple algebras A1 and
A2 of degree n over K are isomorphic if and only the algebras A1 ⊗K Kv and A2 ⊗K Kv
are isomorphic over Kv for all v ∈ V . Thus, the truth of the local-global principle for
G = PGLn for all n ≥ 2 amounts to the fact that the natural map of Brauer groups

Br(K ) −→
∏
v∈V

Br(Kv), (9)

defined by sending the Brauer class [A] of a finite-dimensional central simple K -algebraA
to ([A⊗K Kv])v∈V , is injective. Furthermore, the local-global principle forG = On(q) (the
orthogonal group of a non-degeneraten-dimensional quadratic form q overK )means that
two nondegenerate n-dimensional quadratic forms q1 and q2 over K are K -equivalent if
and only if they are Kv-equivalent for all v ∈ V . Similar interpretations can be given in the
context of simple algebras with involution, hermitian forms, and so on.
Initially, the study of local-global principles focused almost exclusively on the case

where K is a number field and V is the set of all valuations of K , and dealt primarily
with some concrete situations rather than with the general cohomological set-up that we
just described. In particular, the norm principle was thoroughly investigated for arbitrary
finite field extensions of number fields using techniques from class field theory (cf. [2,
Ch. VII, §11.4]). Another consequence of class field theory is the theorem of Albert–
Brauer–Hasse–Noether stating that the map (9) is injective in this case (see [90, Ch. 18,
§18.4] for number fields and [48, Ch. 6, §6.5] for function fields). As we mentioned above,
this implies the cohomological Hasse principle for G = PGLn for all n ≥ 2, and, more
generally, for G = PGL1,A for any finite-dimensional central simple algebra A over K .
Furthermore, the Hasse-Minkowski Theorem in the theory of quadratic forms implies
the local-global principle for equivalence of quadratic forms, hence the cohomological
local-global principle for the orthogonal groups (see [117, Ch. IV, §3] for a discussion
of the Hasse-Minkowski theorem in the special case K = Q and [85, Ch. VI, §66] for
the general case). Eventually, these results and their variations led to the cohomological
Hasse principle for all semi-simple simply connected groups with components of classical
types. This result was subsequently extended, using structural information provided by
the theory of algebraic groups, to include exceptional types, ultimately culminating in
the proof of the cohomological Hasse principle for all semi-simple simply connected
groups over number fields (cf. [94, Ch. 6, §§6.7-6.8]). In fact, this result implies that the
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principle alsoholds for all absolutely almost simple groups, and consequently for all adjoint
groups—see [94, Ch. 6, §6.5].
On the other hand, it was discovered rather early that the Hasse norm principle may fail

for non-cyclic finite extensions of number fields, which, in turn, entails the failure of the
cohomological principle for the corresponding norm torus. Later, examples of the failure
of the cohomological Hasse principle were also found for semi-simple groups—cf. [118,
Ch. III, §4.7, Theorem 8] (note that such groups are, of course, neither simply connected
nor adjoint). Nevertheless, it was proved in [11] using reduction theory for adelic groups
(see also [12]) that when K is a number field, the map θG,V is proper (i.e., the pre-image
of a finite set is finite) for any linear algebraic group G whenever V contains almost
all valuations of K . The analogous statement for reductive groups over global fields of
positive characteristic follows from results of Harder [55]. Informally, these results mean
that while the local-global principle for groups over global fields may fail, the deviation
from it is always of finite size.
In thepast 10-15 years, theHasseprinciplehasbeenanalyzedover certainother classes of

fields, including function fields of p-adic curves, cf. [27,52], [53]. This work has provided
numerous examples where the local-global principle holds for fields other than global.
In this article, however, we would like to focus on the arithmetic situation, where the
classical results over global fields and our own work over higher-dimensional global fields
(see Sect. 7.3) strongly suggest that the following statement should be true.

Conjecture 6.1 Let G be a (connected) reductive algebraic group defined over a finitely
generated field K , and let V be a divisorial set of places of K . Then the global-to-local map
θG,V is proper. In particular, the Tate–Shafarevich setX(G,V ) is finite.

Thus, Conjecture 6.1 expresses a broad expectation that the deviation from the local-
global principle should be finite in all situations involving reductive linear algebraic groups
over a finitely generated field K with respect to any divisorial set of places V of K . We
will discuss available results on Conjecture 6.1 in Sect. 7.3 At this point, we would like to
indicate how the truth of Conjecture 5.7 automatically implies that of Conjecture 6.1 for
adjoint groups (cf. [19, §6], [104, §7]).
To fix notations, letG be an absolutely almost simple simply connected algebraic group

over a finitely generated K of “good” characteristic, and let V be a divisorial set of discrete
valuations of K . Note that since V satisfies condition (A) (see Sect. 5.3), it follows that
we can pick a finite subset V0 ⊂ V so that G has good reduction at all v ∈ V \ V0. As
we observed in Sect. 5.3, V \ V0 contains a divisorial set V ′. Thus, replacing V by V ′, we
may assume that G has good reduction at all v ∈ V . Now set G to be the corresponding
adjoint group. Suppose ξ ∈ X(G,V ) and let G′ = G(ξ ) be the corresponding (inner)
K -form of G. By our assumption, G′ ×K Kv � G ×K Kv for all v ∈ V , and consequently
G′ has good reduction at all v ∈ V . Therefore, assuming Conjecture 5.7, we conclude
that the groups G(ξ ) for ξ ∈ X(G,V ) form finitely many K -isomorphism classes. In
cohomological terms, this means that that the image of X(G,V ) under the canonical
mapH1(K,G) α−→ H1(K,AK sep ) is finite (as in Example 4.5, we denote by AK sep the group
of automorphisms of G ×K K sep). But since G � IK sep has finite index in AK sep , the map
α has finite fibers, which yields the finiteness ofX(G,V ) (see [118, Ch. I, §§5.3-5.5]) for
a discussion of the fibers of such maps in non-abelian cohomology).
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Another fundamental finiteness property in number theory is the finiteness of the ideal
class group of a number field. In the higher-dimensional situation, one replaces the class
group by the Picard group. While this group can be infinite, it is known that if X is a
scheme that is normal and of finite type over Spec(Z), then the Picard group Pic X is
finitely generated (cf. [62]). In order to transport this notion into the context of linear
algebraic groups, one uses adeles.
So, let K be a field equipped with a set V of (pairwise inequivalent) discrete valuations,

and letG be a linear algebraic K -group with a fixed matrix realizationG ⊂ GLn. For each
v ∈ V , we set

G(Ov) = G(Kv) ∩ GLn(Ov),

where Ov is the valuation ring in the completion Kv . We then define the corresponding
adelic group as

G(A(K,V )) = {(gv) ∈
∏
v∈V

G(Kv) | gv ∈ G(Ov) for almost all v ∈ V }.

In other words, G(A(K,V )) is the restricted (topological) product of the groups G(Kv) for
v ∈ V with respect to the (open) subgroups G(Ov) (cf. [94, Ch. 5, §5.1] for the details).
The product

G(A∞(K,V )) =
∏
v∈V

G(Ov)

is called the subgroup of integral adeles. Henceforth, we will assume that V satisfies con-
dition (A) introduced in Sect. 5.3 (we recall that this condition holds automatically for a
divisorial set of places of a finitely generated field). Then one has a diagonal embedding
G(K ) ↪→ G(A(K,V )), whose image is called the subgroup of principal adeles and which
we will still denote by G(K ). The set of double cosets

cl(G,K, V ) := G(A∞(K,V ))\G(A(K,V ))/G(K )

is called the class set ofG (we should point out that the class set is sometimes defined using
rational adeles rather than the full adeles we introduced above). The following examples
link this definition with classical notions.

Example 6.2 Let G = Gm be the 1-dimensional K -split torus. Then G(A(K,V )) is the
group of ideles I(K,V ) and G(A∞(K,V )) is the subgroup of integral ideles

I
∞(K,V ) =

∏
v∈V

O×
v .

So, there is a natural bijection between the class set cl(G,K, V ) and the quotient
I(K,V )/I∞(K,V )K×. On the other hand, it is easy to see that the latter quotient is iso-
morphic to the Picard group Pic(K,V ), which is defined as follows. Let Div(V, K ) be the
free abelian on the set V , which we call the group of divisors. By virtue of condition (A),
we can define a group homomorphism

K× → Div(K,V ), a �→
∑
v

v(a) · v,

the image of which is the called the subgroup of principal divisors P(K,V ). We set

Pic(K,V ) = Div(K,V )/P(K,V ).
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The isomorphism I(K,V )/I∞(K,V )K× � Pic(K,V ) is then induced by the map

ν : I(K,V ) → Div(K,V ), (xv) �→
∑
v∈V

v(xv) · v.

If K is the fraction field of a Dedekind domain A and V is the set of discrete valuations
of K corresponding to the maximal ideals of A, then Pic(K,V ) is precisely the ideal class
group of A. More generally, if K is the function field of an integral regular scheme X
and V is the set of discrete valuations associated with prime divisors of X , then Pic(K,V )
coincides with the usual Picard group Pic(X). So, it follows from classical results that
Pic(K,V ) is finite in the first situation when A is the ring of S-integers in a number field,
and is finitely generated in the second situation when X is integral, normal, and of finite
type over Spec(Z).

Example 6.3 LetK be a number field with the ring of integersO, and letV be the set of all
nonarchimedean valuations of K . Furthermore, let q be a nondegenerate quadratic form
in n variables with coefficients in O, and G = On(q) be the corresponding orthogonal
group. It is well known that in this case, there is a natural bijection between the class set
cl(G,K, V ) and the set of classes in the genus of q (see [94, Ch. 8, Proposition 8.4] for the
details and relevant definitions). We recall that when n ≥ 3 and q is indefinite (i.e., there
exists an archimedean place v ∈ VK∞ that is either complex (Kv = C) or is real and q is
indefinite in the usual sense over Kv = R), then cl(G,K, V ) has a natural structure of an
abelian group, which is finite of order a power of 2 (see [94, Ch. 8, §8.2, Theorem 8.6]). On
the contrary, if q is definite, then cl(G,K, V ) is a finite set which in general does not have
a natural group structure and whose size can be made divisible by any given integer if one
changes q to a rationally equivalent form (see [94, Ch. 8. §8.3, Theorem 8.9]).

More generally, it was shown by Borel [11] using reduction theory that if K is a number
field andV is the set of all nonarchimedean valuations ofK , then the class set cl(G,K, V ) is
finite forany linear algebraicK -groupG. This finiteness resultwas extended to global fields
of positive characteristic by Conrad [29], who employed the theory of pseudo-reductive
groups developed by Conrad–Gabber–Prasad [32]. On the other hand, for G = Gm over
a finitely generated fieldK withV a divisorial set of places, cl(G,K, V ) � Pic(K,V ) may be
an infinite group, which is nevertheless finitely generated. For an arbitrary linear algebraic
group, however, cl(G,K, V )maynothave anatural group structure, sonogeneral finiteness
condition on the class set can conceivably be stated on the basis of finite generation. We
have proposed the following path towards a possible generalization, which consolidates
the two cases discussed above and appears to be quite useful. First, we observe that if
cl(G,K, V ) is either finite or a finitely generated group (in the presence of a natural group
structure), then one easily shows that there exists a finite subset S ⊂ V such that the class
set cl(G,K, V \ S) reduces to a single element (see the argument following [23, Definition
3.4] for the details). This suggests the following condition on the triple (G,K, V ):
Condition (T). There exists a finite subset S ⊂ V such that |cl(G,K, V \ S)| = 1.
While one does not expect Condition (T) to hold for an arbitrary reductive algebraic

group G over a general finitely generated field K and a divisorial set V , it is likely to be
true for all G in certain important situations, including when
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• K is a 2-dimensional global field (i.e., the function field of a smooth geometrically
integral curve over a number field or the function field of a smooth geometrically
integral surface over a finite field—see [22] and [64]) and V is a divisorial set of
places; and

• K = k(C), the function field of a smooth geometrically integral curveC over a finitely
generated field k and V is the set of places of K associated with the closed points of
C .

In fact, one can expect the following weaker property to be true even more generally: for
a reductive group G ⊂ GLn over a finitely generated field K and a divisorial set of places
V , there exists a finite subset S ⊂ V such that

G(A(K,V \ S))
⋂ (

GLn(A∞(K,V \ S)) · GLn(K )
) = G(A∞(K,V \ S)) · G(K ).

Finally, we would like to observe that although at this point no direct connections
between Conjectures 5.7 and 6.1 and Condition (T) have been established in the general
case, ideas involving Condition (T) were used in a very essential way in the proof of
Conjecture 6.1 for tori—see Sect. 7.1 for a brief discussion and [106] for complete details.
Moreover, as we pointed out in [23], Condition (T) can also be used in the analysis of some
finiteness questions for unramified cohomology in degree 3 and hence the genus problem
for the groups of type G2 (we will touch upon some aspects of these issues in Sects. 7.2
and 8.4).

7 Results
In this section, we will give an overview of the currently available results on Conjectures
5.7 and 6.1 as well as Condition (T). We begin with the case of algebraic tori, where all
conjectures were recently resolved in [106].We thenmove on to absolutely almost simple
algebraic groups, where there has been notable progress (see, in particular, [21] and [22]),
but much work still remains to be done.

7.1 Algebraic tori

First, wehave the followingfiniteness result for toriwith good reduction,which completely
settles Conjecture 5.7 in this case.

Theorem 7.1 [106, Theorem 1.1] Let K be a finitely generated field of characteristic zero
andV be a divisorial set of places of K . Then for any integer d ≥ 1, the set of K-isomorphism
classes of d-dimensional K-tori that have good reduction at all v ∈ V is finite.

