ON THE NOTION OF GENUS FOR DIVISION ALGEBRAS AND ALGEBRAIC GROUPS (joint work with V. Chernousov and I. Rapinchuk)

> Andrei S. Rapinchuk University of Virginia

PU/IAS November 2, 2017

Division algebras with the same maximal subfields

2 Genus of a division algebra

3 Genus of a simple algebraic group

4 "Killing" the genus

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

- $\bullet D_1$ and D_2 have same maximal subfields if

 - **②** for *P*/*K* of degree *n*, *P* \hookrightarrow *D*₁ \Leftrightarrow *P* \hookrightarrow *D*₂.

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

- $\bullet D_1$ and D_2 have same maximal subfields if
 - $deg D_1 = deg D_2 =: n;$

② for *P*/*K* of degree *n*, *P* \hookrightarrow *D*₁ \Leftrightarrow *P* \hookrightarrow *D*₂.

(*) Let D_1 and D_2 be finite-dimensional central division algebras over a field K. How are D_1 and D_2 related **if** they have <u>same</u> maximal subfields?

- $\bullet D_1$ and D_2 have same maximal subfields if
 - $deg D_1 = deg D_2 =: n;$
 - **2** for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

Geometry

G. Prasad-A.R. (Publ. math. IHES **109**(2009)): In many (although not all) situations, two arithmetically defined locally symmetric spaces having same lengths of closed geodesics are commensurable.

Geometry

G. Prasad-A.R. (Publ. math. IHES **109**(2009)): In many (although not all) situations, two arithmetically defined locally symmetric spaces having same lengths of closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Geometry

G. Prasad-A.R. (Publ. math. IHES **109**(2009)): In many (although not all) situations, two <u>arithmetically defined</u> locally symmetric spaces having same lengths of closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Underlying algebraic fact:

Let D_1 and D_2 be two quaternion division algebras over a number field K. If D_1 and D_2 have same maximal subfields then $D_1 \simeq D_2$.

However, most Riemann surfaces are not arithmetic

• Let $\mathbb{H} = \{ x + iy \mid y > 0 \}.$

• Let
$$\mathbb{H} = \{ x + iy \mid y > 0 \}.$$

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

• Let
$$\mathbb{H} = \{ x + iy \mid y > 0 \}.$$

"Most" Riemann surfaces are of the form:

$$M = \mathbb{H}/\Gamma$$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• Let
$$\mathbb{H} = \{ x + iy \mid y > 0 \}.$$

"Most" Riemann surfaces are of the form:

 $M = \mathbb{H}/\Gamma$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a discrete torsion free subgroup.

• <u>Some</u> properties of *M* can be understood in terms of the *associated quaternion algebra*.

• π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R})$;
- $\tilde{\Gamma} = \pi^{-1}(\Gamma) \subset M_2(\mathbb{R}).$

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$
- $\tilde{\Gamma} = \pi^{-1}(\Gamma) \subset M_2(\mathbb{R}).$

Set $A_{\Gamma} = \mathbb{Q}[\tilde{\Gamma}^{(2)}], \quad \tilde{\Gamma}^{(2)} \subset \tilde{\Gamma}$ generated by squares.

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R});$
- $\tilde{\Gamma} = \pi^{-1}(\Gamma) \subset M_2(\mathbb{R}).$

Set
$$A_{\Gamma} = \mathbb{Q}[\tilde{\Gamma}^{(2)}], \quad \tilde{\Gamma}^{(2)} \subset \tilde{\Gamma}$$
 generated by squares.

One shows: A_{Γ} is a quaternion algebra with center

$$K_{\Gamma} = \mathbb{Q}(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)})$$

(trace field).

- π : $SL_2(\mathbb{R}) \rightarrow PSL_2(\mathbb{R})$;
- $\bullet \ \tilde{\Gamma} \ = \ \pi^{-1}(\Gamma) \ \subset \ M_2(\mathbb{R}).$

Set
$$A_{\Gamma} = \mathbb{Q}[ilde{\Gamma}^{(2)}]$$
, $ilde{\Gamma}^{(2)} \subset ilde{\Gamma}$ generated by squares.

