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Abstract. In the last two decades new techniques emerged to construct valuations on an
infinite division ring D, given a normal subgroup N ⊆ D× of finite index. These techniques
were based on the commuting graph of D×/N in the case where D is non-commutative, and
on the Milnor K -graph on D×/N , in the case where D is commutative. In this paper we unify
these two approaches and consider V-graphs on D×/N and how they lead to valuations. We
furthermore generalize previous results to situations of finitely many valuations.

1. Introduction

Let D be a division ring, and D× be its multiplicative group. We recall that a
valuation on D is a surjective homomorphism v : D× → � to a totally ordered
group � such that

v(a + b) ≥ min(v(a), v(b)) for all a, b ∈ D×, b �= −a.

It is well-known that the presence of a non-trivial valuation (or a suitable family
of valuations) can be the key to understanding a wide range of properties of D.
Therefore one is interested in conditions that guarantee the existence of a valuation
on D with nice properties. In the case where D is a commutative field, this was
the focus of an extensive study, and several methods to detect valuations were
developed, notably the rigidity method (see Sect. 1.3.2).

In the non-commutative case a method to construct non-trivial valuations had
emerged in [27,34] and [28]. There a valuation v on D was constructed from the
assumption that D× possesses a finite index normal subgroup N with the quotient
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D×/N having certain properties. In particular the diameter of the commuting graph
of this quotient should not be too small (see Sect. 1.3.1). Then, in addition, the
subgroup N turns out to be open in the topology on D defined by v. Results of
this nature were shown to be very useful in the analysis of the normal subgroup
structure of D×, when D is a finite-dimensional division algebra.

Next, in [12] it was shown that the method of [27,34] and [28] can be used
also when D is a commutative field, once the above commuting graph (which is
the complete graph in the commutative case) is replaced by a graph related to the
Milnor K -ring of D modulo the subgroup N of D× (see Sect. 1.3.2).

The purpose of this paper is to unify and generalize these two constructions,
by axiomatizing this new approach to the construction of valuations on division
rings, whether commutative or not. This axiomatization leads us to the notion
of a valuation graph associated with a finite index normal subgroup N of D×
(see Sect. 1.1). This notion, in turn, leads to a uniform approach for constructing
maps ϕ : N → � having certain properties resembling those of a valuation on D,
where � is a partially ordered group (see Theorem B below). Once such a map ϕ is
obtained machinery from [12,27] can be used to construct a valuation (see Theorem
A below). Further, using ϕ and certain additional hypotheses, and expanding on
machinery from [25,28] leads us to new openness results with respect to a finite
set of valuations (and not a single valuation) for N . This is done in Theorem 10.3
which is then applied to obtain Theorem C.

We hope that our notion of a valuation graph will facilitate future applications
of our methods.

We refer to e.g., [11,13,14,22,31,32,39] for general facts and notions in valu-
ation theory. See also Sect. 8.

1.1. Valuations via valuation graphs

In what follows let D be an infinite division ring and let N be a proper finite
index normal subgroup of D× containing −1. Given a ∈ D× let a∗ = aN be the
corresponding coset in D×/N .

We consider undirected graphs� whose vertices are the non-identity elements
of the quotient D×/N . We denote the distance function on the vertices of � by
d(·, ·). We set d(a∗, b∗) = ∞ if the vertices a∗, b∗ are not on the same connected
component of�. Also, let diam(�) be the diameter of the graph�, i.e., diam(�) =
sup d(a∗, b∗), with a∗, b∗ ranging over all vertices.

Definition 1. We say that � as above is a V-graph (or a valuation graph) for D if
for every a, b, c ∈ D× � N the following three conditions hold:

(V1) if a − b ∈ N then d(a∗, b∗) � 1,
(V2) if d(a∗, b∗) � 1 then d((a−1)∗, b∗) � 1,
(V3) if ab �∈ N and both d(a∗, c∗) ≤ 1 and d(a∗b∗, c∗) ≤ 1, then also

d(b∗, c∗) ≤ 1.

We then say that the V-graph � is associated with the normal subgroup N , or
that the quotient D×/N supports the V-graph �.
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Remarks. (1) Axiom (V1) is equivalent to the representative-free condition
(V1′) if 1 ∈ a∗ + b∗ then d(a∗, b∗) � 1.

Here a∗ + b∗ is the set of all sums of an element of a∗ and an element of b∗.
The condition 1 ∈ a∗ + b∗ is precisely the Steinberg relation in the relative
version of Milnor’s K -theory (which will be described in Sect. 1.3.2).

(2) In Sects. 4, 5 and 6 we actually use the following weaker
(V3′) if d(a∗, (ab)∗) ≤ 2 or d(a∗, (ba)∗) ≤ 2, then d(a∗, b∗) ≤ 2,

in place of (V3) (see Remarks 4.2).
(3) Axiom (V3) is equivalent to the following axiom:
(V3′′) For all a, b, c ∈ D×�N ,with a∗ �= b∗, if d(a∗, c∗) ≤ 1 and d(b∗, c∗) ≤ 1,

then d((a∗)−1b∗, c∗) ≤ 1.
Therefore axioms (V2) and (V3) just mean that, for every c ∈ D× � N , the set

{a∗ ∈ D×/N � {1∗} | d(a∗, c∗) ≤ 1} ∪ {1∗}.
is a subgroup of N .

One of our results is the following.

Theorem A. Let D be an infinite division ring and let N ⊆ D× be a finite index
normal subgroup containing −1. Assume that D×/N supports a V-graph � of
diameter ≥ 4. Then in each of the following situations:

(i) D is commutative,
(ii) D is a finite-dimensional division algebra over a field of finite transcendence

degree over its prime field,

there exists a non-trivial valuation v of D such that N is open in D with respect to
the topology defined by v.

Theorem A is proved at the very end of Sect. 10. One can also think about the
openness of the subgroup N of Theorem A as a congruence subgroup property,
turning Theorem A into a congruence subgroup theorem for finite index normal
subgroups N of D× such that the quotient D×/N supports a V-graph of diameter
≥4.

It is important to point out that the lower bound of ≥4 on diam(�) in Theorem
A is optimal. Namely, there are examples where the quotient D×/N supports a
V-graph of diameter 3, but N is not open with respect to any non-trivial valuation
(cf. [27, Example 8.4], [12, Example 7.2], and Examples 11.4 and 11.7).

As noted above, expanding on techniques described earlier in [25,28] we prove
a “congruence subgroup property” also in the case where D×/N supports a V-graph
of diameter 3, but then we require an additional hypothesis (see Theorem C and
the paragraphs following it). We do not know if this hypothesis could be removed
and we ask:

Question 2. Let D be an infinite division ring and let N ⊆ D× be finite index
normal subgroup containing −1. Assume that D×/N supports a V-graph � of
diameter ≥3, and that one of the following holds:



398 I. Efrat et al.

(i) D is commutative.
(ii) D is a finite-dimensional division algebra over a field of finite transcendence

degree over its prime field.

Does there exist a non-empty finite set ˜T of non-trivial valuations of D such that
N is open in D with respect to the topology defined by ˜T ?

A positive answer to Question 2 will have various applications: it will enable one to
deduce the existence of valuations in more general situations; it would restrict, in
some cases, the structure of D×/N , and in particular, would enable one, to complete
the proof of the main result of [28] (see Sect. 1.3.1 below) using only the fact that
the diameter of minimal non-solvable groups is≥ 3 (see [33]), which is much easier
to establish than Property (3 1

2 ) employed in the argument given in [28]). Question 2
was asked in [28, Question 1, p. 932], in the case where� is the commuting graph
of D×/N .

1.2. Valuation-like and leveled maps

The construction of a valuation from a V-graph � whose vertices are the non-
identity elements of D×/N , is a two-step procedure:
Step 1. Use the axioms of a V-graph in conjunction with additional hypotheses,
in particular assumptions on its diameter, to produce a surjective group homomor-
phism ϕ : N → � to a partially ordered group �, with special properties making it
a valuation-like or (strongly) leveled map (see the definitions below).
Step 2. Use the maps obtained in step 1 to construct certain subrings of D with
properties analogous to those of valuation rings, and eventually to produce a desired
valuation.

We would like to give some indications of the first step as it most directly relies
on the formalism of V-graphs, and does not require any additional assumptions
on D.

So let D be an arbitrary infinite division ring and let N ⊆ D× be a finite-
index normal subgroup containing −1. Given a partially ordered group � (written
additively, but not necessarily commutative) and a homomorphism ϕ : N → �, we
will frequently use the following (and similar) notation: for α ∈ � we set

�<α = {β ∈ � | β < α} and N<α = {x ∈ N | ϕ(x) < α}.
A homomorphism ϕ : N → � to a partially ordered group is said to be a leveled
map if there exists a non-negative α ∈ � (called a level of ϕ) such that N<−α �= ∅
and

N<−α + 1 ⊆ N<−α. (L)

A leveled map to a totally ordered group � is called a valuation-like map. Next,
we say that a homomorphism ϕ : N → � to a partially ordered group is a strongly
leveled map, if there exists a non-negative α ∈ � (called a s-level of ϕ) such that
N>α �= ∅ and

1± N>α ⊆ N�0 (SL)
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(note that while−1 ∈ N by our assumption, we are not assuming that ϕ(−1) = 0,
which explains the presence of ±). A strongly leveled map to a totally ordered
group � is called a strong valuation-like map. We note that by Lemma 9.2(2), a
strongly leveled map of s-level α is a leveled map of level α.

One of our main results is:

Theorem B. Let D be an infinite division ring and let N ⊆ D× be a finite index
normal subgroup containing −1. Assume that D×/N supports a V-graph�. Then

(1) if diam(�) ≥ 3 then N admits a strongly leveled map;
(2) if diam(�) ≥ 4 then N admits a strong valuation-like map;
(3) If diam(�) ≥ 5 then N admits a strong valuation-like map of s-level 0.

Furthermore, if D is finite-dimensional over an infinite subfield k ⊆ F = Z(D),
then in all three cases above N≥0 contains a basis of D over k.

Parts (1), (2) and (3) of Theorem B are Theorems 4.1, 5.1 and 6.1, respectively.
The last part of Theorem B is Corollary 4.6(3).

Using part (1) of Theorem B we prove:

Theorem C. Let D be a finite-dimensional separable1(but not necessarily central)
division algebra over an infinite field k of finite transcendence degree over its prime
field, and let N ⊆ D× be a normal subgroup of finite index containing−1. Assume
that D×/N supports a V-graph of diameter≥ 3, and let ϕ : N → � be the strongly
leveled map obtained in Theorem B(1).

Suppose in addition that the subgroup ϕ(N ∩ k×) ⊆ � is totally ordered. Then

(1) the restriction ϕk = ϕ�(N∩k×) is a strong valuation-like map;
(2) there exists a height one valuation v of k such that N ∩k× is open in the v-adic

topology on k×;
(3) there exists a non-empty finite set T of valuations of the center F = Z(D)

extending v such that |T | ≤ [F : k], and such that each w ∈ T uniquely
extends to a valuation w̃ of D, and N is open in D× in the ˜T -adic topology,
where ˜T = {w̃ | w ∈ T }.

We mention that the hypothesis in Theorem C that ϕ(N ∩k×) ⊆ � is totally or-
dered is used to obtain part C(1). Then, C(2) follows from Theorem 9.5. In Theorem
9.5 there is no use of the notion of V-graphs. Next, Theorem B(1), the hypothesis that
ϕ(N ∩k×) is totally ordered and Proposition 10.4, enable one to use Theorem 10.3,
which yields C(3). In Theorem 10.3 there is no use of the notion of V-graphs.

Theorem C is proved at the end of Sect. 10. As noted above, we do not know
whether the hypothesis in Theorem C, that ϕ(N ∩ k×) is totally ordered, can be
removed. The examples in Sect. 11 show that Theorem C considers situations
which are more general than those considered by Theorem A. Finally, we draw the
attention of the reader to Theorems 7.3 and 7.5.

Going back to V-graphs, notice that for every D and N as above there is a
canonical (minimal) V-graph supported by D×/N , namely, the intersection of all

1 This means that the center F of D is a separable extension of k, cf. [23].
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V-graphs supported by D×/N . In Theorems A–C, the assumptions that D×/N
supports a V-graph with sufficiently large diameter can therefore be replaced by
the assumption that this canonical V-graph has such a diameter.

1.3. The origin and examples of V-graphs

The notion of a V-graph has two prototypes: the commuting graph and the Milnor
K -graph—the axioms in Definition 1 simply postulate the properties that were used
to produce valuations in these two cases. It is quite remarkable that the essential
properties turned out to be identical in these two quite different situations, which
we will now review to put our results in perspective.

1.3.1. Commuting graphs. Let G be a finite group. The commuting graph �G is
the undirected graph whose vertex set consists of the non-identity elements of G,
and in which two vertices are connected by an edge if and only if the corresponding
elements commute in G. Given an infinite division ring D and a normal subgroup
N ⊆ D× (not necessarily of finite index), it is an easy exercise to check that�D×/N
is a V-graph associated with the normal subgroup N . Indeed see [34, Remark 2.2]
for (V1), (V2) is trivial and (V3) is straightforward.

Let D be any finite dimensional division algebra and N a finite index normal
subgroup of D×. Set � := �D×/N . As mentioned in Sect. 1.2, producing a valua-
tion on D using the commuting graph � requires two steps.