As we discussed in Examples 4.2(a) and 4.4, all d-dimensionalK -tori are K -forms of the
d-dimensional K -split torus (Gm)d , and their K -isomorphism classes are classified by the
minimal splitting field L and the equivalence class of a faithful representationGal(L/K ) →
GLd(Z). Furthermore, it is a general fact (see [94, Ch. 4, §4.4, Theorem 4.3]) that a given
finite group has only finitely many equivalence classes of integral representations in each
dimension. So, it is enough to prove that there are only finitely many possibilities for the
extension L/K . The key observations here are, first, that the degree [L : K ] is bounded
by a constant depending only on d (as are the orders of finite subgroups of GLd(Z)) and,
second, that this extension is unramified at all v ∈ V . Let X be amodel ofK used to define
V . Then the fact that there are only finitely many possible extensions L/K is derived from
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the result that the fundamental group ofX is “small,” i.e., satisfies Serre’s condition (F) (see
[51]), which can be viewed as a higher-dimensional analogue of the Hermite–Minkowski
theorem that we have already mentioned several times in our previous discussion.
It should be mentioned that Theorem 7.1 is no longer true in positive characteristic.

Indeed, an infinite family of pairwise nonisomorphic K -tori with good reduction can be
constructed using Artin–Schreier extensions over the global field K = Fp(t) (where Fp is
the field with p elements), with V being the set of discrete valuations corresponding to all
monic irreducible polynomials f (t) ∈ Fp[t] (as in Example 3.6(b)).
Now, let G be an absolutely almost simple simply connected K -group, and let L/K be

the minimal Galois extension over whichG becomes an inner form of the split group (see
the discussion in Example 4.5). If G has good reduction at a discrete valuation v of K ,
then L/K is unramified at v. Replacing the use of the Hermite–Minkowski theorem in
the proof of Proposition 5.2 with its higher-dimensional analogue, we see that in the case
where K is a finitely generate field of characteristic zero and V is a divisorial set of places,
there are only finitely many continuous homomorphisms

ω : Gal(K sep/K ) → S

to the symmetry group S of the Dynkin diagram of G such that L(ω) = (K sep)kerω is
unramified at all v ∈ V . Let ω1, . . . ,ωr be representatives of the conjugacy classes of such
homomorphisms, and letG1, . . . , Gr be the correspondingK -quasi-split forms ofG. Then
any K -form of G that has good reduction at all v ∈ V is an inner form of one of the Gi.
This implies that it is enough to prove Conjecture 5.7 for inner forms of all quasi-split
K -groups. In fact, this conclusion remains valid over finitely generated fields of positive
characteristic p > 3, but some care needs to be exercised in characteristic 2 and 3, even
as far as the formulation of Conjecture 5.7 is concerned—cf. [106, Remark 2.6] for further
details.
Finally, ifG is a non-semi-simple reductive group over a finitely generated field K , then

applying Theorem 7.1 to the maximal central torus, we see that it is enough to prove
Conjecture 5.7 for the derived group of G (cf. [10, Ch. IV, §14.2, Proposition] for the
relevant structural information), which reduces the conjecture to the semi-simple case.
In turn, the semi-simple case can essentially be reduced to the case of absolutely almost
simple simply connected groups, which we will consider in the next subsection. Now,
however, we turn our attention to the finiteness of the Tate–Shafarevich group of an
algebraic torus.

Theorem 7.2 [106, Theorem 1.2] Let K be a finitely generated field and V be a divisorial
set of places of K . Then for any algebraic K-torus T , the Tate–Shafarevich group

X1(T, V ) = ker
(
H1(K, T ) →

∏
v∈V

H1(Kv, T )
)

is finite.

As we already indicated in Sect. 6, this result can be interpreted in a variety of concrete
situations. For example, let L be a finite separable extension of a finitely generated field K
with a divisorial set of places V . Let

N := {a ∈ K× | a ∈ NL⊗KKv/Kv ((L ⊗K Kv)×) for all v ∈ V }
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be the groupof “local norms.” ThenTheorem7.2 applied to the norm torusT = R(1)
L/K (Gm)

implies that the quotient N /NL/K (L×) of N modulo the subgroup of “global norms” is
always finite.
It should be noted that the classical proof of the finiteness of X1(T, V ) when K is a

number field and V is set of all places of K (including the archimedean ones) relies on
Tate–Nakayama duality (see [143, Ch. 4, §11.3, Theorem 6] and the subsequent discus-
sion), which is not available in the general situation. So, in [106], we gave two different
proofs of Theorem 7.2. The first one requires an additional assumption on the character-
istic of K , but it develops an approach that is applicable in some situations involving fields
that are not finitely generated. The second one systematically uses adelic techniques in the
context of arbitrary finitely generated fields and their divisorial sets of valuations, which,
to the best of our knowledge, have not been previously employed in this generality. More
specifically, the argument relies on the validity of Condition (T) in the present case—see
Theorem 7.3. Our second proof demonstrates, in particular, that in the classical situation
whereK is a number field, the finiteness of the Tate–Shafarevich group can be established
without Tate–Nakayama duality, and is actually a direct consequence of two basic facts:
the finite generation of the group of S-units and the finiteness of the class number. More-
over, this argument applies to cohomology groups in all degrees and yields the following
result: Let K be a finitely generated field, V be a divisorial set of places, and F/K be a finite
separable extension. Then for any i ≥ 1, the group

Xi(F/K, T, V ) := ker
(
Hi(F/K, T ) −→

∏
v∈V

Hi(Fw/Kv, T )
)

is finite (here for each v ∈ V , we pick one extension w to F ).
The following result verifies Condition (T) for groups more general than tori.

Theorem 7.3 [106, Theorem 3.4] Let K be a finitely generated field and V be a divisorial
set of places of K . Then any linear algebraic K-group G whose connected component is a
torus satisfies Condition (T).

Wewould now like to mention analogues of Theorems 7.1 and 7.2 for function fields of
curves over base fields of type (F) (see Sect. 5.2 for the definition). To fix notations, suppose
k is a field of type (F) and having characteristic 0. Let K = k(C) be the function field of a
smooth geometrically integral curveC over k , and letV be the set of discrete valuations of
K associatedwith the closedpoints ofC .We thenhave the following statement concerning
tori with good reduction.

Theorem 7.4 With notations as above, for each d ≥ 1, there are finitely many K-
isomorphism classes of d-dimensional K-tori that have good reduction at all v ∈ V .

The proof of this (unpublished) result proceeds essentially along the same lines as that of
Theorem 7.1 sketched above, with the key input being the fact that the étale fundamental
group of C is small. For this, we fix an algebraic closure k̄ of k , set C = C ×Spec(k) Spec(k̄),
and let x̄ be the corresponding geometric point ofC.We then have the following standard
exact sequence of profinite groups

1 → π1(C, x̄) → π1(C, x̄) → Gal(k̄/k) → 1
induced by the natural maps C → C and C → Spec(k). By our assumption, Gal(k̄/k) is
small. Furthermore, it is well known that π1(C, x̄) is topologically finitely generated (see,
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for example, [131, Theorem 4.6.7]), and hence is small by [118, Ch. III, §4, Proposition 9].
Applying [51, Lemma 2.7], we conclude that π1(C, x̄) is small, as required.
Next, the first proof of Theorem 7.2 alluded to above, together with the finiteness results

for the unramified cohomology of tori obtained by the second author in [112, §5], yield
the following.

Theorem 7.5 With notations as above, for any K-torus T , the Tate–Shafarevich group
X1(T, V ) is finite.

7.2 Absolutely almost simple groups: Conjectures 5.5 and 5.7.

We begin with the results that have been obtained so far on the Main Conjecture 5.7 for
absolutely almost simple groups.
First, for inner forms of type An, Conjecture 5.7 has been proved completely.

Theorem 7.6 Let K be a finitely generated field and V be a divisorial set of places of K .
Then for any n ≥ 2 that is prime to char K and any simply connected inner form G of
type An−1, the number of K-isomorphism classes of inner K-forms of G that have good
reduction at all v ∈ V is finite.

We recall that the group G in the statement of the theorem is of the form SL1,A—the
algebraic group associated with the group of elements of reduced norm 1 in a central
simple K -algebra A of degree n over K (cf. [94, Ch. 2, §2.3, Proposition 2.17]). As we
remarked in Example 3.8(b), such a group has good reduction at a discrete valuation v of
K if and only if the algebra A is unramified at v, i.e., there exists an Azumaya algebra A
over the valuation ringOv ⊂ Kv such that there is an isomorphism of Kv-algebras

A ⊗K Kv � A ⊗Ov Kv.

A detailed discussion of Azumaya algebras can be found, for example, in [68], [78, Ch. IV],
and [114, Ch. 2]. For our purposes, wemerely recall that anOv-algebraA is called anAzu-
maya algebra if it is a freeOv-module of finite rank and if the canonical homomorphism
ofOv-algebras

A ⊗Ov Aop → EndOv (A)

(whereAop denotes the opposite algebra) that sends a simple tensor a⊗a′ to the endomor-
phism (x �→ axa′), is an isomorphism. In this case, the quotient A/pvA (where pv ⊂ Ov
is the valuation ideal) is a central simple algebra over the residue field K (v) = Ov/pv .
The key input in the proof of Theorem7.6 is a finiteness result for the unramified Brauer

group, which we now describe. First, we recall that the Brauer group Br(K ) of a field K
consists of the Brauer equivalence classes of finite-dimensional central simple K -algebras
(for the details of this construction, the reader can consult [39,90], or [114]). Given a
central simple algebra A over K , we denote by [A] the corresponding class in Br(K ). It is
well known that if A is a central simple K -algebra of degree n, then [A] is annihilated by
multiplication by n in Br(K ), i.e., belongs to the n-torsion subgroup nBr(K ). Furthermore,
given a discrete valuation v of K , we say that a ∈ Br(K ) is unramified at v if it can be
represented by a central simple K -algebra A that is unramified at v, as defined above.
Now, if V is a set of discrete valuations of K , we let Br(K )V denote the subgroup of Br(K )
consisting of elements that are unramified at all v ∈ V (this group is usually referred to as
the unramified Brauer group of K with respect to V ).
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With these preliminaries, wenowcome to the followingfiniteness statement fromwhich
Theorem 7.6 is derived (cf. [20]):
Let K be a finitely generated field and V be a divisorial set of places of K . Then for any
n ≥ 1 that is prime to char K , the group nBr(K )V = nBr(K ) ∩ Br(K )V is finite.
Now, with notations as in Theorem 7.6, any innerK -formG′ ofG that has good reduction
at all v ∈ V is of the form SL1,A′ , where A′ is a central simple K -algebra of degree n with
[A′] ∈ nBr(K )V . Since the latter group is finite, the required finiteness in the theorem
follows from the fact that if A1 and A2 are two central simple K -algebras of degree n
and [A1] = [A2] in Br(K ), then the algebras A1 and A2 are isomorphic, implying that the
corresponding algebraic groups G1 = SL1,A1 and G2 = SL1,A2 are also isomorphic.
The proof of the finiteness of nBr(K )V relies on cohomological techniques. We will not

go into thedetails here andwill only briefly indicate thebasic set-up.Tobeginwith, it iswell
known that Br(K ) can be identified withH2(K, (K sep)×), and under this identification, for
anyn ≥ 1 that is prime to charK , then-torsion subgroup nBr(K ) corresponds toH2(K,μn),
where μn is the group of nth roots of unity in K sep (cf. [90, Ch. 14]). Furthermore, for any
discrete valuation v of K such that char K (v) is prime to n, there exists a residue map

∂2v : H2(K,μn) −→ H1(K (v),Z/nZ),

where Z/nZ denotes μn with the trivial Galois action—see [48, §6.8] for the details. It
turns out that an element a ∈ H2(K,μn) is unramified at v as defined above if and only if
∂2v (a) = 0. So, assuming that n is prime to char K (v) (which we can always do in terms of
proving Theorem 7.6 as n is prime to char K ), one can define the unramified cohomology
group

H2(K,μn)V :=
⋂
v∈V

ker ∂2v

and then identify it with nBr(K )V . The proof then proceeds via a careful analysis of the
group H2(K,μn)V . Let us point out that in [20], we not only established the finiteness of
the latter group, but also provided explicit estimations of its order in certain situations.
Next, we will discuss results on Conjecture 5.7 for groups of several other types over

a special class of finitely generated fields—the so-called two-dimensional global fields.
Following Kato [64], by a two-dimensional global field, we mean either the function field
K = k(C) of a smooth geometrically integral curveC over a number field k , or the function
field K = k(S) of a smooth geometrically integral surface S over a finite field k .

Theorem 7.7 [22, Theorem 1.1] Let K be a two-dimensional global field of characteristic
�= 2 and let V be a divisorial set of places of K . Fix an integer n ≥ 5. Then the set of
K-isomorphism classes of spinor groups G = Spinn(q) of nondegenerate quadratic forms
in n variables over K that have good reduction at all v ∈ V is finite.

Whereas the proof of Theorem 7.6 was based on the study of the Brauer group, the proof
of Theorem 7.7 requires an analysis of the Witt ring (we refer the reader to [37] and [70]
for the construction and basic properties of the Witt ring). We will assume henceforth
that char K �= 2, and denote by W (K ) the Witt ring of K and by I(K ) its fundamental
ideal. For a nondegenerate quadratic form q over K , we set [q] to be the corresponding
class in W (K ). Now, a consequence of Voevodsky’s proof of Milnor’s conjecture is that
for d ≥ 1, there are natural isomorphisms of abelian groups

γK,d : I(K )d/I(K )d+1 −→ Hd(K,μ2)



A. S. Rapinchuk, I. A. Rapinchuk Res Math Sci            (2020) 7:28 Page 35 of 66    28 

(cf. [86]). On the other hand, as above, for any discrete valuation v such that charK (v) �= 2
and any d ≥ 1, there exists a residue map

∂dv : Hd(K,μ2) −→ Hd−1(K (v),μ2),

which actually factors through the restriction map Hd(K,μ2) → Hd(Kv,μ2) (where, as
before,Kv denotes the completion ofK at v). Then one says thata ∈ Hd(K, v) isunramified
at v if ∂dv (a) = 0. Moreover, if K is equipped with a set V of discrete valuations such that
char K (v) �= 2 for all v ∈ V , one defines the corresponding unramified cohomology group
by

Hd(K,μ2)V =
⋂
v∈V

ker ∂dv .

