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Division algebras with the same maximal subfields

We are interested in the following question:

(∗) Let D1 and D2 be finite-dimensional central division algebras

over a field K.

How are D1 and D2 related if they have

same maximal subfields?

• D1 and D2 have same maximal subfields if

1 deg D1 = deg D2 =: n;

2 for P/K of degree n, P ↪→ D1 ⇔ P ↪→ D2.
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Division algebras with the same maximal subfields

Geometry

G. Prasad-A.R. (Publ. math. IHES 109(2009)): In many (although
not all) situations, two arithmetically defined locally symmetric
spaces having same lengths of closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Underlying algebraic fact:

Let D1 and D2 be two quaternion division algebras over a
number field K. If D1 and D2 have same maximal subfields
then D1 ' D2.
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Division algebras with the same maximal subfields

However, most Riemann surfaces are not arithmetic

⇒
One needs to understand to what degree this fact extends to

more general fields

• Let H = { x + iy | y > 0 }.

“Most” Riemann surfaces are of the form:

M = H/Γ

where Γ ⊂ PSL2(R) is a discrete torsion free subgroup.

• Some properties of M can be understood in terms of the

associated quaternion algebra.
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Division algebras with the same maximal subfields

Let

• π : SL2(R) → PSL2(R);

• Γ̃ = π−1(Γ) ⊂ M2(R).

Set AΓ = Q[Γ̃(2)], Γ̃(2) ⊂ Γ̃ generated by squares.

One shows: AΓ is a quaternion algebra with center

KΓ = Q(tr γ | γ ∈ Γ(2))

(trace field).

(Note that for general Fuchsian groups, KΓ is not necessarily
a number field.)
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Division algebras with the same maximal subfields

• If Γ is arithmetic, then AΓ is the quaternion algebra

involved in its description;

• In general, AΓ does not determine Γ, but is an invariant

of the commensurability class of Γ.

To a (nontrivial) semi-simple γ ∈ Γ̃(2) there corresponds:

• geometrically: a closed geodesic cγ ⊂ M,

if γ ∼ ±
(

tγ 0
0 t−1

γ

)
(tγ > 1) then length `(cγ) = 2 log tγ;

• algebraically: a maximal etale subalgebra KΓ[γ] ⊂ AΓ.
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Division algebras with the same maximal subfields

For a Riemannian manifold M:

L(M) = set of lengths of closed geodesics in M

((weak) length spectrum of M)

Definition.
Riemannian manifolds M1 and M2 are

• iso-length spectral if L(M1) = L(M2);

• length-commensurable if Q · L(M1) = Q · L(M2).
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Division algebras with the same maximal subfields

Let Mi = H/Γi (i = 1, 2) be Riemann surfaces.

If M1 and M2 are length-commensurable then:

1 KΓ1 = KΓ2 =: K;

2 Given closed geodesics cγi ⊂ Mi for i = 1, 2 such that

`(cγ2)/`(cγ1) = m/n (m, n ∈ Z)

elements γm
1 and γn

2 are conjugate ⇒

K[γ1] ⊂ AΓ1 and K[γ2] ⊂ AΓ2 are isomorphic.

So, AΓ1 and AΓ2 share “lots” of maximal etale subalgebras.

(Not all - but we will ignore it in this talk ...)
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Division algebras with the same maximal subfields

• For M1 and M2 to be commensurable, AΓ1 and AΓ2 must
be isomorphic.

So, proving that length-commensurable M1 and M2 are
commensurable implicitly involves answering a version of (∗).

• Recall: If M = H/Γ is a compact Riemann surface then
compact Riemann surfaces isospectral to M split into finitely
many isometry classes.

What about length-commensurable Riemann surfaces?

Theorem

Let Mi = H/Γi (i ∈ I) be a family of length-commensurable Riemann
surfaces where Γi ⊂ PSL2(R) is Zariski-dense. Then quaternion
algebras AΓi (i ∈ I) split into finitely many isomorphism classes
(over common center).
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Division algebras with the same maximal subfields

Algebra

Amitsur’s Theorem

Let D1 and D2 be central division algebras over K.

If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

• Proof of Amitsur’s Theorem uses generic splitting fields

(function fields of Severi-Brauer varieties),

which are

infinite extensions of K.

• What happens if one allows only splitting fields of

finite degree, or just maximal subfields?
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Division algebras with the same maximal subfields

• Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

This leads to question (∗) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)
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Genus of a division algebra

1 Division algebras with the same maximal subfields

2 Genus of a division algebra

3 Genus of a simple algebraic group

4 “Killing” the genus
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Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of any quaternion algebra reduces to one element;
genus of any division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)
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Genus of a division algebra

Theorem 1 (Stability Theorem)

Let char k 6= 2. If |gen(D)| = 1 for any quaternion algebra D over k,

then |gen(D′)| = 1 for any quaternion algebra D′ over k(x).