The basic machinery for implementing step 1 was developed in [34]. Subse-
quently, it was further developed and improved in [27] and [28]. Cumulatively, the
results obtained in [27,34] and [28] yield a proof of Theorem B in the case where
� = �D×/N .

In [35] it was shown (using the classification of finite simple groups (CFSG))
that if L is a non-abelian finite simple group, then either
diam(�L) ≥ 5, or �L is balanced (see [34] for the definition of a balanced com-
muting graph). This result, together with [34, Theorem A] proved [35, Theorem 3,
p. 126], which states that for D and N as above, D×/N is not a non-abelian finite
simple group. This last result was conjectured in [26], and in view of the reduction
obtained therein, concluded the proof of the Margulis–Platonov conjecture (MP)
for inner forms of anisotropic groups of type An, i.e. groups of the form SL1,D
where D is finite-dimensional division algebra over a global field K [see [24, Ch.
9] and Appendix A in [27] for a discussion of (MP)].

A systematic use of valuations in this context was introduced in [27], although
some features of valuations can already be seen in [34] (like the local ring con-
structed in 10 of [34]—see Appendix B in [27] for a discussion of this ring in the
context of valuations). Indeed valuation theory together with the machinery devel-
oped in [27] supplies the tools adequate for handling step 2. This, together with
improved results for step 1 in [27], enabled the second and third-named authors to
construct, under the hypothesis that diam(�) ≥ 4, a valuation v on D such that N
is v-adically open.

The next major development was the result proved in [28], stating that for any
finite-dimensional division algebra D over an arbitrary field, every finite quotient of
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the multiplicative group D× is solvable. This was based on upgrading the techniques
both in step 1 and step 2 in the context of a new property (3 1

2 ) for �D×/N (see
Sect. 7) and establishing this property for minimal non-solvable groups.

In [25], improving and expanding on machinery for step 2 and using the results
on step 1 from [28], it was shown that if the center of D is a global field, and if
diam(�) ≥ 3, then there is a finite set of valuations on D so that N is open in the
topology on D defined by this set. This also enabled the proof of (MP) for inner
forms of anisotropic groups of type An, using the fact (which relies on CFSG) that
all finite simple groups are generated by two elements.

1.3.2. Milnor K-graphs. To describe the second prototype of a V-graph, recall
from [11, Ch. 24] the definition of the Milnor K -groups of a field F relative to a
subgroup N of F×. For a non-negative integer r let K M

r (F)/N be the quotient of
the r th tensor power

(F×/N )⊗r = (F×/N )⊗Z · · · ⊗Z (F
×/N )

by the subgroup generated by all Steinberg elements, i.e., elementary tensors a1 N⊗
· · ·⊗ar N such that 1 ∈ ai N +a j N for some 1 � i < j � r (compare with axiom
(V1′) above). The tensor product induces on

K M∗ (F)/N :=
∞

⊕

r=0

K M
r (F)/N

the structure of a graded ring. It is called the Milnor K -ring of F modulo
N . Equivalently, K M∗ (F)/N is the quotient of the (classical) Milnor K -ring
K M∗ (F) (=K M∗ (F)/{1}) by the graded ideal generated by N , considered as a sub-
group of F× = K M

1 (F). Following traditional notation, the image of a1 N ⊗ · · · ⊗
ar N in K M

r (F)/N (where a1, . . . , ar ∈ F×) will be denoted by {a1, . . . , ar }N .
Now one defines the Milnor K-graph of F modulo N to be the undirected graph

whose vertices are the non-identity elements of F×/N , and where vertices aN and
bN are connected by an edge if and only if {a, b}N = 0 in K M

2 (F)/N . It follows
from [12, Lemma 2.1] that this is indeed a V-graph. The main result of [12] is just
Theorem A for this V-graph on D = F .

We point out that connections between existence of arithmetically interesting
valuations on a (commutative) field F and Milnor K -theory were noted before. No-
tably, a series of works by Ware [40], Arason, Elman, Jacob, and Hwang [1,15–17]
developed a method to produce valuations on F using so-called rigid subgroups of
F×. In [9] it was shown that this method can be naturally interpreted in terms of
relative Milnor K -theory. In fact, this was one of the main motivations for introduc-
ing the relative Milnor K -ring functor K M∗ (F)/N . This new perspective opened
the way to further strengthening of the rigidity method for producing valuations in
[10] and [11, Ch. 26], and recently in [36] and [37]. Another powerful approach
for the detection of valuations on fields related to Milnor K -theory was developed
by Bogomolov and Tschinkel (see e.g., [4–6]).

For some other approaches for the construction of valuations on fields see [19]
and [2].
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As we see, the situations where the commuting graphs and the Milnor K -graphs
were used to construct valuations are indeed quite different (in fact, disjoint), while
the results and the techniques involved in their proofs are very much parallel. This
observation led us to generalize and axiomatize these considerations which resulted
in the notion of a V-graph.

2. Partially preordered and ordered groups

The goal of this paper is to construct valuations on an infinite, finite dimensional
division algebra D, given a finite index normal subgroup N ⊆ D× such that the
quotients D×/N supports a V-graph. As indicated in Sect. 1.2 of the introduction,
this process is carried out in two main steps. The purpose of this section is to give
more details about step 1. Since Step 1 leads to partially preordered and ordered
groups, we discuss in this section such groups in more detail.

So for x ∈ D×, let x∗ denote its image in D×/N . Now step 1 is achieved using
the following further steps:
Step 1a. Given y ∈ D× we define an invariant binary relation Py∗ on N such that
(N ,Py∗) is a partially preordered group. The relation Py∗ will only depend on the
coset y∗ = yN and not on the coset representative y. This step does not require
D×/N to support a V-graph. Thus below we define and discuss all notions relevant
to step 1a.
Step 1b. Given the partially preordered group (N ,Py∗) of step 1a we define

Uy∗ := {n ∈ N | 1 Py∗ n and n Py∗ 1}.
We show that Uy∗ � N and that �y∗ := N/Uy∗ is a partially ordered group. The
order relation≤y∗ on�y∗ is given by mUy∗ ≤y∗ nUy∗ iff m Py∗ n,where m, n ∈ N .
We let

ϕy∗ : N → �y∗ ,

be the canonical homomorphism. This step as well does not require D×/N to
support a V-graph. Thus below we also discuss all notions relevant to step 1b.
Step 1c. We show that if −1 ∈ N and D×/N supports a V-graph �, then the
assertions of Theorem B of the introduction hold, where the asserted map in parts
(1)–(3) of Theorem B is ϕy∗ , for an appropriate y∗.

Remark 2.1. Step 1, and all its parts above, do not require that D be finite dimen-
sional. It is only in Step 2, when we construct valuations on D, that we assume that
D is finite-dimensional.

Partially preordered and ordered groups
Let � be a group and let≤ be a partial order on �. We say that (�,≤) is a partially
ordered group if

α ≤ γ and β ≤ δ �⇒ α + β ≤ γ + δ,
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for all α, β, γ, δ ∈ �. Notice that we always use additive notation for a partially
ordered group (�,≤), even though� need not be commutative. As before for α ∈ �
we write �>α = {β ∈ � | β > α}.

A partial order ≤ on � is called trivial if α ≤ β ⇐⇒ α = β, for all α, β ∈ �.
Next let N be an arbitrary group. We study pullbacks of partial orderings on

groups to N .
We say that a binary relation P on N is invariant if

m P n �⇒ sm P sn and ms P ns, (2.1)

for all m, n, s ∈ N .

Lemma 2.2. Let P be a reflexive and transitive binary relation on N. Then P is
invariant if and only if

m P n and s P t �⇒ ms P nt, ∀m, n, s, t ∈ N .

Proof. The “if” part is immediate.
For the “only if” part let m, n, s, t ∈ N and suppose that m P n and s P t . By

the invariance, ms P ns P nt , so by the transitivity, ms P nt . ��
When the conditions of Lemma 2.2 are satisfied we will say that (N ,P) is a

partially preordered group.

Lemma 2.3. The following conditions on a binary relation P on N are equivalent:

(1) P is reflexive, transitive and invariant (i.e., (N ,P) is a partially preordered
group).

(2) There exist a partially ordered group (�,≤) and a group-epimorphismϕ : N →
� such that m P n ⇐⇒ ϕ(m) ≤ ϕ(n) for all m, n ∈ N.

Moreover, when these conditions are satisfied, the kernel of ϕ is

U = {n ∈ N | 1 P n and n P 1}.
Proof. (1)⇒(2): We first show that U is a subgroup of N . By the reflexivity,
1 ∈ U . If m, n ∈ U , then by Lemma 2.2, mn P 1 · 1 and 1 · 1 P mn, so mn ∈ U .
Also, the invariance gives m−1m P m−1 · 1 and 1 ·m−1 P mm−1, so m−1 ∈ U , as
desired.

Next we observe that U is normal in N . Indeed, let m ∈ U and n ∈ N . Then,
by the invariance, n−1mn P n−1 · 1 · n and n−1 · 1 · n P n−1mn, so n−1mn ∈ U .

We further notice that the relation m P n depends only on the cosets of m and
n modulo U . Indeed let u, v ∈ U . Then u P 1 and 1 P v. Therefore m P n implies
(by the invariance) that mu · 1 P n · 1 · v.

Now set � = N/U and let ϕ : N → � be the canonical epimorphism. By what
we have just seen, we may define a binary relation ≤ on � by

ϕ(m) ≤ ϕ(n) ⇐⇒ m P n for m, n ∈ N . (2.2)

Since P is reflexive and transitive, so is ≤. Also, if m, n ∈ N and ϕ(m) ≤
ϕ(n) ≤ ϕ(m), then m P nP m. Multiplying by m−1 on the left, we see that
1 P m−1nP 1, so m−1n ∈ U , whence ϕ(m) = ϕ(n). Thus ≤ is a partial order.

Finally, the fact that (�,≤) is a partially ordered group follows from Lemma 2.2.
(2)⇒(1): Straightforward. ��
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Remark 2.4. Notice that in Lemma 2.3, and throughout this article, we use multi-
plicative notation for N and additive notation for �.

3. The group � y∗ and the map ϕ y∗ :N → � y∗

In this section D is an arbitrary infinite division algebra (not necessarily finite
dimensional over its center), and N is a normal subgroup of D× of finite index.
Note that in this section we make no additional hypotheses. In particular, we do not
assume that D×/N supports a V-graph. As before, for a ∈ D× denote by a∗ the
image of a in D×/N under the canonical homomorphism.

Our goal in this section is, using only the above information, to construct for
any y ∈ D× � N a map

ϕy∗ : N → �y∗ ,

where here �y∗ is a partially ordered group.
We start with defining a binary relation Py∗ on N by

m Py∗ n ⇐⇒ N (my) ⊆ N (ny).

A crucial role is played by the sets N (y): for y ∈ D× we let

N (y) := {n ∈ N | y + n ∈ N } = N ∩ (N − y).

Lemma 3.1 below gives some basic properties of the sets N (y). Then Corollary
3.2(2) shows that Py∗ depends only on the coset y∗ = N y and not on the coset
representative y. Furthermore, Corollary 3.2(1) shows that Py∗ does not depend
on the “side”, i.e., the relation defined by N (ym) ⊆ N (yn) coincides with Py∗ . In
Lemma 3.3 we see that (N ,Py∗) is a partially preordered group, and then we use
Lemma 2.3 to define the partially ordered group (�y∗ ,≤y∗) and the map ϕy∗ .

Lemma 3.1. [27, Lemma 6.3]. Let y ∈ D× � N and n ∈ N. Then

(1) N (ny) = nN (y) and N (yn) = N (y)n;
(2) N (yx ) = x−1 N (y)x, for all x ∈ D×;
(3) N (y) �= ∅;
(4) if n ∈ N (y−1), then y + n−1 ∈ N y. Consequently, n−1 /∈ N (y). In particular
∅ � N (y) � N.

Proof. (1): N (ny) = N ∩ (N − ny) = nN ∩ (nN − ny) = n(N ∩ (N − y)) =
nN (y), and similarly for N (yn).

(2): N (yx ) = N ∩ (N − yx ) = N x ∩ (N x − yx ) = N (y)x .
(3): This is an immediate consequence of the fact that D = N − N (cf. [3,38]).
(4): The first part of (4) follows from the definition of N (y) and the rest of (4) is

a consequence of the first part, and of (3). ��
Corollary 3.2. Let y ∈ D× � N and m, n ∈ N. Then

(1) N (my) ⊆ N (ny) if and only if N (ym) ⊆ N (yn);
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(2) if N (my) ⊆ N (ny), then N (my′) ⊆ N (ny′) for all y′ ∈ yN = N y.

Proof. (1): The first inclusion is equivalent to yN (my)y−1 ⊆ yN (ny)y−1,
which by Lemma 3.1(2) is just the second inclusion.

(2): Multiply the inclusion N (my) ⊆ N (ny) on the right by elements of N and
use Lemma 3.1(1). ��

We now show that (N ,Py∗) is a partially preordered group, for any y ∈ D×�N .

Lemma 3.3. [27, Lemma 6.4]. For any y ∈ D× � N, the relation P := Py∗ has
the following properties

(1) P is reflexive and transitive;
(2) P is invariant.