To factor in good reduction, one proves the following technical statement. Let v be a
discrete valuation of K such that char K (v) �= 2. We let W0(Kv) denote the subring of
W (Kv) generated by the classes of 1-dimensional forms ux2 with u ∈ Uv = O×

v . Then we
show the following:
If q is a nondegenerate form over Kv such that [λq] ∈ I(Kv)d ∩ W0(Kv) (where d ≥ 1) for
some λ ∈ K×

v , then [q] ∈ I(Kv)d and

γKv,d([q] + I(Kv)d+1) ∈ Hd(Kv,μ2)

is unramified at v.
(See [22, Lemma 3.3]). On the other hand, as we remarked in Example 3.8(c), the spinor
groupG = Spinn(q) has good reduction at v if and only if q isKv-equivalent to a quadratic
form λq0 with λ ∈ K×

v and q0 = u1x21 + . . . + unx2i , where ui ∈ Uv for all i = 1, . . . , n.
Suppose now that K is a finitely generated field of characteristic �= 2 equipped with a

divisorial set of places V . Without loss of generality we may assume that char K (v) �= 2
for all v ∈ V . Using the above discussion, in conjunction with some facts from the theory
of quadratic forms (most notably, the Hauptsatz—see [70, Ch. X, §5]), one shows that to
prove Theorem 7.7, it is enough to establish the finiteness of the unramified cohomology
groupsHd(K,μ2)V for all d ≥ 1 (see [22, Theorem 2.1] for a more precise statement). So,
to complete the argument, we prove the required finiteness over two-dimensional global
fields of characteristic �= 2. Here, we will comment on this fact assuming that char K = 0
(for the positive characteristic case, the reader can consult [22, §7]). Then the finiteness of
H1(K,μ2)V is a standard result and, as mentioned above, the finiteness ofH2(K,μ2)V was
established in the course of the proof of Theorem 7.6. On the other hand, the finiteness
of Hd(K,μ2)V for d ≥ 4 can be derived from results of Poitou-Tate (cf. [22, Proposition
4.2]). The most challenging case is the finiteness of H3(K,μ2)V , for which we gave two
proofs in [22]. One proof makes use of several powerful results, first and foremost, those
of Kato [64] on cohomological Hasse principles. The second proof requires considerably
less input; in particular, it does not rely on Kato’s local-global principle, but instead is
based on a modification of Jannsen’s proof of the latter [58]. This argument appears to be
more amenable to generalizations in the spirit of Jannsen’s proof [59] of Kato’s conjecture
on the local-global principle for higher-dimensional varieties, which extended his original
argument in [58].
The above sketches of the proofs of Theorems 7.6 and 7.7 indicate an intimate con-

nection between Conjecture 5.7 and finiteness properties of unramified cohomology. The
analysis of unramified cohomology in general and of unramified H3 in particular, in both



   28 Page 36 of 66 A. S. Rapinchuk, I. A. Rapinchuk Res Math Sci           (2020) 7:28 

arithmetic and geometric situations, is a major direction of independent interest, which,
however, lies beyond the scope of the current paper. We refer the reader to [25] for an
informative survey of this subject.
Next, we shouldmention that Theorem 7.7 yields similar results for some other types of

groups. Here is the statement for simply connected outer forms of typeAn−1 that split over
a quadratic extension L/K . We recall that such forms are obtained as follows. Let L/K
be a quadratic extension with a nontrivial automorphism τ , and let h be a nondegenerate
τ -hermitian form of dimension n ≥ 2. Then the groups in question are the special unitary
groups G = SUn(L/K, h) (cf. [94, Ch. 2, §2.3.4]).

Theorem 7.8 [22, Theorem 8.1] Let K be a two-dimensional global field of characteristic
�= 2 and V be a divisorial set of places of K . Fix a quadratic extension L/K, and let n ≥ 2.
Then the number of K-isomorphism classes of special unitary groups G = SUn(L/K, h) of
nondegenerate hermitian L/K-forms in n variables that have good reduction at all v ∈ V
is finite.

Since the number of quadratic extensions L/K that are unramified at all v ∈ V is finite,
Theorem 7.8 in effect yields the finiteness of the number of K -isomorphism classes of
special unitary groups with good reduction at all v ∈ V of n-dimensional nondegenerate
hermitian forms associated with all quadratic extensions L/K .
A result similar to Theorem7.8 is also valid for the special unitary groupsG = SUn(D, h)

of nondegenerate hermitian forms of dimension n ≥ 2 over a quaternion division algebra
D with center K with the canonical involution, which are precisely the absolutely almost
simple simply connected groups of type Cn that split over a quadratic extension of K .
Over two-dimensional global fields, we also have the following finiteness result for

groups of type G2.

Theorem 7.9 [22, Theorem 9.1] Let K be a two-dimensional global field of characteristic
�= 2 and V be a divisorial set of places of K . The number of K-isomorphism classes of
K-groups of type G2 that have good reduction at all v ∈ V is finite.

These preceding results suggest that the proof of the following general fact should be
within reach in the near future: if K is a two-dimensional global field, then for each type,
there are only finitely many K -isomorphism classes of K -forms that split over a quadratic
extension of K and have good reduction at all discrete valuations in some divisorial set of
places of K .
The very recent results on finiteness of unramified cohomology obtained in [106, §5]

make it possible to extend the above results beyond the class of two-dimensional global
fields. We will just mention that Theorems 7.7 and 7.8 remain valid for a purely transcen-
dental extension K = k(x1, x2) of transcendence degree two of a number field k , while
Theorem 7.9 remains valid for K a purely transcendental extension of a number field k of
any (finite) transcendence degree as well as the function field of a Severi–Brauer variety
corresponding to a central simple algebra of either odd degree or degree 2 (in all cases V
can be any divisorial set of places of the field at hand).
To close this subsection, we will briefly survey the results on Conjecture 5.5 in the case

where K = k(C) is the function field of a smooth geometrically integral curve C over a
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base field k that satisfies conditions (F) or (F′
m) (see Sect. 5.2 for the definitions), and V is

the set of discrete valuations of K associated with the closed points of C .

Theorem 7.10 Withnotations as above, assume that k is of characteristic �= 2and satisfies
condition (F′

2). Then the number of K-isomorphism classes of

• spinor groups G = Spinn(q) of nondegenerate quadratic forms q over K of dimension
n ≥ 5,

• special unitary groups G = SUn(L/K, h) of nondegenerate hermitian forms of dimen-
sion n ≥ 2 over a quadratic extension L/K with respect to its nontrivial automorphism,

• special unitary groups G = SUn(D, h) of nondegenerate hermitian forms of dimension
n ≥ 1 over a central quaternion division algebraD over K with respect to the canonical
involution,

• groups of type G2

that have good reduction at all v ∈ V is finite.

The proof proceeds along the same lines as the proofs of theTheorems 7.7–7.9 and relies
on the finiteness results for unramified cohomology established in [112].We should point
out that the list of groups in Theorem 7.10 was recently augmented by S. Srinivasan [127].
She proved the corresponding finiteness statement in the same situation as considered
in the theorem for the universal covers G = S̃Un(D, h) of the special unitary groups
SUn(D, h), where D is a central quaternion K -algebra and h is a nondegenerate skew-
hermitian form of dimension n ≥ 4 with respect to the canonical involution. Recall that
these groups are of type Dn, and in fact all simply connected K -groups of this type that
split over a quadratic extension of K are of the form S̃Un(D, h) (cf. [94, Ch. 2, §2.3.4]).
So, combining Theorem 7.10 with the main result of [127], we see that for each r ≥ 1,
there exist only finitely many K -isomorphism classes of absolutely almost simple simply
connected algebraic K -groupsG of rank r that belong to one of the types An, Bn,Cn,Dn or
G2, split over a quadratic extension of K , and have good reduction at all v ∈ V . The types
E6, E7, E8, and F4 have not been considered yet.

7.3 Absolutely almost simple groups: Conjecture 6.1

As we already remarked in Sect. 6, the truth of Conjecture 5.7 for the inner forms of an
absolutely almost simple simply connected groupG automatically implies the properness
of the global-to-local map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

for the corresponding adjoint group G. Thus, it follows from Theorem 7.6 that if K is a
finitely generated field equipped with a divisorial set of places V , then for a central simple
K -algebra A of degree n which is prime to char K , the map

θPSL1,A,V : H1(K,PSL1,A) −→
∏
v∈V

H1(Kv,PSL1,A)

is proper; in particular, themap θPSLn,V : H1(K,PSLn) −→ ∏
v∈V H1(Kv,PSLn) is proper.6

It should be pointed out, however, that the properness of the global-to-local map for the

6Using twisting, one shows that the properness of θPSLn,V in fact implies the properness of θPSL1,A ,V for any central
simple K -algebra A of degree n.
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adjoint group does not automatically imply its properness for the corresponding simply
connected group (or another isogenous group). In fact, the properness of the map global-
to-local θ remains an open problem for the groupG = SL1,A in the general case. We have
the following partial result over two-dimensional global fields.

Theorem 7.11 [22, Theorem 5.7] Let K be a two-dimensional global field, V a divisorial
set of places of K , and n a square-free integer that is prime to char K. Then for a central
simple K-algebra A of degree n and G = SL1,A, the map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper.

Next, for odd integers n ≥ 5, the adjoint group for G = Spinn(q) is G = SOn(q). So, in
this case, Theorem 7.7 automatically implies the properness of the map

θSOn(q),V : H1(K, SOn(q)) −→
∏
v∈V

H1(Kv, SOn(q))

when K is a two-dimensional global field of characteristic �= 2 and V is a divisorial set of
places of K . In fact, one proves that this map is proper for all n ≥ 5—see [22, Theorem
1.3]. Moreover, still assuming thatK is a two-dimensional global field andV is a divisorial
set of places of K , we establish in [22] that this map is proper for special unitary groups
SUn(L/K, h) and SUn(D, h) over quadratic extensions and quaternion algebras, and for
groups of type G2. In addition, in [106], we show that the map θG,V is proper for the
groups SOn(q), SUn(L/K, h), and SUn(D, h) in the previous notations when K is a purely
transcendental extension k(x1, x2) of transcendence degree two of a number field k and
V is any divisorial set of places of K . The next result, also obtained in [106], deals with
purely transcendental extensions of number fields of any (finite) transcendence degree.

Theorem 7.12 Let k be a number field and suppose K = k(x1, . . . , xr) is a purely tran-
scendental extension of k or K = k(X) is the function field of a Severi–Brauer variety X over
k associated with a central division algebra D over k of degree �, and let V be a divisorial
set of places of K . Then in each of the following situations

• G = SL1,A where A is a central simple K-algebra of a square-free degree m such that
k contains a primitive m-th root of unity, and either m is relatively prime to � or � is a
prime number if K is the function field of a Severi–Brauer variety;

• G is a simple algebraic group of type G2 and either � is odd or � = 2 if K is the function
field of a Severi–Brauer variety,

the global-to-local map θG,V : H1(K,G) → ∏
v∈V H1(Kv, G) is proper.

We conclude with the following theorem, which collects available results on the proper-
ness of the global-to-local map over function fields of curves. The proofs are based on a
combination of the arguments used to establish properness in [22], together with the
finiteness results for unramified cohomology obtained in [112].

Theorem 7.13 Let K = k(C) be the function field of a smooth geometrically integral curve
C over a field k, and let V be the set of discrete valuations of K associated with the closed
points of C. In each of the following situations:
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• G = SL1,A, where A is a central simple K-algebra of a square-free degree n prime to
char k and such that k satisfies condition (F′

n);
and assuming that k is of characteristic �= 2 and satisfies (F′

2)
• G = SOn(q), where q is a nondegenerate quadratic form over K of dimension n ≥ 5;
• G = SUn(L/K, h), where h is nondegenerate hermitian form of dimension n ≥ 2 over

a quadratic extension L/K with respect to its nontrivial automorphism;
• G = SUn(D, h), where h is a nondegenerate hermitian form of dimension n ≥ 1 over a

central quaternion division K-algebra with respect to the canonical involution’
• G is of type G2

the global-to-local map θG,V : H1(K,G) → ∏
v∈V H1(Kv, G) is proper.

7.4 Condition (T)

Asmentioned previously, we have been able to establish Condition (T) for algebraic tori in
all situations—see Theorem 7.3 for the precise statement. However, for general reductive
groups, the analysis of Condition (T) is only unfolding. We begin with the following
statement over function fields of curves.

Theorem 7.14 [23, Theorem 4.1] Let K = k(C) be the function field of a smooth geomet-
rically integral affine C curve over a finitely generated field k, and let V be the set of discrete
valuations of K associated with closed points of C. Then Condition (T) with respect to V
holds for any connected reductive split K -group G.