One shows: A_{Γ} is a quaternion algebra with center

$$K_{\Gamma} = \mathbb{Q}(\operatorname{tr} \gamma \mid \gamma \in \Gamma^{(2)})$$

(trace field).

(Note that for general Fuchsian groups, K_{Γ} is not necessarily a number field.)

• If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;

- If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ , but is an invariant of the commensurability class of Γ .

- If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ , but is an invariant of the commensurability class of Γ .

To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:

- If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ , but is an invariant of the commensurability class of Γ .

- To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds:
- geometrically: a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1} \end{pmatrix}$ $(t_{\gamma} > 1)$ then length $\ell(c_{\gamma}) = 2\log t_{\gamma}$;

- If Γ is *arithmetic*, then A_{Γ} is <u>the</u> quaternion algebra involved in its description;
- In general, A_{Γ} does not determine Γ , but is an invariant of the commensurability class of Γ .

- To a (nontrivial) semi-simple $\gamma\in \tilde{\Gamma}^{(2)}$ there corresponds:
- geometrically: a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm \begin{pmatrix} t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1} \end{pmatrix}$ $(t_{\gamma} > 1)$ then length $\ell(c_{\gamma}) = 2\log t_{\gamma}$;
- *algebraically*: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

L(M) = set of lengths of closed geodesics in M ((weak) length spectrum of M)

L(M) = set of lengths of closed geodesics in M((weak) length spectrum of M)

Definition.

Riemannian manifolds M_1 and M_2 are

L(M) = set of lengths of closed geodesics in M((weak) length spectrum of M)

Definition.

Riemannian manifolds M_1 and M_2 are

• iso-length spectral if $L(M_1) = L(M_2)$;

L(M) = set of lengths of closed geodesics in M((weak) length spectrum of M)

Definition.

Riemannian manifolds M_1 and M_2 are

- iso-length spectral if $L(M_1) = L(M_2)$;
- length-commensurable if $\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2)$.

$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z})$

If M_1 and M_2 are length-commensurable then:

$$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n$ ($m, n \in \mathbb{Z}$)

If M_1 and M_2 are length-commensurable then:

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} \subset M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n \in \mathbb{Z})$

If M_1 and M_2 are length-commensurable then:

$$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} ⊂ M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n ∈ \mathbb{Z})$

If M_1 and M_2 are length-commensurable then:

$$\bullet K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} ⊂ M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n ∈ \mathbb{Z})$

elements γ_1^m and γ_2^n are conjugate \Rightarrow

 $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

If M_1 and M_2 are length-commensurable then:

$$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} ⊂ M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n ∈ \mathbb{Z})$

elements γ_1^m and γ_2^n are conjugate \Rightarrow $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

So, A_{Γ_1} and A_{Γ_2} share "lots" of maximal etale subalgebras.
Let $M_i = \mathbb{H}/\Gamma_i$ (i = 1, 2) be Riemann surfaces.

If M_1 and M_2 are length-commensurable then:

$$I K_{\Gamma_1} = K_{\Gamma_2} =: K;$$

② Given closed geodesics $c_{\gamma_i} ⊂ M_i$ for i = 1, 2 such that $\ell(c_{\gamma_2})/\ell(c_{\gamma_1}) = m/n \quad (m, n ∈ \mathbb{Z})$

elements γ_1^m and γ_2^n are conjugate \Rightarrow $K[\gamma_1] \subset A_{\Gamma_1}$ and $K[\gamma_2] \subset A_{\Gamma_2}$ are isomorphic.

So, A_{Γ_1} and A_{Γ_2} share "lots" of maximal etale subalgebras. (Not all - but we will ignore it in this talk ...) Division algebras with the same maximal subfields

• For M_1 and M_2 to be commensurable, A_{Γ_1} and A_{Γ_2} must be isomorphic.

So, proving that length-commensurable M_1 and M_2 are commensurable implicitly involves answering a version of (*).

So, proving that length-commensurable M_1 and M_2 are commensurable implicitly involves answering a version of (*).