Proof. (1): This is immediate from the definition of P.
(2): Recall from Eq. (2.1) the notion of an invariant relation. Let m, n, s ∈ N , and

assume that m P n. By the definition of P and Lemma 3.1(1), sm P sn. Next
we have N (my′) ⊆ N (ny′), for all y′ ∈ N y, by Corollary 3.2(2). Taking
y′ = sy, we see that N (msy) ⊆ N (nsy), i.e., ms P ns. ��

Since (N ,Py∗) is a partially preordered group, Lemma 2.3 yields a partially
ordered group (�y∗ ,≤y∗) and a group epimorphism ϕy∗ : N → �y∗ such that

ϕy∗(m) ≤y∗ ϕy∗(n) ⇐⇒ m Py∗ n ⇐⇒ N (my) ⊆ N (ny), (3.1)

for all m, n ∈ N . More concretely,

�y∗ = N/Uy∗ ,

where Uy∗ is the normal subgroup

Uy∗ := {n ∈ N | n Py∗ 1 and 1 Py∗ n} = {n ∈ N | N (ny) = N (y)}
of N , and

ϕy∗ : N → N/Uy∗ ,

is the canonical homomorphism.
Next, we let

Py∗ = {b ∈ N y | 1 ∈ N (b)}.
Note that it follows from Lemma 3.1(3) and Lemma 3.1(1) that Py∗ �= ∅.

One has b ∈ Py∗ if and only if yb−1 ∈ N and yb−1 ∈ N yb−1 − y = N − y,
or equivalently, yb−1 ∈ N (y). Therefore

Py∗ = N (y)−1 y,

and similarly,

Py∗ = yN (y)−1.
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Lemma 3.4. Let y ∈ D× � N. The following conditions on m, n ∈ N are
equivalent:

(1) m Py∗ n.
(2) ϕy∗(m) ≤y∗ ϕy∗(n).
(3) N (my′) ⊆ N (ny′) for all y′ ∈ N y.
(4) m ∈ N (nb) for all b ∈ Py∗ .
(5) nb + m ∈ N for all b ∈ Py∗ .
(6) nPy∗ ⊆ mPy∗ .
(7) For all y′ ∈ N y, if n ∈ N (y′), then m ∈ N (y′).

Proof. To simplify notation we denote P := Py∗ .

(1)⇔(2): This is immediate from the definition of ϕy∗ and of ≤y∗ .
(1)⇒(3): This is Corollary 3.2(2).
(3)⇒(4): Let b ∈ P. As P ⊆ N y we have N (mb) ⊆ N (nb), by (3). But
m ∈ N (mb), so m ∈ N (nb)
(4)⇒(1): We need to show that (4) implies m N (y) ⊆ N (ny). So take s ∈ N (y).
Then b := ys−1 ∈ P. By (4), m ∈ N (nb) = N (nys−1) whence ms ∈ N (ny).
(4)⇔(5): As m ∈ N , this is immediate from the definition of N (nb).
(4)⇔(6): Condition (4) is equivalent to 1 ∈ N (m−1nb) for all b ∈ P. As
m−1nP ⊆ N y, this means that m−1nP ⊆ P, as desired.
(3)⇒(7): Let y′ ∈ N y. By (3) (with y′ replaced by n−1 y′), N (mn−1 y′) ⊆
N (y′). Now if n ∈ N (y′), then m ∈ N (mn−1 y′), and it follows that m ∈ N (y′).
(7)⇒(1): Let s ∈ N (my). Then 1 ∈ N (mys−1), so n ∈ N (y′), where y′ :=
mys−1n ∈ N y. By (7), m ∈ N (y′). Thus 1 ∈ N (ys−1n) and therefore n−1s ∈
N (y). We conclude that s ∈ nN (y) = N (ny). ��
To continue the discussion we recall some notation. Given y ∈ D×� N , we let

N≤y∗ γ = {m ∈ N | ϕy∗(m) ≤ γ } for γ ∈ �y∗ ,

and the sets N<y∗ γ , N>y∗ γ etc. are defined similarly.

Corollary 3.5. Let y ∈ D× � N. Then

(1) N≤y∗ 0 = {m ∈ N | m ∈ N (b), for all b ∈ Py∗};
(2) for all y′ ∈ N y, if n ∈ N (y′),m ∈ N and ϕy∗(m) ≤y∗ ϕy∗(n), then m ∈ N (y′).

Proof. (1): This follows from the equivalence of (2) and (4) in Lemma 3.4, with
n = 1.

(2): This follows from the implication (2)⇒(7) in Lemma 3.4. ��
The following proposition gives an important and surprising property of the

sets N (y), y ∈ D× � N .

Proposition 3.6. Assume that D is a finite-dimensional (but not necessarily central)
division algebra over an infinite field k, and let N ⊆ D× be a subgroup of finite
index. Then for any a ∈ D× � N, each of the sets N (a) and N (a)−1 := {n−1 |
n ∈ N (a)} contains a basis of D over k.
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Proof. We first recall the following Proposition due to Turnwald.

Proposition 3.7. [38, Proposition 1.3]. Let D be an infinite division ring and let
N ⊆ D× be a subgroup of finite index. Then for any x1, . . . , xm ∈ D× there exists
c ∈ D× such that 1+ cx j ∈ N for all j = 1, . . . ,m.

We now continue with the proof of Proposition 3.6. Let x1, . . . , x	 be a left
transversal for N in D×.

We claim that there is a basis y1, . . . , ym of D over k contained in N . Indeed, let
H = GL1,D be the algebraic group associated with D. Then H = ⋃

xi �N , where
�N denotes the Zariski-closure of N in H . Since H is connected, we conclude that
H = �N . Then N is also Zariski-dense in D. The existence of a required basis now
follows from the fact that the m-tuples (y1, . . . , ym) ∈ Dm that constitute a basis
of D over k form a Zariski-open subset.

Now consider the finite set of elements

xi y−1
j where i = 1, . . . , 	; j = 1, . . . ,m. (3.2)

By Proposition 3.7, there exists c ∈ D× such that

1+ cxi y−1
j ∈ N for all i, j.

Since x1, . . . , x	 is a left transversal for N in D×, there exists i0 ∈ {1, . . . , 	} and
s ∈ N , such that c−1a = xi0 s−1, that is cxi0 = as. Then

1+ asy−1
j ∈ N for all j = 1, . . . ,m.

It follows that the elements y1s−1, . . . , yms−1, which form a basis of D over k, are
all contained in N (a). To show that N (a)−1 contains a basis, we apply the same
argument to the family

xi y j where i = 1, . . . , 	; j = 1, . . . ,m

in place of the family in Eq. (3.2), to obtain that sy1, . . . , sym is a basis of D over
k contained in N (a)−1. ��

4. The case where diam(�) ≥ 3

In this section we continue the notation and hypotheses of Sect. 3. In addition we
assume that −1 ∈ N and that D×/N supports a V-graph �. We write � also for
the vertex set of �, i.e., for the non-identity elements of D×/N . The purpose of
this section is to prove Theorem B(1) of the Introduction:

Theorem 4.1. Assume that there are elements x∗, y∗ ∈ � such that d(x∗, y∗) ≥ 3.
Then the map ϕy∗ : N → �y∗ is a strongly leveled map.
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We start with

Remark 4.2. (1) Note that in Theorem B of the introduction we are assuming that
−1 ∈ N . Hence for all a ∈ D×, (−a)∗ = a∗. Also, by property (V1), for every
x, y ∈ D× � N and n ∈ N , if x + y ∈ N or x − y ∈ N , then d(x∗, y∗) ≤ 1.
Similarly, if n /∈ N (y), then d(y∗, (y + n)∗) ≤ 1. We use these facts without
further reference.

(2) Axiom (V3), in conjunction with axiom (V2), also implies:
(∗) If d(a∗, c∗) ≤ 1 and d(b∗a∗, c∗) ≤ 1, then d(b∗, c∗) ≤ 1,
for all a, b, c ∈ D× � N such that ba �∈ N . Indeed, d((a−1)∗, c∗) ≤ 1 and
d((a−1)∗(b−1)∗, c∗) ≤ 1, so by (V3), d((b−1)∗, c∗) ≤ 1, whence d(b∗, c∗)
≤ 1.

(3) Axiom (V3) and (∗) have the following immediate consequence:
(V3′) If d(a∗, (ab)∗) ≤ 2 or d(a∗, (ba)∗) ≤ 2, then d(a∗, b∗) ≤ 2,

for all a, b ∈ D× � N such that ab /∈ N . In fact, in this section, as well as
in Sects. 5 and 6 (which are based on the results of this section) we will need
axiom (V3) only in this weaker form (V3′). The full strength of axiom (V3)
will be needed only in Sect. 7.

(4) Notice that for a, b ∈ D � N , if a∗ �= b∗ �= (a∗)−1, then d(a∗, b∗) =
d((a∗)−1, b∗). Indeed this follows from axiom (V2).

The next two lemmas list some advanced and useful properties of the sets N (x).
We mention that Lemma 4.4(1) will be used only in the next section.

Lemma 4.3. [27, Lemma 6.8]. Let x, y ∈ D×�N , and assume that d(x∗, y∗) ≥ 3,
then,

(1) x + y /∈ N ;
(2) N (x + y) = N (x) ∩ N (y);
(3) if d((x + y)∗, x∗) ≥ 3, then N (x + y) = N (y) ⊆ N (x) ∩ N (−x).

Proof. The proof of this lemma uses only property (V1) of�. Part (1) follows from
Remark 4.2(1).
(2): Let z := x + y and let n ∈ N (z). Suppose, say, that n /∈ N (x). We have

(x + n)+ y = z + n ∈ N .

By Remark 4.2(1), d(x∗, (x + n)∗) ≤ 1 ≥ d((x + n)∗, y∗); thus d(x∗, y∗) ≤ 2, a
contradiction. This shows that N (z) ⊆ N (x). Similarly, N (z) ⊆ N (y).

It remains to show that N (x) ∩ N (y) ⊆ N (z). Assume false and let n ∈
(N (x) ∩ N (y)) � N (z). Then (z + n) − x = (x + y + n) − x = y + n ∈ N .
Similarly, (z + n)− y ∈ N , so by Remark 4.2(1), x∗, (z + n)∗, y∗ is a path in �,
a contradiction.
(3): This follows from (2), since the latter also implies that

N (y) = N (x + y − x) = N (x + y) ∩ N (−x).
��

Lemma 4.4. [27, Lemma 6.9]. Let a, b ∈ D× � N and ε ∈ {1,−1}. Then
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(1) if d(a∗, b∗) ≥ 4 and ε /∈ N (b), then N (ab) ∪ N (ba) ⊆ N (a) ∩ N (−a);
(2) if d(a∗, b∗) ≥ 3 and ε ∈ N (b−1), then N (ab) ∪ N (ba) ⊆ N (a) ∩ N (−a);
(3) if d(a∗, b∗) ≥ 3 and ε ∈ N (a), then N (b) ⊆ N (ab) ∩ N (ba).

Proof. (1) and (2): We first claim that under the hypothesis of either (1) or (2) we
have b + ε /∈ N and d(a∗, (b + ε)∗) ≥ 3.

Indeed, in (1) we assume d(a∗, b∗) ≥ 4 and b+ε /∈ N . Since d(b∗, (b+ε)∗) ≤ 1
we get d(a∗, (b + ε)∗) ≥ 3.

In (2) we assume d(a∗, b∗) ≥ 3 and ε ∈ N (b−1). By Lemma 3.1(4), b+ε /∈ N
and (b + ε)∗ = b∗, so again d(a∗, (b + ε)∗) ≥ 3, proving our claim.

From the claim and (V3′) we deduce that ab+εa /∈ N and d(a∗, (ab+εa)∗) ≥
3. Also, d(a∗, (ab)∗) ≥ 3, by (V3′) again. By Lemma 4.3(3) (with εa, ab in place
of x, y, respectively), N (ab) ⊆ N (εa)∩ N (−εa) = N (a)∩ N (−a). For the other
inclusion conjugate by a using Lemma 3.1(2).
(3): Since d(a∗, b∗) ≥ 3, (V2) and (V3′) imply that d((ab)∗, (a−1)∗) ≥ 3, and it
follows from (2) (taking ab, a−1 in place of a, b, respectively), that N (a−1ab) ⊆
N (ab), that is N (b) ⊆ N (ab). The other inclusion is obtained by conjugating by
b. ��

The next two results are based on [28, Propositions 5.2 and 5.3].

Proposition 4.5. Let x, y ∈ D× � N satisfy d(x∗, y∗) ≥ 3. Let a ∈ Px∗ and
b ∈ Py∗ . Then:

(1) a + 1 ∈ Uy∗ , and hence a + 1 ∈ N (b);
(2) N (a−1) ⊆ N (b);
(3) N (a−1b−1) ⊆ N (εa−1) ∩ N (εb−1) for ε = ±1.

Further, let n ∈ N satisfy n−1 ∈ N (a−1b−1). Then

(4) N (nb) �= N (b);
(5) (N (a) ∩ N (b))± n ⊆ N (a) ∩ N (b);
(6) 1± n ∈ N (c) for every c ∈ P(x−1 y−1)∗ .