Using considerations involving strong approximation, the proof of this result essentially
reduces to verifying Condition (T) for amaximal split torus ofG, where it follows from the
finite generation of the Picard group Pic(K,V ) (note that V can be included in a divisorial
set of places of K ). We should point out that questions about strong approximation over
fields other than global are interesting in their own right, and we will briefly comment on
the initial steps in their study in Sect. 10.1.
In the higher-dimensional situation, the investigation of Condition (T) is expected to be

a very challenging problem. Indeed, as we will see shortly, already in the case G = GLn,
it is related to a famous conjecture of H. Bass [5], which has not seen much progress
since it was posed in 1972. Now, it makes sense to consider this problem first in the more
general context of commutative algebra without any finite generation assumptions. So, let
R be a noetherian integral domain that is integrally closed in its field of fractions K . We
denote by P the set of height one primes of R and let V be the associated set of discrete
valuations of K . As in Sect. 6, we set G(A(K,V )) to be the corresponding adele group,
and let G(A∞(K,V )) and G(K ) denote the subgroups of integral and principal adeles,
respectively. We first observe that for G = GLn the class set

cl(G,K, V ) = G(A∞(K,V ))\G(A(K,V ))/G(K )

has the following interpretation in terms of reflexive R-modules.Given anR-moduleM, we
let M∗ = HomR(M,R) denote the dual module. Then there is a natural homomorphism
of R-modules M → M∗∗ = (M∗)∗, and M is called reflexive if this homomorphism is an
isomorphism.AnR-submoduleM ofW = Kn is called a lattice if it is finitely generated and
contains a K -basis of W . We let Refln(R) (resp., Projn(R)) denote the set of isomorphism
classes of lattices inW = Kn that are reflexive (resp., projective) R-modules. One proves
that there is a natural bijection between the class set cl(GLn, K, V ) and Refln(R)—see [23,
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Proposition B.2]. (To bemore precise, one actually constructs a bijection between the class
set defined using rational adeles and Refln(R), but since GLn has weak approximation with
respect to any finite set of places, the full adeles and the rational adeles result in the same
class set.) We note that in general, Projn(R) is a proper subset of Refln(R), but it is known
that if R is a regular integral domain of Krull dimension ≤ 2, then Refln(R) = Projn(R) for
all n ≥ 1 (cf. [115, Proposition 2] and [119, Corollary 6, p. 78]).
Next, let K0(R) be the Grothendieck group of R—cf., for example, [79, §1] for the defi-

nition and basic properties. The following conjecture was proposed by Bass ([6, §9.1]).

Conjecture 7.15 (Bass) Let R be a finitely generated Z-algebra which is a regular ring.
Then the group K0(R) is finitely generated.

(We note that Bass actually conjectured the finite generation of all groups Kn(R) (n ≥ 0)
for such R.)
The following statement reveals a rather surprising connection between Conjecture

7.15 and Condition (T).

Proposition 7.16 ([23, Corollary 6.16]) Let R be an integral domain which is a finitely
generated Z-algebra and a regular ring of Krull dimension ≤ 2, and let V be the set of
discrete valuations of the fraction field K associated with the height one prime ideals of R.
If Conjecture 7.15 is true then G = GLn for n ≥ 3 satisfies Condition (T) with respect to V .

The proof relies on the equality Refln(R) = Projn(R) in the situation at hand, in con-
junction with the following Cancellation Theorem due to Bass [5]: Let R be a noetherian
commutative ring of Krull dimension d < ∞, and let P and Q be finitely generated projec-
tive R-modules of constant rank r > d. If P⊕F � Q⊕F ,with F free and finitely generated,
then P � Q.
As we observed in [23, §3], Condition (T) can be used to show the finiteness of certain

subgroups of unramified cohomology in degree 3 with μ2-coefficients (which is needed,
in particular, for the analysis of groups of type G2 with good reduction). However, to
implement this approach, we need Condition (T) to hold not for GLn, but rather for its
K -forms GL1,A, where A is a central simple K -algebra of degree n. For this, we developed
in [23, AppendixC] a descent procedure that, under some additional assumptions, enables
one to derive Condition (T) for GL1,A from the fact that Condition (T) holds for GLn over
a suitable finite Galois extension L/K that splits A.
While the investigation of Condition (T) is still in its initial stages, the range of its

potential applications as well as its connections to various other problems, make this a
very natural avenue for future work.

8 Applications to the genus problem
After surveying the available results on Conjectures 5.5, 5.7, and 6.1, we now turn to
applications. In this section,wewill consider applications of theMainConjecture 5.7 to the
genus problem for absolutely almost simple algebraic groups, while in the next one, wewill
relate it to the analysis of weakly commensurable Zariski-dense subgroups of such groups,
which in turn is linked to questions in differential geometry about isospectral and length-
commensurable locally symmetric spaces. Historically, many of these developments can
be traced back to [96]: although this work focused primarily on geometric problems, it
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became apparent that some of the ideas introduced therein should be considered in a
much more general context. Eventually, research in this direction has led to the Main
Conjecture. So, the reader should regard Sects. 8 and 9 of this article as an overview of
the problems that motivated the Main Conjecture, and for which it provides a uniform
approach (as it does with regard to some other issues, such as the local-global principle).

8.1 The genus problem for algebraic groups

Given two reductive algebraic groups G1 and G2 over a field K , we say that G1 and G2
have the same isomorphism classes of maximal K-tori if every maximal K -torus T1 of G1
is K -isomorphic to some maximal K -torus T2 of G2, and vice versa.

Definition 8.1 Let G be an absolutely simple simply connected algebraic group over a
field K . The genus genK (G) of G is the set of K -isomorphism classes of (inner) K -forms
G′ of G that have the same isomorphism classes of maximal K -tori as G.

(We note that if K is a finitely generated field, then any K -form G′ of G that has the same
isomorphism classes of maximal K -tori as G is necessarily inner—cf. [100, Lemma 5.2].
So, restricting ourselves to just inner forms in this context does not result in a loss of
generality.)
In the most general terms, the goal of the genus problem is to characterize the genus of

a given group, which is of course crucial for understanding how two (absolutely almost
simple simply connected) algebraic groups are related given the fact that they have the
same isomorphism classes of maximal K -tori. From a variety of more precise questions
that one can ask in connection with the genus problem, we will focus on the following
two.

Question 8.2 When does genK (G) reduce to a single element?

Question 8.3 When is genK (G) finite?

The basic case where K is a number field was considered in [96, Theorem 7.5], where
the following result was established (although the term “genus,” which appeared later, was
not used).

Theorem 8.4 Let G be an absolutely almost simple simply connected algebraic group over
a number field K . Then

(1) genK (G) is finite;
(2) if G is not of type An, D2n+1 (n > 1), or E6, we have |genK (G)| = 1.

A noteworthy feature here is the completely different behavior of the groups of type
Dn for n even and odd. This difference was worked out in [97] in the context of algebras
with involution and in [42] in the context of algebraic groups. Another observation is
that the types excluded in part (2) are precisely the types for which the automorphism
of multiplication by (−1) of the corresponding root system is not in the Weyl group of
the root system. In fact, these types are honest exceptions: indeed, it follows from [96,
Theorem 9.12] that the genus for each of those types can be arbitrarily large.
Having addressed number fields, the next question is what can one expect regarding

genK (G) over more general fields? In order to provide some context for the conjecture
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that we will formulate in Sect. 8.4 and also to motivate the genus problem in general,
we will next briefly review the genus problem for division algebras (see [19] for a more
detailed account).

8.2 The genus problem for division algebras

Let D1 and D2 be two central division K -algebras of degree n. We say that D1 and D2
have the same maximal subfields if a degree n field extension P/K admits a K -embedding
P ↪→ D1 if and only if it admits a K -embedding P ↪→ D2. Then one can ask the following
natural question:
(∗) Let D1 and D2 be central division algebras of the same degree. How are they related
given the fact that they have the same maximal subfields?
This question can be seen as an extension of the following famous theorem of Amitsur
[3]:

Theorem 8.5 (Amitsur) Let D1 and D2 be finite-dimensional central division algebras
over a field K that have the same splitting fields, i.e., for a field extension F, the algebra
D1 ⊗K F is F-isomorphic to a matrix algebraMn1 (F ) if and only if the algebra D2 ⊗K F is
isomorphic to a matrix algebraMn2 (F ). Then n1 = n2 and the classes [D1] and [D2] in the
Brauer group Br(K ) generated the same subgroup, 〈[D1]〉 = 〈[D2]〉.

The important point is that the proof of this result relies in a very essential way on infi-
nite (non-algebraic) extensions of K—namely, so-called generic splitting fields (concrete
examples of which are function fields of Severi–Brauer varieties). So, one may wonder if
it is possible to prove Amitsur’s Theorem, or perhaps another statement along the same
lines, using only finite extensions of K . In other words, is it enough to assume only that
D1 andD2 have the same finite-dimensional splitting fields or just the same maximal sub-
fields? It turns out that the conclusion of Amitsur’s Theorem is false in this setting. In fact,
using the Albert–Brauer–Hasse–Noether theorem (see [90, Ch. 18, §18.4]), one can easily
construct arbitrary large collections of pairwise non-isomorphic cubic division algebras
having the same maximal subfields over number fields (the same construction actually
works for division algebras of any degree d > 2—cf. [19, §1]). On the other hand, two
quaternion division algebras over a number field that have the same quadratic subfields
are necessarily isomorphic (as we will see in Sect. 8.3, this fact turns out to have impor-
tant consequences for Riemann surfaces). Thus, even over number fields, the question (∗)
appears to be interesting. Moreover, until about 10 years ago, no information at all was
available on (∗) over any fields other than global. The following question along these lines
was first asked in [96, Remark 5.4]:
Are quaternion division algebras over Q(x) determined uniquely up to isomorphism by

their maximal subfields?
Shortly after it was formulated, this question was answered in the affirmative by D. Salt-
man. In subsequent work, he and S. Garibaldi [43] showed that the answer is still affirma-
tive over the field of rational functions k(x), where k is any number field, and also in some
other situations. This was the starting point of the investigation of question (∗) over fields
more general than global, and we will now present the results that have been obtained
since then. We note that a similar question, formulated in terms of finite-dimensional
splitting fields, was considered in [69].
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For our discussion, it will be convenient to quantify the problem by introducing the
notion of the genus of a division algebra (this terminology was suggested by L.H. Rowen).

Definition 8.6 LetD be a finite-dimensional central division algebra over a fieldK . Then
the genus gen(D) of D is defined to be the set of classes [D′] ∈ Br(K ) represented by
central division K -algebras D′ having the same maximal subfields as D.

Let us remark that Definition 8.1 in the previous subsection is a straightforward gen-
eralization of this definition (which historically was given earlier) to algebraic groups, in
which maximal subfields are replaced with maximal tori. Moreover, just as in the case of
algebraic groups, the general question (∗) essentially reduces to the analysis of the genus
gen(D). In the present situation, we would like to focus on the analogues of Questions 8.2
and 8.3 in this situation, i.e.,

• When does gen(D) reduce to a single element? (Note that this is the case if and only if
D is determined uniquely up to isomorphism by its maximal subfields.)

• When is gen(D) finite?

Over a number field K , the description of the Brauer group Br(K ) provided by the
Albert–Brauer–Hasse–Noether Theorem enables one to resolve both questions. Namely,
it turns out that the genus of every quaternion division algebra is trivial (i.e., reduces to a
single element), while the genus of any division algebra of higher degree is nontrivial but
always finite (see [19, Proposition 3.1] for the details).
Next, the following theorem for the field of rational functions was established in [105].

Theorem 8.7 (Stability Theorem)Assume that chark �= 2. If |gen(�)| = 1 for any central
division quaternion algebra� over k, then |gen(D)| = 1 for any quaternion algebra D over
k(x).

We note that the same statement remains valid for all division algebras having exponent
two in the Brauer group (cf. [18]). On the other hand, |gen(D)| > 1 whenever D does not
have exponent two since in that case, the opposite algebraDop is not isomorphic toD, but
clearly has the same maximal subfields as D. Now, a consequence of Theorem 8.7 is that
the genus of a quaternion algebra over the purely transcendental extension k(x1, . . . , xr)
of a number field k of any (finite) transcendence degree reduces to a single element. At
the same time, the following question remains open.

Question 8.8 Does there exist a central quaternion division algebra D over a finitely
generated field K of characteristic �= 2 having nontrivial genus?

Turning now to the question of the finiteness of the genus, we first should point out that
over general fields, the genus gen(D) can be infinite. Indeed, adapting a construction that
has been suggested by a number of people, includingM. Schacher, A.Wadsworth,M. Rost,
S. Garibaldi and D. Saltman, J. Meyer [76] produced examples of quaternion algebras over
“large” fieldswith infinite genus.7 (By construction, thesefieldshave infinite transcendence
degree over the prime subfield.) In particular, there exist quaternion algebras over such
fields with nontrivial genus (this was actually already observed by Garibaldi and Saltman

7We observe that if the genus gen(D) is infinite for a central division K -algebra D, then the genus genK (G) is also
infinite for the corresponding algebraic group G = SL1,D .
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[43]), indicating that the finite generation assumption in Question 8.8 cannot be omitted.
Subsequently, S. Tikhonov [135] extended this approach to construct examples of division
algebras of any prime degree having infinite genus. On the other hand, in [20] and [23],
we proved the following.

Theorem 8.9 Let K be a finitely generated field. Then for any finite-dimensional central
division K-algebra D, the genus gen(D) is finite.