• Same statement is true for division algebras of exponent 2.

• |gen(D)| > 1 if D is not of exponent 2.

• gen(D) can be infinite.

Generalizing construction used by Schacher, Garibaldi, Saltman, ...

Meyer constructed quaternion algebras over “large” fields with
infinite genus,

Tikhonov extended construction to algebras of prime degree.
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Genus of a division algebra

Construction

• Start with nonisomorphic quaternion algebras D1 and D2

over K (char K 6= 2) having a common maximal subfield.

(E.g., take D1 =

(
−1, 3

Q

)
and D2 =

(
−1, 7

Q

)
over K = Q)

• If D1 and D2 already have same maximal subfields, we
are done.

Otherwise, pick K(
√

d1) ↪→ D1 such that K(
√

d1) 6↪→ D2.

(E.g., Q(
√

11) ↪→ D1 but Q(
√

11) 6↪→ D2.)
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Genus of a division algebra

• Find K1/K such that

1 D1 ⊗K K1 6' D2 ⊗K K1;

2 K1(
√

d1) ↪→ D2 ⊗K K1.

For K1 one can take the function field of a quadric.

In our example, K1 is function field of

−x2
1 + 7x2

2 + 7x2
3 = 11x2

4

Then (2) is obvious, and (1) follows from the fact that

x2
0 + x2

1 − 21x2
2 − 21x2

3

remains anisotropic over K1.
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Genus of a division algebra

• If there exists K1(
√

d2) ↪→ D1 ⊗K K1 and K1(
√

d2) 6↪→
D2 ⊗K K1 we construct K2/K1 similarly.

This generates a tower K ⊂ K1 ⊂ K2 ⊂ · · ·

Set K =
∞⋃

i=1

Ki.

• Then D1 ⊗K K 6' D2 ⊗K K and have same maximal subfields.

For infinite genus, one starts with Dp =

(
−1, p

Q

)
, p ≡ 3(mod 4).

Note that K is infinitely generated.
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Genus of a division algebra

Theorem 2.

Let K be a finitely generated field. Then for any central

division K-algebra D of degree prime to char K, the genus

gen(D) is finite.

• Proofs of both theorems use analysis of ramification and

info about unramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be

prime to characteristic of residue field K(v).

If D1 and D2 are central division K-algebras of degree n

having same maximal subfields, then either both algebras are

ramified at v or both are unramified.
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Genus of a division algebra

• To prove finiteness of gen(D), one shows that a finitely

generated field K can be equipped with a set V of

discrete valuations such that

nBr(K)V is finite.

Question. Does there exist a quaternion division algebra D

over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

• One can construct nonisomorphic D1 and D2 that have

same ramification everywhere.
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Genus of a simple algebraic group

1 Division algebras with the same maximal subfields

2 Genus of a division algebra

3 Genus of a simple algebraic group

4 “Killing” the genus
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Genus of a simple algebraic group

• To define the genus of an algebraic group, we replace
maximal subfields with maximal tori in the definition
of genus of division algebra.

• Let G1 and G2 be semi-simple groups over a field K.

G1 & G2 have same isomorphism classes of maximal K-tori

if every maximal K-torus T1 of G1 is K-isomorphic to

a maximal K-torus T2 of G2, and vice versa.

• Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori.
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Genus of a simple algebraic group

Question 1′. When does genK(G) reduce to a single element?

Question 2′. When is genK(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1 or E6, then |genK(G)| = 1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
|Z(G)| 6 2, we have |genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic then genK(G) is
finite.
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Genus of a simple algebraic group

• Results for division algebras do not automatically imply
results for G = SLm,D.

Theorem 4.
(1) Let D be a central division algebra of exponent 2 over

K = k(x1, . . . , xr) where k is a number field or a finite

field of characteristic 6= 2. Then for G = SLm,D (m > 1) we

have |genK(G)| = 1.

(2) Let G = SLm,D, where D is a central division algebra over

a finitely generated field K with char K prime to degree

of D. Then genK(G) is finite.
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Genus of a simple algebraic group

Theorem 5.
Let K = k(C) where C is a geometrically integral smooth

curve over a number field k, and let G be either

• Spinn(q), q a quadratic form over K and n is odd, or

• SUn(h), h a hermitian form over a quadratic extension

L/K.

Then genK(G) is finite.

Theorem 6.
Let G be a simple algebraic group of type G2.

(1) If K = k(x), where k is a number field, then |genK(G)| = 1;

(2) If K = k(x1, . . . , xr) or k(C), where k is a number field,

then genK(G) is finite.
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Genus of a simple algebraic group

• Adequate substitute for unramified algebras in case of
algebraic groups is algebraic groups with good reduction.

Definition.
Let G be an absolutely almost simple algebraic group over K,
v be a discrete valuation of K.