Proof. (1): First, a + 1 ∈ N , because 1 ∈ N (a). By definition, to show that
a + 1 ∈ Uy∗ , it remains to show that N (ay + y) = N (y).

By (V3′) and Remark 4.2(2), d((ay)∗, y∗) = d(x∗y∗, y∗) ≥ 3. Now (ay +
y)∗ = y∗, since a + 1 ∈ N , so d((ay + y)∗, (ay)∗) = d(y∗, (xy)∗) ≥ 3. By
Lemma 4.3(3) (with ay, y in place of x, y, respectively), N (ay + y) = N (y).

But now,ϕy∗(a+1) = 0 since a+1 ∈ Uy∗ , so by Corollary 3.5(1), a+1 ∈ N (b).
(2): By (V2), d(y∗, (x−1)∗) ≥ 3. By Lemma 4.4(3),(2) (taking b, a−1 in place of
a, b, respectively, and ε = 1),

N (a−1) ⊆ N (a−1b) ⊆ N (b).

(3): Since d((x−1)∗, (y−1)∗) ≥ 3, we may use Lemma 4.4(2), with εa−1, εb−1 in
place of a, b, and then with εb−1, εa−1 in place of a, b.
(4): As 1 ∈ N (b) we have n ∈ N (nb). On the other hand, n−1 ∈ N (b−1), by (3).
By Lemma 3.1(4), n �∈ N (b). Therefore N (nb) �= N (b).
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(5): By (3),±n−1 ∈ N (a−1)∩N (b−1), so a±n ∈ aN and b±n ∈ bN . By Lemma
4.3(2) (with a+n, b−n in place of x, y), N (a+b) = N (a+n)∩N (b−n). Similarly
N (a + b) = N (a − n) ∩ N (b + n). Further, by Lemma 4.3(2), N (a) ∩ N (b) =
N (a + b), so we obtain

N (a) ∩ N (b) ⊆ N (a + εn) ∩ N (b + εn),

for ε = ±1.
Let now m ∈ N (a) ∩ N (b). We obtain that a + εn + m, b + εn + m ∈ N .

Therefore, if εn + m �∈ N , then by Remark 4.2(1), a∗, (εn + m)∗, b∗ is a path in
�, contradicting d(a∗, b∗) ≥ 3. Consequently, εn + m ∈ N , whence m + εn ∈
N (a) ∩ N (b).
(6): By (5), 1 ± n ∈ N . By (1) (with x−1 y−1, x, c, a in place of x, y, a, b) we
have c + 1 ∈ N (a). Similarly, c + 1 ∈ N (b). It follows from (5) that c + 1± n ∈
N (a) ∩ N (b) ⊆ N . Hence 1± n ∈ N (c). ��

Corollary 4.6. Let x, y ∈ D× � N satisfy d(x∗, y∗) ≥ 3. Then

(1) N (a−1) ⊆ N≤y∗0 for every a ∈ Px∗ ;
(2) N>y∗α �= ∅, for all α ∈ �y∗;
(3) if D is a finite-dimensional algebra over an infinite field k, then for every

α ∈ �y∗ , the set N≥y∗α contains a basis of D over k.

Proof. (1): For every b ∈ Py∗ Proposition 4.5(2) gives N (a−1) ⊆ N (b). Now use
Corollary 3.5(1).
(2): Let a, b and n be as in Proposition 4.5. By Proposition 4.5(3), n−1 ∈ N (a−1),

so by (1), n−1 ∈ N≤y∗0. It follows that n ∈ N≥y∗0.
Also, by Proposition 4.5(4), N (nb) �= N (b), so, by definition, n /∈ Uy∗ . Hence

ϕy∗(n) �= 0. It follows that n ∈ N>y∗0. Since N>y∗0 �= ∅, the assertion now follows
from the surjectivity of ϕy∗ .
(3): Pick a ∈ N x so that 1 ∈ N (a). Then according to (1) we have N (a−1) ⊆
N≤y∗0, so N (a−1)−1 ⊆ N≥y∗0. Proposition 3.6 gives a basis of D over k inside
N≥y∗0.

Now take z ∈ N with α = ϕy∗(z). We multiply the above basis by z to obtain
a basis of D over k in zN≥y∗0 = N≥y∗α . ��

Proof of Theorem 4.1. Let a ∈ Px∗ , b ∈ Py∗ and n ∈ N with n−1 ∈ N (a−1b−1).
Set

z := x−1 y−1.

We claim that ϕz∗ is a strongly leveled map with level α := ϕz∗(n). We recall that
this means that

(i) α ≥z∗ 0 and N>z∗α �= ∅.
(ii) If m ∈ N and ϕz∗(m) >z∗ α, then ϕz∗(1± m) ≤z∗ 0.
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For (i) we use Corollary 4.6 (but with x, z in place of x, y). Indeed by Proposition
4.5(3), n−1 ∈ N (a−1), so by Corollary 4.6(1), ϕz∗(n−1) ≤z∗ 0, i.e., α ≥z∗ 0. By
Corollary 4.6(2), N>z∗α �= ∅.

For m as in (ii) we have ϕz∗(m−1) < ϕz∗(n−1). By Corollary 3.5(2) (with
z, a−1b−1,m−1, n−1 in place of y, y′,m, n), m−1 ∈ N (a−1b−1). Hence, by Propo-
sition 4.5(6), 1± m ∈ N (c) for every c ∈ Pz∗ . We now use Corollary 3.5(1).

We may now take x−1, y−1x, y in place of x, y, z to conclude that ϕy∗ is also
a strongly leveled map. ��

5. The case where diam(�) ≥ 4

In this section we continue with the notation and hypotheses of Sect. 4. The purpose
of this section is to prove Theorem B(2) of the Introduction:

Theorem 5.1. Assume that there are elements x∗, y∗ ∈ � such that d(x∗, y∗) ≥ 4.
Then (after perhaps interchanging x and y) the map ϕy∗ : N → �y∗ is a strong
valuation-like map.

The following notation should be compared with [28, Notation 5.5, p. 944].

Notation 5.2. Let M ⊆ N be a subgroup, and let r, s ∈ D � N.

(1) We denote ṄM (r) = N (r)∩M. When M is clear from the context we will omit
the subscript M and write Ṅ (r) in place of ṄM (r). Note that while N (r) is
always non-empty, ṄM (r) may well be empty. If ṄM (r) = ∅ and m ∈ M, then
our convention is that m ṄM (r) = ∅.

(2) We denote by InM (r∗, s∗) the following relation: for any a ∈ Nr and b ∈ Ns
we have ṄM (a) ⊆ ṄM (b) or ṄM (b) ⊆ ṄM (a).

(3) We denote by IncM (s∗, r∗) the following relation: InM (r∗, s∗) and for any
b ∈ Ps∗ there exists a ∈ Pr∗ such that ṄM (b) ⊇ ṄM (a).

Of course, when M = N we have N (r) = ṄN (r). In this case we abbreviate

I n(r∗, s∗) = InN (r
∗, s∗), I nc(s∗, r∗) = IncN (s

∗, r∗)

Note that in Notation 5.2(2) we allow r∗ = s∗. Furthermore we have (compare
with [28, Proposition 5.7(2)]):

Lemma 5.3. Let M ⊆ N be a subgroup and let s ∈ D× � N. Assume that
InM (s∗, s∗) holds. Then the subgroup ϕs∗(M) ⊆ �s∗ is totally ordered. In par-
ticular, if M = N , then (�s∗ ,≤s∗) is a totally ordered group.

Proof. Let m,m′ ∈ M , and suppose that ϕs∗(m) ≤ ϕs∗(m′) does not hold. By the
equivalence (2)⇔(4) in Lemma 3.4, there exists b ∈ Ps∗ such that m �∈ N (m′b).
Let c ∈ Ps∗ . Then m ∈ ṄM (mc) � ṄM (m′b). As mc,m′b ∈ Ns, our assump-
tion InM (s∗, s∗) implies that ṄM (m′b) ⊆ ṄM (mc). Therefore m′ ∈ ṄM (m′b) ⊆
ṄM (mc) ⊆ N (mc). Using again the equivalence (2)⇔(4) in Lemma 3.4, we con-
clude that ϕs∗(m′) ≤ ϕs∗(m). ��
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Next we have

Proposition 5.4. [27, Proposition 6.11]. Let x, y ∈ D× � N with d(x∗, y∗) ≥ 4.
Then I n(x∗, y∗).

Proof. Let a ∈ N x and b ∈ N y. We need to show that N (a) ⊆ N (b) or N (b) ⊆
N (a). So assume N (b) � N (a), and let n ∈ N (b) � N (a). Let c := n−1a
and d := n−1b. Then 1 ∈ N (d) � N (c). By Lemma 4.4(3),(1), respectively,
N (c) ⊆ N (cd) ⊆ N (d). Hence also N (a) ⊆ N (b). ��

The next two lemmas list some properties of the relations InM and IncM . They
follow [34, 3.10] and [27, Lemma 6.12].

Lemma 5.5. Let r, s, t ∈ D× � N and let M ⊆ N be a subgroup. Then,

(1) if InM (r∗, s∗), then IncM (r∗, s∗) or IncM (s∗, r∗);
(2) IncM (s∗, r∗) and InM (r∗, t∗) imply InM (s∗, t∗);
(3) IncM (s∗, r∗) and IncM (r∗, t∗) imply IncM (s∗, t∗);
(4) if IncM (s∗, r∗), then InM (s∗, s∗).

Proof. (1): Suppose IncM (r∗, s∗) does not hold. Then there is a ∈ Pr∗ such that
Ṅ (a) ⊆ Ṅ (b), for all b ∈ Ps∗ , so IncM (s∗, r∗) holds.

(2): Let b ∈ Ns and c ∈ Nt . Suppose that Ṅ (b) � Ṅ (c). We need to show that
Ṅ (b) ⊇ Ṅ (c). Let m ∈ Ṅ (b) � Ṅ (c). Then replacing b by m−1b and c
by m−1c, we may assume that 1 ∈ Ṅ (b) � Ṅ (c) (we note that m ∈ M, so
Ṅ (m−1d) = m−1 Ṅ (d), for any d ∈ D×� N ). By IncM (s∗, r∗), we can pick
a ∈ Pr∗ , with Ṅ (b) ⊇ Ṅ (a). As 1 ∈ Ṅ (a)� Ṅ (c), InM (r∗, t∗) implies that
Ṅ (a) ⊇ Ṅ (c), so Ṅ (b) ⊇ Ṅ (a) ⊇ Ṅ (c), as asserted.

(3): First, by (2) we have InM (s∗, t∗). Let b ∈ Ps∗ . By IncM (s∗, r∗), there is
a ∈ Pr∗ , with Ṅ (b) ⊇ Ṅ (a). By IncM (r∗, t∗), there is c ∈ Pt∗ , with Ṅ (a) ⊇
Ṅ (c). Thus Ṅ (b) ⊇ Ṅ (a) ⊇ Ṅ (c), and we get IncM (s∗, t∗).

(4): Since IncM (s∗, r∗) we have InM (r∗, s∗). Hence (2) (with t = s) gives
InM (s∗, s∗). ��

Lemma 5.6. Let r, s ∈ D× � N and suppose that I nc(s∗, r∗). Then

(1) ≤s∗ is a total order relation;
(2) N≤s∗ 0 ⊇ N≤r∗ 0;
(3) there is an epimorphism ψ : �r∗ → �s∗ of partially ordered groups such that

ϕs∗ = ψ ◦ ϕr∗ .

Proof. (1): As I nc(s∗, r∗), Lemma 5.5(4) gives I n(s∗, s∗). Now use Lemma
5.3.

(2): This follows from Corollary 3.5(1). Indeed, let b ∈ Ps∗ , and (using
I nc(s∗, r∗)) pick a ∈ Pr∗ with N (b) ⊇ N (a). Then N (b) ⊇ N (a) ⊇ N≤r∗ 0.
As this holds for all b ∈ Ps∗ , N≤s∗ 0 ⊇ N≤r∗ 0.

(3): Recall that for z = r, s, the kernel of the map ϕz∗ : N → �z∗ is Uz∗ . By (2),
Ur∗ ⊆ Us∗ , and hence there exists an epimorphismψ : �r∗ → �s∗ , such that
ϕs∗ = ψ ◦ ϕr∗ , as required. Moreover, by (2) again, ψ is a homomorphism
of partially ordered groups. ��



On graphs and valuations 413

Proof of Theorem 5.1. Let x, y ∈ D× � N such that d(y∗, x∗) ≥ 4. By Theorem
4.1, both ϕx∗ : N → �x∗ and ϕy∗ : N → �y∗ are strongly leveled maps. Thus it
remains to show that one of the groups �x∗ , �y∗ is totally ordered.

Now by Proposition 5.4, I n(x∗, y∗). By Lemma 5.5(1), after perhaps inter-
changing x and y, we may assume that I nc(y∗, x∗). Then by Lemma 5.6(1), �y∗
is a totally ordered group. ��

6. The case where diam(�) ≥ 5

In this section we continue the notation and hypotheses of Sect. 4. The purpose
of this section is to prove Theorem B(3) of the Introduction. We thus assume that
x∗, y∗ ∈ � are such that d(x∗, y∗) ≥ 5. By Proposition 5.4 and Lemma 5.5(1), we
may assume without loss of generality that I nc(y∗, x∗) holds. We will prove

Theorem 6.1. The map ϕy∗ : N → �y∗ is a strong valuation like map of s-level 0.