• **Recall:** If $M = \mathbb{H}/\Gamma$ is a compact Riemann surface then compact Riemann surfaces *isospectral* to *M* split into finitely many isometry classes.

So, proving that length-commensurable M_1 and M_2 are commensurable implicitly involves answering a version of (*).

• **Recall:** If $M = \mathbb{H}/\Gamma$ is a compact Riemann surface then compact Riemann surfaces *isospectral* to *M* split into finitely many isometry classes.

What about *length-commensurable* Riemann surfaces?

So, proving that length-commensurable M_1 and M_2 are commensurable implicitly involves answering a version of (*).

• **Recall:** If $M = \mathbb{H}/\Gamma$ is a compact Riemann surface then compact Riemann surfaces *isospectral* to *M* split into finitely many isometry classes.

What about length-commensurable Riemann surfaces?

Theorem

Let $M_i = \mathbb{H}/\Gamma_i$ $(i \in I)$ be a family of length-commensurable Riemann surfaces where $\Gamma_i \subset PSL_2(\mathbb{R})$ is Zariski-dense. Then quaternion algebras A_{Γ_i} $(i \in I)$ split into finitely many isomorphism classes (over common center).

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over K.

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same <u>splitting fields</u>, i.e. for *F*/*K* we have

 $D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same <u>splitting fields</u>, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same <u>splitting fields</u>, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

• Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties),

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same <u>splitting fields</u>, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

• Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties), which are infinite extensions of *K*.

Amitsur's Theorem

Let D_1 and D_2 be central division algebras over *K*. If D_1 and D_2 have same <u>splitting fields</u>, i.e. for *F*/*K* we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

- Proof of Amitsur's Theorem uses *generic splitting fields* (function fields of Severi-Brauer varieties), which are infinite extensions of *K*.
- What happens if one allows only splitting fields of finite degree, or just maximal subfields?

• Amitsur's Theorem is no longer true in this setting.

This leads to question (*) and its variations.

This leads to question (*) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

This leads to question (*) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

• Yes – D. Saltman

This leads to question (*) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

- Yes D. Saltman
- Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)

Division algebras with the same maximal subfields

2 Genus of a division algebra

3 Genus of a simple algebraic group

4 "Killing" the genus

Let D be a finite-dimensional central division algebra over K.

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element?

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of any quaternion algebra reduces to one element;genus of any division algebra is finite.

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of any quaternion algebra reduces to one element;genus of any division algebra is finite.

Let *D* be a finite-dimensional central division algebra over *K*. The *genus* of *D* is $gen(D) = \{ [D'] \in Br(K) | D' \text{ has same maximal subfields as } D \}$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of any quaternion algebra reduces to one element;genus of any division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Same statement is true for division algebras of exponent 2.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if *D* is <u>not</u> of exponent 2.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

- Same statement is true for division algebras of *exponent* 2.
- $|\mathbf{gen}(D)| > 1$ if *D* is <u>not</u> of exponent 2.
- gen(D) can be infinite.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

- Same statement is true for division algebras of exponent 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2.
- gen(D) can be infinite.

Generalizing construction used by Schacher, Garibaldi, Saltman, ...

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

- Same statement is true for division algebras of *exponent* 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2.
- gen(D) can be infinite.

Generalizing construction used by Schacher, Garibaldi, Saltman, ... Meyer constructed quaternion algebras over "large" fields with infinite genus,

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for any quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

- Same statement is true for division algebras of *exponent* 2.
- $|\mathbf{gen}(D)| > 1$ if D is <u>not</u> of exponent 2.
- gen(D) can be infinite.

Generalizing construction used by Schacher, Garibaldi, Saltman, ... Meyer constructed quaternion algebras over "large" fields with infinite genus,

Tikhonov extended construction to algebras of prime degree.

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.
Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{Q}\right)$$
 and $D_2 = \left(\frac{-1,7}{Q}\right)$ over $K = Q$)

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K = \mathbb{Q}$)

• If D_1 and D_2 already have same maximal subfields, we are done.

Otherwise, pick $K(\sqrt{d_1}) \hookrightarrow D_1$ such that $K(\sqrt{d_1}) \not\leftrightarrow D_2$.