There are two versions of the proof of Theorem 8.9. Both of them rely on the analysis
of ramification, but they differ in the amount of information about the unramified Brauer
group that is needed as an input.Theproof given in [20] requires the additional assumption
that the degree n of the division algebraD is relatively prime to charK , and proceeds along
the following lines. Fix a divisorial set of places V of K . First, since char K is prime to n,
we can assume without loss of generality that for each v ∈ V , the characteristic of the
residue field K (v) is prime to n. Consequently, the residue map

∂2v : H2(K,μn) −→ H1(K (v),Z/nZ)

that we encountered in our discussion of the proof of Theorem 7.6 is defined. One then
shows that if D′ is a central division algebra with [D′] ∈ gen(D) and

χv = ∂2v ([D]) and χ ′
v = ∂2v ([D′]) (10)

are the corresponding characters of the absoluteGalois group ofK (v), then ker χv = ker χ ′
v

(see [18, Lemma 2.5]). In particular, we see that for D and D′ as above, the algebras are
either simultaneously ramified or simultaneously unramified at a place v. This fact leads
to the following estimate:

|gen(D)| ≤ |nBr(K )V | · ϕ(n)r ,

where r is the number of v ∈ V where D ramifies (which is necessarily finite for a
divisorial set). Thus, we obtain an upper bound on the size of the genus that is uniform
over all central division K -algebras of a given degree with a fixed number of ramification
places; in particular, this estimate is uniform over all quaternion division K -algebras.
Our second proof of Theorem 8.9, which we gave in [23], also uses the analysis of

ramification, but avoids imposing restrictions on the characteristic of the field K . The
reason for this is that the argument does not require the finiteness of the (n-torsion of
the) unramified Brauer group, but only the finiteness of certain subgroups of the latter.
On the other hand, since these subgroups depend on the division algebra at hand, we do
not obtain a nice estimate on the size of the genus as provided by our first proof.
To finish up this discussion, let usmention that the proof of Theorem 8.7 applies similar

considerations to the set V of geometric places of the field K = k(x) (i.e., the set of those
v that correspond to the closed points of P1

k ). Namely, let D be a quaternion division
algebra over K and let D′ be another quaternion division K -algebra such [D′] ∈ gen(D).
As above, for each v ∈ V , letting χv and χ ′

v denote the characters defined by (10), we have
ker χv = ker χ ′

v . But since n = 2, this means that actually χv = χ ′
v . It follows that the class

[D] · [D′]−1 in 2Br(K ) is unramified at all v ∈ V . But according to a result of Faddeev (cf.
[48, Theorem 6.9.1]), we have

2Br(K )V = 2Br(k),
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implying that [D′] = [D] · [� ⊗k K ] for some quaternion algebra � over k . Finally, using
the assumption that the genus of every quaternion algebra over k is trivial and applying a
specialization argument, one concludes that the class [�] ∈ Br(k) is trivial, henceD = D′.

8.3 Quaternion algebras and Riemann surfaces

In this subsection, we will briefly describe how quaternion algebras sharing “many”
(although a priori not all) quadratic subfields arise in the investigation of Riemann sur-
faces. These considerations, which provide a geometric context for our general discussion,
will be extended in Sect. 9 to locally symmetric spaces of arbitrary simple real algebraic
groups.
Let H = {x + iy ∈ C | y > 0} be the complex upper half-plane equipped with the stan-

dard hyperbolic metric ds2 = y−2(dx2 + dy2). The action of SL2(R) by fractional linear
transformations is transitive and isometric, allowing us to identify H with the homoge-
neous (symmetric) space SL2(R)/SO2(R). Let π : SL2(R) → PSL2(R) be the canonical
projection. It is well known (cf., for example, [41, Theorem 27.12]) that any compact Rie-
mann surface of genus> 1 can be presented as a quotient
\H by some discrete subgroup

 ⊂ SL2(R) containing {±I} and having torsion-free image π (
). It was demonstrated in
[72] that some properties of M can be understood in terms of the associated quaternion
algebra A
 , which is constructed as follows.
Let 
(2) denote the subgroup of 
 generated by the squares of all elements, and set A


to be the Q-subalgebra of M2(R) generated by 
(2). One shows that A
 is a quaternion
algebra (not necessarily a division algebra) with center

K
 = Q(tr γ | γ ∈ 
(2))

(the so-called trace field)—cf. [72, Ch. 3]. Furthermore, it turns out that if 
1 and 
2 are
commensurable (i.e., their intersection has finite index in both of them), then A
1 = A
2 ;
in other words, A
 is an invariant of the commensurability class of 
. Moreover, if 
 is
an arithmetic Fuchsian group, then K
 is a number field and A
 is the quaternion algebra
involved in the description of 
 (cf. [72, §8.2]). It follows that if 
1 and 
2 are arithmetic
subgroups and the algebras A
1 and A
2 are isomorphic, then 
1 is commensurable with
a conjugate of
2. Thus, in the arithmetic case,A
 completely determines the commensu-
rability class of
 (up to conjugation). This is no longer true for non-arithmetic subgroups,
but nevertheless A
 remains an important invariant of the commensurability class.
Next, in differential geometry, one attaches various spectra to a Riemannian manifold

M: particularly when M is compact, one considers the Laplace spectrum E(M), which
consists of the eigenvalues of the Beltrami-Laplace operator with multiplicities; in the
general case, one can also look at the (weak) length spectrum L(M), which is defined as
the set of lengths of all closed geodesics in M. Then two Riemannian manifolds M1 and
M2 are said to be

(1) isospectral if E(M1) = E(M2) (assuming thatM1 andM2 are compact);
(2) iso-length-spectral if L(M1) = L(M2);
(3) length-commensurable if Q · L(M1) = Q · L(M2).

On the other hand, M1 and M2 are called commensurable if they have a common finite-
sheeted cover, with the coveringmaps being local isometries. In general, one would like to
understand howM1 andM2 are related if they satisfy one of the above conditions (1)-(3)
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or similar ones. Probably themost famous version of this general question is due toM. Kac
[61], who asked “Can one hear the shape of a drum?” In other words, are two compact
isospectral Riemannian manifolds necessarily isometric? For our purposes, however, we
will focus on length-commensurable Riemann surfaces and their commensurability. We
refer the reader to [100] for a more detailed discussion of these conditions, and only
mention here that for compact locally symmetric spaces of simple real algebraic groups
(in particular, for compact Riemann surfaces), condition (1) implies condition (2), which
in turn trivially implies condition (3). What is interesting is that as far as questions of
commensurability are concerned, condition (3), despite being the weakest, has essentially
the same consequences as the strongest condition (1).
We will now examine how the length-commensurability of two compact Riemann sur-

faces of genus > 1 impacts the associated quaternion algebras. First, let M = 
\H be
a compact Riemann surface as above. It is well known that every closed geodesic in M
corresponds to a semi-simple element γ ∈ 
, γ �= ±I , and we will denote it by cγ . For
our discussion, we will only need the following formula for the length �(cγ ) of cγ . Since

 ⊂ SL2(R) is discrete and π (
) ⊂ PSL2(R) is torsion-free, any semi-simple element

γ ∈ 
 is automatically hyperbolic, hence is conjugate to a matrix of the form
(
tγ 0
0 t−1

γ

)

with tγ ∈ R. Then

�(cγ ) = 2
nγ

· | log |tγ ||, (11)

where nγ is an integer (in fact, it is the winding number—we refer the reader to [96, §8]
for the details). It follows that

Q · L(M) = Q · {log |tγ | | γ ∈ 
 semi-simple and �= ±I}. (12)

Now, let M1 = 
1\H and M2 = 
2\H be two compact Riemann surfaces as above, and
assume that they are length-commensurable. One then shows that

K
1 = K
2 =: K

(this is a consequence of the more general Theorem 8.15 in [96]—see also Theorem 9.4).
Furthermore, it follows from (12) that for any semi-simple γ1 ∈ 


(2)
1 different from ±I ,

there exists a semi-simple γ2 ∈ 

(2)
2 such that

tmγ1 = tnγ2 (13)

for some nonzero integers m, n, and consequently γm
1 and γ n

2 ∈ M2(R) are conjugate.
Then for i = 1, 2, the algebra K [γi] is a maximal étale subalgebra of A
i , and we have an
isomorphism of K -algebras

K [γ1] = K [γm
1 ] � K [γ n

2 ] = K [γ2].

Thus, the geometric condition of length-commensurability translates into the algebraic
condition that A
1 and A
2 have a common center and the same isomorphism classes of
maximal étale subalgebras that have a nontrivial intersection with 


(2)
1 and 


(2)
2 , respec-

tively.
We recall from our discussion in Sect. 8.2 that the genus of a quaternion algebra over

a number field reduces to a single element. Note, however, that the preceding condition
implied by length-commensurability is technically weaker than the condition that A
1

and A
2 belong to the same genus. Nevertheless, it was observed by A. Reid [113] (prior
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to the systematic investigation of the genus problem) that if M1 and M2 are isospectral
(hence also iso-length spectral) Riemann surfaces with arithmetic fundamental groups 
1
and 
2, respectively, then the latter is still sufficient to conclude that A
1 � A
2 . As we
remarked above, this implies that 
1 is commensurable to a conjugate of 
2, and hence
the Riemann surfaces M1 and M2 are commensurable. In Sect. 9, we will give a brief
overview of similar results for arithmetically defined locally symmetric spaces of arbitrary
real simple algebraic groups (cf. [96,100]). We will also see that even for not necessarily
arithmetic Riemann surfaces, the above condition leads to the same finiteness results as
we have for the genus.

8.4 Conjectures and results on the genus problem

Juxtaposing the treatment of the genus of absolutely almost simple simply connected
algebraic groups over number fields in Theorem 8.4 with the results in Sect. 8.2 on the
genus of division algebras over general fields, one is led to the following.

Conjecture 8.10 (1) Let K = k(x) be the field of rational functions in one variable over
a number field k. If G is an absolutely almost simple simply connected algebraic
K-group with center Z(G) of size ≤ 2, then the genus genK (G) reduces to a single
element.

(2) Let G be an absolutely almost simple simply connected algebraic group over a finitely
generated field of “good” characteristic. Then the genus genK (G) is finite.

(Here, “good” characteristic is used in the same sense as in Conjecture 5.7.)
The general hope is that this conjecture will be proved through a far-reaching extension

to algebraic groups of the techniques developed for the study of the genus of division
algebras; in this extension, groups with good reduction are expected to play a role similar
to that of unramified division algebras. More precisely, as we pointed out in our sketch
of the first proof of Theorem 8.9, conceptually, one of the critical observations needed
to establish the finiteness of the genus is that if D is a finite-dimensional central division
K -algebra that is unramified at a discrete valuation v of K , then every central division
K -algebra D′ such that [D′] ∈ gen(D) is also unramified at v. While this fact is certainly
nontrivial, at the same time, it is notparticularly surprising, andcanbeprovedbyexploiting
the equivalence of several different characterizations of unramified algebras. Informally
speaking, it means that the maximal subfields of a division algebra detect whether or not
the algebra is unramified. On the other hand, there were no indications in the literature
as to why the maximal tori of a reductive group should be able to detect whether or not
the group has good reduction in a sufficiently general situation. So, the following result
from [21] and [24] is quite surprising.

Theorem 8.11 Let G be an absolutely almost simple simply connected algebraic group
over a field K , and let v be a discrete valuation of K . Assume that the residue field K (v) is
finitely generated and that G has good reduction at v. Then every G′ ∈ genK (G) also has
good reduction at v.

Since the proof relies on techniques that we will not address in this article (specifically,
considerations involving so-called generic tori—cf. [99, §9] for an overview of these), we
refer the reader to [24] for the details; here, we will only discuss the consequences of this
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statement for the genus problem. We would also like to draw the reader’s attention to
Theorem 9.9 that elaborates on Theorem 8.11.
Suppose now that G is an absolutely almost simple simply connected algebraic group

defined over a finitely generated field K , and let V be a divisorial set of places of K . Using
the fact that V satisfies condition (A) (see Sect. 5.3), it is easy to show that there exists a
finite subset S ⊂ V such that G has good reduction at all v ∈ V \ S. Then it follows from
Theorem 8.11 that every K -form G′ of G whose K -isomorphism class lies in the genus
genK (G) also has good reduction at all v ∈ V \ S. Since V \ S contains a divisorial set of
places of K , we conclude that the truth of Conjecture 5.7 would automatically imply the
finiteness of genK (G) (at least if charK is “good” for the type ofG). We will now list some
results on the genus in the spirit of Conjecture 8.10 that have already been established,
beginning with inner forms of type An, where the conjecture has been proved in full.

Theorem 8.12 (1) Let D be a central division algebra of exponent two over the field of
rational functions K = k(x1, . . . , xr ), where k is either a number field or a finite field
of characteristic �= 2. Then for G = SLm,D (m ≥ 1), the genus genK (G) reduces to a
single element.

(2) Let G = SLm,D, where D is a central division algebra over a finitely generated field K
of degree prime to char K. Then genK (G) is finite.

The discussion preceding the statement of Theorem 8.12 shows that part (2) follows
from Theorem 7.6. On the other hand, we should point out that part (2) is not a direct
consequence of Theorem 8.9 on the finiteness of gen(D), even for m = 1. The problem
is that while every maximal K -torus of the group G = SL1,D, with D a central division
K -algebra, is the norm torus R(1)

F/K (Gm) for some maximal separable subfield F of D, the
fact that two such tori R(1)

F1/K (Gm) and R(1)
F2/K (Gm) are K -isomorphic does not in general

imply that the field extensions F1 and F2 are isomorphic over K . Thus, the fact that the
algebraic K -groups SL1,D1 and SL1,D2 , for some central division K -algebras D1 and D2,
are in the same genus may not imply that the algebras D1 and D2 are themselves in the
same genus. So, some additional considerations (involving generic tori) are needed to
derive the finiteness of genK (G) from that of gen(D) (cf. [18, Theorem 5.3]). Analogous
considerations implemented in the context of theproof of theStabilityTheorem(Theorem
8.7) yield part (1) of Theorem 8.12. Since there are no restrictions on the characteristic
in Theorem 8.9, it would be interesting to determine if these are necessary in Theorem
8.12(2).
Next, we will consider the genus of spinor groups.

Theorem 8.13 Suppose K is either the field of rational functions k(x, y) in two variables
or the function field k(C) of a smooth geometrically integral curve C over k, where, in
both cases, k is a number field. Let G = Spinn(q) be the spinor group of a nondegenerate
quadratic form q over K of odd dimension n ≥ 5. Then genK (G) is finite.

We note that the argument sketched prior to the statement of Theorem 8.11, combined
with Theorem 7.7 and [106, Theorem 5.5], shows that for G = Spinn(q), where q is
a nondegenerate quadratic form over K of any dimension n ≥ 5, the number of K -
isomorphism classes of spinor groups G′ = Spinn(q′) that have the same maximal K -tori
as G is finite. When n is odd, all K -forms of G are again spinor groups, and we obtain
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the above theorem. On the other hand, when n is even, G has K -forms coming from
skew-hermitian forms over noncommutative central division algebras over K , and so far,
we have not been able to eliminate these as potential members of the genus genK (G)
(see, however, [22, Theorem 1.2] for a partial result in this direction). We also know that
genK (G) is finite if K is the same as in Theorem 8.13 andG is either SUn(L/K, h), where h
is a nondegenerate hermitian form of dimension n ≥ 2 over a quadratic extension L/K , or
SUn(D, h), where h is a nondegenerate hermitian form of dimension n ≥ 1 over a central
quaternion division algebra D over K with the canonical involution (the case where K
is a 2-dimensional global field is handled in [22, Theorem 8.3 and Remark 8.6]; for the
field of rational functions in two variables, one proceeds analogously, making use of [106,
Theorem 5.1]).
We conclude this section with the following result for groups of type G2.