By Lemma 5.5(4), I n(y∗, y∗) holds, and this together with Lemma 3.1(1) and
the fact that −1 ∈ N implies that

N (g) = N (−g), for all g ∈ N y. (6.1)

Lemma 6.2. Let a ∈ x N , b ∈ yN such that N (a) ⊆ N (b) and let n ∈ N � N (b).
Then

N (a) ⊆ N (a + n) ∩ N (b + n).

Proof. Since N (b) = N (−b) we have N (b) = −N (b) and N (−a) ⊆ N (b).
If a−n ∈ N , then−n ∈ N (a) ⊆ N (b) = −N (b), a contradiction. Thus a−n �∈

N , so by Remark 4.2(1), d(a∗, (a−n)∗) ≤ 1. Also, b+n �∈ N and we similarly have
d((b+n)∗, b∗) ≤ 1. As d(a∗, b∗) ≥ 5 we conclude that d((a−n)∗, (b+n)∗) ≥ 3.
Hence, by Lemma 4.3(2), N (a + b) = N (a − n)∩ N (b+ n). In addition, Lemma
4.3(2) implies that N (a + b) = N (a) ∩ N (b) = N (a). Therefore

N (a) = N (a − n) ∩ N (b + n). (6.2)

The same argument, with −a in place of a, shows that

N (−a) = N (−a − n) ∩ N (b + n). (6.3)

Altogether Eqs. (6.2) and (6.3) imply the assertion. ��
Proof of Theorem 6.1. We denote ≤=≤y∗ and ϕ = ϕy∗ . By Theorem 5.1 it is
enough to show that ϕ is a strongly leveled map having s-level 0, i.e.

1+ N>0 ⊆ N≤0 (6.4)

(we notice that since �y∗ is totally ordered, we have±N>0 = N>0, hence equation
(SL) in subsection 1.2 of the introduction simplifies to Eq. (6.4)).
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We first show that
1+ N>0 ⊆ N . (6.5)

To this end let n ∈ N>0. It follows from Corollary 3.5(1) that there exists b ∈ Py∗
such that n /∈ N (b). Using I nc(y∗, x∗) we pick a ∈ Px∗ such that N (b) ⊇ N (a).
Since 1 ∈ N (a), Lemma 6.2 shows that both a+ n+ 1 and b+ n+ 1 belong to N .
If n+1 /∈ N , then a∗, (n+1)∗, b∗ would be a path in�, contrary to d(a∗, b∗) ≥ 5.
Thus n + 1 ∈ N proving Eq. (6.5).

Next we note that 1 − (1 + a) = −a �∈ N . By eq. (6.5), −(1 + a) ∈ N≤0,
whence also 1+ a ∈ N≤0 (see Eq. (6.1)).

Corollary 3.5(1) now implies that 1+a ∈ N (z) for every z ∈ Py∗ . Equivalently,
z + 1 ∈ N (a) for every such z. By Lemma 6.2,

a + (z + 1+ n) , b + (z + 1+ n) ∈ N .

The assumption z + 1 + n /∈ N would lead us again to the false conclusion that
d(a∗, b∗) ≤ 2. Thus, z + (1 + n) ∈ N . Since this is true for all z ∈ Py∗ , we see
that 1+ n ∈ N≤0, by Corollary 3.5(1), proving Eq. (6.4). ��

7. Property (3 1
2 )

In this section we continue the notation and hypotheses of Sect. 4. Recall that
we denote by F the center of D. Throughout this section � ≤ Sym(D×) is a
permutation group on D×. For x ∈ D× andσ ∈ �, letσ(x N ) := {σ(xn) | n ∈ N }.
We assume that σ(N ) = N , for all σ ∈ �, and

σ(x N ) = σ(x)N , for all x ∈ D× and σ ∈ �,
that is σ(x∗) = σ(x)∗, for all x ∈ D× and σ ∈ �. We use the letter � to also
denote the group of permutations of � induced by �.

Remark 7.1. Note that if � ≤ Aut(D×) is a subgroup that normalizes N , then of
course � satisfies our hypothesis.

Definition 7.2. We say that � satisfies Property (3 1
2 ) with respect to x∗, y∗ ∈ �,

the subgroup � ≤ Sym(D×), and the subgroup M ⊆ N , if −1 ∈ M and

(1) σ(a + k)∗ = (σ (a)+ k)∗, for every σ ∈ �, a ∈ D× � N and k ∈ M .
(2) d(x∗, y∗) ≥ 3.
(3) For every r∗, s∗ ∈ � such that x∗, r∗, s∗, y∗ is a path in�, there exists σ ∈ �

such that d(σ (x∗), y∗) ≥ 3, and σ(x)∗, σ (r)∗, s∗, y∗, is not a path in �.

The purpose of this section is to prove:

Theorem 7.3. Assume that � satisfies property (3 1
2 ) with respect to x∗, y∗ ∈ �,

the subgroup � ≤ Sym(D×), and the subgroup M ⊆ N. Then, after perhaps
interchanging x∗ and y∗, the map ϕy∗ : N → �y∗ is a strongly leveled map such
that the subgroup ϕy∗(M) of �y∗ is totally ordered.
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Lemma 7.4. Suppose that� satisfies property (3 1
2 ) with respect to x∗, y∗ ∈ �, �

and M. Then InM (x∗, y∗) holds.

Proof. Suppose that InM (x∗, y∗) does not hold. Then there exist a ∈ x N and
b ∈ yN such that Ṅ (a) �⊆ Ṅ (b) and Ṅ (b) �⊆ Ṅ (a). Pick m ∈ Ṅ (a) � Ṅ (b). We
may replace a, b by −m−1a,−m−1b respectively to assume that

−1 ∈ Ṅ (a)� Ṅ (b).

Also pick

k ∈ Ṅ (b)� Ṅ (a),

and set r = a + k and s = b − 1. Then r, s �∈ N .
Take σ ∈ � such that d(σ (x)∗, y∗) ≥ 3. We show that

σ(x)∗, σ (r)∗, s∗, y∗ (P)

is a path in �. In particular, applying this for σ = id, we obtain from (2) of
Definition 7.2 that x∗, r∗, s∗, y∗ is a path in �, which is a contradiction to (3) of
Definition 7.2.

Now since d(σ (x)∗, y∗) ≥ 3, it is enough to show that in each step in P the
distance is at most 1.

Indeed, by (1) of Definition 7.2, σ(r)∗ = σ(a + k)∗ = (σ (a) + k)∗. Since
k ∈ M ⊆ N , (V1) implies that

d(σ (x)∗, σ (r)∗) = d(σ (a)∗, (σ (a)+ k)∗) ≤ 1.

Next, we have a − 1 ∈ N , which by (1) of Definition 7.2 implies that
(σ (a)− 1)∗ = σ(a − 1)∗ = 1∗. Therefore −1 ∈ N (σ (a)). Since d(σ (a)∗, b∗) =
d(σ (x)∗, y∗) ≥ 3, we deduce from Lemma 4.4(3) that k ∈ N (b) ⊆ N (bσ(a)),
and hence bσ(a)+ k ∈ N . Therefore, by (V1),

d(b∗(σ (a)+ k)∗, (b − 1)∗) = d((bσ(a)+ k)+ (b − 1)k)∗, ((b − 1)k)∗) ≤ 1.

In addition d(b∗, (b − 1)∗) ≤ 1, so by (V3),

d(σ (r)∗, s∗) = d((σ (a)+ k)∗, (b − 1)∗) ≤ 1.

Finally, (V1) implies that

d(s∗, y∗) = d((b − 1)∗, b∗) ≤ 1,

as required. ��
Proof of Theorem 7.3. Since d(x∗, y∗) ≥ 3, Theorem 4.1 implies that both ϕy∗
and ϕx∗ are strongly leveled maps. By Lemma 7.4, InM (x∗, y∗) holds. In view
of Lemma 5.5(1), we may assume (after perhaps interchanging x∗ and y∗) that
IncM (y∗, x∗) holds. Then Lemma 5.5(4) shows that InM (y∗, y∗) also holds. By
Lemma 5.3, the subgroup ϕy∗(M) of �y∗ is totally ordered. ��
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Using Theorem 7.3 we will prove at the end of Sect. 10 (compare with [28,
Theorem 1, p. 931]):

Theorem 7.5. Let D be a finite-dimensional separable (but not necessarily central)
division algebra over an infinite field k of finite transcendence degree over its
prime field, and let N ⊆ D× be a normal subgroup of finite index containing −1.
Assume that D×/N supports a V-graph� that satisfies property (3 1

2 ) with respect
to x∗, y∗ ∈ �, the subgroup � ≤ Sym(D×), and the subgroup M = N ∩ k×.

Then there exists a non-empty finite set ˜T of non-trivial valuations of D such
that N is open in D× with respect to the ˜T -adic topology.

8. Valuations on division algebras

In this section we recall some notions and facts on valuations on division algebras,
which will be needed in the next two sections.

We recall that a valuation on a division ring D is a surjective group homo-
morphism v : D× → �v onto a totally ordered group �v (the value group) such
that

v(x + y) ≥ min{v(x), v(y)} whenever x + y �= 0.

We let

OD,v = {x ∈ D× | v(x) ≥ 0} ∪ {0}
denote the corresponding valuation ring, and mD,v its maximal ideal. More gener-
ally, for δ ∈ (�v)≥0, we define the following two-sided ideal of OD,v:

mD,v(δ) = {x ∈ D× | v(x) > δ} ∪ {0}
(so that mD,v = mD,v(0)).

Recall that the v-adic topology on D is the ring topology which has the ideals
mD,v(δ) for δ ∈ (�v)≥0 as a fundamental system of neighborhoods of zero (see
Sect. 5, no. 1 in [7, Ch. 6]). This topology turns D× into a topological group, and
the openness of a subgroup N ⊆ D× in the v-adic topology is equivalent to the
existence of δ ∈ (�v)≥0 such that 1+mD,v(δ) ⊆ N .

More generally, given a finite set T = {v1, . . . , vr } of valuations of D, and
δi ∈ (�vi )≥0, i = 1, . . . , r , we define

mD,T (δ1, . . . , δr ) =
r

⋂

i=1

mD,vi (δi ).

Clearly, mD,T (δ1, . . . , δr ) is a two-sided ideal of OD,T =⋂

v∈T OD,v . The ideals
mD,T (δ1, . . . , δr ) form a fundamental system of neighborhoods of zero for a topol-
ogy on D compatible with the ring structure; this topology will be called T -adic.
Thus, a subgroup N ⊆ D× (resp. a subring R ⊆ D) is T -adically open iff it contains
the congruence subgroup 1+mD,T (δ1, . . . , δr ) (resp. the ideal mD,T (δ1, . . . , δr ))
for some δi ∈ (�vi )≥0, i = 1, . . . , r .
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Next let � = (�,≤) be a totally ordered commutative group. We recall that the
height (also called rank) of � is the supremum of all non-negative integers r such
that there exist epimorphisms

� = �0
μ1−→�1

μ2−→· · · → �r−1
μr−→�r = {0}

of totally ordered groups, where μ1, . . . , μr have non-trivial kernels. The group
� has height ≤ 1 if and only if it embeds in the ordered additive group of R [11,
Th. 2.5.2]. We note that if � is commutative and has finite height, then there is an
epimorphism μ : �→ �̄, with �̄ of height one.

The height of a valuation v is defined to be the height of its value group �v (cf.
[7, ch. 6, Sect. 4, no. 4] or [11, Sect. 2.2] for a discussion on the height of a totally
ordered group/valuation).

The following definition describes a useful connection between leveled maps
and valuations.

Definition 8.1. Let N be a subgroup of D×,� a partially ordered group,ϕ : N → �

a group homomorphism, and v : D× → �v a valuation. We say that v is associated
with ϕ if ϕ(n) ≥ 0 implies v(n) ≥ 0, for all n ∈ N .

Remark 8.2. [27, Remarks 2.5].

(1) Given a non-trivial homomorphism ϕ : N → �, the non-trivial valuation
v : D× → �v is associated with ϕ if and only if there exists a non-trivial
homomorphism θ : ϕ(N )→ �v of ordered groups such that the square

N
ϕ ��

� �

ι

��

ϕ(N )

θ

��
D× v �� �v

in which ι is the inclusion map, commutes. In fact, this was the original defi-
nition used in [25,27,28].

(2) If v : D× → �v is a valuation and μ : �v → �̄ is a surjective homomorphism
of totally ordered groups, then v̄ = μ ◦ v : D× → �̄ is also a valuation. Also,
if v is associated with ϕ : N → � with respect to θ , then v̄ is also associated
with ϕ, with respect to μ ◦ θ . Further, every v-adically open subgroup of D×
is also v̄-adically open.

Given valuations u, u′ on D with value groups �u, �u′ , respectively, we say
that u′ is coarser than u if there is an epimorphism of totally ordered groups
μ : �u → �u′ such that u′ = u ◦ μ.