Construction

• Start with nonisomorphic quaternion algebras D_1 and D_2 over K (char $K \neq 2$) having a common maximal subfield.

(E.g., take
$$D_1 = \left(\frac{-1,3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K = \mathbb{Q}$)

• If D_1 and D_2 already have same maximal subfields, we are done.

Otherwise, pick $K(\sqrt{d_1}) \hookrightarrow D_1$ such that $K(\sqrt{d_1}) \not\hookrightarrow D_2$.

(E.g.,
$$\mathbb{Q}(\sqrt{11}) \hookrightarrow D_1$$
 but $\mathbb{Q}(\sqrt{11}) \not\leftrightarrow D_2$.)

• Find K_1/K such that

- Find K_1/K such that

- Find K_1/K such that

- Find K_1/K such that
- For K_1 one can take the function field of a quadric.

• Find K_1/K such that

For K_1 one can take the function field of a quadric.

In our example, K_1 is function field of $-x_1^2 + 7x_2^2 + 7x_3^2 = 11x_4^2$

• Find K_1/K such that

For K_1 one can take the function field of a quadric.

In our example, K_1 is function field of $-x_1^2 + 7x_2^2 + 7x_3^2 = 11x_4^2$

Then (2) is obvious, and (1) follows from the fact that $x_0^2 + x_1^2 - 21x_2^2 - 21x_3^2$

remains anisotropic over K_1 .

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

For *infinite* genus, one starts with $D_p = \left(\frac{-1, p}{Q}\right)$, $p \equiv 3 \pmod{4}$.

This generates a tower $K \subset K_1 \subset K_2 \subset \cdots$

Set
$$\mathcal{K} = \bigcup_{i=1}^{\infty} K_i$$
.

• Then $D_1 \otimes_K \mathfrak{K} \not\simeq D_2 \otimes_K \mathfrak{K}$ and have same maximal subfields.

For *infinite* genus, one starts with $D_p = \left(\frac{-1, p}{Q}\right)$, $p \equiv 3 \pmod{4}$.

Note that \mathcal{K} is infinitely generated.

Let K be a finitely generated field. Then for any central division K-algebra D of degree prime to char K, the genus gen(D) is <u>finite</u>.

Let K be a finitely generated field. Then for any central division K-algebra D of degree prime to char K, the genus gen(D) is finite.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

Let K be a finitely generated field. Then for any central division K-algebra D of degree prime to char K, the genus gen(D) is finite.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.

Let K be a finitely generated field. Then for any central division K-algebra D of degree prime to char K, the genus gen(D) is finite.

• Proofs of both theorems use *analysis of ramification* and info about *unramified Brauer group*.

BASIC FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.

If D_1 and D_2 are central division K-algebras of degree n having same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

 $_{n}$ Br $(K)_{V}$ is finite.

$_n$ Br $(K)_V$ is finite.

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

$_n$ Br $(K)_V$ is finite.

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

$_n$ Br $(K)_V$ is finite.

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

- The answer is not known for any finitely generated K.
- One can construct nonisomorphic D_1 and D_2 that have same ramification everywhere.

Division algebras with the same maximal subfields

2 Genus of a division algebra

3 Genus of a simple algebraic group

• To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

• Let *G* be an absolutely almost simple *K*-group.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semi-simple groups over a field K. $G_1 \& G_2$ have *same isomorphism classes of maximal K-tori* **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

Let G be an absolutely almost simple K-group.
gen_K(G) = set of isomorphism classes of K-forms G' of G having same K-isomorphism classes of maximal K-tori.

Genus of a simple algebraic group

Question 1'. When does $gen_K(G)$ reduce to a single element?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_{K}(G)$ is finite;

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture. (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

(2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture. (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;

(2) If G is an absolutely almost simple group over a finitely generated field K of "good" characteristic then $\operatorname{gen}_K(G)$ is finite.
• Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

• Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

Theorem 4.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ $(m \ge 1)$ we have $|\mathbf{gen}_K(G)| = 1$. • Results for division algebras do **not** automatically imply results for $G = SL_{m,D}$.

Theorem 4.