Theorem 8.14 Let G be a simple algebraic K-group of type G2.

(1) If K is the field of rational functions k(x), where k is a number field, then |genK (G)| =
1.

(2) If k is a number field and K is one of the following:

• K = k(x1, . . . , xr) is the field of rational functions in any (finite) number of
variables;

• K = k(C) is the function field of a smooth geometrically integral curve C over k;
• K = k(X) is the function field of a Severi–Brauer variety X over k associated with

a central division algebra D over k of degree �, where � is either odd or � = 2,
then genK (G) is finite.

The proofs of these statements ultimately rely on an analysis of unramified cohomology,
and are treated in detail in [22, Theorems 9.1 and 9.3] and [106, Proposition 5.3].

8.5 The genus and base change

To conclude our overview of the genus problem, in this subsection, we will briefly discuss
how the genus genK (G) varies under base change. As a first example, we observe that if
G = SL1,D, where D is a cubic division algebra over a number field K , then, using the
description of the Brauer group of a number field provided by Albert–Brauer–Hasse–
Noether theorem, one can construct a sequence of finite extensions Fi/K so that the sizes
of genFi (G ×K Fi) grow unboundedly (of course, this cannot happen if D is a quaternion
algebra). On the other hand, the following theorem from [24] shows that the genus cannot
grow under purely transcendental extensions.

Theorem 8.15 Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated field k of characteristic 0, and let K = k(x) be the field of rational
functions in one variable. Then any G′ ∈ genK (G ×k K ) is of the form G′ = G′

0 ×k K for
some G′

0 ∈ genk (G).

To sketch the idea of the proof, we let V denote the set of geometric places of K (i.e.,
those valuations that correspond to the closed points of P1

k ). Then the group G ×k K
has good reduction at all v ∈ V . So, it follows from Theorem 8.11 that G′ also has good
reduction at all v ∈ V . The desired conclusion is then derived from Theorem 5.3.
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In conjunction with Theorem 8.4, this yields the following.

Corollary 8.16 Let G be an absolutely almost simple simply connected algebraic group
over a number field k, and let K = k(x1, . . . , xr) be the field of rational functions in r ≥ 1
variables. Then the genus genK (G ×k K ) is finite, and in fact reduces to a single element if
the type of G is different from An, D2n+1 (n > 1), and E6.

We note that for the exceptions An, D2n+1 (n > 1), and E6, we have |Z(G)| > 2, so
this corollary proves Conjecture 8.10 in full for groups of the form G ×k K in the above
notations.
It is important to point out that for G′

0 ∈ genk (G), the group G′ = G′
0 ×k K may not

lie in genK (G ×k K ). In fact, we have the following two results from [24], which point
to a new phenomenon that we refer to as “killing the genus” by a purely transcendental
extension of the base field.

Theorem 8.17 Let A be a central simple algebra of degree n over a finitely generated field
k, and let G = SL1,A. Assume that char k is prime to n, and let K = k(x1, . . . , xn−1) be
the field of rational functions in (n − 1) variables. Then genK (G ×k K ) consists of (the
isomorphism classes of) groups of the form H ×k K , where H = SL1,B and B is a central
simple k-algebra of degree n such that its class [B] in the Brauer group Br(k) generates the
same subgroup as the class [A].

Theorem 8.18 Let G be a group of typeG2 over a finitely generated field k of characteristic
�= 2, and let K = k(x1, . . . , x6) be the field of rational functions in 6 variables. Then
genK (G ×k K ) reduces to a single element.

We note that the genus of a group of type G2 can be nontrivial (cf. [8]). The proof of
Theorem 8.17 uses Amitsur’s Theorem (Theorem 8.5) on generic splitting fields, while the
proof of Theorem 8.18 relies on properties of quadratic Pfister forms. These two results,
and also similar ones for the genus of division algebras ([24]), point to the following
conjecture.

Conjecture 8.19 Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated field k, and assume that char k is “good” for the type of G. Then
there is a purely transcendental extension K = k(x1, . . . , xr) of transcendence degree r
depending only on the type of G such that every G′ ∈ genK (G×k K ) is of the formG′

0 ×k K ,
where G′

0 has the property that

G′
0 ×k F ∈ genF (G ×k F )

for any field extension F/k.

This can be reformulated using a different, more functorial, notion of the genus (pro-
posed by A.S. Merkurjev), which is also based on the consideration of maximal tori, but at
the same time incorporates infinite extensions like those involved in Amitsur’s theorem.
Namely, one defines the motivic genus genm(G) of an absolutely almost simple simply
connected algebraic k-group G as the set of k-isomorphism classes of k-forms G′ of G
such that

G′ ×k F ∈ genF (G ×k F )
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for all field extensions F/k . Then according to Theorem 8.17, the motivic genus of G =
SL1,A is always finite and reduces to one element if A has exponent two. Furthermore, by
Theorem 8.18, for a k-group of type G2, the motivic genus always reduces to one element
(at least when char k �= 2). Next, it was shown by Izhboldin [57] that for nondegenerate
quadratic forms q and q′ of odd dimension over a field k of characteristic �= 2, the
condition
(•) q and q′ have the same Witt index over any field extension F/k
is equivalent to the fact that q and q′ are scalar multiples of each other (this conclusion
being false for even-dimensional forms). It follows that |genm(G)| = 1 for the spinor
group G = Spinn(q) with n odd. We note that the condition (•) amounts to the fact that
the motives of q and q′ in the category of Chow motives are isomorphic (cf. [140], [141,
Theorem 4.18], and [63]), which prompted the choice of terminology for this version of
the notion of the genus. One can expect the motivic genus to be finite for all absolutely
almost simple simply connected groups (at least over fields of “good” characteristic). On
the other hand, Conjecture 8.19 asserts that the genus gets reduced to the motivic genus
(i.e., becomes as small as possible) after a suitable purely transcendental extension of the
base field.

9 Applications to Zariski-dense subgroups
The analysis of Zariski-dense (thin) subgroups of semi-simple algebraic groups is a very
broad and active area (see, for example, [134]). Our goal in this section is to give some
indications of how reduction techniques, and particularly Conjecture 5.7, can be applied
in this context. More specifically, we will focus on the geometry of locally symmetric
spaces, and at the end will demonstrate how this approach leads to a finiteness result for
length-commensurable Riemann surfaces without any assumptions of arithmeticity—see
Theorem 9.11.
We begin by quickly recalling the standard geometric set-up. LetG be a simple algebraic

group over R. We view the group of R-points G = G(R) as a Lie group, pick a maximal
compact subgroup K of G, and consider the associated symmetric space X = G/K. Fur-
thermore, given a discrete torsion-free subgroup 
 ⊂ G, we let X
 = 
\X denote the
corresponding locally symmetric space. We say that X
 is arithmetically defined if the
subgroup 
 is arithmetic (see [96, §1] for the details). As in the case of Riemann surfaces
that we saw in Sect. 8.3, closed geodesics in X
 correspond to nontrivial semi-simple ele-
ments of 
. However, the formula relating the length of the closed geodesic cγ attached
to a semi-simple element γ ∈ 
 to the eigenvalues of γ is substantially more complicated
than Eq. (11) for Riemann surfaces, particularly when the rank ofX, i.e., the real rank ofG,
is> 1 (see [96, Proposition 8.5] for the precise statement). Consequently, the fact that two
locally symmetric spaces are length-commensurable does not translate into a simple con-
dition like (13) on the eigenvalues of semi-simple elements. Instead, the characterization
of length-commensurable locally symmetric spaces requires the following relationship
that was introduced in [96].

Definition 9.1 Let F be an infinite field.

(1) Let γ1 ∈ GLn1 (F ) and γ2 ∈ GLn2 (F ) be semi-simple (diagonalizable) matrices, and
let
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λ1, . . . , λn1 and μ1, . . . ,μn2

be their eigenvalues (in a fixed algebraic closure F ). We say that γ1 and γ2 are weakly
commensurable if there exist integers a1, . . . , an1 , b1, . . . , bn2 such that

λ
a1
1 · · · λan1n1 = μ

b1
1 · · · μbn2

n2 . (WC)

(2) LetG1 ⊂ GLn1 andG2 ⊂ GLn2 be reductive algebraic F-groups.We say that Zariski-
dense subgroups 
1 ⊂ G1(F ) and 
2 ⊂ G2(F ) are weakly commensurable if every
semi-simple element γ1 ∈ 
1 of infinite order is weakly commensurable to some
semi-simple element γ2 ∈ 
2 of infinite order, and vice versa.

One can view this relationship simply as a higher-dimensional version of (13) in the
case where G1 = G2 = SL2. But in fact, even irrespective of locally symmetric spaces, it
provides a way of matching the eigenvalues of semi-simple elements of 
1 and 
2 that
does not depend on the choice of the matrix realizations of the ambient algebraic groups
G1 and G2. In the context of locally symmetric spaces though, one proves the following
(cf. [96, Corollary 8.14]):
Let G1 and G2 be simple real algebraic groups, and let Xi be the symmetric space of
Gi = Gi(R) for i = 1, 2. If 
i ⊂ Gi is a torsion-free lattice and the locally symmetric spaces
X
i := 
i\Xi, for i = 1, 2 are length-commensurable (in particular, compact isospectral or
iso-length-spectral), then their fundamental groups 
1 and 
2 are weakly commensurable.
On the other hand, the locally symmetric spacesX
1 andX
2 are commensurable if there
exists an R-isomorphism ϕ : G1 → G2 such that ϕ(
1) and 
2 are commensurable in the
usual sense (in this case, we say that 
1 and 
2 are commensurable up to an isomorphism
between G1 and G2). This suggests that to attack the geometric problem of when length-
commensurable locally symmetric spaces are commensurable, one should try to prove that
in the cases of interest, the weak commensurability of Zariski-dense subgroups implies
their commensurability (in a suitable sense). At first glance, however, the chances of
obtaining a sufficiently general result along these lines appear to be rather slim. Indeed,
the matrices

A =
⎛
⎜⎝
12 0 0
0 2 0
0 0 1/24

⎞
⎟⎠ , B =

⎛
⎜⎝
4 0 0
0 3 0
0 0 1/12

⎞
⎟⎠ ∈ SL3(C)

are weakly commensurable because

λ1 = 12 = 4 · 3 = μ1 · μ2 (or λ1 = μ−1
3 ).

On the other hand, no powers Am and Bn for m, n �= 0 are conjugate, so the subgroup
〈A〉 is not commensurable to any conjugate of 〈B〉. It turns out, though, that the situation
changes dramatically if, instead of “small subgroups” (such as cyclic ones), one considers
“big subgroups” (e.g., Zariski-dense subgroups) of simple algebraic groups. In fact, the case
of arithmetic subgroups was worked out almost completely [96].8 Since the results that

8We will not go into the details of this analysis here and would only like to point out that one of the important factors
is the existence of so-called generic elements in every Zariski-dense subgroup—see [99] for a detailed discussion. The
reader interested in the technical ingredients can also review the Isogeny Theorem (Theorem 4.2) in [96], which
provides a far-reaching generalization of the following fact used in section Sect. 8.3: if γ1 , γ2 ∈ SL2(F ) are semi- simple
elements of infinite order that are weakly commensurable, then for any subfield K that contains the traces of γ1 and γ2 ,
the subalgebras K [γ1] and K [γ2] are K - isomorphic.
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we will discuss deal with fields of characteristic zero, we will assume for the remainder of
this section that the base field has characteristic zero.

Theorem 9.2 (cf. [96, Theorems 4 and 5]) Let G1 and G2 be absolutely almost simple
algebraic groups over a field F of characteristic zero.

(1) Assume that G1 andG2 are of the same type, which is different from An,D2n+1 (n > 1),
or E6. If Zariski-dense arithmetic subgroups 
1 ⊂ G1(F ) and 
2 ⊂ G2(F ) are weakly
commensurable, then they are commensurable.9

(2) In all cases, the Zariski-dense arithmetic subgroups 
2 ⊂ G2(F ) that are weakly com-
mensurable to a given Zariski-dense arithmetic subgroup 
1 ⊂ G1(F ) form finitely
many commensurability classes.