Lemma 8.3. Let D be a division ring which is finite-dimensional over its center. Let
r ≥ 2 and letw1, . . . , wr be distinct valuations of height 1 on D. Let N1, . . . , Nr be
proper subgroups of D× which are open in thewi -adic topologies, i = 1, 2, . . . , r ,
respectively. Let N = N1∩· · ·∩Nr . Then N is not u-adically open for any nontrivial
valuation u on D.
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Proof. Assume the contrary. The assumption on D implies that �u is commutative
(see [18, p. 628]). The set of valuations on D which are coarser than u is linearly
ordered with respect to the coarsening relation (see e.g., [11, Prop. 2.1.3 and Prop.
2.2.1]). Since w1, . . . , wr have height 1 and are distinct, none of them is coarser
than the other. Therefore at most one of them can be coarser than u. Without loss
of generality w1 is not coarser than u. Since it has height 1, there is no nontrivial
common coarsening of w1 and u, i.e., they are independent valuations.

As N1 contains N , it is open in both the w1-adic topology and the u-adic
topology. Furthermore, for every d ∈ D× the coset d N1 is u-adically open in D×.
By the weak approximation theorem for independent valuations [21], N1 ∩ d N1 �=
∅, so d ∈ N1. This contradicts the assumption that N1 �= D×. ��

9. Valuations from strongly leveled maps

The goal of this section is to show that strongly leveled maps, under some additional
assumptions, give rise to valuations. The main result of this section is the following
theorem. We refer the reader to Sect. 1.2 of the Introduction for the notion of a
leveled, strongly leveled, and strong valuation-like map.

Theorem 9.1. Let D be a finite-dimensional (but not necessarily central) division
algebra over a field k of finite transcendence degree over its prime field, and let
N ⊆ D× be a normal subgroup containing −1 of finite index. Let ϕ : N → � be
a strongly leveled map, where (�,≤) is a partially ordered group, such that the
subgroup ϕ(N ∩ k×) of � is totally ordered. Then:

(a) the restriction ϕk = ϕ�N∩k× is a strong valuation-like map;
(b) there exists a height one valuation v of k associated with ϕk such that N ∩ k×

is open in k× in the v-adic topology.

Let us first make a connection between a strongly leveled and a leveled map.

Lemma 9.2. Let D be an infinite division ring, let N ⊆ D× be a finite index normal
subgroup containing −1, and let ϕ : N → � be a strongly leveled map of s-level
α ∈ �≥0. Then

(1) if β ∈ �≥α is such that N>β �= ∅, then β is an s-level of ϕ;
(2) ϕ is a leveled map of level α.

Proof. Part (1) follows immediately from the definitions. For part (2), note that
N<−α �= ∅ since N>α �= ∅. Let n ∈ N<−α . Then 1+ n−1 ∈ 1+ N>α ⊆ N≤0, and
therefore

ϕ(1+ n) = ϕ(n(1+ n−1)) ≤ ϕ(n) < −α,
i.e., 1+ n ∈ N<−α . Thus, ϕ is a leveled map of level α. ��

We record the following two results from [25] and [28], respectively. Here D
is a division ring and N a normal subgroup of D× containing −1.
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Proposition 9.3. [25, Proposition 3]. Let ϕ : N → � be a leveled map, and T a
finite set of valuations of D associated with ϕ. Assume that there is a T -adically
open subring M of D such that

M ∩ N ⊆ N>−β

for some β ∈ �>0. Then N is T -adically open in D×.

Lemma 9.4. [28, Proposition 4.2]. Let ϕ : N → � be a strongly leveled map with
s-level α. Let A (resp., R) be the subring of D generated by N>α (resp., N≥0).
Then −1 �∈ A, and for every m ∈ A ∩ N≥0, the element ϕ(m) is an s-level of ϕ.

Note that R (resp., A) coincides with the set of all elements of the form ε1a1+
· · · + εlal with εi = ±1 and ai ∈ N≥0 (resp., ai ∈ N>α), and that A is in fact a
ring without identity.

The following result establishes the existence of a valuation associated to a given
strongly leveled map in the simplest case where the division algebra is assumed to
be commutative and the map ϕ to be strong valuation-like.

Theorem 9.5. (Commutative case; see [27, Theorem 4.1]). Let K be a field, and
let N ⊆ K× be a subgroup of finite index containing −1. Assume that ϕ : N → �

is a strong valuation-like map. Then

(1) there exists a non-trivial valuation v on K associated with ϕ such that N is
open in the v-adic topology;

(2) additionally, if K has finite transcendence degree over its prime field, then v
can be taken to have height one;

(3) the subring R of K generated by N≥0 is v-adically open.

Proof. Let α be an s-level of ϕ, and let R and A be the subrings introduced in
Lemma 9.4 for K in place of D. Let ˜R be the integral closure of R in K .

We claim that ˜R is a valuation ring. Indeed, given any x ∈ K×, for m = [K× :
N ], we have xm ∈ N , hence either xm or x−m is in N≥0 ⊆ R. Then, respectively,
either x or x−1 is in ˜R.

Next, we show that
˜R ∩ N<−α = ∅. (9.1)

Since N<−α �= ∅, this will also show that the valuation ring ˜R is a proper subring
of K . Suppose that z ∈ ˜R ∩ N<−α . Then z satisfies a polynomial equation

zd + a1zd−1 + · · · + ad = 0

with ai ∈ R. Since z−1 ∈ N>α, it follows that

−z = a1 + · · · + ad z−(d−1) ∈ R.
On the other hand, the inclusion N≥0 N>α ⊆ N>α implies that RA ⊆ A, i.e. A is
an ideal of R. Since z−1 ∈ N>α ⊆ A, we obtain −1 = −z · z−1 ∈ A, contrary to
Lemma 9.4.

Let v be the valuation of K corresponding to the valuation ring ˜R, i.e., x ∈ ˜R
if and only if v(x) ≥ 0, for x ∈ K× (cf. [7,11]). Since N≥0 ⊆ R ⊆ ˜R, for
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any x ∈ N≥0 we have v(x) ≥ 0, which implies that v is associated with ϕ. By
construction, ˜R is v-adically open in K . Equation (9.1) implies that for any β > α

we have

˜R ∩ N ⊆ N>−β,

so the v-adic openness of N in K× follows from Proposition 9.3. This proves (1).
For (2), suppose that K has finite transcendence degree over it prime field. It

follows from Cor. 1 in no. 3 and Prop. 3 in no. 2 of [7, Ch. 6, Sect. 10], that the
(commutative) value group �v = v(K×) has finite height. As we have observed
in Sect. 8, there is an epimorphism μ : �v → �̄ of totally ordered groups, with �̄
of height one. By Remark 8.2(2), v̄ = μ ◦ v : K× → �̄ is a valuation of height
one which is associated with ϕ, and since N is v-adically open, it is also v̄-adically
open.

Finally, we prove (3). By (1), there exists a non-negative δ ∈ �v = v(K×) such
that 1+mK ,v(δ) ⊆ N . Pick any c ∈ N with v(c) > 0. Then for any

x ∈ c(1+mK ,v(δ))

we have v(x) > 0. Since ϕ(N ) is totally ordered and v is associated with ϕ, this
implies that ϕ(x) > 0. Thus

c(1+mK ,v(δ)) ⊆ N>0 ⊆ R.
Setting δ′ = v(c)+ δ we obtain from this and from c ∈ N>0 ⊆ R that

mK ,v(δ
′) = cmK ,v(δ) ⊆ R,

proving that the ring R is v-adically open in K . ��
Lemma 9.6. Let D be a division ring and let N be a normal subgroup of D× of
finite index. Let � be a totally ordered group and ϕ : N → � a homomorphism.
Let R be the subring of D generated by N≥0. Then any x ∈ D can be written in
the form x = ab−1 with a ∈ R and b ∈ N≥0.

Proof. By [38, Theorem 1, p. 377], we can write x = n1 − n2 with n1, n2 ∈ N .
Suppose first that ϕ(n1) ≥ ϕ(n2). When ϕ(n2) ≥ 0, we take a = x and b = 1.

When ϕ(n2) < 0 we take a = n1n−1
2 − 1 and b = n−1

2 .
The case ϕ(n1) ≤ ϕ(n2) is proved similarly. ��

Proof of Theorem 9.1. In view of Theorem 9.5 (with k, N ∩ k× in place of K , N ),
it suffices to prove (a), that is, that ϕk is a strongly leveled map. For this, we let
α ∈ �≥0 be an s-level for ϕ. Let A denote the subring of D generated by N>α , and
let R0 be the subring of k generated by (N ∩ k×)≥0. Pick an arbitrary s ∈ N>α ,
and let p(t) = c	x	 + c	−1x	−1 + · · · + c0 be a minimal polynomial of s over k.
By Lemma 9.6 (for the subgroup N ∩ k× of k×), we can write ci = ai b

−1
i with

ai ∈ R0 and bi ∈ (N ∩ k×)≥0, i = 0, 1, . . . , 	. Multiplying by b0 · · · b	, we may
therefore assume that ci ∈ R0 for every i . Of course, c0 �= 0, and we have

c0 = −(c	s	 + · · · + c1s) ∈ A.
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Then for d = [D× : N ] we have

b := (c0)
d ∈ A ∩ N ∩ k×.

We claim that b ∈ N>0. Indeed, since the group ϕ(N ∩ k×) is totally ordered,
we would otherwise have b−1 ∈ N≥0. As before, the inclusion N≥0 N>α ⊆ N>α
implies that R0A ⊆ A. We obtain that−1 = b−1(−b) ∈ A, which contradicts the
first part of Lemma 9.4.

Thus, b ∈ A ∩ N>0. By the second part of Lemma 9.4, β = ϕ(b) is an s-level
for ϕ. It is therefore also an s-level for ϕk . ��

10. Openness with respect to finitely many valuations

Throughout this section we consider a finite-dimensional division algebra D over
a field k. We assume that D is separable over k, i.e., the center F = Z(D) of D
is a separable algebraic extension of k. We further assume that k is equipped with
a height one valuation v. Since D is finite-dimensional over k, the field extension
F/k is finite, and there are at most [F : k] extensions of v to F (see [7, Ch. 6,
Sect. 8, no. 3, Th. 1]). Each such extension is also of height one [11, Cor. 14.2.3(c)].

Let | |v denote the absolute value on k associated with v. Given a basis
ω1, . . . , ωm of D over k, we define a norm on D by

||a1ω1 + · · · + amωm ||v := max
i=1,...,m

|ai |v. (10.1)

This norm turns D into a normed vector space over (k, | |v). Let τv denote the
induced topology on D. One easily verifies that τv and the notion of boundedness
on D associated with || ||v do not depend on the choice of the basis.

Next let S be a non-empty finite set of height one valuations on F = Z(D). Let
κ1, . . . , κn2 be a fixed basis of D over F . For w ∈ S we may define a norm || ||w
on D with respect to this basis in a way similar to (10.1). Then

Dw = D ⊗F Fw,

is a finite-dimensional algebra over the completion Fw of F with respect to | |w.
The norm || ||w extends to Dw, it is defined exactly as in (10.1) using the basis
ω1⊗1, . . . , ωm⊗1 of Dw over Fw. We endow Dw with the corresponding topology
and the notion of boundedness. Now set

DS =
∏

w∈S

Dw,

and endow it with the product topology τS . We have a diagonal embedding ιS : D →
DS . The topology on D induced from τS via ιS is then the τS-topology on D.
It restricts to the S-adic topology on F . Let prw : DS → Dw, for w ∈ S, and
prT : DS → DT , for T ⊆ S, be the projection maps (with the usual convention
that DT is a singleton if T is empty).

We will need the following generalization of [25, Lemma 2]:
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Lemma 10.1. In the above setup, let B be a τS-open subring of DS. Let S0 be a
subset of S such that prw(B) is unbounded for every w ∈ S0, and set T := S � S0.
Then

B = prT (B)× DS0 .

In particular, if T = ∅ then B = DS = DS0 .

Proof. When |S0| = 1 this is proved (in an equivalent form) in [25, Lemma 2]. The
general case follows by induction. ��

We will also need the following fact from [28]:

Proposition 10.2. [28, Theorem 2.4]. Let D be a finite-dimensional central division
algebra over a field F, and let w be a height one valuation of F. Assume that there
exists a subring B � D such that

(i) B is open in D with respect to the topology defined by the norm || ||w;
(ii) there exists a positive integer 	 such that dBd−1 ⊆ B for all d ∈ (D×)	 :=
{x	 | x ∈ D×}.

Then w extends uniquely to a height one valuation w̃ of D such that B ⊆ OD,w̃.

Theorem 10.3. Let D be a finite-dimensional separable division algebra over a
field k of finite transcendence degree over its prime field, and let F = Z(D) be
its center. Let N ⊆ D× be a normal subgroup containing −1 and of finite index.
Assume that ϕ : N → � is a strongly leveled map such that

(i) ϕ(N ∩ k×) is totally ordered.
(ii) N≥0 contains a basis of D over k.

(iii) for the subring R of D generated by N≥0, there exists γ ∈ �>0 such that
R ∩ N ⊆ N>−γ .

Then

(1) the restriction ϕk = ϕ�N∩k× is a strong valuation-like map;
(2) there exists a height one valuation v of k associated with ϕk such that N ∩ k×

is open in k× in the v-adic topology;
(3) there exists a finite non-empty set T of valuations on F extending v such that
|T | ≤ [F : k], and such that
(a) each w ∈ T uniquely extends to a valuation w̃ of D associated with ϕ;
(b) N is open in D× in the ˜T -adic topology, where ˜T = {w̃ | w ∈ T }.