G has good reduction at v if there exists a reductive group

scheme G over valuation ring Ov with generic fibre G and

special fiber (reduction)

G(v) = G⊗Ov K(v)

a connected simple group of same type as G.

Andrei Rapinchuk (University of Virginia) PU/IAS November 2, 2017 26 / 35



Genus of a simple algebraic group

• Adequate substitute for unramified algebras in case of
algebraic groups is algebraic groups with good reduction.

Definition.
Let G be an absolutely almost simple algebraic group over K,
v be a discrete valuation of K.

G has good reduction at v if there exists a reductive group

scheme G over valuation ring Ov with generic fibre G and

special fiber (reduction)

G(v) = G⊗Ov K(v)

a connected simple group of same type as G.

Andrei Rapinchuk (University of Virginia) PU/IAS November 2, 2017 26 / 35



Genus of a simple algebraic group

• Adequate substitute for unramified algebras in case of
algebraic groups is algebraic groups with good reduction.

Definition.
Let G be an absolutely almost simple algebraic group over K,
v be a discrete valuation of K.

G has good reduction at v if there exists a reductive group

scheme G over valuation ring Ov with generic fibre G and

special fiber (reduction)

G(v) = G⊗Ov K(v)

a connected simple group of same type as G.

Andrei Rapinchuk (University of Virginia) PU/IAS November 2, 2017 26 / 35



Genus of a simple algebraic group

• G = SL1,D has good reduction if there exists
Azumaya Ov-algebra A such that A⊗Ov K ' D

(⇔ D is unramified at v)

• G = Spinn(q) has good reduction if q is similar to a
form over Ov with discriminant in O×v

Theorem 7.

Let G be an absolutely almost simple simply connected group
over K, and v be a discrete valuation of K.

Assume that K(v) is finitely generated, and G has good
reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;
(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.
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Genus of a simple algebraic group

So, finiteness of genK(G) reduces to the following.

Question.
Can a finitely generated field K (of “good” characteristic etc.)

be equipped with a set V of discrete valuations that satisfies

(I) & (II) and also

(Φ) set of K-isomorphism classes of (inner) K-forms G′ of G

having good reduction at all v ∈ V \ S is finite, for any

finite S ⊂ V?

• To prove above finiteness theorems for genK(G), we

constructed such V in special situations.
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Genus of a simple algebraic group

For Spinn over K = k(C), k a number field:

• use Milnor’s conjecture to reduces to finiteness of un-
ramified cohomology groups Hi(K, µ2)V;

• prove finiteness of Hi(K, µ2)V for all i > 1;

• difficult case i = 3;

when C is projective finiteness can be derived from
results of Kato and Jannsen,

but we need result for C affine.

Presumably, V should be independent of type of G

(divisorial set of places)
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Genus of a simple algebraic group

Theorem 8.
Suppose V satisfies (I) & (Φ). Then map

H1(K, G) −→ ∏
v∈V

H1(Kv, G)

for adjoint group G is proper. In particular, its kernel X(G)

is finite.

True for:

• PSLn over a finitely generated field K, (n, char K) = 1;

• SOn(q) over K = k(C), k a number field;

• G of type G2 over K = k(C), k a number field.
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“Killing” the genus

Theorem 9.
Let G0 be an absolutely almost simple simply connected

group over a finitely generated field k of characteristic

zero.

Set G = G0 ⊗k K where K = k(x).

Then any H ∈ genK(G) is of the form

H = H0 ⊗k K for some H0 ∈ genk(G0).

Corollary.

In above notations, if genk(G0) is finite, then so is genK(G).

In particular, genK(G) is finite if k is a number field.
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“Killing” the genus

• Theorem and Corollary remain valid for K = k(x1, . . . , xr).

• We are not saying that

if H0 ∈ genk(G0) then H := H0 ⊗k K ∈ genK(G).

On the contrary:

Corollary (“Killing the genus”)

Let G be a group of type G2 over a finitely generated

field k of characteristic zero. Set F = k(x1, . . . , x6). Then

|genF(G⊗k F)| = 1.

Proof uses properties of Pfister forms.
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“Killing” the genus

Analog for G = SL1,D, D a division algebra of degree n:

Set F = k(x1, . . . , xn−1). Then genF(G⊗k F) consists of

G′ = SL1,D′ where D′ = D1 ⊗k F

and 〈[D]〉 = 〈[D1]〉 in Br(k);

in particular, |genF(G⊗k F)| 6 n.

Proof uses:

• Amitsur’s Theorem;
• fact that function field of Severi-Brauer variety of algebra

of degree n is a degree n extensions of k(x1, . . . , xn−1).

Corollary

Let D be a quaternion algebra over a field k of char 6= 2. Then
gen(D⊗k k(x)) is trivial.
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