Let us note that this theoremwas established in [96] not only for arithmetic, but also for
S-arithmetic subgroups. Furthermore, just as in Theorem 8.4, the types excluded in part
(1) of the theorem are honest exceptions: for each of them, one can construct arbitrar-
ily large, but finite, families of weakly commensurable and pairwise noncommensurable
arithmetic subgroups (cf. [96, §9]). As we will see in Theorem 9.3, the only situation in
which G1 and G2 of different types can contain finitely generated Zariski-dense weakly
commensurable is when one of the groups is of type Bn and the other of type Cn (n ≥ 3).
Weakly commensurable arithmetic subgroups in this case were completely classified in
[44].
As we already indicated above, this line of work was initially motivated by questions in

differential geometry, and Theorem 9.2 has served as a basis for various geometric appli-
cations to isospectral and length-commensurable locally symmetric spaces. For example,
it implies the following statement:
Let M1 and M2 be arithmetically defined hyperbolic manifolds of the same dimension
d �≡ 1(mod 4). If they are length-commensurable (in particular, if they are compact and
isospectral) then they are commensurable.
(Tobemoreprecise, it is actually enough to assume that only onemanifold is arithmetically
defined and the other is of finite volume.) We refer the reader to [96], [98], and [104] for
a number of other geometric applications.
The proof of Theorem 9.2 does not deal with arithmetic subgroups directly, but rather

uses the following criterion for their conjugacy. Let G be an absolutely almost simple
algebraic group over a field F of characteristic zero. Then the commensurability classes
of Zariski-dense arithmetic subgroups 
 of G(F ) can be parametrized by pairs (K,G),
where K is a number field contained in F and G is an F/K -form of the adjoint group
G. More precisely, every arithmetic subgroup is (K,G)-arithmetic for some pair (K,G)
as above, which means that there is an F-isomorphism θ : G ×K F → G such that the
image 
 of 
 in G(F ) is commensurable with θ (G(OK )), whereOK is the ring of algebraic
integers in K (this description is very similar to the standard description of arithmetic
Fuchsian groups). Then, given absolutely almost simple F-groups G1 and G2, Zariski-
dense arithmetic subgroups 
1 ⊂ G1(F ) and 
2 ⊂ G2(F ) corresponding to the pairs
(K1,G1) and (K2,G2) are commensurable (up to an F-isomorphism betweenG1 andG2) if

9This means that that there exists an F-isomorphism ϕ : G1 → G2 between the corresponding adjoint groups such
that ϕ(
1) is commensurable with 
2 , where 
i denotes the image of 
i in Gi(F ).
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and only if

K1 = K2 =: K and G1 � G2 over K

(cf. [96, Proposition 2.5]). So, in the proof of Theorem 9.2, one first shows that in both
parts, there is an equalityK1 = K2 =: K ; then, using various local-global considerations, it
is shown that G1 � G2 in part (a) and that there are finitely many K -isomorphism classes
of possible groups G2 for a given G1 in part (b).
The important point here is that such characteristics asK and G can be defined and ana-

lyzed not only for arithmetic, but in fact for arbitrary Zariski-dense subgroups (although
then K does not have to be a number field). Although, in general, they do not necessarily
determine the commensurability class of a subgroup, they still carry important informa-
tion. We begin with two results for arbitrary finitely generated Zariski-dense subgroups
that were established in [96]. To fix notations, let G1 and G2 be absolutely almost simple
algebraic groups defined over a fieldF of characteristic zero, and for i = 1, 2, let
i ⊂ Gi(F )
be a finitely generated Zariski-dense subgroup.

Theorem 9.3 ([96, Theorem 1]) If 
1 and 
2 are weakly commensurable, then either G1
and G2 have the same type or one of them is of type Bn and the other of type Cn for some
n ≥ 3.

(We note that arithmetic Zariski-dense subgroups in the groups of type Bn and Cn can
be weakly commensurable—cf. [44], [96, Example 6.7].)
Next, given a semi-simple F-group G and a Zariski-dense subgroup 
 ⊂ G(F ), we let

K
 denote the trace field, i.e., the subfield of F generated by the traces tr(Ad γ ) of all
elements γ ∈ 
 in the adjoint representation on the corresponding Lie algebra g = L(G).
According to a result of E.B. Vinberg [139], the field K = K
 is the minimal field of
definition of 
. This means that K is the minimal subfield of F with the property that all
transformations in Ad
 can be simultaneously represented by matrices having all entries
in K in a suitable basis of g. If such a basis is chosen, then the Zariski-closure of Ad 


in GL(g) is a semi-simple algebraic K -group G. It is an F/K -form of the adjoint group
G, and we will call it the algebraic hull of Ad 
. One proves that if 
 is a Zariski-dense
(K,G)-arithmetic subgroup of an absolutely almost simple F-group G, then the trace field
of 
 coincides with K and the algebraic hull with G.

Theorem 9.4 (cf. [96, Theorem 2]) If 
1 and 
2 are weakly commensurable, then K
1 =
K
2 .

For the sake of completeness, we mention one further result. Assume that 
1 and 
2
as above are weakly commensurable, and let K be their common trace field and Gi be the
algebraic hull of Ad 
i for i = 1, 2. We set Li to be the minimal Galois extension of K
over which Gi becomes an inner form of the split group (see Example 4.5 for the relevant
definitions).

Proposition 9.5 (cf. [100, Lemma 5.2]) In the above notations, we have L1 = L2.

What makes these results interesting is that 
1 and/or 
2 may very well be free groups
(in fact, by a theorem of Tits [137], the group Gi(F ) always contains a Zariski-dense sub-
group which is a free group of rank two). In this case, structurally these groups carry
no imprint of the ambient simple algebraic group, but nevertheless, according to Theo-
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rem 9.3, information about the eigenvalues of their elements is sufficient to recover the
type of this group. Furthermore, classical rigidity results due to Mostow and Margulis
imply that an isomorphism between higher rank arithmetic group/lattices yields an iso-
morphism between their fields of definition10. However, again, the structural approach
does not extend to arbitrary finitely generated Zariski-dense subgroups, while informa-
tion about eigenvalues can be used to identify the fields of definition.11 So, Theorems
9.3 and 9.4 point to a new form of rigidity, which is potentially applicable to arbitrary
finitely generated Zariski-dense subgroups and is based on information about the eigen-
values of elements in the subgroups—for these reasons, it was named eigenvalue rigidity
in [104]. The critical issue in this analysis that is not addressed by the above results is
the precise relationship between the algebraic groups containing 
1 and 
2. Let us fix
an absolutely almost simple algebraic F-group G1 and a finitely generated Zariski-dense
subgroup 
1 ⊂ G1(F ), and denote by K = K
1 and G its trace field and algebraic hull,
respectively. Next, letG2 be another absolutely almost simple F-group with a finitely gen-
erated Zariski-dense subgroup 
2 ⊂ G2(F ) that is weakly commensurable to 
1. What
can we say about the algebraic hull G2 of 
2? By Theorem 9.4, the trace field K
2 must
coincide with K , so assuming that G2 is adjoint (which we always may), we conclude that
G2 is an F/K -form ofG2. In general, as 
2 varies, while remaining weakly commensurable
to 
1, the K -isomorphism class of G2 can also vary. However, one expects that this class
always remains within a finite set of possibilities.

Conjecture 9.6 (Finiteness Conjecture for Algebraic Hulls of Weakly Commensurable
Subgroups) Let G1 be an absolutely almost simple algebraic F-group, and 
1 ⊂ G1(F )
be a finitely generated Zariski-dense subgroup with trace field K = K
1 . Given another
absolutely simple adjoint F-group G2, there exists a finite collection G

(1)
2 , . . . ,G(r)

2 of F/K-
forms of G2 such that if 
2 ⊂ G2(F ) is a finitely generated Zariski-dense subgroup that
is weakly commensurable to 
1, then it is conjugate to a subgroup of one of the G

(i)
2 (K )

(⊂ G2(F )).

Now, instead of fixing an absolutely simple F-group G2, one can consider all possible
absolutely simple adjoint F-groups G2 such that there exists a finitely generated Zariski-
dense subgroup 
2 ⊂ G2(F ) that is weakly commensurable to 
1. First, according to
Theorem 9.3, apart from the ambiguity between types Bn and Cn, G2 must have the same
type as G1. We may therefore assume that the type of G2 is fixed. Second, replacing the
field F with its algebraic closure F , we can assume that G2 (or, more precisely, G2 ×F F )
itself is fixed as an F-group. In other words, taking into account the ambiguity between
types Bn and Cn, there are either one or two possibilities for G2 as an F-group. Applying
Conjecture 9.6, we then conclude that, even without initially fixing G2 as an F-group,
there are only finitely many K -isomorphism classes of algebraic hulls G2.
Thus, if proven, Conjecture 9.6, in conjunction with the preceding results, would tell us

that if we fix a finitely generated Zariski-dense subgroup 
1 ⊂ G1(F ) with trace field K =
K
1 , then the finitely generated Zariski-dense subgroups of absolutely simple algebraic
groups F-groups that are weakly commensurable to 
1 will all have the same trace field K

10See Sect. 10.2 for some rigidity results over rings more general than rings of algebraic S-integers
11Of course, the traces of elements in the adjoint representation that generate the field of definition can be easily
expressed in terms of the eigenvalues, but in our set-up, all we can work with are relations like (WC) in Definition 9.1
for γ1 ∈ 
1 and γ2 ∈ 
2 , which do not immediately yield any relation between tr(Ad γ1) and tr(Ad γ2).
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and there will be only finitely many possibilities for their algebraic hulls. Such a statement
would completely resolve one of the keys issues in the study of eigenvalue rigidity (we
refer the reader to [99, §10] for several other open problems in this area). Inmore informal
terms, Conjecture 9.6 would basically imply that an absolutely simple algebraic group is
almost determined (i.e., guaranteed to be in a finite set of possibilities) by the eigenvalues
of the elements of a finitely generated Zariski-subgroup, regardless of how small/thin this
subgroup may be (e.g., it can be a free group on two generators). For a slightly different
perspective, recall that in Conjecture 8.10, we considered the problem of whether an
absolutely almost simple algebraic group G over a finitely generated field K of good
characteristic is almost determined by the set ofK -isomorphism classes of its maximalK -
tori. From this point of view, Conjecture 9.6 would imply thatG is still almost determined
(at least in characteristic zero) by the K -isomorphism classes of those maximal K -tori
that intersect nontrivially a given Zariski-dense subgroup—cf. [100, §5]. (Note that this is
consistent with our discussion at the end of Sect. 8.3). Here is what Conjecture 9.6 yields
in some concrete situations.

Example 9.7 LetA be a central simple algebra of degree n over a finitely generated fieldK
of characteristic zero, setG = SL1,A to be the corresponding algebraicK -group associated
with group of elements of reduced norm 1, and suppose 
 ⊂ G(K ) is a finitely generated
Zariski-dense subgroup with trace fieldK = K
 . Now, letG′ be another absolutely almost
simple simply connectedK -group such that there exists a finitely generated Zariski-dense
subgroup
′ ⊂ G′(K ) that isweakly commensurable to
′. Thenwededuce fromTheorem
9.3 and Proposition 9.5 thatG′ is necessarily of the formG′ = SL1,A′ , where A′ is a central
simple K -algebra of the same degree n (note that Proposition 9.5 implies that G′ is an
inner form of G). Furthermore, Conjecture 9.6 in this situation would tell us that there
are only finitely many possibilities for A′ up to K -isomorphism.

Example 9.8 Let q be a nondegenerate quadratic form in n ≥ 5 variables over a finitely
generated field K of characteristic zero, let G = SOn(q) be the corresponding special
orthogonal group, and take 
 ⊂ G(K ) to be a finitely generated Zariski-dense subgroup
with trace field K = K
 . Then Conjecture 9.6 would imply that there exist finitely many
similarity classes of nondegenerate n-dimensional quadratic forms q′ overK such that for
G′ = SOn(q′), the group G′(K ) contains a finitely generated Zariski-dense subgroup 
′

that is weakly commensurable to 
.

The important point in the context of our discussion in this article is that the assertion of
Conjecture 9.6 can be derived fromConjecture 5.7. The argument hinges on the following
result from [24] that links weak commensurability with good reduction.

Theorem 9.9 Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated field K of characteristic zero, and let V be a divisorial set of
places of K . Given a finitely generated Zariski-dense subgroup 
 ⊂ G(K ) with trace field
K , there exists a finite subset S(
) ⊂ V such that every absolutely almost simple simply
connected algebraic K-group G′ with the property that there exists a finitely generated
Zariski-dense subgroup
′ ⊂ G′(K ) that is weakly commensurable to
 has good reduction
at all v ∈ V \ S(
).
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The proof of this theorem is based on a significant elaboration of the ideas involved in
the proof of Theorem 8.11. The key point is to show that in order to characterize good
reduction, one does not need to consider all maximal tori over the base field, but only
those that intersect nontrivially a given finitely generated Zariski-dense subgroup and
also are generic (cf. [100, §5]).
In the case where the trace field of 
 is a number field (although 
 does not need to be

arithmetic), Conjecture 9.6 was proved in [100, §5]. Furthermore, arguing as in Example
9.7 and combining Theorems 7.6 and 9.9, one proves Conjecture 9.6 in the case where
the algebraic hull G1 of 
1 is an inner form of type An (n ≥ 1). We leave it to the reader
to consider various other cases of Conjecture 9.6 that can be obtained by combining
Theorem 9.9 with the results from Sect. 7.2 on Conjecture 5.7. In the case of lattices, the
preceding observations lead to the following consequence. Let G be an absolutely almost
simply algebraic R-group, and let 
 be a lattice in G = G(R). It follows from [101, 7.67,
7.68] that ifG is not isogenous to SL2, then the trace field K
 is necessarily a number field.
Thus, we obtain the following.

Theorem 9.10 Conjecture 9.6 is true when F = R and 
1 is a lattice (not necessarily
arithmetic) in G1(R).

We conclude this section with a finiteness statement for Riemann surfaces that does not
require any assumptions of arithmeticity or even the finiteness of the volume. Motivated
by the well-known result that a family of isospectral compact Riemann surfaces consists of
finitely many isometry classes [75], one may wonder if a family of length-commensurable
Riemann surfaces necessarily consists of finitely many commensurability classes. While
this question remains open, the following result for the associated quaternion algebras is
established in [24] (here we use the notations introduced in Sect. 8.3).

Theorem 9.11 Let Mi = H/
i (i ∈ I) be a family of length-commensurable Riemann
surfaces, where the subgroups 
i ⊂ SL2(R) are finitely generated, discrete, and Zariski-
dense, and have torsion-free images in PSL2(R). Then all of the 
i have the same trace
field K , and the corresponding quaternion algebras A
i (i ∈ I) split into finitely many
K-isomorphism classes.