Proof. Parts (1) and (2) hold by Theorem 9.1, using hypothesis (i).
Let S be the set of all extensions of v to F . Then S is non-empty, and as already

noted, |S| ≤ [F : k] < ∞. Let w1, . . . , wr be the distinct valuations in S. Let kv
be the completion of k with respect to v. Since F/k is separable, we have

F ⊗k kv ∼=
r

∏

i=1

Fwi
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(see [7, Ch. 6, Sect. 8, no. 2, Cor. 2]), and therefore

D ⊗k kv = D ⊗F (F ⊗k kv) ∼= D ⊗F

(

r
∏

i=1

Fwi

)

=
r

∏

i=1

Dwi = DS .

This isomorphism commutes with the natural map D → D ⊗k kv , d �→ d ⊗ 1,
and the diagonal map ιS : D → DS . We extend the norm || ||v on D to D ⊗k kv .
Since any two norms on a finite-dimensional vector space over a complete normed
field are equivalent (see e.g., [20, p. 470, Prop. 2.2]), the || ||v-topology on D⊗k kv
coincides under this isomorphism with the product topology τS on DS . Thus τS

restricts to the topology τv on D.
Take a basis ν1, . . . , νm of D over k which is contained in N≥0. Then D =

kν1 + · · · + kνm , with the τv-topology, is homeomorphic to the direct product of
m copies of k, with the v-adic topology, via the coordinate map. Let R (resp., R0)
denote the subring of D (resp., k) generated by N≥0 (resp., (N ∩k×)≥0). By (1) and
(2), Theorem 9.5(3) applies and we conclude that the subring R0 of k is v-adically
open. We have

R0ν1 + · · · +R0νm ⊆ R,
so R is open in D with respect to τv .

Further, let �R be the τS-closure of R in DS . Then ι−1
S (�R) is the τv-closure of R

in D. Being a τv-open ring, R is also τv-closed in D, and therefore R = ι−1
S (�R).

Also, since R is τv-open in D, the closure �R is τS-open in DS (indeed, for an open
ball BD(0, ε) in R one has BD⊗k kv (0, ε) ⊆ BD(0, ε) ⊆ �R).

Next let S0 denote the set of all w ∈ S such that prw(�R) is unbounded, and set
T := S � S0. By Lemma 10.1, �R = prT (

�R)× DS0 . Consequently

R = ι−1
S (�R) = ι−1

S (prT (
�R)× DS0) = ι−1

T (prT (
�R)). (10.2)

In case T = ∅, this would mean R = D, which contradicts [RSS], Prop. 4.3(1).
Thus, T is not empty. Furthermore, since prT (R) is open in DT , we obtain from
Eq. (10.2) that R is open in D with respect to τT , as required.

Next we show that each w ∈ T extends uniquely to D. Indeed, since �R is
τS-open in DS , the subring

R(w) := prw(�R) ∩ D

is τv-open in D. Since prw(R) is bounded, while D is obviously unbounded,
R(w) �= D. Furthermore, being generated by N≥0, the subring R is invariant
under conjugation by any element of N , so the same is true for �R and consequently
for R(w). Since (D×)	 ⊆ N , for 	 = [D× : N ], we can apply Proposition 10.2
with B = R(w) and deduce thatw extends uniquely to a height one valuation w̃ of
D such that R(w) ⊆ OD,w̃. In particular, N≥0 ⊆ OD,w̃, so w̃ is associated with ϕ.

The fact that w extends to D implies that Dw = D⊗F Fw is a division algebra
(see [8] or [39, Th. 2.3]). Further, Dw can be identified with the completion of
D with respect to w̃. Since Dw is finite-dimensional over the complete field Fw,
the norm || ||w and the norm corresponding to w̃ are equivalent, and hence induce
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the same topology on Dw. It follows that the τT -topology on D coincides with its
˜T -adic topology. Therefore, R is also ˜T -adically open.

Next, by (iii), there exists γ ∈ �>0 such that R ∩ N ⊆ N>−γ . Hence,
Proposition 9.3 applies to M = R and gives the openness of N in the ˜T -adic
topology. ��

Assumption (iii) of Theorem 10.3 is satisfied in the following important
situation:

Lemma 10.4. [28, Theorem 5.8(3)]. Let x, y ∈ D×� N satisfy d(x∗, y∗) ≥ 3 and
let � = �y∗ and ≥=≥y∗ . For the subring R of D generated by N≥0 , there exists
γ ∈ �>0 such that R ∩ N ⊆ N>−γ .

We are now in a position to prove Theorems A and C of the Introduction and
Theorem 7.5.

Proof of Theorem C. Take x, y ∈ D×\N with d(x∗, y∗) ≥ 3 and set ≥=≥y∗ .
By Theorem 4.1, ϕ = ϕy∗ : N → � is strongly leveled map. Now Theorem 9.1
gives (1) and (2). Moreover, the valuation v in (2) is associated with ϕ�N∩k× . By
Corollary 4.6(3), N≥0 contains a basis of D over k. By Lemma 10.4, there exists
γ ∈ �>0 such that R ∩ N ⊂ N>−γ , where R is the subring of D generated by
N≥0 . Therefore (3) follows from Theorem 10.3. ��
Proof of Theorem 7.5. Since diam(�) ≥ 3, and by Theorem 7.3, we can pick a
nonidentity element y∗ ∈ D×/N such that ϕ = ϕy∗ : N → � is a strongly leveled
map as in Theorem B(1), and such that the subgroup ϕy∗(N ∩ k×) of �y∗ is totally
ordered. Hence Theorem 7.5 follows from Theorem C. ��

We conclude this section with the proof of Theorem A.

Proof of Theorem A. By Theorem 5.1, we can pick a nonidentity element y∗ ∈
D×/N such that ϕ = ϕy∗ : N → � is a strong valuation-like map.

Suppose first that D = K is abelian. Then, by Theorem 9.5(1), the assertion of
Theorem A holds.

Next assume that D is a finite-dimensional division algebra over a field K of
finite transcendence degree over its prime field. Of course k is infinite since D
is. We may assume that k = F = Z(D). Since ϕ is a strong valuation-like map,
the subgroup ϕ(N ∩ F×) ⊆ � is totally ordered. Hence the assertion of Theorem
A holds by Theorem C(3) (with k = F , and note that |T | = |˜T | = 1, since
k = F . ��

11. Examples

11.1. Constructions of V-graphs

Example 11.1. One can extend the notion of the relative Milnor K -rings from the
case of commutative fields, as in [11, Part IV], to our general non-commutative
context as follows. Let D be a division ring and let N be a normal subgroup of D×.
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We stress however that, when N = 1, this definition is not the more common one,
as in e.g. [29,30]. For r ≥ 1 we define the degree r Milnor K -group K M

r (D)/N
of D relative to N as the abelian group generated by all r -tuples 〈a∗1 , . . . , a∗r 〉 in
(D×/N )r , subject to the following defining relations:

(a) multi-linearity:

〈a∗1 , . . . , a∗i (a′i )∗, . . . , a∗r 〉 = 〈a∗1 , . . . , a∗i , . . . , a∗r 〉 + 〈a∗1 , . . . , (a′i )∗, . . . , a∗r 〉
(b) Steinberg relations: 〈a∗1 , . . . , a∗r 〉 = 0 whenever 1 ∈ a∗i + a∗j for some distinct

i, j .

In particular, K M
1 (D)/N is the maximal abelian quotient of D×/N . We also define

K M
0 (D)/N = Z.

We equip K M∗ (D)/N =⊕∞
r=0 K M

r (D)/N with a graded ring structure, where
the product is induced by concatenation. Denote the natural multi-linear map
(D×/N )r → K M

r (D
×)/N by (a∗1 , . . . , a∗r ) �→ {a1, . . . , ar }N . Note that it is well-

defined.
Now let a ∈ D×. We show that {a,−a}N = 0. This is trivial for a = 1. For

a �= 1 the identity

−a = (1− a)(a−1(a − 1))−1 = (1− a)(1− a−1)−1

implies that

{a,−a}N ={a, 1−a}N+{a, (1−a−1)−1}N ={a, 1−a}N+{a−1, 1−a−1}N =0,

as claimed. In the terminology of [11, Sect. 23.1] this shows that K M∗ (D)/N is
a κ-structure with the distinguished element (−1)∗. It is now standard to see that
K M∗ (D)/N is anti-commutative (see [11, Lemma 23.1.2]); indeed, for a, b ∈ D×
we have

{a, b}N + {b, a}N = {ab, ab}N − {a, a}N − {b, b}N
= {ab,−1}N − {a,−1}N − {b,−1}N = 0.

Now assume that (D× : N ) <∞ and −1 ∈ N . Extending the construction in
[12], we define the Milnor K -graph of D relative to N as the graph whose vertices
are the non-trivial cosets in D×/N , and where vertices a∗ and b∗ are connected by
an edge if and only if {a, b}N = 0 in K M

2 (D)/N (this relation is symmetric by the
anti-commutativity). By construction, this graph satisfies condition (V1′). Exactly
as in [12, Lemma 2.1] one shows using the bilinearity of {·, ·}N that it satisfies (V2)
and (V3).

Example 11.2. Let H be a group and let � be a graph on H � {1} with distance
function d. For h ∈ H � {1} denote

�h := {g ∈ H � {1} | d(h, g) ≤ 1} ∪ {1}.
We say that � is a centralizer-graph if �h is a subgroup of H contained in the
centralizer CH (h), for all h ∈ H .
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Notice that if we are given subgroups Ch ≤ CH (h), h ∈ H � {1}, we can
construct the minimal centralizer-graph � on H � {1} such that Ch ≤ �h , for all
h ∈ H � {1}. This is just the intersection of all centralizer-graphs �′ such that
Ch ≤ �′h , h ∈ H � {1}.

For each non-identity a∗ ∈ D×/N (notation as in subsection 1.1 of the In-
troduction), let Ca∗ := 〈(a + n)∗, (a−1 + n)∗ | n ∈ N 〉. Let � be the minimal
centralizer-graph such that Ca∗ ≤ �a∗ , for all a∗ ∈ D×/N . Then � is a V-graph,
and it is the minimal centralizer-graph which is a V-graph.

11.2. The bound diam ≥ 3 is sharp in Theorem C(3)

In Theorem C(3), the bound 3 on the diameter is sharp. An example showing this
for a commuting graph of the quaternion algebra (−1,−1/Q) was given in [25,
Sect. 5]. The following analogous example shows this for a Milnor K -graph over Q.

Example 11.3. Fix an odd integer m and a prime number l such that gcd(l−1,m) >
1. Thus F

×
l �= (F×l )m . Similarly to [25, Sect. 5] and [27, p. 582] we consider the

homomorphism

h : Q
× → Z, ±∏

i pdi
i �→

∑

i di ,

where the pi denote the distinct primes, di ∈ Z, and di = 0 almost always. Let
H = h−1(mZ) and let U = (Q×)m(1 + mvl ), where vl is the l-adic valuation on
Q. One has a split exact sequence

1 → F
×
l /(F

×
l )

m → Q
×/U

vl−→ Z/m → 0,

(see e.g. [11, (3.2.7)]). Hence (Q× : U ) <∞. Setting N = H ∩U , we obtain that

−1 ∈ (Q×)m ≤ N ≤ Q
×, (Q× : N ) <∞.

We show that N cannot be open with respect to any finite set of non-trivial
valuations on Q. To this end let q1, . . . , qt be distinct prime numbers, let r1, . . . , rt

be positive integers, and consider the qi -adic valuations vqi , i = 1, . . . , t . We need
to show that N does not contain the congruence subgroup

W = 1+ qr1
1 Ovq1

∩ · · · ∩ qrt
t Ovqt

.

Indeed, Dirichlet’s theorem on primes in arithmetic progressions yields a positive
integer k with p = 1 + kqr1

1 · · · qrt
t prime. Thus h(p) = 1, so p /∈ H . Also note

that p ∈ W . Consequently, W �⊆ H , whence W �⊆ N , as desired.
Finally we compute the diameter of the graph of K M∗ (Q)/N . In view of Theorem

C (with D = F = k = Q) and what we have just seen, the diameter is at most 2.
To show that it is exactly 2 we need to verify that K M

2 (Q)/N �= 0. Now there is a
canonical isomorphism of κ-structures

K M∗ (Q)/U ∼= (K M∗ (Fl)/(F
×
l )

m)[Z/m]
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[11, Th. 26.1.2]. It follows that K M
2 (Q)/U �= 0 (see [11, Example 23.2.5]). Ap-

plying the canonical epimorphism Res : K M∗ (Q)/N → K M∗ (Q)/U we get that
K M

2 (Q)/N �= 0 as well. More concretely, take an l-adic unit a in Z whose residue
ā ∈ F

×
l is not an mth power. Then aU ⊗ lU /∈ StQ,2(U ), and therefore also

aN ⊗ l N /∈ StQ,2(N ), i.e., {a, l}N �= 0 in K M
2 (Q)/N .

We remark that, by contrast, the diameter of K M∗ (Q)/H is 1. Indeed, Q
×/H is

cyclic and H is not contained in any ordering (since −1 ∈ H ). Hence, by [11, Th.
25.2.1], K M

2 (Q)/H = 0, and the assertion follows.