(1) Let *D* be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where *k* is a number field or a finite field of characteristic $\neq 2$. Then for $G = SL_{m,D}$ ($m \ge 1$) we have $|\mathbf{gen}_K(G)| = 1$.

(2) Let $G = SL_{m,D}$, where D is a central division algebra over a finitely generated field K with char K prime to degree of D. Then $gen_K(G)$ is finite.

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- $\operatorname{Spin}_n(q)$, q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over a quadratic extension L/K.

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- Spin_n(q), q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over a quadratic extension L/K.

Then $gen_K(G)$ is finite.

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- Spin_n(q), q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over a quadratic extension L/K.

Then $gen_K(G)$ is finite.

Theorem 6.

Let G be a simple algebraic group of type G_2 .

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- Spin_n(q), q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over a quadratic extension L/K.

Then $gen_K(G)$ is finite.

Theorem 6.

Let G be a simple algebraic group of type G_2 . (1) If K = k(x), where k is a number field, then $|\mathbf{gen}_K(G)| = 1$;

Let K = k(C) where C is a geometrically integral smooth curve over a number field k, and let G be either

- Spin_n(q), q a quadratic form over K and n is <u>odd</u>, or
- $SU_n(h)$, h a hermitian form over a quadratic extension L/K.

Then $gen_K(G)$ is finite.

Theorem 6.

Let G be a simple algebraic group of type G₂.
(1) If K = k(x), where k is a number field, then |gen_K(G)| = 1;
(2) If K = k(x₁,...,x_r) or k(C), where k is a number field, then gen_K(G) is finite.

• Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.

• Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.

Definition.

Let G be an absolutely almost simple algebraic group over K, v be a discrete valuation of K.

• Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.

Definition.

Let G be an absolutely almost simple algebraic group over K, v be a discrete valuation of K.

G has good reduction at v if there exists a reductive group scheme *G* over valuation ring O_v with generic fibre *G* and special fiber (reduction)

$$\underline{G}^{(v)} = \mathfrak{G} \otimes_{\mathfrak{O}_v} K^{(v)}$$

a connected simple group of same type as G.

• $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_n} K \simeq D$ • $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_v} K \simeq D$ ($\Leftrightarrow D$ is unramified at v)

- $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_v} K \simeq D$ ($\Leftrightarrow D$ is unramified at v)
- $G = \text{Spin}_n(q)$ has good reduction if q is similar to a form over \mathcal{O}_v with discriminant in \mathcal{O}_v^{\times}

- $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_v} K \simeq D$ ($\Leftrightarrow D$ is unramified at v)
- $G = \text{Spin}_n(q)$ has good reduction if q is similar to a form over \mathcal{O}_v with discriminant in \mathcal{O}_v^{\times}

Theorem 7.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

- $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_v} K \simeq D$ ($\Leftrightarrow D$ is unramified at v)
- $G = \text{Spin}_n(q)$ has good reduction if q is similar to a form over \mathcal{O}_v with discriminant in \mathcal{O}_v^{\times}

Theorem 7.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

- $G = SL_{1,D}$ has good reduction if there exists Azumaya \mathcal{O}_v -algebra \mathcal{A} such that $\mathcal{A} \otimes_{\mathcal{O}_v} K \simeq D$ ($\Leftrightarrow D$ is unramified at v)
- $G = \text{Spin}_n(q)$ has good reduction if q is similar to a form over \mathcal{O}_v with discriminant in \mathcal{O}_v^{\times}

Theorem 7.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then *every* $G' \in \operatorname{gen}_{K}(G)$ has good reduction at v, and reduction $\underline{G'}^{(v)} \in \operatorname{gen}_{K^{(v)}}(\underline{G}^{(v)})$.

(1) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite; (11) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

(I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;

(II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

(1) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;

(II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

(I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite; (II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on G) such that every $G' \in \operatorname{gen}_K(G)$ has good reduction at <u>all</u> $v \in V \setminus S$.

Question.

Can a finitely generated field K (of "good" characteristic etc.) be equipped with a set V of discrete valuations that satisfies (I) & (II) and also

Question.