Indeed, it follows from the discussion in Sect. 8.3 that the subgroups 
i are pairwise
weakly commensurable. Hence, by Theorem 9.4, they all have the same trace field K ,
which is finitely generated. Let V be a divisorial set of places of K . Then it follows from
Theorem 9.9 that there exists a finite subset S ⊂ V such that all algebras A
i are unram-
ified at all v ∈ V \ S. Consequently, the finiteness assertion follows from the finiteness
of the unramified Brauer group, as discussed in the proof of Theorem 7.6. (In the present
case, one can also give a rather elementary argument by observing that all of the algebras
A
i share a quadratic extension of K and arguing as in [23, §2]). Curiously, this theorem
is probably one of the first applications of reduction techniques and arithmetic geometry
to differential geometry.

10 Afterword
Our primary goal in this article was to introduce Conjecture 5.7 (our Main Conjecture)
and discuss its links with several other problems in the investigation of algebraic groups
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over higher-dimensional fields. For the sake of completeness, we would like to conclude
with a brief discussion of two other issues that play a critical role in the classical arithmetic
theory of algebraic groups, but whose extension to the more general setting is not directly
related to the Main Conjecture: strong approximation and rigidity.

10.1 Strong approximation

Let K be a field equipped with a set V of discrete valuations satisfying condition (A) (see
Sect. 5.3 and also Sect. 6 for notations and terminology pertaining to adelic groups). Given
an algebraic K -group G, the corresponding adelic group G(A(K,V )) is endowed with a
natural topology that has sets of the form

∏
v∈V \T

G(Ov) ×
∏
v∈T

Uv,

where T ⊂ V is a finite subset and Uv ⊂ G(Kv) is an arbitrary open subset for v ∈ T , as a
basis of open neighborhoods. We say that G has strong approximation with respect to V
if the diagonal embedding G(K ) ↪→ G(A(K,V )) has dense image.12 This property plays
a fundamental role in the study of various questions about algebraic groups over global
fields. We refer the reader to [94, Ch. 7] for a detailed account (based on Platonov’s proof
[91]) of strong approximation for algebraic groups over number fields, and to the original
papers of Margulis [73] and Prasad [95] for groups over arbitrary global fields. The survey
[103] also contains a discussion of some variations, generalizations, and applications of
strong approximation. In this section, we will briefly consider strong approximation over
fields other than global.

Example 10.1 Let R be a Noetherian integral domain that is integrally closed in its field
of fractions K , and let V be the set of discrete valuations of K associated with height one
prime ideals of R. Take G to be the additive group Ga, so that the corresponding adelic
group is simply the additive group of the adele ringA(K,V ). IfG has strong approximation
with respect to V , then it easily follows from the definition of the adelic topology that for
any height one prime ideals p1, p2 of R, p1 �= p2, the diagonal map

R −→ R/p1 × R/p2

must be surjective. However, if the Krull dimension of R is > 1, then typically R contains
height one prime ideals p1 �= p2 such that p1 + p2 �= R, in which case the above map is
not surjective, and hence G fails to have strong approximation with respect to V . On the
other hand, if the Krull dimension of R is 1, i.e., R is a Dedekind domain, then any two
distinct prime ideals p1, p2 of R satisfy p1+p2 = R. It follows from the Chinese Remainder
Theorem that R is dense in

A
∞(K,V ) =

∏
v∈V

Ov,

easily implying that G does have strong approximation with respect to V .

12Let us point out that here we deviate from the standard terminology. Namely, recall that in the classical setting where
K is a number field, VK is the set of all places of K , and S ⊂ VK is a finite subset with complement V = VK \ S, we
say thatG has strong approximation with respect to S if the diagonal embeddingG(K ) ↪→ G(A(K,V )) has dense image
(cf. [94, Ch. 7]).
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There are two takeaways from this example. First, we should confine the consideration
of strong approximation to the situationwhereK is the fractionfield of aDedekinddomain
R and V is the set of discrete valuations of K associated with the nonzero prime ideals
of R. The most interesting case is where R = k[C] is the coordinate ring of a smooth
geometrically integral affine curve C over a field k and V is the corresponding set of
geometric places of the function field K = k(C). (Of course, if k is a finite field, then the
function field K is global, in which case strong approximation is completely understood.
However, the problem for other fields remains wide open—see below.)
Second, the K -subgroups of G isomorphic to Ga may be helpful for proving strong

approximation in G. More precisely, let us assume that G is an absolutely almost simple
simply connected K -group. We recall that G is called K -isotropic if it contains a nontriv-
ial K -split torus (in which case it also contains an abundance of 1-parameter unipotent
subgroups), and K -anisotropic otherwise. Assuming that G is K -isotropic, one can con-
sider the (normal) subgroup G(K )+ ⊂ G(K ) generated by the K -rational elements of the
unipotent radicals of K -defined parabolic subgroups. In [92], V.P. Platonov constructed
the first examples where G(K )+ �= G(K ), thereby disproving the Kneser-Tits conjecture
(see [47] for a relatively recent survey of the Kneser-Tits problem). At the same time, the
quotient

W (G,K ) = G(K )/G(K )+,

known as the Whitehead group of G over K , is conjectured to be abelian (in which case
it will automatically be of finite exponent depending only on the type of G), which has
been established in many cases. (In fact, W (G,K ) is expected to be finite abelian group
whenever K is finitely generated, but only partial results are available so far—cf. [26]).
Motivated by these properties, we will say that a normal subgroupN of an abstract group
H is “big” if the quotient H/N is an abelian group of finite exponent. Now, if K is the
fraction field of aDedekind domainR andV is the set of discrete valuations ofK associated
with the nonzero prime ideals of R, then using strong approximation in Ga, one easily
proves that for any absolutely almost simple simply connected K -isotropic group G, the
closure G(K ) of G(K ) in G(A(K,V )) always contains

G(A(K,V ))
⋂ ∏

v∈V
G(Kv)+.

Thus, for those types where theWhitehead groupW (G, F ) is known to be abelian for any
field extension F/K , the closureG(K )+ is a “big” subgroup ofG(A(K,V )).We observe that
Platonov [93] has found examples of isotropic groups where G(K ) is not dense in G(Kv),
so G may not have strong approximation in the general case. It would be interesting to
determine if G(K ) may be of infinite index in G(A(K,V )) when K = k(C) is the function
field of a smooth geometrically integral affine curve C over a finitely generated field k and
V is the set of geometric places of K .

Example 10.2 LetK = C(t), takeV to be the set of discrete valuations ofK corresponding
to all linear polynomials t − a, a ∈ C, and let G be an absolutely almost simple simply
connected K -group. It follows from Tsen’s theorem that K has cohomological dimension
≤ 1, which implies that G is quasi-split (cf. [118, Ch. III, §2]). Then the Whitehead group
W (G, F ) is trivial for any field extension F/K (cf. [138]). So, the above discussion shows
that G has strong approximation with respect to V .



   28 Page 60 of 66 A. S. Rapinchuk, I. A. Rapinchuk Res Math Sci           (2020) 7:28 

Of course, techniques using 1-parameter unipotent subgroups are inapplicable if G is
K -anisotropic. So, we would like to propose the following.

Problem 10.3 Let K be the field of fractions of a Dedekind domain R, and let V be the
set of discrete valuations of K corresponding to the nonzero prime ideals of R. Investigate
the problem of strong approximation for an absolutely almost simple simply connected K-
anisotropic group G.When can one guarantee that the closure G(K ) of G(K ) in G(A(K,V ))
is a “big” subgroup of the latter? More specifically, for the coordinate ring R = k[C] of a
smooth geometrically integral affine curve C over a finitely generated field k and V the
corresponding set of geometric places of K = k(C), in what cases is G(K ) of finite index in
G(A(K,V ))? Can one always ensure that it is of finite index by deleting from V a finite set
of places?

To the best of our knowledge, in the anisotropic case over fields other than global, strong
approximation has been established only for the groups SL1,D, where D is a quaternion
division algebra overR(t) (see [146]). It is likely that this result can be extended to function
fields R(C) of arbitrary smooth geometrically integral affine real curves C . Furthermore,
since every semi-simple algebraic group over R(C) becomes quasi-split over its quadratic
extensionC(C) (cf. Example 10.2), using strong approximation for the quaternionic group,
in conjunction with the techniques of dealing with semi-simple groups that split over
a quadratic extension of the base field (cf. [145]), one may be able to establish strong
approximation for many (and maybe even all) absolutely almost simple simply connected
groups over R(C). Because of the paucity of research done in this area so far, it is difficult
to predict what methods may be useful, but one should probably re-examine Kneser’s
approach to strong approximation ([65,66]), which relies primarily on considerations
from Galois cohomology.

10.2 Rigidity

The analysis of representations, and more generally actions, of arithmetic groups and
lattices has been one of the central subjects in the theory of arithmetic groups and discrete
subgroups of Lie groups in the past 60 years. So, to complete our account of the trends in
the arithmetic theory of algebraic groups over higher-dimensional fields, we would like to
discuss brieflyone result on representationsof higher-dimensional analoguesof arithmetic
groups. The reader may want to consult [110] for more information. This subject goes
back to the classical paper of Bass, Milnor, and Serre [7], where, as a consequence of
the solution of the Congruence Subgroup Problem, it was shown that for n ≥ 3, every
finite-dimensional complex representation

ρ : SLn(Z) → GLk (C)

is almost algebraic, i.e., there exists a morphism of algebraic groups σ : SLn(C) → GLk (C)
such that for a suitable finite-index subgroup � ⊂ SLn(Z), the restrictions ρ|� and
σ |� coincide (cf. [7, Theorem 16.2]). Serre [120] proved a similar result for the group
SL2(Z[1/p]). Subsequently, very general results about representations of higher-rank
arithmetic groups were obtained by Margulis in his Superrigidity Theorem (cf. [74, Ch.
VII]). At the same time, Steinberg [129] showed that the above results for representations
of SLn(Z) (n ≥ 3) can be derived directly from the commutator relations for elementary
matrices.
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Taking inspiration from Steinberg’s generators-relations approach, the second author
introduced in [107] a novel method for analyzing abstract representations of elemen-
tary subgroups of higher-rank Chevalley groups over arbitrary commutative rings. To
fix notations, let � be a reduced irreducible root system of rank ≥ 2, and let G be the
simply-connected Chevalley group scheme over Z of type �. Given a commutative ring
R, we denote by E(R) the subgroup of G(R) generated by the R-points of the canonical
1-parameter root subgroups eα : Ga → G for all α ∈ � (this group is usually called the
elementary subgroup of G(R)). In [107], the second author studied in detail the finite-
dimensional representations

ρ : E(R) → GLn(K ),

where K is an algebraically closed field of characteristic 0. He showed that if (�, R) is a
nice pair,13 then such a representation often has a standard description, i.e., there exists
a commutative finite-dimensional K -algebra B, a ring homomorphism f : R → B with
Zariski-dense image, and a morphism σ : G(B) → GLn(K ) of algebraic K -groups such
that for a suitable finite-index subgroup 
 ⊂ E(R) of, we have

ρ|
 = (σ ◦ F )|
 ,
where F : E(R) → E(B) is the group homomorphism induced by f (see [107, Main Theo-
rem] for the precise statement). A key step in the proof of this theorem is the construction
of an algebraic ring that is naturally associated to the representation ρ and which captures
information about the images of all root subgroups of E(R) (see [107, Theorem 3.1]). This
result, on the one hand, confirmed in the case of split groups a long-standing conjecture of
Borel and Tits [13] on the structure of abstract homomorphisms of algebraic groups, and,
on the other hand, subsumedmost previous rigidity statements for Chevalley groups over
commutative rings. Subsequently, an analogous statement was also obtained for repre-
sentations of the groups G(k), where G = SLn,D with n ≥ 3 and D is a finite-dimensional
central division algebra over a field k of characteristic 0 (cf. [108]). Moreover, in [108] and
[109], these results were applied to the analysis of character varieties of certain finitely
generated groups. Additionally, by studying the structure of algebraic rings in positive
characteristic, D. Boyarchenko and the second author [14] established, in many situa-
tions, the existence of standard descriptions for representations of elementary subgroups
of Chevalley groups over fields of characteristic p.
Now, while the rigidity properties of arithmetic groups and lattices are well understood,

over the last 20 years, there has been a great deal of interest in the representations and
related properties (such as Kazhdan’s property (T)) of groups over higher-dimensional
rings, particularly the groups SLn(Z[x1, . . . , xk ]) with n ≥ 3 (these are sometimes called
universal lattices). In the context of the analysis abstract homomorphisms, we should
mention that, using a variation of the method of Bass, Milnor, and Serre, Shenfeld
[123] showed that any completely reducible finite-dimensional complex representation
of SLn(Z[x1, . . . , xk ]) (n ≥ 3) has a standard description, thereby answering a question
of Kazhdan. However, until recently, there were no rigidity statements available for arbi-
trary finite-dimensional representations of universal lattices. In [111], using the general

13We will say that (�, R) is a nice pair if 2 is a unit in R whenever � contains a subsystem of type B2 , and 2 and 3 are
units in R whenever � is of type G2 .
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framework developed in [107], in conjunction with a careful analysis of certain central
extensions, the second author obtained the following rigidity result.

Theorem 10.4 (cf. [111, Corollary 1.3]) Let� be a reduced irreducible root system of rank
≥ 2, G be the corresponding simply-connected Chevalley group scheme over Z, and be K
an algebraically closed field of characteristic 0. If O is the ring of S-integers in a number
field such that (�,O) is a nice pair, then any representation

ρ : E(O[x]) → GLm(K )

has a standard description.

In fact, the results of [111] deal, more generally, with representations of the groups E(R),
where R is a ring with “few” derivations, which, in particular, explains the classical rigidity
results for Chevalley groups of rank ≥ 2 over number rings. Now, by a well-known result
of Suslin [130], if � is of type A, then E(O[x]) = SLn(O[x]), so Theorem 10.4 shows, in
particular, that any finite-dimensional representation of the universal lattice SLn(Z[x])
has a standard description.We should note that Suslin’s result has recently been extended
by Stavrova [128] to all simply-connected Chevalley groups of rank ≥ 2, thereby yielding
the existence of standard descriptions for arbitrary representations of G(O[x]).
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