11.3. Examples for Theorem C and property (3 1
2 )

Examples 11.4 and 11.7 below show that Theorem C covers a more general situation
than the previous works [12,25,27,28]. These examples also illustrate property
(3 1

2 ), and shows that Theorem 7.3 covers a more general situation than [28, Theorem
5.8].

Example 11.4. First we study the following local situation. Let D be a division
algebra over a field F and w̃ a discrete valuation on D with uniformizer π . Let
U = O×D,w̃ be the group of w̃-units in D, let U (1) = U (1)

w̃ = 1+mD,w̃ be its first

congruence subgroup, and let D = Dw̃ be the residue field. Suppose that e is a
positive integer with πe ∈ Z(D). Then

N = 〈πe,U (1)〉 = 〈πe〉 ×U (1)

is a normal subgroup of D×. One has an isomorphism

U/(U ∩ N ) = U/U (1) ∼= D
×
.

Therefore w̃ induces an exact sequence

1 → D
× → D×/N → Z/eZ → 0. (11.1)

Assume further that the residue characteristic of w̃ is 2. Then −1 ∈ U (1) ⊆ N .
Let N (y) be as in Sect. 3.

Lemma 11.5. Let y ∈ D× � N. Then N (y) = {n ∈ N | w̃(n) < w̃(y)}.
Proof. Set s = w̃(y). Consider an arbitrary n ∈ N and write it in the form n = π t u,
with t = w̃(n) ∈ eZ and u ∈ U (1).

Case 1. t < s. Then w̃(π−t y) > 0, so π−t y + u ∈ U (1), implying that
y + n = π t (π−t y + u) ∈ N and n ∈ N (y).

Case 2. t = s. Then−π−t y ∈ U �U (1), soπ−t y+u ∈ U �U (1), and therefore
y + n = π t (π−t y + u) �∈ N , i.e., n �∈ N (y).

Case 3. t > s. Then w̃(π t−su) > 0. Since π−s y ∈ U � U (1), we have
π−s y + π t−su ∈ U � U (1), and consequently y + n �∈ N and n �∈ N (y). ��
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Next we consider the following semi-local situation. Let w̃1, . . . , w̃r be distinct
discrete valuations on the division algebra D with residue characteristic 2. Suppose
that π ∈ D is a common uniformizer for w̃1, . . . , w̃r , and that πe ∈ Z(D) with
e ≥ 1. Set Ni = 〈πe〉 ×U (1)

w̃i
and N = N1 ∩ · · · ∩ Nr . By the weak approximation

theorem, D×/N ∼= ∏r
i=1 D×/Ni via the diagonal map. In the terminology of

Sect. 3, we set U = Uπ∗ and � = N/U .

Lemma 11.6. There is an isomorphism of partially ordered groups

� = N/U
∼−→ Z

r , nU �→ ( 1
e w̃1(n), . . . ,

1
e w̃r (n)

)

,

where Z
r is endowed with the product partial order relation. Further,

U = U (1)
w̃1
∩ · · · ∩U (1)

w̃r
.

Proof. By Lemma 11.5 with y = π ,

N (π) = N1(π) ∩ · · · ∩ Nr (π) = {t ∈ N | w̃1(t), . . . , w̃r (t) ≤ 0}. (11.2)

Hence 1 ∈ N (π), and every n ∈ U (1)
w̃1
∩ · · · ∩ U (1)

w̃r
satisfies nN (π) = N (π).

Conversely, if n ∈ N satisfies nN (π) = N (π), then n, n−1 ∈ N (π), so w̃i (n) = 0
for every i . It follows that U = U (1)

w̃1
∩ · · · ∩U (1)

w̃r
.

By the weak approximation,

� = N/U ∼= N1/U (1)
w̃1
× · · · × Nr/U (1)

w̃r
∼= Z

r , (11.3)

where the right isomorphism is induced by ( 1
e w̃1, . . . ,

1
e w̃r ).

Moreover, if m, n ∈ N and N (mπ) ⊆ N (nπ), then m N (π) ⊆ nN (π), and
(11.2) implies that w̃i (m) ≤ w̃i (n) for i = 1, 2, . . . , r . Therefore (11.3) is an
isomorphism of partially ordered groups. ��

As a concrete example, take d ∈ Q such that
√

d ∈ Q2 � Q; e.g., we may
take d = 17 (see [11, Prop. 18.2.1]). Let k be Q, or more generally, a subfield
of Q2 which does not contain

√
d . Let F = k(

√
d), and let σ be the nontrivial

automorphism in Gal(F/k). Let v,w1 be the restrictions of the 2-adic valuation of
Q2 to k, F , respectively. Also let w2 = w1 ◦ σ . Then w1, w2 are unramified over
v and have residue field F2. Further, they are distinct, and are the only extensions
of v to F . Consider the quaternion algebra D = (−1,−1/F) over F with its
standard basis 1, i, j,k, and take e = 2. Thenw1, w2 uniquely extend to valuations
w̃1, w̃2, respectively, on D with (w̃i (D×) : wi (F×)) = 2 and Dw̃i = F4, i = 1, 2.
Specifically, let

π = i+ j, a = 1

2
(−1+ i+ j+ k) = −1

2
(1− j)(1− i).

Note that π2 = −2 and a2 + a + 1 = 0. Then π is a uniformizer for w̃i and a is a
w̃i -unit with residue not in F2, i = 1, 2. Let

Ni = 〈π2〉 ×U (1)
w̃i
= 〈−2〉 ×U (1)

w̃i
, N = N1 ∩ N2.
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By the exact sequence (11.1), the group D×/Ni has order 6 (where i = 1, 2).
We show that it is noncommutative. Indeed,

πaπ−1a−1 = 1

2
(1− i+ j+ k) = 1

2
(1+ j)(1− i),

πaπ−1a−1 − 1 = 1

2
(−1− i+ j+ k) = −1

2
(1+ i)(1− j)

are in Uw̃i . Thus πaπ−1a−1 ∈ Uw̃i � U (1)
w̃i

, so aNi and πNi do not commute in
D×/Ni (this also follows from the general fact that, if D is a finite-dimensional
central division algebra over a complete discretely valued field K with a perfect
residue field K, then the center Z(D) is a cyclic Galois extension of K, and a
uniformizer � in D induces a generator of Gal(Z(D)/K), cf. [39, Prop. 2.5]. In
our situation, ā ∈ Z(D) � K = F4 � F2, so this generator must act non-trivially
on ā).

Consequently, D×/N1 ∼= D×/N2 ∼= S3 and

D×/N ∼= S3 × S3. (11.4)

Observe that the diameter of the commuting graph of S3 × S3 is 3. Indeed, any
(σ1, σ2), (τ1, τ2) ∈ S3× S3 are connected in the commuting graph by the following
path of length 3:

(σ1, σ2) , (1, σ2) , (τ1, 1) , (τ1, τ2)

provided that σ2, τ1 �= 1; other cases are considered similarly. On the other hand,
if σ1, σ2 ∈ S3 are transpositions and τ1, τ2 ∈ S3 are 3-cycles, then (σ1, σ2) and
(τ1, τ2) are not at distance ≤2.

Now πNi has order 2 and aNi has order 3 in D×/Ni ∼= S3. Hence πN , aN ∈
D×/N correspond under (11.4) to elements of the form (σ1, σ2), (τ1, τ2), re-
spectively, where σ1, σ2 are transpositions and τ1, τ2 are 3-cycles. It follows that
d(aN , πN ) = 3.

Therefore the assumptions of Theorem C are satisfied with k a field of finite
transcendence degree as above, y = π , and with ϕ = ϕy∗ : N → � = N/(Uw̃1 ∩
Uw̃2)

∼= Z
2 (see Lemma 11.6). Then ϕ(nU ) = ( 1

2v(n),
1
2v(n)) for n ∈ N ∩ k×, so

ϕ(N ∩ k×) ∼= Z is indeed totally ordered. This also shows that ϕ�N∩k× is a strong
valuation-like map, and N ∩ k× is open in the v-adic topology on k, in accordance
with (1) and (2) of Theorem C. By construction, (3) of Theorem C holds with
T = {w1, w2} and ˜T = {w̃1, w̃2}.

On the other hand, the results of [27,28] do not apply to characterize N . Namely,
by Lemma 8.3, N is not ũ-adically open for any nontrivial valuation ũ on D.
Technically, the results of [25] may not apply either as k and F do not have to
be number fields (although some methods of [25] were instrumental in proving
Theorem C).

This construction also provides an example of a situation where property (3 1
2 )

of Sect. 7 applies. More precisely, the nontrivial automorphism σ of Gal(F/k)
extends to an automorphism σD of order 2 of the algebra D. This automorphism
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switches the valuations w1 and w2 of F , the valuations w̃1 and w̃2 of D, and the
subgroups N1 and N2 of D×. The subgroup N of D× is invariant under σD , and
σD switches the factors in D×/N = S3× S3. Consider elements x∗ = (σ1, σ2) and
y∗ = (τ1, τ2) as above. We claim that D×/N satisfies (3 1

2 ) with respect to x∗, y∗,
the group � = {id, σD}, and M = N ∩ k×. Indeed, essentially the only path of
length 3 between x∗ and y∗ is

x∗, (σ1, 1), (1, τ2), y∗.

But d(σD(x∗), y∗) = 3, and σD(σ1, 1) = (1, σ1) and (1, τ2) do not commute.

Example 11.7. We give a similar construction for a Milnor K -graph. Let p be a
prime number such that p ≡ 1 (mod 4). Let F/k be a nontrivial Galois field
extension such that F ⊆ Qp. Let v,w be the restrictions of the p-adic valuation
on Qp to k, F , respectively. The extension (F, w)/(k, v) is immediate, i.e., has the
same value group Z and residue field Fp. Since v is discrete, this implies that there
are exactly [F : k] extensions of v to F , namely w ◦ σ with σ ∈ Gal(F/k) (see
[11, Cor. 17.4.4]). Set w1 = w and w2 = w ◦ σ with σ �= id.

Now set

N1 = (F×)2(1+mw1), N2 = (F×)2(1+mw2), N = N1 ∩ N2.

Since p ≡ 1 (mod 4) we have −1 ∈ (F×p )2 = (F
×
wi
)2, i = 1, 2, and therefore

−1 ∈ N .
We compute the relative Milnor K -ring K M∗ (F)/N . We use the terminology and

results of [11, Part IV]. First, the graded ring K M∗ (Fp)/(F
×
p )

2 is F
×
p /(F

×
p )

2 ∼= Z/2Z

in degree 1, and is trivial in degrees ≥ 2 [11, Cor. 25.2.4]. Thus K M∗ (Fp)/(F
×
p )

2 is
the extension 0[Z/2Z] of the trivial κ-structure 0 by the group Z/2Z [11, Example
23.2.4]. Since w(N1) = 2Z, [11, Th. 26.1.2 and Example 26.1.1(1)], says that
K M∗ (F)/N1 is the extension (K M∗ (F2)/(F

×
p )

2)[Z/2Z]. It follows that

K M∗ (F)/N1 ∼= (0[Z/2Z])[Z/2Z] ∼= 0[(Z/2Z)2]
(see [11, Lemma 23.2.3]). Similarly, K M∗ (F)/N2 ∼= 0[(Z/2Z)2].

Since w,w′ are distinct and discrete, they are independent. Therefore [11, Cor.
28.2.4], shows that

K M∗ (F)/N ∼=
(

K M∗ (F)/N1

)

×
(

K M∗ (F)/N2

) ∼=
(

0[(Z/2Z)2]
)

×
(

0[(Z/2Z)2]
)

.

The Milnor K -graph of F relative to N was computed in [12, Sect. 7], and it has
diameter 3.

We may further take k to be finitely generated over Q. By construction, N is
open in the T -adic topology, where T = {w1, w2}. This is in accordance with
Theorem C, when we take D = F and T = ˜T .

Finally, by Lemma 8.3, N is not u-adically open with respect to any single
non-trivial valuation u on F .

In this example as well property (3 1
2 ) holds, when we take F/k to be an extension

of degree 2, � = Gal(F/k), and M = N ∩ k×. The generator σ of Gal(F/k)
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switches N1, N2, and therefore fixes N . For i = 1, 2, the group F×/Ni is the
degree 1 component of K M∗ (F)/Ni ∼= 0[(Z/2Z)2], and is isomorphic to (Z/2Z)2.
Let α, β, γ, δ be generators of F×/N such that α, β project to generators F×/N1
and γ, δ project to generators of F×/N2. We may assume that σ switches α, γ
and β, δ. As was shown in [12, Sect. 7] (in a multiplicative notation), the vertices
α + γ, β + δ of the Milnor K -graph of F relative to N have distance 3, and there
are exactly two paths of length 3 connecting them, namely

α + γ, α, δ, β + δ and α + γ, γ, β, β + δ.
Further, σ(α + γ ) = α + γ , but the vertices γ = σ(α) and δ are not connected
by an edge, and neither are the vertices α = σ(γ ) and β. Therefore property (3 1

2 )
holds for x∗ = α + γ and y∗ = β + δ.

Acknowledgements. We warmly thank the referee for the thorough, quick, and extremely
useful report, which helped us to correct certain flaws, as well as to improve the exposition
of the paper.
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