Can a finitely generated field K (of "good" characteristic etc.) be equipped with a set V of discrete valuations that satisfies (I) & (II) and also

(Φ) set of K-isomorphism classes of (inner) K-forms G' of G having good reduction at all $v \in V \setminus S$ is finite, for any finite $S \subset V$?

Question.

Can a finitely generated field K (of "good" characteristic etc.) be equipped with a set V of discrete valuations that satisfies (I) & (II) and also

(Φ) set of K-isomorphism classes of (inner) K-forms G' of G having good reduction at all $v \in V \setminus S$ is finite, for any finite $S \subset V$?

• To prove above finiteness theorems for $gen_K(G)$, we constructed such *V* in special situations.

• use Milnor's conjecture to reduces to finiteness of *un*ramified cohomology groups $H^i(K, \mu_2)_V$;

- use Milnor's conjecture to reduces to finiteness of *un*ramified cohomology groups $H^i(K, \mu_2)_V$;
- prove finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$;

- use Milnor's conjecture to reduces to finiteness of *un*ramified cohomology groups $H^i(K, \mu_2)_V$;
- prove finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$;
- difficult case i = 3;

when *C* is *projective* finiteness can be derived from results of Kato and Jannsen,

- use Milnor's conjecture to reduces to finiteness of *un*ramified cohomology groups $H^i(K, \mu_2)_V$;
- prove finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$;
- difficult case i = 3;

when *C* is *projective* finiteness can be derived from results of Kato and Jannsen,

but we need result for *C* affine.

- use Milnor's conjecture to reduces to finiteness of *un*ramified cohomology groups $H^i(K, \mu_2)_V$;
- prove finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$;
- difficult case i = 3;

when *C* is *projective* finiteness can be derived from results of Kato and Jannsen,

but we need result for *C* affine.

Presumably, V should be independent of type of G (divisorial set of places)

is finite.

Suppose V satisfies (I) & (Φ) . Then map $H^1(K,\overline{G}) \longrightarrow \prod_{v \in V} H^1(K_v,\overline{G})$ for adjoint group \overline{G} is proper. In particular, its kernel $\operatorname{III}(\overline{G})$

Suppose V satisfies (I) & (Φ) . Then map $H^1(K,\overline{G}) \longrightarrow \prod_{v \in V} H^1(K_v,\overline{G})$ for adjoint group \overline{G} is proper. In particular, its kernel $\operatorname{III}(\overline{G})$

is finite.

True for:

Suppose V satisfies (I) & (Φ) . Then map

$$H^1(K,\overline{G})\longrightarrow \prod_{v\in V} H^1(K_v,\overline{G})$$

for adjoint group \overline{G} is proper. In particular, its kernel $\operatorname{III}(\overline{G})$ is finite.

True for:

• PSL_n over a finitely generated field K, (n, char K) = 1;

Suppose V satisfies (I) & (Φ) . Then map

$$H^1(K,\overline{G})\longrightarrow \prod_{v\in V}H^1(K_v,\overline{G})$$

for adjoint group \overline{G} is proper. In particular, its kernel $\operatorname{III}(\overline{G})$ is finite.

True for:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;

Suppose V satisfies (I) & (Φ). Then map $H^1(K,\overline{G}) \longrightarrow \prod_{v \in V} H^1(K_v,\overline{G})$

for adjoint group \overline{G} is proper. In particular, its kernel $\operatorname{III}(\overline{G})$ is finite.

True for:

- PSL_n over a finitely generated field K, (n, char K) = 1;
- $SO_n(q)$ over K = k(C), k a number field;
- *G* of type G_2 over K = k(C), *k* a number field.
Division algebras with the same maximal subfields

2 Genus of a division algebra

- 3 Genus of a simple algebraic group
- 4 "Killing" the genus

Let G_0 be an absolutely almost simple simply connected group over a finitely generated field k of characteristic zero.

Let G_0 be an absolutely almost simple simply connected group over a finitely generated field k of characteristic zero. Set $G = G_0 \otimes_k K$ where K = k(x).

Let G_0 be an absolutely almost simple simply connected group over a finitely generated field k of characteristic zero. Set $G = G_0 \otimes_k K$ where K = k(x).

Then any $H \in \mathbf{gen}_K(G)$ is of the form

 $H = H_0 \otimes_k K$ for some $H_0 \in \mathbf{gen}_k(G_0)$.

Let G_0 be an absolutely almost simple simply connected group over a finitely generated field k of characteristic zero. Set $G = G_0 \otimes_k K$ where K = k(x).

Then any $H \in \mathbf{gen}_K(G)$ is of the form

 $H = H_0 \otimes_k K$ for some $H_0 \in \mathbf{gen}_k(G_0)$.

Corollary.

In above notations, if $\operatorname{gen}_k(G_0)$ is finite, then so is $\operatorname{gen}_K(G)$. In particular, $\operatorname{gen}_K(G)$ is finite if k is a number field. • Theorem and Corollary remain valid for $K = k(x_1, ..., x_r)$.

- Theorem and Corollary remain valid for $K = k(x_1, ..., x_r)$.
- We are **not** saying that

if $H_0 \in \operatorname{gen}_k(G_0)$ then $H := H_0 \otimes_k K \in \operatorname{gen}_K(G)$.

On the contrary:

- Theorem and Corollary remain valid for $K = k(x_1, ..., x_r)$.
- We are **not** saying that

if $H_0 \in \operatorname{gen}_k(G_0)$ then $H := H_0 \otimes_k K \in \operatorname{gen}_K(G)$.

On the contrary:

Corollary ("Killing the genus") Let *G* be a group of type G_2 over a finitely generated field *k* of characteristic zero. Set $F = k(x_1, ..., x_6)$. Then $|\mathbf{gen}_F(G \otimes_k F)| = 1.$

- Theorem and Corollary remain valid for $K = k(x_1, ..., x_r)$.
- We are **not** saying that

if $H_0 \in \operatorname{gen}_k(G_0)$ then $H := H_0 \otimes_k K \in \operatorname{gen}_K(G)$.

On the contrary:

Corollary ("Killing the genus") Let *G* be a group of type G_2 over a finitely generated field *k* of characteristic zero. Set $F = k(x_1, ..., x_6)$. Then $|\mathbf{gen}_F(G \otimes_k F)| = 1.$

Proof uses properties of Pfister forms.

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$
and $\langle [D] \rangle = \langle [D_1] \rangle$ in $\operatorname{Br}(k)$;

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$

and $\langle [D] \rangle = \langle [D_1] \rangle$ in Br(k); in particular, $|\mathbf{gen}_F(G \otimes_k F)| \leq n$.

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$
and $\langle [D] \rangle = \langle [D_1] \rangle$ in $\operatorname{Br}(k)$; in particular, $|\operatorname{gen}_F(G \otimes_k F)| \leq n$.

Proof uses:

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$

and $\langle [D] \rangle = \langle [D_1] \rangle$ in Br(k); in particular, $|\mathbf{gen}_F(G \otimes_k F)| \leq n$.

Proof uses:

• Amitsur's Theorem;

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$

and $\langle [D] \rangle = \langle [D_1] \rangle$ in Br(k); in particular, $|\mathbf{gen}_F(G \otimes_k F)| \leq n$.

Proof uses:

- Amitsur's Theorem;
- fact that function field of Severi-Brauer variety of algebra of degree *n* is a degree *n* extensions of $k(x_1, \ldots, x_{n-1})$.

Set
$$F = k(x_1, ..., x_{n-1})$$
. Then $\operatorname{gen}_F(G \otimes_k F)$ consists of
 $G' = \operatorname{SL}_{1,D'}$ where $D' = D_1 \otimes_k F$

and $\langle [D] \rangle = \langle [D_1] \rangle$ in Br(k); in particular, $|\mathbf{gen}_F(G \otimes_k F)| \leq n$.

Proof uses:

- Amitsur's Theorem;
- fact that function field of Severi-Brauer variety of algebra of degree *n* is a degree *n* extensions of $k(x_1, \ldots, x_{n-1})$.

Corollary

Let *D* be a quaternion algebra over a field *k* of char \neq 2. Then **gen**($D \otimes_k k(x)$) is trivial.